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The proteoglycan serglycin (SG) is expressed by different innate and adaptive immune
cells, e.g. mast cells, macrophages, neutrophils, and cytotoxic T lymphocytes, where SG
contributes to correct granule storage and extracellular activity of inflammatory mediators.
Here the serglycin-deficient (SG−/−) mouse strain was used to investigate the impact of SG
on intestinal immune responses during infection with the non-invasive protozoan parasite
Giardia intestinalis. Young (≈11 weeks old) oral gavage-infected congenic SG−/− mice
showed reduced weight gain as compared with the infected SG+/+ littermate mice and the
PBS-challenged SG−/− and SG+/+ littermate mice. The infection caused no major
morphological changes in the small intestine. However, a SG-independent increased
goblet cell and granulocyte cell count was observed, which did not correlate with an
increased myeloperoxidase or neutrophil elastase activity. Furthermore, infected mice
showed increased serum IL-6 levels, with significantly reduced serum IL-6 levels in
infected SG-deficient mice and decreased intestinal expression levels of IL-6 in the
infected SG-deficient mice. In infected mice the qPCR analysis of alarmins,
chemokines, cytokines, and nitric oxide synthases (NOS), showed that the SG-
deficiency caused reduced intestinal expression levels of TNF-a and CXCL2, and
increased IFN-g, CXCL1, and NOS1 levels as compared with SG-competent mice. This
study shows that SG plays a regulatory role in intestinal immune responses, reflected by
changes in chemokine and cytokine expression levels and a delayed weight gain in young
SG−/− mice infected with G. intestinalis.

Keywords: serglycin proteoglycan, knockout mouse, infection, Giardia intestinalis, innate intestinal immunity
INTRODUCTION

Giardia intestinalis (also named G. lamblia or G. duodenalis) is a non-invasive protozoan intestinal
parasite found worldwide. Infection with G. intestinalis mainly cause a self-limiting diarrheal-
disease, i.e. giardiasis, in humans and other mammals (1). Although Giardia-infections often are
asymptomatic, symptoms in affected patients include acute or chronic diarrhea, weight loss, and
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malabsorption (2). The parasite can be transmitted among
domestic animals, pets, wild life, and humans. Giardia spp.
secrete no known toxins, still infections contribute to more
than 200 million human diarrhea cases per year (3) Since
1954, at least 132 water-borne outbreaks of giardiasis have
been reported worldwide (4). Recent studies showed that G.
intestinalis is a significant factor in the induction of food-borne
disease, with reduced weight gain and growth stunting of young
children in low-resource settings (5–7). Malnutrition due to
Giardia-infections has also been replicated in mouse models
(8, 9). When G. intestinalis attach to the microvillus brush border
of the intestinal epithelial cells, the cells respond by producing
chemokines and cytokines, which attracts immune cells to the
intestinal submucosa (10–12). Both innate and adaptive
immunity, with a mixed Th1/Th2/Th17 response profile, play
significant roles in the host defence towards G. intestinalis (13–
15). However, during infection G. intestinalis secretes a large
number of immunomodulatory proteins, which possibly
regulates the host intestinal immune responses (16–19).

The proteoglycan serglycin (SG) is mainly expressed in
hematopoietic cells where SG promotes granule integrity, e.g.
in mast cells, neutrophils, and cytotoxic T lymphocytes (20).
Endothelial and epithelial cells also express SG, in which SG
mainly contributes to the apical secretion of cytokines (21–23).
The core protein SG carries long unbranched negatively charged
disaccharide chains, i.e. anionic glycosaminoglycans (GAGs),
and depending on cell type the GAGs attached to SG can be
heparin, heparan sulfate, or chondroitin sulfate, for example. The
GAGs of SG contribute a binding surface for cationic
inflammatory mediators and the genetic ablation of SG showed
mainly a granule storage deficiency of several cationic proteins:
e.g. the mast cell specific proteases, the chymase mouse mast cell
protease (mMCP)-4, the chymase/elastase mMCP-5, the tryptase
mMCP-6, and the carboxypeptidase A3 (CPA3); the neutrophil
elastase (NE); as well as granzyme B in cytotoxic T lymphocytes
(20, 24–27). SG and the cationic mediators are believed to form
functional complexes of physiological relevance (20), and thus,
when released from cells can have impact locally but
also systemically.

