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Phytophthora infestans, the most damaging oomycete pathogen of potato, is
specialized to grow sporangiophore through opened stomata for secondary inoculum
production. However, it is still unclear which metabolic pathways in potato are
manipulated by P, infestans in the guard cell-pathogen interactions to open the stomata.
Here microscopic observations and cell biology were used to investigate antagonistic
interactions between guard cells and the oomycete pathogen. We observed that the
antagonistic interactions started at the very beginning of infection. Stomatal movement
is an important part of the immune response of potato to R infestans infection and this
occurs through guard cell death and stomatal closure. We observed that P infestans
appeared to manipulate metabolic processes in guard cells, such as triacylglycerol
(TAG) breakdown, starch degradation, HoO» scavenging, and NO catabolism, which
are involved in stomatal movement, to evade these stomatal defense responses. The
signal transduction pathway of P infestans-induced stomatal opening likely starts from
H>O» and NO scavenging, along with TAG breakdown while the subsequent starch
degradation reinforces the opening process by strengthening guard cell turgor and
opening the stomata to their maximum aperture. These results suggest that stomata
are a barrier stopping P, infestans from completing its life cycle, but this host defense
system can be bypassed through the manipulation of diverse metabolic pathways that
may be induced by P infestans effector proteins.

Keywords: stomatal immunity, starch degradation, triacylglycerol breakdown, phytophthora infestans, potato
defences

INTRODUCTION

Stomata, bordered by a pair of guard cells, play several essential roles in many biological and
biochemical processes of terrestrial plants. The size of a stomatal aperture is dynamically regulated
by the integration of environmental signals and endogenous hormonal stimuli. Under light
stimulation and/or high humidity, stomata open to promote carbon dioxide and oxygen flow for
photosynthesis and water evaporation (Berry et al., 2010; Buckley, 2019) and vice versa. Biotic
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stressors, such as pathogens, also regulate the stomatal aperture
of plants. It has long been noticed that many prokaryotic
plant pathogens use stomata as a gate to penetrate the inner
tissue of plants. Some pathogens, for example, the bacterium
Xanthomonas campestris pv armoraciae (Hugouvieux et al,
1998), fungi from the Puccinia Genus (Shafiei et al, 2007),
and the oomycete Plasmopara viticola (Allegre et al., 2007)
are specialized to penetrate and colonize plant tissues only
through stomatal pores. For other pathogens, such as the
oomycete P. infestans, stomata are not essential for invasion
and colonization but are required for sporulation (Farrell
et al, 1969). To prevent pathogen ingress and reproduction,
plants have evolved mechanisms to close stomata upon a
perception of pathogens, but adapted pathogens can trigger
stomatal reopening to overcome this layer of defense by releasing
pathogenicity compounds, such as phytotoxins or effector
proteins (Melotto et al., 2017; Ye et al., 2020).

Many compounds, including starch, lipids, and oxidative
radicals such as hydrogen peroxide (H,O;), are involved in
signal transduction to control stomatal movement (Shimazaki
et al., 2007; Horrer et al.,, 2016; McLachlan et al.,, 2016) and
the same compounds may also be manipulated by pathogens
to overcome stomata-mediated defenses. Starch, synthesized in
plastids in both photosynthetic and non-photosynthetic cells, is
the principal carbohydrate storage of higher plants (Zeeman et al.,
2010). In guard cells, starch degradation provides organic acids
and sugars to increase guard cell turgor pressure and promote
the stomatal opening. For example, glucose derived from starch
degradation was found to be responsible for rapid stomatal
opening in Arabidopsis after exposure to blue light (Fliitsch
et al., 2020). Furthermore, malate is recognized unequivocally
as the predominant donor of the organic anions needed to
balance the positive charge of K ions during stomatal opening
(Santelia and Lawson, 2016).

Triacylglycerol (TAG), a dominant lipid compound for energy
storage present as lipid droplets (LDs) in guard cells, is also
involved in the stomatal opening that is stimulated by light
illumination (McLachlan et al., 2016). The abundance of TAG
in the guard cells is significantly reduced in response to light,
and PHOT blue light receptors are involved in this response
(McLachlan et al., 2016). Stomatal movement is also an energy-
demanding process. The abundant TAGs in guard cells ensure
the generation of adequate ATP and activation of the proton
pumps required for stomatal opening, such as plasma membrane
H*-ATPases (McLachlan et al., 2016).

The reactive oxygen species hydrogen peroxide (H,0O,) and
the reactive nitrogen species nitric oxide (NO) have a wide range
of effects on the developmental processes and stress responses of
plants, including seed germination, root development, drought
resistance, and defense against pathogens (Liao et al., 2012;
He et al.,, 2013; Smirnoft and Arnaud, 2019). The concurring
dynamics of H,O; and NO in most plant organs suggest that they
are likely metabolized in parallel and act in tandem (Tanou et al,,
2009; Clark et al., 2010), although some results show that NO
may function downstream of H,O, (Zhang et al., 2017). In guard
cells, H,O; and NO are key regulators that work synergistically
or independently in regulating stomatal movement. In the last

few years, the roles and mechanisms of ABA-induced stomatal
closure modulated by H,O, and NO have been exploited
widely (Jannat et al., 2011; Rodrigues et al., 2017). Additionally,
H,0;, and NO are also involved in darkness-induced stomatal
closure (Desikan et al., 2004; Zhang et al., 2017). H,O, and
NO concentrations in guard cells increase in darkness but
decrease in light.

Phytophthora infestans, the causal agent of potato (Solanum
tuberosum L.) late blight disease, which was responsible for
the Irish potato famine in the 1840s, is to date one of the
most devastating plant pathogens known to man (Fry, 2008).
P. infestans continues to be a major yield-limiting factor in potato
production. However, it is also a model species to study the
biology, genetics, and evolution of host-pathogen interactions
in the oomycetes (Wang et al., 2017; Yang et al., 2019). Despite
the existence of sexual reproduction, P. infestans still reproduces
primarily in an asexual manner by forming sporangia (Zhu
et al., 2015). Sporogenesis is an important part of the asexual
cycle and massive numbers of sporangia (up to 300,000 per
lesion) can be produced rapidly and dispersed across whole fields
within days (Fry, 2008). In this process, potato stomata acts
as the physical barrier that P. infestans must break through, to
allow sporangia to be released from the plant, and P. infestans
sporangiophores are specialized to grow out through stomatal
apertures (Farrell et al., 1969).

Recently, a non-specific lipid transfer protein, StLTP10, was
found to regulate stomatal closure in potato after P. infestans
infection by physical interaction with the ABA receptor
PYL4, indicating that stomatal immunity is important in
potato defense against P. infestans (Wang et al, 2020). In
the current study, cellular interactions between the potato
guard cells and P. infestans were explored. We found that
the antagonistic interactions between the potato guard cells
and P. infestans started at the very beginning of infection.
The non-race-specific stomatal closure caused by guard cell
death was found in more than 10 potato cultivars varying
in genetic background and quantitative resistance, indicating
that guard cell suicide is deployed as a common immune
response of potato against P. infestans infection. However, we
further showed that this immune response is suppressed by
the pathogen through the regulation of starch, TAG, H,O,
and NO metabolism. We hypothesized that these biochemical
processes may be induced by pathogen-effector proteins. The
signal transduction pathway of the pathogen-induced stomatal
opening may start from HO, and NO scavenging and
TAG breakdown, proceed through starch degradation, and
end up with a stomatal aperture maximized for the growth
of sporangiophores upward through the stomata, for aerial
release of sporangia.