Previously we showed that the SG-deficient mice had
increased intestinal neutrophil recruitment and NE activity,
compared to wild type littermate mice, in response to the
invasive nematode T. spiralis (28). With this notion in mind,
and since different types of parasitic infections as well as the SG-
deficiency may affect multiple innate and adaptive immune cells
and mediators, we here studied the impact of SG on the small
intestinal immune response during an experimental infection
with the non-invasive protozoan parasite G. intestinalis. In
young (≈11 weeks old) SG+/+, SG+/− and SG−/− congenic
l i t termate mice we assessed weight and intest inal
morphological changes, and analyzed serum levels of IL-6 as
well as the transcriptional expression levels of intestinal
cytokines and chemokines on day 12 post infection. Our
results suggest that SG may protect against weight loss and
that SG can regulate intestinal cytokine responses.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Preparation of Giardia Trophozoites
Giardia intestinalis, GS (clone H7, ATCC 50581), was used for
the experimental infection in mice. The G. intestinalis
trophozoites were cultured at 37°C in polystyrene screw cap
tubes (Nunc) in 10 ml of TYDK media supplemented with 10%
heat inactivated fetal bovine serum (Gibco, Thermo Fisher
Scientific, MA, USA), bovine bile (12.5 mg/ml), and Ferric
ammonium citrate solution (2.2 mg/ml) with the final pH
adjusted to 6.8 as described (29). All TYDK medium
components were purchased from Sigma-Aldrich (MO, USA)
unless stated otherwise. Giardia trophozoites were pelleted at
931 × g for 10 min after being kept on ice for 15 min, and
re-suspended in ice-cold PBS at 106 parasites per 100 ml, i.e. the
infectious dose for each mouse.

Mouse Breeding and Ethical Statement
The serglycin (SG) knockout mouse strain, congenic on the
C57BL/6J Taconic genetic background (generation N > 20,
which routinely have been backcrossed to original C57BL/6J
Taconic mice every second year since 2004), were kept under
specific pathogen-free conditions at the Faculty of Veterinary
Medicine and Animal Science, SLU, Uppsala, Sweden.
Heterozygote (SG+/−) mice were mated to produce the groups
of young (≈11 weeks old) female and male littermate mice to be
used in the experimental infections. All experimental infections
were conducted in agreement with the Swedish Animal Welfare
Act and granted permission (#C140/15) from the Ethical
Committee for Animal Experiments, Uppsala District Court. A
maximum of 5 mice per cage were housed in individually
ventilated cages (IVCs, ca 501 cm2 Macrolon IIL cages) with
aspen shavings for bedding, paper for nesting, and a small house
of paper. A 12 h light cycle was used and water and rodent chow
were provided ad libitum. No antibiotics were included in the
diet and the mice were never treated with any drugs.

Infections and Scoring of Mice, and
Sample Collections
Young SG+/+, SG+/− and SG−/− littermate female and male mice
(in the age range of 7 to 12 weeeks old, with the majority ≈11
weeks old) were infected by oral gavage with 106 Giardia
trophozoites of the GS isolate in 100 ml PBS in two
independent experiments (see Supplementary Table S1). As a
control, young SG+/+, SG+/− and SG−/− littermate mice were oral
gavage-challenged with 100 ml PBS only. The clinical scoring was
performed in a blinded fashion, i.e. the genotypes of infected
littermate mice were not known to the assessor until determined
at the experimental endpoint. In brief, weight data were recorded
before infection (day 0) and then every second to third day post
infection (dpi) until infected mice were euthanized at the
experimental endpoint, day 12. Feces were collected every
second or third day for nested PCR detection of G. intestinalis.
Blood was sampled at the experimental endpoint and allowed to
clot to collect serum. Tail tissue was collected for genotyping of
July 2021 | Volume 12 | Article 677722
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the mice. Small intestines (jejunum and duodenum) were
collected at 12 dpi and cut into one-centimeter pieces, and
stored at −800C until used. Weight data were pooled from two
independent experimental infections, and as we could not find
any significant differences in the weight gain between the SG+/+

and SG+/− mice in the PBS challenged group or during the
challenge infection with Giardia, the scored weight changes in
the SG+/+ and SG+/−mice were also pooled. Since only four SG−/−

females were found in the blinded PBS-challenged group we
included three uninfected male SG−/− mice in the qPCR analysis.