MATERIALS AND METHODS

Growth and Maintenance of Potato and
Phytophthora infestans

Potato cv Desiree plants were grown at 19°C and 60% humidity
in a greenhouse supplemented with 16 light-hours at the intensity
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of 120-150 pumol/m/?/s. Leaves used for experiments were taken
from 5- to 6-week-old plants. P. infestans isolate A21b collected
from Fugqing, Fujian Province, in 2016, with high sporangia
yield and isolate 88069 (A1l mating type, race 1.3.4.7) retrieved
from long-term storage, were grown on Rye B plates at 18°C
in dark. After two weeks, the plates were flooded with 5 ml
of sterilized water and scraped with a plastic rod to make a
sporangial suspension. The suspension was calibrated to ~80,000
sporangia/ml using a hemocytometer and was sprayed evenly
on the abaxial side of potato leaves to ensure sufficient and
uniform infection. After the inoculation, the potato leaves were
kept in sealed boxes to maintain moisture and they were placed at
18°C in dark. The inoculation was replicated at least three times
for each treatment.

Apoplastic Fluid Collection and

Infiltration

Apoplastic fluids (AFs) were collected from potato leaves infected
with P. infestans A21b when disease symptoms were visible but
the detached leaves were still green, which usually occurred
around 20 h post inoculation (hpi). After removal of sporangia
and mycelia, the infected leaves were immersed in distilled
water in a beaker and then infiltrated by placing them into
a vacuum desiccator for 5 min. Excess water droplets on
leaf surfaces were removed with tissue paper. The infiltrated
potato leaves were rolled up and inserted into 30 ml tubes
with small holes at the bottom. Each tube was then slipped
into a larger, 50 ml tube and centrifuged at 1,000 x g for
10 min at 10°C. The harvested AF from the larger tubes
was filtered through 0.22 pm Millex sterile filters and used
to infiltrate potato leaves. Three leaves per potato plant were
infiltrated with the AF and three plants were included for each
treatment, bringing nine leaves in total for each treatment. AF
collected from uninfected healthy potato leaves was used as a
control. Diphenyl methylphosphonate (DMP), when used, was
co-infiltrated with AFs at a concentration of 25 uM (from a
25 mM stock in DMSO).

Stomatal Aperture Measurements

Unless stated otherwise, all experiments were conducted in
dark and the potato leaves used in the study were kept in the
dark at 18°C for 2 h before use to ensure stomata closure.
During the infection time course, the detached leaves with the
abaxial side up were attached to glass slides using double-
sided adhesive tape and photographed at 20X magnification
using a microscope (NIKON Ni-U). Epidermal strips were
manually peeled off from the infection sites at 12 and
24 hpi, and incubated in KCI/MES buffer (10 mM MES,
5 mM KCIl, and 50 puM CaCl,) with ABA, CaCl,, H,O,,
Sodium Nitroprusside (SNP), and Na3VO, at 18°C in dark.
After 2 h of incubation, the epidermis was photographed
using a microscope (NIKON Ni-U) at 20X magnification.
Stomatal apertures were measured using the software Image]
1.50. All the experiments were repeated in at least three
independent treatments, and three leaves from different plants
were used per treatment.

Starch Quantification in Guard Cells

Starch in guard cells was quantified by the pseudo-Schift
propidium iodide (PS-PI) staining protocol as described
previously (Horrer et al., 2016) with some minor modifications.
Briefly, the epidermis was manually peeled off the detached
potato leaves that had either been infected with P. infestans,
infiltrated with AF, or treated with light incubation and fixed
in 50% (v/v) methanol, 10% (v/v) acetic acid at 4°C overnight.
The epidermal peels were rinsed briefly with sterilized water and
incubated in 1% periodic acid at room temperature for 40 min.
They were rinsed again with sterilized water and stained with
Schiff reagent (100 mM sodium metabisulfite and 0.15 N HCI)
and propidium iodide [0.1 mg/ml (w/v) final concentration] for
1-2 h. The stained epidermal peels were affixed to microscope
slides and submerged in chloral hydrate solution overnight.
Excess chloral hydrate on the epidermal peels was removed
from the microscope slides and the epidermal peels were fixed
with Hoyer’s solution. The images of fluorescent activity in the
guard cells were taken using a NiKON (Ni-U) fluorescence
microscope with an excitation wavelength of 540 nm and an
emission wavelength of 605 nm. The starch granule area was
quantified by measuring fluorescent areas in the guard cells
with Image] 1.50. This experiment was repeated using three
independent treatments, and three leaves from different plants
were used in each treatment.

Lipid Droplet Quantification in Guard
Cells

After P. infestans infection, AF infiltration or light treatment, the
leaf epidermis was manually peeled from the detached leaves,
at the specified time points described above, and incubated in
30 wM Nile Red (NR; McLachlan et al., 2016) for 40 min and
washed in KCI/MES buffer (10 mM MES, 5 mM KCl, and 50 uM
CaCly) for 5 min. Images of NR fluorescence activity in the
guard cells were taken using a NiKON (Ni-U) fluorescence
microscope with excitation wavelengths of 465-495 nm and
emission wavelengths of 512-558 nm and the LD volume was
quantified using Image] 1.50. This experiment was repeated
using three independent treatments, and with three leaves from
different plants in each treatment.

H>05, and NO Accumulation

Measurement

After P. infestans inoculation, the epidermis was manually peeled
off from the detached leaves at each specified time point and
incubated for 20 min in KCI/MES buffer with 50 uM H,DCF DA
for HO, measurements or in KCL/MES buffer with 10 wM DAF-
FM DA for NO measurements and then washed with KCI/MES
buffer twice. The images of H,O, and NO fluorescent activity in
the guard cells were taken using a Nikon fluorescence microscope
(Ni-U) with excitation wavelengths of 465-495 nm and emission
wavelengths of 512-558. H,O, and NO concentrations were
quantified by measuring their fluorescence density in the guard
cells using ImageJ 1.50. Again, this experiment was repeated
using three independent treatments, and with three leaves
in each treatment.
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The accumulation of H,O; in mesophyll cells was measured
by histochemical analysis via 3,3'-diaminobenzidine (DAB)
staining. Potato leaves which were inoculated with or without
(control, CK) P. infestans sporangia of isolate A21b were
incubated in DAB solution (1 mg/ml, pH 3.8) for 16 h at 25°C
in the dark, then soaked in 95% ethanol overnight to remove
chlorophyll (Thordal-Christensen et al., 1997). Photos were taken
using a digital camera.

RNA Extraction

RNA was extracted as described previously (Resjo et al., 2017).
Briefly, the total RNA was extracted from frozen samples
ground in liquid nitrogen using a Qiagen RNeasy Plant Mini
kit following the protocol set by the manufacturer. Samples
were derived from a time-course of potato leaves (cultivar
Desiree) inoculated with P. infestans strain 88069, or from pre-
infection structures collected in vitro as described (Grenville-
Briggs et al., 2008). Before cDNA synthesis all samples were
DNase treated using the Ambion Turbo DNA-free kit, according
to the protocol set by the manufacturer. RNA samples were
assessed for purity and integrity by agarose gel electrophoresis
and Nanodrop Spectrophotometry. First strand cDNA was
synthesized from 20 g total RNA by oligo(dT) priming using
the Superscript IV Reverse transcriptase cDNA synthesis kit
(Thermo Scientific).