Genotyping of SG Mice
Tail tissue samples were heated in 50 ml digestion buffer [0.2M
Tris, 0.1M (NH4)2SO4, 0.05M MgCl2, 1% beta-mercaptoethanol,
0.5% Triton-X 100, autoclaved Milli Q water] at 95°C for 10 min.
To digest the tail tissue and extract mouse genomic DNA
Proteinase K (2 mg/ul, #AM2544, Ambion) was added and the
samples were incubated overnight at 55°C. The crude extracts
were then heated for 10 min at 95°C to inactivate the Proteinase
K activity, and centrifuged at 16,200 × g to pellet insoluble
material. 0.5 ml of the crude DNA samples was used for the PCR-
based genotyping of the SG littermate mice. The following
primers were used: Forward 5’-GTC TCT GTT TTC ACA
TTC CAC GGC CC-3’, Reverse 5’-GGC ACA AGC AGG
GAA CAT TCC GAG C-3’, and Reverse Neo-cassette 5’-GGG
CCA GCT CAT TCC TCC CAC TCA TGA TCT-3’, which
yielded the expected 315 bp WT and 550 bp KO products. PCR
was performed with the KAPA2G Robust HotStart PCR kit
(#KK5517, Techtum).

PCR Assay for Detection of Giardia DNA
Collected fecal samples were treated as described for the tail
tissue to recover DNA. Giardia DNA was demonstrated using a
nested PCR with the following primers targeting beta-giardin:
first round: Forward 5’-AAA TNA TGC CTG CTC GTC G-3’
and Reverse 5’-CAA ACC TTN TCC GCA AAC C-3’ and the
second round: Forward 5’-CCC TTC ATC GGN GGT AAC TT-
3’ and Reverse 5’-GTG GCC ACC CAN CCC GTG CC-3’,
yielding a 530 bp product (30). PCR was performed with the
KAPA2G Robust HotStart PCR kit (#KK5517, Techtum).

Sampling and Morphological Assessment
of Intestinal Tissues
In brief, 1 cm of the duodenum was collected and fixed in 10%
formalin for at least 24 h, embedded in paraffin, and sectioned on
a Microtome in 5 mm tissue sections. The tissue sections were
mounted on slides and stained with hematoxylin and eosin
(H&E). Pathological changes were assessed by light microscopy
and the numbers of goblet cells as well as granulocytes were
counted in ≥30 villi crypt units (VCU) per mouse intestine.

Determination of Myeloperoxidase
Activity and Neutrophil Elastase
Activity in the Intestine
To measure peroxidase activity, i.e.myeloperoxidase (MPO) and
eosinophil peroxidase (EPO), intestinal tissues were frozen in
Frontiers in Immunology | www.frontiersin.org 3
liquid nitrogen and grinded with a mortar and pestle into a tissue
powder. The powdered tissues were resuspended in cold 1%
hexadecyl trimethyl ammonium bromide in phosphate buffer
(400 ml per 50 mg tissue) with pH 6.0. After snap freezing and
thawing three times in liquid nitrogen, the homogenate was
centrifuged at 12,000 × g for 15 min at 4°C to obtain the
supernatant. Then 10 ml of supernatant was added in 200 ml of
substrate solution (50 mmol/L phosphate buffer, 0.4 mg/ml o-
phenylenediamine substrate, and 0.05% H2O2). After 20 min the
reaction was stopped by adding 50 ml of 0.4 mol/L H2SO4, and
the absorbance was measured at 490 nm.

To assess neutrophil elastase (NE) activity intestinal tissues
were frozen in liquid nitrogen and grinded with a mortar and
pestle into a tissue powder. The powdered tissues were re-
suspended in 1 ml Hank’s balanced salt solution (HBSS) per
50 mg tissue, and centrifuged at 15,000 × g for 30 min at 4°C.
Fifty microliters of the obtained supernatants were incubated
with 15 ml of 10 mM elastase substrate aSuc-Ala-Ala-Pro-Val-
AMC (#L-1770, Bachem) in 135 ml of the substrate reaction
buffer (150 mM NaCl, 100 mM Tris-HCl, 0.1% BSA, 0.05%
Tween-20, MilliQ water, pH = 8.5). The optical density (OD) at
405 nm was determined at 0 min and after 60 min and the
difference calculated.