Quantitative RT-PCR Assays

The primer pairs that annealed specifically to each of the
candidate effectors PITG_11755 (Meijer et al, 2014) and
PITG_15152 (de Vries et al.,, 2017) were used to quantify gene
expression in vitro and in planta as described previously (Resjo
et al., 2017). A template cDNA for in planta analysis over
an infection time course was derived from mycelium grown
for 72 h in liquid pea broth as well as from potato leaves
inoculated with P. infestans. Samples were taken at 6, 12, 24,
and 48 hpi. Pre-infection samples of non-sporulating mycelium,
sporangia, zoospores, germinating cysts, and germinating cysts
with appressoria were collected as described by Grenville-Briggs
et al. (2008). The actA gene from P. infestans was used as
constitutively expressed endogenous control and the abundance
of each transcript in mycelium was determined relative to the
actA transcript as described previously (Grenville-Briggs et al.,
2008). All qRT-PCR assays were performed using three biological
replicates. The results from each assay were analyzed using the
modified A AcT method, and relative expression was determined
relative to a calibrator sample (mycelium) as described previously
(Resjo et al., 2017).

Plasmid Construction and Transient

in planta Expression

The full-length sequences of PITG_11755 and PITG_15152
without their signal peptides were cloned from the gDNA
of P. infestans, ligated into pEarlyGate 101 (C-terminal GFP
tag) and pEarlyGate 104 (N-terminal GFP tag), respectively,
using Vazyme ClonExpressII One Step Cloning Kit, and
then transformed into Agrobacterium tumefaciens strain

AGLI. Overnight, A. tumefaciens cultures were harvested by
centrifugation and resuspended in infiltration buffer (10 mM
MES, 10 mM MgCl,, and 200 mM acetosyringone). The
resuspended A. tumefaciens cells with an optical density
(ODgpg) of 0.5 were infiltrated into leaves of 5- to 6-week-old
potato plants. Stomatal apertures were measured 3-5 days
post infiltration.

Statistical Analyses

Analysis of variance (ANOVA) for stomatal aperture and
concentrations of starch, lipids, H,O;, and NO in the guard
cells were performed using the general linear model embedded
in SAS 9.4, and significant differences between treatments in
these parameters were evaluated using a Duncan test. Standard
deviation was estimated separately for each parameter using the
data generated from different replicates and is shown as error bars
in the displayed charts.

RESULTS

Starch Degradation and Triacylglycerol
Breakdown Are Associated With
Light-Induced Stomatal Opening in

Solanum tuberosum

It has been documented that LDs (Sakaki et al., 1995) and starch
(Pallas, 1964) are present widely in both higher and lower plants,
and their catabolism is associated with light-induced stomatal
opening (Horrer et al., 2016; McLachlan et al., 2016). To verify
these reports in potato (Solanum tuberosum), we measured the
LD and starch contents in cv Desiree leaves under both dark
and light conditions. We found that large amounts of starch
and LDs are present in potato guard cells (Figure 1A), and that
the contents of the two compounds were significantly decreased
under light conditions (Figure 1B) when stomatal apertures
increased (Figure 1D). The H,O; and NO contents of the guard
cells were also reduced under the same conditions (Figure 1C).
Artificial supplements of H,O,, NO, ABA, CaCl,, and the HT-
ATPase inhibitor Na3VOy, all significantly impaired the light-
induced stomatal opening (Figure 1E). These results indicate that
starch, TAG, H,O,, and NO are involved in stomatal opening and
closing in potato.

Stomatal Defense Is Inhibited by
Phytophthora infestans

Many pathogens, particularly prokaryotic microbes, such as
bacteria, rely on plant stomata for penetration and infection
initiation (Melotto et al., 2006). To prevent the attack, guard
cells can perceive bacteria and trigger stomatal closure (Melotto
et al., 2017), and even specifically commit suicide, for example,
in response to rust fungal invasion (Ye et al, 2020). The
appressorium and invading hypha of P. infestans can be
formed 8-12 hpi (Supplementary Figure 1). The life cycle
of the pathogen can be completed within 5 days on potato
foliage (Supplementary Figure 2) and the whole field can
be transformed from slightly diseased to nearly completely
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FIGURE 1 | Light-induced stomatal opening in potato is associated with the metabolisms of triacylglycerols (TAGs), starches, HoOo, NO, ABA, CaCl,, and plasma
membrane H*-ATPase in guard cells: (A) images showing potato guard cells containing a large amount of starch (up) and TAGs (below); (B) compared with the
results seen in dark conditions, the quantities of starch and TAGs in guard cells were significantly less in light (100 wmol/m?2/s! for 6 h); (C) HoO, and NO contents in
guard cells were significantly decreased in light compared with those in dark conditions; (D) the size of stomatal aperture significantly increased in light compared
with those in dark conditions; and (E) light-induced stomatal opening was impaired by the artificial supplement of 2 uM HyOs, 1 £uM NO, 10 uM ABA, 5 mM CaCly,
and 1 mM NagVO,. The marker = 20 wm. Photos within a panel are from a representative of a single replicate while photos among panels are pooled from multiple
replicates.

destroyed within ~2 weeks under ideal conditions (Fry, 2008).
Recently, it was demonstrated that stomatal defense may also play
a role in potato immunity to P. infestans (Wang et al., 2020).
Here we monitored the stomata-P. infestans interaction over
the infection time course under dark conditions to determine
whether P. infestans can perturb this process. Interestingly, we
found a hypersensitive-like response of ~50% guard cells at
the infection sites, where they turned dark brown, atrophied,
and eventually died. This process started usually between 4 and
8 h post sporangial inoculation (hpi) in cv. Desirée, leading
to the permanent closure of these stomata (Figure 2). No
sporangiophores were observed to emerge through the dead
stomata. Besides Desiree, the same pattern was found in 18 other
potato cultivars with varying resistance levels against P. infestans
(Supplementary Figure 3). Thus, this phenomenon appears to
be a general potato response to P. infestans infection and not
race-cultivar specific.

On the other hand, we found the majority of leaf stomata at
the infection sites started to open at 8 hpi of P. infestans, reached
their maximum aperture at 48 hpi and afterward remained
fully open (Figures 3A,B). Although initially some guard cell
death (~50%) was observed, no further dead guard cells were
found after the pathogen-induced stomatal opening started.
Sporangiophores started to emerge from opened stomata at the
infection sites around 72 hpi and large amounts of sporangia
were observed after 4-5 days post inoculation in cv. Desirée
leaves (Figure 3C and Supplementary Figure 4). The infection-
induced stomatal opening was also found in 18 other potato
cultivars (Supplementary Figure 3). These results suggest that

potato plants can sense and defend against P. infestans infection
by stomatal closure, while P. infestans can suppress these defenses
in potato as found in other plant-pathogen interactions.

Phytophthora infestans Infection
Induces Potato Stomatal Opening by
Degrading Starch in Guard Cells

As starch degradation is strongly connected to stomatal opening
(Horrer et al, 2016) and potato guard cells contain a large
amount of starch (Figure 1A), we hypothesized that P. infestans
may manipulate potato stomatal movement by inducing starch
degradation in the guard cells. To test this hypothesis, we
examined starch dynamics in the guard cells during P. infestans
infection. Indeed, we found that starch metabolic processes in the
guard cells were altered by P. infestans infection. Starch in guard
cells at the infection sites started to degrade at 12 hpi (Figure 4).
At 24 and 48 hpi, only remnant starch grains were observed in the
guard cells of stomata, indicating that they are almost completely
degraded (Figure 4).