RNA Extraction and qPCR Detection of
Chemokine and Cytokine Expressions in
the Intestine
Collected intestinal samples from PBS-challenged and Giardia-
infected mice from experiment #2 were frozen in liquid nitrogen
and grinded with a mortar and pestle into a tissue powder. The
powdered tissues were resuspended in TRIzol® (Thermofisher)
and RNA extraction performed according to the manufacturer’s
instructions. DNase I treatment of extracted RNA was
incorporated into the procedure to remove traces of genomic
DNA. The quality of extracted total RNA was assessed by
measuring the 260/280 and 260/230 ratios using a NanoDrop
1000 Spectrophotometer (Thermo Fisher Scientific). The relative
intestinal expression of the following chemokines, cytokines, and
synthases were analyzed by qPCR: CCL2, CCL20, CXCL1,
CXCL2, CXCL3 and IL-1, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10,
IL-12, IL-17a, IL-17c, IL-25, IL-33, IFN-g, TGF-b, TNF-a, as well
as NOS1 and NOS2. All qPCR primer pairs were designed in-
house using the Primer-BLAST software at the National Center
for Biotechnology Information (see Supplementary Table S2 for
the primer pairs). One mg of total RNA was reverse transcribed to
cDNA using the RevertAid H Minus First Strand cDNA
Synthesis Kit (Thermo Scientific) according to the
manufacturer’s instructions. Maxima SYBR Green/ROX qPCR
Master Mix (Thermo Scientific) was used for the qPCR and the
expression of GAPDH was used for normalization according to
guidelines of AB Applied Biosystems (Step One Plus Real Time
PCR systems). All qPCR reactions were run in a Step One Plus
Real Time PCR machine (Applied Biosystems, Thermo Fisher
Scientific, MA, USA) using the following cycling conditions:
activation of polymerase at 95°C (15 s), annealing at 60°C (30 s),
and extension at 72°C (30 s) followed by melt curve analysis as
July 2021 | Volume 12 | Article 677722
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part of the default run settings. The fold change in gene
expression between the PBS-challenged and the Giardia-
infected SG+/+ and SG−/− mice was then calculated using the
Livak-method (2−DDCT) (31). Since, after genotyping, only four
SG−/− females were found in the PBS-challenged group three
uninfected male SG−/−mice were included in the PBS-challenged
SG−/− group for the qPCR analysis.

ELISA Assay for IL-6 Detection
The concentration of IL-6 was determined in serum samples
from mice in experimental infections #1 and #2, using a mouse
IL-6 ELISA developmental kit (#900-T50, PeproTech) according
to the supplier´s protocol.

Statistical Analysis
GraphPad Prism 9 was used for the statistical analysis of the
collected data. To compare differences between groups of
infected SG+/+ and SG−/− littermate mice and PBS controls,
weight curves were analysed using the parametric two-way
ANOVA Mixed-effect model with uncorrected Fisher’s LSD.
The accumulated weight means, intestinal cell counts, and
serum IL-6 levels were analysed with parametric one-way
ANOVA and uncorrected Fisher’s LSD. For the fold change
calculated on the qPCR data the non-parametric Kruskal-Wallis
with uncorrected Dunn’s test was used. P values of <0.05 were
considered as significant.
RESULTS

Serglycin-Deficient Mice Show
Reduced Weight Gain During Infection
With Giardia intestinalis
To study the putative role of the proteoglycoan SG during Giardia
infection we oral gavage infected wild-type and SG-deficient
littermate mice with the human G. intestinalis assemblage B
isolate GS (106 trophozoites per mice). Two independent
experimental infections, #1 and #2 (Figures S1A, B), showed
similar results why the weight data were pooled. As a control, oral
gavage PBS-challenge of SG-competent and SG-deficient
littermate mice was performed once. All four groups of mice
significantly gained weight after challenge over the 12 day
experimental period (Figure 1) , although the accumulated
mean weight of the infected SG−/− mice was significantly lower
as compared with the other groups (Figure S1C). The ≈11 week
old SG-competent mice showed a 0.5 g weight gain between 7 and
9 days efter challenge, and the challenge with G. intestinalis caused
no major reduction in weight gain in the SG+/+,+/− mice, as
compared with the PBS-challenged SG−/− and SG+/+,+/− mice
(Figure 1). In contrast, infected SG−/− mice showed
a significantly reduced weight gain as compared to
infected SG+/+,+/− mice (at 5, 7, 9, and 12 dpi) and PBS-
challenged SG+/+,+/− mice (at 7, 9, 11, and 12 dpi) (Figure 1). In
experimental infection #1 infected SG−/− mice had a significantly
reduced weight gain (at 5, 7, 9, and 12 dpi) as compared to the
PBS-challenged SG−/− mice, an effect that was lost in experimental
Frontiers in Immunology | www.frontiersin.org 4
infection #2 (Figures S1A, B). In feces collected from day 3 to 12
dpi, a nested PCR identified G. intestinalis DNA in all infected
mice from 8 dpi and onward and no major differences in the level
of G. intestinalis DNA in the fecal material was seen between
infected SG−/− and SG+/+,+/−mice (Figure S2 and data not shown).
Thus, SG-deficiency has a negative effect on weight gain during G.
intestinalis infections but it cannot be correlated to the amount of
parasite DNA in fecal material.