The metabolism of both glucose and malate has previously
been reported during stomatal opening (De Angeli et al,
2013; Santelia and Lawson, 2016). This led us to hypothesize
that the significant increase of stomatal aperture 12-24 hpi
may result from glucose or malate accumulation. To test this,
we treated epidermal strips collected at 12 hpi, that is, the
time starch started to degrade, with 2.5 mM glucose and
5 mM malate, respectively, and found that glucose and malate
supplements indeed facilitated stomatal opening significantly
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FIGURE 2 | Images showing that potato defenses against Phytophthora infestans infection at the interface of stomata: (A) hypersensitive-like cell death occurred
specifically in guard cells 8 h post infection; and (B) permanent closure of stomata during the whole infection course after the death of guard cells. The
marker = 50 wm. Photos within a panel are from a representative of a single replicate while photos among panels are pooled from multiple replicates.
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FIGURE 3 | Stomatal aperture was significantly increased after P, infestans inoculation under dark condition: (A) Images showing stomatal aperture of potato leaves
increased after the successful colonization of R infestans; (B) stomatal aperture started to increase from 8 h post infection (hpi), and reached the maximum size at
48 hpi; and (C) images showing that sporangiophores emerged through opened potato stomata 72 hpi and a large amount of sporangia (the lemon-shaped spots in
dashed circles) were formed 4-5 days post inoculation. The marker = 20 um. Photos within a panel are from a representative of a single replicate while photos
among panels are pooled from multiple replicates.

(Figure 5), although the stomatal aperture did not reach the
same size as that seen at 48 hpi (at the time starch was
almost completely degraded). Interestingly, after starch degraded
completely and the apertures reached maximum, which occurred
at ~48 hpi, stomata lost responsiveness to the stimulation of
ABA, NO precursor SNP, CaCl,, and NazVOy. The epidermal
strips supplemented with malate at 12 hpi showed the same
phenotype (Figure 5). Glucose supplement also weakened the
stimulation of ABA, NO precursor SNP, CaCl,, and Na3VOy
(Figure 5). These results indicate that starch degradation was

affected by P. infestans, which we hypothesized may induce
stomatal opening, possibly aided by soluble sugars, such as
glucose and malate.

Phytophthora infestans Infection
Induces Potato Stomatal Opening by
TAG Breakdown in Guard Cells

One interesting finding is that stomata at the infection sites
started to open at 8 hpi but starch degradation in guard cells was
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not observed until 12 hpi. Therefore, we hypothesized that there
must be other metabolic pathways that are also involved in the
initiation of the stomatal opening process. It has been shown that
TAG in guard cells is the energy source used to activate the proton
pump HT-ATPase involved in light-induced stomatal opening
(McLachlan et al.,, 2016). We thus monitored TAG dynamics
in the guard cells of P. infestans-infected and control (CK, not
challenged by the pathogen) potato leaves over a 48-h period

under dark conditions. We observed that TAG breakdown in the
infected leaves started to occur at 8 hpi or earlier (Figure 6),
which was almost coincident with the starting time of stomatal
opening (Figure 3B). After 24 hpi, TAG was largely absent in
the guard cells of the P. infestans-infected leaves (Figure 6).
These results indicate that TAG breakdown in potato guard cells
occurs earlier than starch degradation during the response to
P. infestans infection.
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H,05 and NO Accumulation in Potato
Guard Cells Is Disturbed by

Phytophthora infestans Infection

H,0, and NO are important signaling molecules involved
in stomatal movement, especially in ABA- and dark-induced
stomatal activity (Desikan et al, 2004; Jannat et al, 2011;
Rodrigues et al., 2017; Zhang et al.,, 2017). H,O, and NO are
accumulated in guard cells in response to ABA enrichment and
dark stimulation, but are reduced when stomata open in light
(Desikan et al., 2004; She et al., 2004). To investigate whether
P. infestans-induced stomatal opening is associated with H,O,
and NO metabolism, we measured the two compounds in potato
guard cells using the fluorescent dyes dichlorodihydrofluorescein
diacetate (H,-DCFDA) and 3-amino, 4-aminomethyl-2/, 7'-
difluorescein, diacetate (DAF-FM DA), respectively. In contrast
to mesophyll cells (Supplementary Figure 5), H,O, and NO
were found to be significantly reduced in guard cells at the
time stomata started to open, that is, 8 hpi (Figures 7, 8). After
8 hpi, NO levels in the infected guard cells continued to fall
but H,O, levels basically flattened out (Figures 7, 8). These
results suggest that the metabolism of H,O, in the guard cells
is independent from that of the mesophyll cells, and a reduction
of both H,O, and NO in the guard cells may participate in the
P. infestans-induced stomatal opening process in potato plants.

Apoplastic Fluids and Effector
Overexpression Induce Stomatal

Opening

During infection, P. infestans secretes a large number of

apoplastic and cytoplasmic effector proteins which are targeted
to the cytoplasm or apoplast of host cells (Haas et al.,, 2009).

To check whether infection-derived molecules, such as effector
proteins participate in the antagonistic interactions between
potato guard cells and P. infestans, AFs that contain a mixture
of P. infestans secreted effectors were collected from diseased
plants and infiltrated into healthy potato leaves. We found that
the stomatal aperture was significantly increased, and TAG in the
potato guard cells was significantly decreased at 15 h after the
infiltration (Figures 9A,C,D). Because AF extraction is known
to often damage some of the plant cells, and plant materials
leaking from the cytoplasm may complicate the results, we
controlled for this by comparatively infiltrating AFs collected
from control (uninoculated) plants. The results showed that
stomatal apertures and TAG levels were not disrupted by the
control AF infiltrations. When we co-infiltrated the AFs from
diseased plants with DMP, the LD mobilization inhibitor that
acts early in the B-oxidation pathway, the stomatal opening was
significantly inhibited (Figures 9B,C). We also found that the
content of both H,O, and NO decreased in most of the guard
cells infiltrated with AF from disease plants (Supplementary
Figure 6). However, starch content in the guard cells did not
change at 15 h after these AF infiltrations (Figure 9E), and
only decreased in some of the cells at 24 h after infiltration
when leaves withered (Supplementary Figure 7). These results
indicate that infection AFs contain metabolites or proteins,
such as effectors of the pathogen, that either directly or
indirectly (e.g., general suppression of immune responses) trigger
stomatal opening.

The apoplastic candidate effector PITG_11755 and
cytoplasmic candidate effector PITG_15152 were both highly
expressed in the pre-infection stages and during infection
(Figures 10A,B). During a time course of infection, both of these
effector genes followed a similar expression pattern, which is
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highly elevated early on in infection at 6 hpi, rising to a peak
at 12 hpi and reduced at 24 hpi before rising again at 48 hpi
(Figure 10B). These results suggest that these effectors may
have roles both early (at a similar time point to our observations
of the onset of stomatal opening) and later on in infection
(when sporangiophores are produced and begin to grow out

of stomatal openings). To test our hypothesis that effector
proteins may be involved in the infection-induced stomatal
opening, PITG_11755 and PITG_15152 were non-endogenously
overexpressed in potato leaves. We found that both the effector
proteins significantly increased stomatal opening at 3 days after
infiltration (Figures 10C,D), supporting our hypothesis that
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effectors of both apoplastic and cytoplasmic origin may have a
role, directly or indirectly, in regulating the stomatal opening of
potato after P. infestans infection.

DISCUSSION

Stomata are the battle field of molecular and physical interactions
between plants and pathogens. On the one hand, many plant
pathogens, in particular bacterial pathogens, rely on plant
stomata as the natural gate of invasion and colonization (Melotto
et al., 2006). On the other hand, since stomata are an inseparable
part of the integral innate immune system (Melotto et al.,
2017), plants can sense the chemical and physical presence of
pathogens and force the closure of stomata to prevent pathogen
entrance. This stomatal closure can be achieved in a very short
time (< 1 h) through the expression of pattern recognition
receptors in guard cells (Robatzek et al., 2006; Liu et al., 2009),
such as FLS2, EFR, and CERKI which can recognize flg22,
elf18, elf26, lipopolysaccharide, and chitin of bacterial pathogens
(Murata et al., 2015). Recent studies have documented that
highly adapted pathogens can produce phytotoxins, such as COR
(Bender et al., 1999), or secrete effectors (Jiang et al., 2013;
Hurley et al., 2014; Lozano-Durén et al., 2014; Zhou et al., 2015;
Wang et al., 2016) to circumvent the host defense system through
stomatal closures.

The available knowledge on pathogen-mediated stomatal
movements and defenses are exclusively derived from systems
involving prokaryotic pathogens and fungi. It was found that
plants can defend against bacteria and rust fungi through
stomatal closure or guard cell death (Melotto et al., 2006, 2017;
Ye et al, 2020). P. infestans can penetrate potato epidermal

cells directly through the formation of appressoria, therefore
stomata are not essential for the penetration and colonization
of the pathogen (Farrell et al, 1969,Grenville-Briggs et al,
2008). However, the stomatal opening is required for the
discharge of sporangia, the main secondary inoculum source
leading to late blight epidemics. In this study, we demonstrate
that stomatal movement and defense also exist in the plant-
oomycete interactions. The specific cell death in potato guard
cells and locked stomatal closure during the P. infestans infection
process indicate that stomata are indeed involved in the potato
defense response to P. infestans (Figure 2). The findings that
stomata close shortly after P. infestans inoculation and that
this closure significantly affects the ability of the pathogen to
colonize and grow in potato also support the phenomenon
of stomata-regulated immunity response in P. infestans—potato
interaction (Wang et al., 2020). However, our finding that
stomata open in response to the presence of P. infestans and/or
AF from disease plants confirms that the pathogen may in some
way be able to overcome or suppress the stomata-mediated
defense systems.

Lipids and starch are among the main compounds involved
in plant stomatal movement. Their metabolisms in plant guard
cells are regulated by environmental conditions, such as light,
as seen in our study as well as the reported literatures (Horrer
et al., 2016; McLachlan et al, 2016). Under light conditions,
TAG is catalyzed to provide ATP for the stomatal opening
process, such as the activation of a plasma membrane H-ATPase
(McLachlan et al., 2016), while starch degradation changes cell
turgor to trigger stomatal opening (Santelia and Lawson, 2016).
Similar to those in other plants, potato guard cells contain a large
amount of starch and TAG, and apparently, P. infestans deploys
the same mechanisms to regulate potato stomatal movement by
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altering metabolic activities of lipids and starch as supported
by the reverse relations between the size of stomatal apertures
and the abundance of TAG and starch that we observed in the
P. infestans-infected guard cells. This theory is further supported
by the observed associations of stomatal opening with TAG
breakdown after the infiltration of healthy potato plants with
AF from disease plants, the impaired stomatal aperture size
by co-infiltration of the AF with DMP, and the increase of
stomatal aperture size by malate supplement. Although this
appears to be the likely pathway that is affected by the presence
of either P. infestans or molecules secreted by this pathogen,
the exact mechanism by which P. infestans regulates this process
is not yet known.

It appears that lipid breakdown and starch degradation are
involved in the P. infestans-induced stomatal opening cascade
at different time points. TAG breakdown was found starting
from 8 hpi, which was parallel to the starting time of stomatal
opening in potato leaves. While degradation of starch in potato
guard cells was first observed at 12 hpi and exhausted by
48 hpi, stomatal apertures reached their maximum diameter
and failed to respond to stimulation by ABA, SNP, CaCly,
Na3zVOy, and H,O. It is likely that the energy generated by TAG

catabolism (McLachlan et al., 2016) activates a proton-pump
HT-ATPase and initiates stomatal opening processes, while the
subsequent starch degradation reinforces the opening process by
strengthening guard cell turgor to maximize stomatal opening
(De Angeli et al., 2013).

H,0; and NO are important signaling molecules in regulating
plant defense responses. Their production in many parts of plants
can be triggered upon the recognition of pathogens (Mehdy,
1994; Bolwell, 1999). However, we observed that H,O, and
NO concentrations in guard cells were sustainably reduced after
P. infestans infection and AF infiltration, indicating that the
metabolism of these molecules in guard cells is independent
from their metabolism in other parts of potato plants, such as
mesophyll cells. We noticed that HyO, and NO reduction in
the P. infestans-infected guard cells occurred slightly earlier than
TAG breakdown, suggesting that the lipid catabolism might be
induced by H,O, and NO scavenging. Although we did not
have statistical support for the relationship in this study, lipid
metabolism induced by oxidative radicals has been documented
recently in several species (Xie and Roy, 2012; Jin et al,
2018; Becerril et al., 2019). Further study is needed to confirm
this hypothesis.
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During plant-pathogen interactions, successful pathogens
secrete a range of effectors that act inside (cytoplasmic
effectors) or outside (apoplastic effectors) plant cells to
suppress or manipulate host defense systems (Haas et al,
2009; Giraldo and Valent, 2013) and promote infection. Forced
stomatal opening after the infiltration of AF from disease plants
into healthy potato leaves suggests that the pathogen-induced
stomatal movement is likely mediated chemically either by
molecules released from the pathogen, or by molecules produced
in the plant in response to pathogen-derived signals. The AF we
applied was extracted from P. infestans-infected potato leaves.
In addition to ions, metabolites, and proteins of potato, this AF
may also contain an array of apoplastic effectors secreted by
P. infestans and we hypothesized that these apoplastic effectors
may turn on the stomatal opening pathway through H,O, and
NO scavenging and TAG breakdown in potato. Cytoplasmic
effectors, or other as yet unknown molecules may also directly
or indirectly participate in the P. infestans-induced stomatal
opening pathway since our experiments revealed that the AF
alone did not induce starch degradation or stomatal opening to
the same degree as that seen during infection (Figure 9).

Since stomatal opening appears to be important for the
production of sporangia (secondary inoculum) and not race
specific (Supplementary Figure 3), we hypothesized that
conserved effectors that are essential for oomycete virulence
may have a role in directing stomatal opening. PITG_11755
(protein ID DONIG?7) has been demonstrated to be secreted from
P. infestans haustoria and has a hypothesized function in the
apoplast (Meijer et al., 2014; Wang et al., 2018). Phytophthora
suppressor of silencing 2, PSR2, encoded by PITG_15152 in
P. infestans is one of only four effectors so far identified as
conserved across members of the Phytophthora Genus (Win
et al, 2007), suggesting that this cytoplasmic RXLR effector
may have an essential role in oomycete pathogenicity. PSR2 and
the related P. infestans gene PITG_14054, have been shown to
function as suppressors of host gene silencing in P. infestans—
host interactions (de Vries et al., 2017,Vetukuri et al., 2017). The
increase of stomatal aperture after PITG_11755 and PITG_15152
overexpression suggests that both of them might participate in
stomatal opening during the complex antagonistic interactions
between potato guard cells and P. infestans. However, further
experiments are required to confirm this hypothesis.

Based on these observations, we conclude that potato mounts
a defense response against P. infestans infection by closing
stomata and that P. infestans has evolved mechanisms to
overcome this defense response. We propose that a series of
chemical cascades are involved in the stomatal opening pathway
induced by P. infestans (Supplementary Figure 8). It starts
from the released effector proteins, or other molecules from
P. infestans that inhibit HO, and NO biosynthesis or promote
their catabolism. The lipid breakdown that follows then generates
ATP for stomatal opening processes, including through the
activation of a plasma membrane H*-ATPase. Subsequent starch
degradation and glucose and malate accumulation reinforce the
stomatal opening to maximum, which later allow the pathogenic
sporangiophores to exit the plant and disperse sporangia for the
subsequent spread of the disease.