Increased Goblet Cell and Granulocyte
Counts but Decreased Neutrophil Elastase
Activity, With No Major Histopathological
Changes of the Small Intestine, in Giardia-
Infected SG+/+ and SG−/− Mice
To start to delineate why the Giardia-infected SG−/− mice showed a
delayed and reduced weight gain we first studied intestinal
morphology and granulocyte infiltration in infected mice. The
experimental infection with G. intestinalis caused no major
histopathological changes in young infected SG+/+ and SG−/−

littermate mice (experiment #2, n+/+ = 4, n−/− = 7) as compared
to the PBS-challenged SG+/+ and SG−/− littermate mice (n+/+ = 3,
n−/− = 3) (Figures S3A, B). However, at 12 dpi the infection caused
significantly increased goblet cell counts (Figure 2A) and
granulocyte cell counts (Figure 2B), independently of SG. The
H&E staining of intestinal tissues may poorly resolve the ratio of
neutrophilic and eosinophilic granulocytes, therefore we next
assessed the intestinal activities of eosinophil peroxidase (EPO)
and myeloperoxidase (MPO) expressed by neutrophils and
monocyte/macrophages, as well as the major neutrophil-derived
enzyme neutrophil elastase (NE). Whereas both peroxidase and NE
activity levels were found to be SG-independent in challenged mice,
the peroxidase activity levels were not increased (Figure 2C), and
the NE activity significantly decreased (Figure 2D), as compared
FIGURE 1 | Weight scoring in and SG+/+, +/- and SG-/- mice infected with
Giardia intestinalis. Young (≈11 weeks old) congenic SG+/+, SG+/-, SG-/- C57Bl/
6 littermate female and male mice without antibiotic treatment were challenged
by oral gavage with PBS or with 106 Giardia intestinalis trophozoites in PBS
Weight data and feces were collected every second or third day until endpoint,
and weight changes were normalized to the Initial weight at day 0. Weight data
of the PBS-challenged SG+/+,+/-(n = 14) and SG-/- (n = 4) mice and pooled
weight data of all Giardia intestinalis infected SG+/+,+/- (n = 43) and SG-/-

(n = 18) mice from two independent infection experiments are shown (see
Supplementary S1). For comparisons between all groups and days a Mixed-
effect analysis was performed. ns, non-significant, P values * <0.05 and **<0.01
for SG-/- +GS vs SG+/+,+/- +GS mice, and # <0.05 and ## <0.01 for SG-/- +GS
vs SG+/+,+/- +PBS mice are indicated.
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with PBS-challenged mice. Together, this suggests that SG has no
major role in granulocyte recruitment and the activity of MPO and
NE during the Giardia-infection.

Significantly Lower Serum IL-6 Levels and
Intestinal Transcriptional IL-6 Levels in
Giardia-Infected Serglycin-Deficient Mice
The pro-inflammatory cytokine IL-6 has been shown to play a
significant role in the host control of Giardia infections (32) and
in addition SG-dependent serine-proteases have been shown to
be involved in the degradation of IL-6 (33). With this in mind the
serum IL-6 levels was determined with ELISA in the two
independent experimental infections [experiment #1 (SG+/+

n = 6, SG−/− n = 6) and #2 (SG+/+ n = 5, SG−/− n = 11)].
While experiment #1 showed a non-sigificant increase in IL-6
levels in comparison to PBS-challenged mice (SG+/+ n = 4, SG−/−

n = 3) the IL-6 levels were significantly increased in experiment
Frontiers in Immunology | www.frontiersin.org 5
#2, although the infected SG−/− mice showed significantly lower
levels of serum IL-6 as compared to the infected SG+/+ mice in
both experiments (Figure 3A). To further explore this difference
we next evaluated the expression levels of IL-6 with qPCR, in
intestinal tissues collected from experiment #2. Compared with
the non-infected/PBS-challenged mice the Giardia-infection
caused a significantly increased expression of IL-6 in the SG-
competent mice, while infected SG−/− mice showed significantly
reduced intestinal expression levels of IL-6 compared with
infected SG+/+,+/− mice (Figure 3B).

Expression Levels of Interleukins and
Cytokines As Well As Nitric Oxide
Synthases in the Small Intestine of
Giardia-Infected SG+/+ and SG−/− Mice
To further explore potential effects causing the reduced weight gain
in Giardia-infected SG−/− mice we continued analyzing the
A B