From the perspective of disease epidemiology, quick discharge
of enough sporangiophores is essential for rapid spread of potato
late blight in a field. In this study, we found that the antagonistic
interactions between potato guard cells and P. infestans started
at a very early time point of the infection course. The closure
of potato stomata caused by guard cell suicide in several potato
varieties with different resistance levels suggests that potato
guard cells can actively respond to the P. infestans infection and
prevent the releasing of sporangiophores from stomata. However,
P. infestans can bypass this impediment by manipulating diverse
cell processes (directly or indirectly) to open other stomata to
maximize apertures for sporangiophore release. The underlying
mechanisms of this zig-zag of interactions between potato
guard cells and P. infestans are likely to be complex and may
involve several effectors. Although its detailed mechanisms are
not clear yet, we have shown that the stomatal opening is an
important pathogenicity strategy for P. infestans. Manipulation
of stomatal immunity may be an important strategy for future
control of potato late blight without agrochemical inputs. More
research should be focused on this pathogenicity process to
uncover the specific underlying mechanisms that P. infestans
uses and how they might be disrupted to sustainably control
late blight disease.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

JZ, L-NY, and ZW: conceived and designed the experiments.
L-NY, HL, Y-PW, and JS: performed the experiments. L-NY, JZ,
and LG-B: analyzed data and wrote and critically revised the
manuscript. All authors reviewed the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (grant no. 31901861). This project has
also received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement no
766048 to LG-B, which supports JS, the Carl Tryggers Foundation
for Swedish Research (grant CTS:17:169 to LG-B), and the
Swedish Research Council Formas through grants 2015-00430
and 2019-00881 to LG-B.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
668797/full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org

July 2021 | Volume 12 | Article 668797


https://www.frontiersin.org/articles/10.3389/fpls.2021.668797/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.668797/full#supplementary-material
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Yang et al.

Pathogen-Mediated Stomatal Opening

REFERENCES

Allegre, M., Daire, X., Héloir, M. C., Trouvelot, S., Mercier, L., Adrian, M., et al.
(2007). Stomatal deregulation in Plasmopara viticola-infected grapevine leaves.
New Phytol. 173, 832-840. doi: 10.1111/j.1469-8137.2006.01959.x

Becerril, S., Rodriguez, A., Cataldn, V., Ramirez, B., Unamuno, X., Portincasa,
P., et al. (2019). Functional relationship between leptin and nitric oxide in
metabolism. Nutrients 11:2129. doi: 10.3390/nu11092129

Bender, C. L., Alarcon-Chaidez, F., and Gross, D. C. (1999). Pseudomonas syringae
phytotoxins: mode of action, regulation, and biosynthesis by peptide and
polyketide synthetases. Microbiol. Mol. Biol. Rev. 63, 266-292. doi: 10.1128/
mmbr.63.2.266-292.1999

Berry, J. A., Beerling, D. J., and Franks, P. J. (2010). Stomata: key players in
the earth system, past and present. Curr. Opin. Plant Biol. 13, 232-239. doi:
10.1016/j.pbi.2010.04.013

Bolwell, G. P. (1999). Role of active oxygen species and NO in plant defence
responses. Curr. Opin. Plant Biol. 2, 287-294. doi: 10.1016/s1369-5266(99)
80051-x

Buckley, T. N. (2019). How do stomata respond to water status? New Phytol. 224,
21-36. doi: 10.1111/nph.15899

Clark, G., Wu, M., Wat, N., Onyirimba, J., Pham, T., Herz, N, et al. (2010). Both
the stimulation and inhibition of root hair growth induced by extracellular
nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen
species. Plant Mol. Biol. 74, 423-435. doi: 10.1007/s11103-010-9683-7

De Angeli, A., Zhang, J., Meyer, S., and Martinoia, E. (2013). AtALMT9 is a
malate-activated vacuolar chloride channel required for stomatal opening in
Arabidopsis. Nat. Commun. 4:1804.

de Vries, S., von Dahlen, J. K., Uhlmann, C., Schnake, A., Kloesges, T., and Rose,
L. E. (2017). Signatures of selection and host-adapted gene expression of the
Phytophthora infestans RNA silencing suppressor PSR2. Mol. Plant Pathol. 18,
110-124. doi: 10.1111/mpp.12465

Desikan, R., Cheung, M. K., Clarke, A., Golding, S., Sagi, M., Fluhr, R, et al.
(2004). Hydrogen peroxide is a common signal for darkness-and ABA-induced
stomatal closure in Pisum sativum. Funct. Plant Biol. 31,913-920. doi: 10.1071/
p04035

Farrell, G. M., Preece, T. F., and Wren, M. J. (1969). Effects of infection by
Phytophthora infestans (Mont.) de Bary on the stomata of potato leaves. Ann.
Appl. Biol. 63,265-275. doi: 10.1111/j.1744-7348.1969.tb05488 x

Fliitsch, S., Wang, Y., Takemiya, A., Vialet-Chabrand, S. R., Klejchova, M., Nigro,
A, etal. (2020). Guard cell starch degradation yields glucose for rapid stomatal
opening in Arabidopsis. Plant Cell 32, 2325-2344. doi: 10.1105/tpc.18.00802

Fry, W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Mol.
Plant Pathol. 9, 385-402. doi: 10.1111/j.1364-3703.2007.00465.x

Giraldo, M. C., and Valent, B. (2013). Filamentous plant pathogen effectors in
action. Nat. Rev. Microbiol. 11, 800-814. doi: 10.1038/nrmicro3119

Grenville-Briggs, L. J., Anderson, V. L., Fugelstad, J., Avrova, A., Bouzenzana,
J., Williams, A., et al. (2008). Cellulose synthesis in Phytophthora infestans is
required for appressoria formation and successful infection of potato. Plant Cell
20, 720-738. doi: 10.1105/tpc.107.052043

Haas, B. J., Kamoun, S., Zody, M. C,, Jiang, R. H., Handsaker, R. E., Cano, L. M.,
etal. (2009). Genome sequence and analysis of the Irish potato famine pathogen
Phytophthora infestans. Nature 461:393.

He, J. M., Ma, X. G,, Zhang, Y., Sun, T. F,, Xu, F. F,, Chen, Y. P,, et al. (2013).
Role and interrelationship of Ga protein, hydrogen peroxide, and nitric oxide
in ultraviolet B-induced stomatal closure in Arabidopsis leaves. Plant Physiol.
161, 1570-1583. doi: 10.1104/pp.112.211623

Horrer, D., Fliitsch, S., Pazmino, D., Matthews, J. S., Thalmann, M., Nigro, A., et al.
(2016). Blue light induces a distinct starch degradation pathway in guard cells
for stomatal opening. Curr. Biol. 26, 362-370. doi: 10.1016/j.cub.2015.12.036

Hugouvieux, V., Barber, C. E., and Daniels, M. J. (1998). Entry of Xanthomonas
campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: a
system for studying early infection events in bacterial pathogenesis. Mol. Plant
Microbe Interact. 11, 537-543. doi: 10.1094/mpmi.1998.11.6.537

Hurley, B., Lee, D., Mott, A., Wilton, M., Liu, J., Liu, Y. C,, et al. (2014).
The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis
stomatal immunity. PLoS One 9:e114921. doi: 10.1371/journal.pone.011
4921

Jannat, R., Uraji, M., Morofuji, M., Islam, M. M., Bloom, R. E., Nakamura, Y.,
et al. (2011). Roles of intracellular hydrogen peroxide accumulation in abscisic

acid signaling in Arabidopsis guard cells. J. Plant Physiol. 168, 1919-1926.
doi: 10.1016/1.jplph.2011.05.006