C D

FIGURE 2 | Infection with Giardia intestinalis increases goblet cell and granulocyte counts in the small intestine but inhibits neutrophil elastase (NE) activity.
(A) Goblet cells and (B) granulocytes were counted per villi crypt unit (VCU) on H&E-stained sections from PBS-challenged and Giardia-infected mice. (C) Intestinal
MPO activity (substrate o-phenylenedamine) and (D) neutrophil elastase. (NE) activity (substrateL-1770) in PBS-challenged and Giardia-infected SG+/+ and SG-/-

littermate mice. ns, non-significant, P values * <0.05, ** <0.01, *** <0.0001.
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transcriptional levels of immune related genes in the small intestines
of infected mice, collected in experiment #2. First we studied
cytokines that earlier have been shown to be up-regulated during
Giardia infections in mice, i.e. IL-1, IL-2, IL-4, IL-5, IL-9, IL-10, IL-
12, IL-17a, IL-17c, IFN-g, TGF-b, and TNF-a. At 12 dpi the infected
SG+/+,+/− mice showed significantly increased expression of TNF-a
as compared with the other mice groups (Figure 4A), whereas only
minor changes in the expression of the other cytokines as compared
with the PBS-challenged mice was noted (Figures S4A–K).
However, a non-significant trend for increased expression of
Frontiers in Immunology | www.frontiersin.org 6
several of the evaluated cytokines was noted in the infected mice,
and the accumulated ranking means of fold changes of all the “A to
K” cytokines were significantly increased in the infected mice as
compared with PBS-challenged mice (Figure S4L). Furthermore,
the inducible nitric oxid synthase 2 (NOS2), which is expressed by
several immune cells, remained indifferent with a non-significant
down-regulation in the infected mice (Figure 4B). In contrast, the
level of NOS1 was significantly upregulated in the infected SG−/−

mice (Figure 4C), suggesting that SG may be involved in the
regulation of the respiratory burst produced by resident
intestinal cells.

Expression Levels of Alarmins and
Chemokines in the Small Intestine of
Giardia-Infected SG+/+,+− and SG−/− Mice
Since the alarmins IL-25 and IL-33 have been shown to be
important during intestinal worm infections and the chemokines
CCL2, CCL20, CXCL1, CXCL2, and CXCL3 were found to be
up-regulated in human epithelial cells during Giardia infection,
we finally assessed the expression levels of these factors in the
small intestines of infected mice at 12 dpi. While there was no
major changes of IL-25, IL-33, CCL2, CCL20, and CXCL3
(Figures S5A–E), or in accumulated ranking means of the “A
to E” factors (Figure S5F), there was a significant SG-dependent
regulation of CXCL1 (Figure 5A) and CXCL2 (Figure 5B), with
more CXCL1 and less CXCL2 expressed in the infected SG−/−

mice. Thus, there is an effect of SG on the intestinal expression of
a limited set of chemokines during Giardia infection.
DISCUSSION

We here addressed if and how the targeted deletion of the
proteoglycan SG, which in the small intestine is expressed by
many residing cells as well as in recruited immune cells, affects
weight gain and intestinal immune responses during an infection
with the non-invasive protozoan parasiteG. intestinalis. Young (≈11
weeks old) SG+/+, SG+/−, SG−/− littermate mice were infected by
gavage and scored in a series of completely blinded experiments. It
is now well-documented that infection with G. intestinalis
influences the growth and weight gain of young humans and
animals, including experimentally infected mice and gerbils (7, 8,
34–37). However, most of the earlier experimental Giardia
infections with the Giardia GS H7 isolate in young wild-type
mice around 10 weeks of age have shown spontaneous clearance
after 2–3 weeks and the weight gain is often not affected (8, 38).
Interestingly, we found that SG protects against reduced weight gain
induced by the G. intestinalis infection, whereas young mice
deficient in the mast cell chymase mMCP-4 gained weight similar
to wild-type mice (38). This suggests a role for SG-dependent
immune effectors, other than mMCP-4, in the Giardia-induced
growth defects. The SG-dependent effect on growth in Giardia-
infected mice can be immune related but also related to changes in
the metabolism in lipids and other nutrients, changes in intestinal
absorption, appetite-leptin expression, and microbiota composition
and this is discussed further below.
A

B

FIGURE 3 | Serum levels of IL-6 and intestinal expression levels of the
proinflammatory cytokine IL-6 in SG+/+ and SG-/- littermate mice infected with
Giardia intestinalis. (A) Serum IL-6 levels in from experimental infections #1
and #2. Relative intestinal expression levels determined by qPCR of (B) IL-6.
Fold changes were calculated after normalization to GAPDH_ Dotted lines at
0.5, 1, and 2 indicates down-regulation, no fold change, and up-regulation,
respectively. ns, non-significant, P values * <0.05 ** <0.01, and **** <0.0001
between groups of mice are indicated.
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To further elucidate the contribution of SG proteoglycans in
weight gain during a G. intestinalis infection we evaluated tissue
morphology and molecular processes in the small intestine.
Although the intestinal morphology of Giardia-infected SG−/−