Jiang, S., Yao, J., Ma, K. W., Zhou, H., Song, J., He, S. Y., et al. (2013). Bacterial
effector activates jasmonate signaling by directly targeting JAZ transcriptional
repressors. PLoS Pathog. 9:€1003715. doi:  10.1371/journal.ppat.100
3715

Jin, Y., Tan, Y., Chen, L., Liu, Y., and Ren, Z. (2018). Reactive oxygen species
induces lipid droplet accumulation in hepg2 cells by increasing perilipin 2
expression. Int. J. Mol. Sci. 19:3445. doi: 10.3390/ijms19113445

Liao, W. B., Huang, G. B., Yu, J. H.,, and Zhang, M. L. (2012). Nitric oxide and
hydrogen peroxide alleviate drought stress in marigold explants and promote
its adventitious root development. Plant Physiol. Biochem. 58, 6-15. doi: 10.
1016/j.plaphy.2012.06.012

Liu, J., Elmore, J. M., Fuglsang, A. T., Palmgren, M. G., Staskawicz, B. J., and
Coaker, G. (2009). RIN4 functions with plasma membrane H+-ATPases to
regulate stomatal apertures during pathogen attack. PLoS Biol. 7:¢1000139.
doi: 10.1371/journal.pbio.1000139

Lozano-Durdn, R., Bourdais, G., He, S. Y., and Robatzek, S. (2014). The bacterial
effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal
immunity. New Phytol. 202, 259-269. doi: 10.1111/nph.12651

McLachlan, D. H,, Lan, J., Geilfus, C. M., Dodd, A. N., Larson, T., Baker, A.,
et al. (2016). The breakdown of stored triacylglycerols is required during light-
induced stomatal opening. Curr. Biol. 26, 707-712. doi: 10.1016/j.cub.2016.0
1.019

Mehdy, M. C. (1994). Active oxygen species in plant defense against pathogens.
Plant Physiol. 105:467. doi: 10.1104/pp.105.2.467

Meijer, H. J., Mancuso, F. M., Espadas, G., Seidl, M. F., Chiva, C., Govers, F., et al.
(2014). Profiling the secretome and extracellular proteome of the potato late
blight pathogen Phytophthora infestans. Mol. Cell. Proteomics 13, 2101-2113.
doi: 10.1074/mcp.m113.035873

Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S. Y. (2006).
Plant stomata function in innate immunity against bacterial invasion. Cell 126,
969-980. doi: 10.1016/j.cell.2006.06.054

Melotto, M., Zhang, L., Oblessuc, P. R, and He, S. Y. (2017). Stomatal
defense a decade later. Plant Physiol. 174, 561-571. doi: 10.1104/pp.16.0
1853

Murata, Y., Mori, I. C., and Munemasa, S. (2015). Diverse stomatal signaling
and the signal integration mechanism. Annu. Rev. Plant Biol. 66, 369-392.
doi: 10.1146/annurev-arplant-043014-114707

Pallas, J. E. (1964). Guard-cell starch retention and accumulation in the dark. Bot.
Gaz. 125,102-107. doi: 10.1086/336253

Resjo, S., Brus-Szkalej, M., Ali, A., Meijer, H. J. G., Sandin, M., Govers, F,, et al.
(2017). Proteomic analysis of Phytophthora infestans reveals the importance
of cell wall proteins in pathogenicity. Mol. Cell. Proteomics 16, 1958-1971.
doi: 10.1074/mcp.m116.065656

Robatzek, S., Chinchilla, D., and Boller, T. (2006). Ligand-induced endocytosis of
the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20, 537-542.
doi: 10.1101/gad.366506

Rodrigues, O., Reshetnyak, G., Grondin, A., Saijo, Y., Leonhardt, N., Maurel, C.,
et al. (2017). Aquaporins facilitate hydrogen peroxide entry into guard cells to
mediate ABA-and pathogen-triggered stomatal closure. Proc. Natl. Acad. Sci.
114, 9200-9205. doi: 10.1073/pnas.1704754114

Sakaki, T., Satoh, A., Tanaka, K., Omasa, K., and Shimazaki, K. I. (1995). Lipids and
fatty acids in guard-cell protoplasts from Vicia faba leaves. Phytochemistry 40,
1065-1070. doi: 10.1016/0031-9422(95)00272-9

Santelia, D., and Lawson, T. (2016). Rethinking guard cell metabolism. Plant
Physiol. 172, 1371-1392. doi: 10.1104/pp.16.00767

Shafiei, R,, Hang, C. U. I, Kang, J. G., and Loake, G. J. (2007). Identification of
loci controlling non-host disease resistance in Arabidopsis against the leaf rust
pathogen Puccinia triticina. Mol. Plant Pathol. 8,773-784. doi: 10.1111/j.1364-
3703.2007.00431.x

She, X. P., Song, X. G., and He, J. M. (2004). Role and relationship of nitric oxide
and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia
faba. Acta Bot. Sin. English Ed. 46, 1292-1300.

Shimazaki, K., Doi, M., Assmann, S. M., and Kinoshita, T. (2007). Light regulation
of stomatal movement. Annu. Rev. Plant Biol. 58, 219-247. doi: 10.1146/
annurev.arplant.57.032905.105434

Smirnoff, N., and Arnaud, D. (2019). Hydrogen peroxide metabolism and
functions in plants. New Phytol. 221, 1197-1214. doi: 10.1111/nph.15488

Frontiers in Plant Science | www.frontiersin.org

July 2021 | Volume 12 | Article 668797


https://doi.org/10.1111/j.1469-8137.2006.01959.x
https://doi.org/10.3390/nu11092129
https://doi.org/10.1128/mmbr.63.2.266-292.1999
https://doi.org/10.1128/mmbr.63.2.266-292.1999
https://doi.org/10.1016/j.pbi.2010.04.013
https://doi.org/10.1016/j.pbi.2010.04.013
https://doi.org/10.1016/s1369-5266(99)80051-x
https://doi.org/10.1016/s1369-5266(99)80051-x
https://doi.org/10.1111/nph.15899
https://doi.org/10.1007/s11103-010-9683-7
https://doi.org/10.1111/mpp.12465
https://doi.org/10.1071/fp04035
https://doi.org/10.1071/fp04035
https://doi.org/10.1111/j.1744-7348.1969.tb05488.x
https://doi.org/10.1105/tpc.18.00802
https://doi.org/10.1111/j.1364-3703.2007.00465.x
https://doi.org/10.1038/nrmicro3119
https://doi.org/10.1105/tpc.107.052043
https://doi.org/10.1104/pp.112.211623
https://doi.org/10.1016/j.cub.2015.12.036
https://doi.org/10.1094/mpmi.1998.11.6.537
https://doi.org/10.1371/journal.pone.0114921
https://doi.org/10.1371/journal.pone.0114921
https://doi.org/10.1016/j.jplph.2011.05.006
https://doi.org/10.1371/journal.ppat.1003715
https://doi.org/10.1371/journal.ppat.1003715
https://doi.org/10.3390/ijms19113445
https://doi.org/10.1016/j.plaphy.2012.06.012
https://doi.org/10.1016/j.plaphy.2012.06.012
https://doi.org/10.1371/journal.pbio.1000139
https://doi.org/10.1111/nph.12651
https://doi.org/10.1016/j.cub.2016.01.019
https://doi.org/10.1016/j.cub.2016.01.019
https://doi.org/10.1104/pp.105.2.467
https://doi.org/10.1074/mcp.m113.035873
https://doi.org/10.1016/j.cell.2006.06.054
https://doi.org/10.1104/pp.16.01853
https://doi.org/10.1104/pp.16.01853
https://doi.org/10.1146/annurev-arplant-043014-114707
https://doi.org/10.1086/336253
https://doi.org/10.1074/mcp.m116.065656
https://doi.org/10.1101/gad.366506
https://doi.org/10.1073/pnas.1704754114
https://doi.org/10.1016/0031-9422(95)00272-9
https://doi.org/10.1104/pp.16.00767
https://doi.org/10.1111/j.1364-3703.2007.00431.x
https://doi.org/10.1111/j.1364-3703.2007.00431.x
https://doi.org/10.1146/annurev.arplant.57.032905.105434
https://doi.org/10.1146/annurev.arplant.57.032905.105434
https://doi.org/10.1111/nph.15488
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Yang et al.