and SG+/+ mice displayed no major histopathological changes as
compared with PBS-challenged mice, the infection caused
similarly increased goblet cell and granulocyte counts in the
villus crypt unit (VCU) of the SG−/− and SG+/+ mice. The
granulocyte counts at 12 dpi in the young mice was similar to
Frontiers in Immunology | www.frontiersin.org 7
what we previously found in mature adult mice at 13 dpi (38),
suggesting that granulocyte recruitment during a G. intestinalis
infection may occur independent of the age of the mice. To
determine if the observed increase in granulocytes were of
neutrophilic or eosinophilic origin we measured peroxidase
activity as well as the activity of the neutrophil derived enzyme
NE. In neutrophilic granulocytes MPO produces oxygen radicals
that could destroy engulfed bacteria and MPO activity is
frequently used as a marker for recruitment of neutrophils to
A B C

FIGURE 4 | Intestinal expression levels of TNF-a and nitric oxide synthases (NOS) in SG+/+ and SG-/- littermate mice infected with Giardia intestinalis. Relative
intestinal expression levels of (A) TNF-a, (B) inducible NOS2, and (C) ubiquitously expressed NOSI, determined by qPCR. Fold changes were calculated after
normalization to GAPDH. Dotted lines at 0.5, 1, and 2 indicates down-regulation, no fold change, and up-regulation, respectively. ns= non-significant,
P values * <0.05, ** <0.01.
A B

FIGURE 5 | Intestinal expression levels of chemokines in Giardia intestinalis-infected SG+/+ and SG-/- littermate mice. Relative expression levels at day 12 post
infection of (A) CXCL1 and (B) CXCL2 determined by qPCR. Fold changes were calculated after normalization to GAPDH. Dotted lines at 0.5, 1, and 2 Indicates
down-regulation, no fold change, and up-regulation, respectively. ns, non-significant, P values * <0.05, ** <0.01 are Indicated.
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the infected tissue (39). However, the substrate used in the current
study will also detect eosinophilic peroxidase (EPO) activity.
Although the experimental Giardia-infection could be
considered as “mild” in the young mice, as reflected by the low
increase of granulocytes, activated eosinophils and neutrophils will
export their granule content and thus, some activity are expected
to be lost out in the lumen. Interstingly, while the MPO/EPO
activity was similar between PBS and Giardia-challenged mice
suggesting luminal export, the G. intestinalis infected mice showed
a significantly reduced activity of NE, independently of SG. This
finding is in line with recent in vitro data suggesting that G.
intestinalis may produce and secrete inhibitors to eliminate the
potentially harmful effects of NE (38). NE is protectively involved
in a wide range of different infection, and will degrade extracellular
matrix components and cell surface molecules during tissue injury
and inflammation (40). Interestingly, in neutrophils in vitro
differentiated from bone marrow cells of the SG knockout mice
a complete lack of NE was reported (26). However, we recently
showed that the intestinal levels of NE activity increased
significantly in SG-deficient mice infected with Thichinella
spiralis (28) and, in the present study we found detectable NE
activity in the small intestines of the PBS-challenged SG+/+ and
SG−/− mice and that the activity was only slightly lower in the
SG−/− mice than in the SG+/+ mice. This suggests that SG may be
important for the production and granular storage of NE during
neutrophil differentiation in vitro, but not for the production and
secretion of NE from intestinal neutrophilic granulocytes in vivo.
Thus, the slightly increased expression of IL-5 in combination
with indifferent level of MPO activity and the reduced NE activity
suggests that mainly eosinophilic granulocytes may account for
the observed increase of granulocyte numbers in the small
intestines of the infected SG−/− and SG+/+ mice, a suggestion
that warrants further investigation.