Pathogen-Mediated Stomatal Opening

Tanou, G., Job, C., Rajjou, L., Arc, E., Belghazi, M., Diamantidis, G., et al. (2009).
Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide
in the acclimation of citrus plants to salinity. Plant J. 60, 795-804. doi: 10.1111/
j.1365-313x.2009.04000.x

Thordal-Christensen, H., Zhang, Z. G., Wei, Y. D., and Collinge, D. B. (1997).
Subcellular localization of H202 in plants. H202 accumulation in papillae and
hypersensitive response during the barley-powdery mildew interaction. Plant J.
11, 1187-1194. doi: 10.1046/j.1365-313x.1997.11061187.x

Vetukuri, R. R., Whisson, S. C., and Grenville-Briggs, L. J. (2017). Phytophthora
infestans effector Pil4054 is a novel candidate suppressor of host silencing
mechanisms. Eur. J. Plant Pathol. 149, 771-777. doi: 10.1007/s10658-017-1
222-9

Wang, C., Gao, H, Chu, Z, Ji, C, Xu, Y, Cao, L, et al. (2020). A
nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora
infestans in potato. Mol. Plant Pathol. 22, 48-63. doi: 10.1111/mpp.1
3007

Wang, S., Boevink, P. C., Welsh, L., Zhang, R., Whisson, S. C., and Birch, P. R.
(2017). Delivery of cytoplasmic and apoplastic effectors from Phytophthora
infestans haustoria by distinct secretion pathways. New Phytol. 216, 205-215.
doi: 10.1111/nph.14696

Wang, S., Sun, J., Fan, F.,, Tan, Z., Zou, Y., and Lu, D. (2016). A Xanthomonas oryzae
pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and
suppresses PAMP-triggered stomatal closure. Sci. China Life Sci. 59, 897-905.
doi: 10.1007/s11427-016-5106-6

Wang, S., Welsh, L., Thorpe, P., Whisson, S. C., Boevink, P. C,, and Birch, P. R. .
(2018). The Phytophthora infestans haustorium is a site for secretion of diverse
classes of infection associated proteins. mBio 9, e1216-e1218.

Win, J., Morgan, W., Bos, J., Krasileva, K. V., Cano, L. M., Chaparro-Garcia,
A, et al. (2007). Adaptive evolution has targeted the C-terminal domain of
the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19, 2349-2369.
doi: 10.1105/tpc.107.051037

Xie, M., and Roy, R. (2012). Increased levels of hydrogen peroxide induce a HIF-1-
dependent modification of lipid metabolism in AMPK compromised C. elegans
dauer larvae. Cell Metab. 16, 322-335. doi: 10.1016/j.cmet.2012.07.016

Yang, L. N., Pan, Z. C, Zhu, W., Wu, E. ], He, D. C,, Yuan, X, et al. (2019).
Enhanced agricultural sustainability through within-species diversification.
Nat. Sustainabil. 2, 46-52. doi: 10.1038/s41893-018-0201-2

Ye, W., Munemasa, S., Shinya, T., Wu, W., Ma, T., Lu, J., et al. (2020). Stomatal
immunity against fungal invasion comprises not only chitin-induced stomatal
closure but also chitosan-induced guard cell death. Proc. Natl. Acad. Sci. 117,
20932-20942. doi: 10.1073/pnas.1922319117

Zeeman, S. C., Kossmann, J., and Smith, A. M. (2010). Starch: its metabolism,
evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol.
61,209-234. doi: 10.1146/annurev-arplant-042809-112301

Zhang, T. Y., Li, F. C, Fan, C. M,, Li, X,, Zhang, F. F., and He, J. M. (2017).
Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and
nitric oxide in darkness-induced stomatal closure. Plant Sci. 262, 190-199.
doi: 10.1016/j.plantsci.2017.06.010

Zhou, Z., Wu, Y., Yang, Y., Du, M., Zhang, X., Guo, Y., et al. (2015). An Arabidopsis
plasma membrane proton ATPase modulates JA signaling and is exploited by
the Pseudomonas syringae effector protein AvrB for stomatal invasion. Plant
Cell 27, 2032-2041. doi: 10.1105/tpc.15.00466

Zhu, W., Yang, L. N.,, Wu, E. ], Qin, C. F,, Shang, L. P, and Wang, Z. H.
(2015). Limited sexual reproduction and quick turnover in the population
genetic structure of Phytophthora infestans in Fujian. China Sci. Rep. 5:
10094.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Yang, Liu, Wang, Seematti, Grenville-Briggs, Wang and Zhan.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Plant Science | www.frontiersin.org

14

July 2021 | Volume 12 | Article 668797


https://doi.org/10.1111/j.1365-313x.2009.04000.x
https://doi.org/10.1111/j.1365-313x.2009.04000.x
https://doi.org/10.1046/j.1365-313x.1997.11061187.x
https://doi.org/10.1007/s10658-017-1222-9
https://doi.org/10.1007/s10658-017-1222-9
https://doi.org/10.1111/mpp.13007
https://doi.org/10.1111/mpp.13007
https://doi.org/10.1111/nph.14696
https://doi.org/10.1007/s11427-016-5106-6
https://doi.org/10.1105/tpc.107.051037
https://doi.org/10.1016/j.cmet.2012.07.016
https://doi.org/10.1038/s41893-018-0201-2
https://doi.org/10.1073/pnas.1922319117
https://doi.org/10.1146/annurev-arplant-042809-112301
https://doi.org/10.1016/j.plantsci.2017.06.010
https://doi.org/10.1105/tpc.15.00466
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Pathogen-Mediated Stomatal Opening: A Previously Overlooked Pathogenicity Strategy in the Oomycete Pathogen Phytophthora infestans
	Introduction
	Materials and Methods
	Growth and Maintenance of Potato and Phytophthora infestans
	Apoplastic Fluid Collection and Infiltration
	Stomatal Aperture Measurements
	Starch Quantification in Guard Cells
	Lipid Droplet Quantification in Guard Cells
	H2O2 and NO Accumulation Measurement
	RNA Extraction
	Quantitative RT-PCR Assays
	Plasmid Construction and Transient in planta Expression
	Statistical Analyses

	Results
	Starch Degradation and Triacylglycerol Breakdown Are Associated With Light-Induced Stomatal Opening in Solanum tuberosum
	Stomatal Defense Is Inhibited by Phytophthora infestans
	Phytophthora infestans Infection Induces Potato Stomatal Opening by Degrading Starch in Guard Cells
	Phytophthora infestans Infection Induces Potato Stomatal Opening by TAG Breakdown in Guard Cells
	H2O2 and NO Accumulation in Potato Guard Cells Is Disturbed by Phytophthora infestans Infection
	Apoplastic Fluids and Effector Overexpression Induce Stomatal Opening

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