To alert the intestinal immune responses towards the G.
intestinalis infection secretion of alarmins such as IL-25 and
IL-33, and chemokines such as CCL2, CCL20, CXCL1, CXCL2,
and CXCL3, likely initiate the early recruitment of innate
immune cells. Later a mixed Th1/Th2/Th17 immune reaction
should follow with increased expression of several cytokines such
as TNF-a, IFN-g, IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10,
IL-12, IL-17, and IL-23 (12, 19, 32, 41–47). In addition, the
activated intestinal tissue and recruited immune cells starts
production of nitric oxide and other oxygen species that can
destroy invading microorganisms. In the current model, at day
12 of the G. intestinalis infection significantly changed
expression of IL-6, TNF-a, CXCL1, CXCL2, and NOS1 was
noted in the small intestines of young mice. In addition, IL-1,
IL-5, IL-12, IFN-g, IL-25, and CCL2 showed a tendency for
changed expression levels in infected mice. The chemokines
CXCL1 and CCL2 have earlier been shown to be highly up-
regulated by human intestinal epithelial cells (11) whereas earlier
studies with mouse intestinal cell lines or experimental infections
failed to detect up-regulation (48). CXCL1, which is a potent
mediator of neutrophil recruitment will require proteoglycan
GAGs, e.g. heparan sulphate, for their functionality during
interaction with the receptor CXCR2 on incoming granulocytic
Frontiers in Immunology | www.frontiersin.org 8
cells (49). Interestingly, the deletion of SG significantly increased
the expression level of the chemokine CXCL1 in the small
intestine, suggesting that lack of SG may cause a compensatory
upregulation of CXCL1. However, as we did not find a SG-
dependent difference in the granulocyte counts or NE activity
other proteoglycans in the small intestine likely provide sufficient
amounts of GAGs for the CXCL1-dependent recruitment
of granulocytes.

Both IL- 6 and TNF-a contributes to the expulsion of Giardia
(13, 32, 41, 43, 44, 50) and Li et al. reported that neuronal nitric
oxide synthase (NOS) 1 was essential for the elimination of G.
intestinalis in young (5 to 8 weeks old) female mice at 12 dpi,
whereas the expulsion was found to be independent of IL-6-
induced expression of NOS2 (51). Interestingly, we found a
significantly decreased IL-6 expression level and increased
intestinal expression level of NOS1 in the infected SG−/− mice,
suggesting a compensatory mechanism of NOS1 versus IL-6 in
the SG-deficient mice. Thus, the increased activation of NOS1
could partly explain the reduced weight gain observed in the
SG−/− mice, as the nitric oxide formed would lead to an
aggressive intestinal milieu. However, the role of SG for
intestinal expression of IL-6 and NOS1 requires further studies.

The observed effects of a reduced weight gain in G. intestinalis
infected SG deficient mice is most likely the result of several
interacting factors, not only immune-related. An earlier mouse
model of Giardia induced growth delay used 5-week-old mice
and cysts from the H3 G. intestinalis isolate, but decreased growth
was not seen until 35 days (8). Malnutrition by a low-protein diet in
these animals increased the growth defects and the effects were seen
already after 13 days, similar to what we see in our SGmodel, and it
reduced the expression of the cytokines IL-4 and IL-5 compared to
Giardia infected well-nourished mice (8). Thus, there are
connections between protein metabolism and immune responses
during Giardia infections and this can be studied further in the SG-
model. Another, more recent study using a G. intestinalis GS
infection model in neonatal mice resulted in persistent infections
(20 weeks) and a reduced growth and weight gain (52). Giardia
preferentially infects the upper small intestine where bile is plentiful
and it is part of the growth medium used to grow Giardia
trophozoites in vitro (53). The effects with reduced weight gain in
the neonatal mice infected with G. intestinalis were associated with
changes in the bile acid and lipid metabolism and changes in the
composition of the microbiota (52). Serglycin-deficient mice have
an impaired lipid metabolism (54) and a changed bile and lipid
metabolism in the intestine, potentially with associated changes in
the intestinal microbiota, can be an important factor in the reduced
weight gain duringGiardia infections in SG-deficient mice. It is now
clear that the intestinal microbiota is very important during Giardia
infections and antibiotic treatments have sever effects on the
infection dynamics (55). The intestinal microbiota affect IgA
production, antimicrobial peptides, intestinal motility, and bile
and lipid metabolism during Giardia infections (55). In our SG-
model we use non-antibiotic treated 10-week old mice and the
negative aspects with this is lower levels of infection and reduced
immune responses but it also means that we can study the effects of
lipid metabolism and microbiota on weigth gain during giardiasis.
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Further studies in the SG-deficient mouse model can reveal how
these factors interact during Giardia infections.

In summary, the G. intestinalis infection in young littermate
SG+/+ and SG−/−mice caused a reduced weight gain in the SG−/−

mice and SG-dependent changes in the intestinal mRNA levels
of NOS1, CXCL1, CXCL-2, TNF-a, and IL-6, as well as a
significant SG-dependent change in the IL-6 serum protein
levels. Thus, our results suggests a role for SG in both innate
and adaptive intestinal immune responses towards the
G. intestinalis infection. The SG−/− mouse strain provides not
only an interesting model for elucidating the roles of the
proteoglycan SG and SG-dependent inflammatory mediators
in the intestinal host responses towards intestinal parasites like
G. intestinalis but also as a unique model for studies of weight
gain during infections by intestinal protozoa.
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