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Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an
important fungal disease in tropical and subtropical wheat production regions. The
disease was initially identified in Brazil in 1985, and it subsequently spread to some
major wheat-producing areas of the country as well as several South American countries
such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to
Bangladesh and Zambia via international wheat trade, threatening wheat production
in South Asia and Southern Africa with the possible further spreading in these two
continents. Resistance source is mostly limited to 2NS carriers, which are being eroded
by newly emerged MoT isolates, demonstrating an urgent need for identification and
utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to
manage WB that resulted in increasing fungal resistance, which should be addressed
by utilization of new fungicides or rotating different fungicides. Additionally, quarantine
measures, cultural practices, non-fungicidal chemical treatment, disease forecasting,
biocontrol etc., are also effective components of integrated WB management, which
could be used in combination with varietal resistance and fungicides to obtain
reasonable management of this disease.

Keywords: wheat blast, Magnaporthe oryzae pathotype Triticum, disease spread, integrated disease
management, Intercontinental spread

INTRODUCTION

Rice blast is one of the most widely occurring and large-scale devastating crop diseases, with its
causal pathogen Magnaporthe oryzae pathotype Oryza (MoO) ranked the first place of the 10 most
devastating fungal plant pathogens (Dean et al., 2012). In comparison, wheat blast (WB) is much
less known, having been confined to South America for three decades before its recent outbreak in
Bangladesh (Ceresini et al., 2018). Both rice and wheat blast are caused by M. oryzae and are initially
assumed to have the same pathogen, which is later proved to be wrong. WB is caused by M. oryzae
pathotype Triticum (MoT), which is genetically different from MoO, although the two pathotypes
have identical morphological traits (Cruz and Valent, 2017). Because of its limited epidemic regions,
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WB has been much less investigated compared with rice blast in
all aspects of research. Researchers had warned of the possible
expansion of the disease to other continents (Duveiller et al.,
2011), and, subsequently, it was reported in Bangladesh in Asia
and Zambia in Africa (Malaker et al., 2016; Tembo et al., 2020).
Since then, WB has drawn increasing attention, considering
its potentiality of further spreading to neighboring countries,
namely, India, Pakistan, and China, which are all major wheat
producers and where wheat is used as one of the major staple food
crops for billions of inhabitants. Molecular analyses with MoT-
specific marker and comparative genome sequencing confirmed
that Bangladesh MoT isolates have a high genetic similarity to
those from South America (Islam et al., 2016; Malaker et al.,
2016). WB is known to have devastating effects on yield losses
of up to 100% (Duveiller et al., 2016a; Cruz and Valent, 2017).
Therefore, an effort is needed to stop the spread of MoT to other
parts of the world because inaction may lead to a catastrophe.
Active research and breeding study on WB have been conducted
in the last few years, and numerous research articles have been
published on every aspect of WB research, along with the
release of many WB-resistant varieties in the WB-affected or
threatened countries. In this review article, we have summarized
the research and breeding progress for WB resistance in the last
decades and suggested few future study areas, considering rapidly
advancing technologies.

SYMPTOMS AND DIAGNOSIS OF
WHEAT BLAST

Initial identifiable symptom of the disease is observed at the
reproductive stage of the crop in a scattered patch in wheat
field (Figure 1A). With time, the patches coalesce and the whole
field is severely damaged. Spikes in the infected field become
silvery color while the leaves may remain green (Figure 1B;
Singh, 2017). The fungus MoT can infect all above-ground parts
of wheat such as spike, leaf, peduncle, glume, awn, and seed
(Igarashi, 1990; Urashima et al., 2009; Cruz et al., 2015; Cruz
and Valent, 2017), but the most distinguishable symptom is
observed on the spikes (Malaker et al., 2016; Saharan et al., 2016;
Cruz and Valent, 2017). Partial or complete bleached spikes are
the most notable symptoms of wheat blast, starting from an
apparent blackish-gray-colored infection point at rachis or the
base of infected spikes (Figure 1C). Depending on the place
of infection on the spike, partial or full drying takes place.
Sometimes, multiple points of infection in a single rachis can be
observed under high inoculum pressure in susceptible cultivars
(Figure 1D). An infection in the rachis or peduncle can block
the nutrient transportation system of the plant and ultimately
damage all the upper spikelets above the infection points (Cruz
and Valent, 2017). At the point of infection of the rachis, gray
or dark-gray or black sporulation of the fungus can be observed
in highly susceptible cultivars (Figure 1E; Igarashi, 1990; Islam
et al., 2016). Infected awns show brown to white stain, while
glumes show elongated lesions with reddish brown to dark gray
margins and white to light brown center (Figures 1F,G; Saharan
et al., 2016; Cruz and Valent, 2017). During sporulation, lesions

have gray centers that become white to tan after the release of
spores (Igarashi et al., 1986; Igarashi, 1990). The extent of wheat
blast damage on grains depends upon the timing and intensity
of the infection. Infection occurring prior to anthesis or at an
early stage of flowering results in total sterility of spikes, thereby
resulting in seed abortion (Goulart et al., 1990; Goulart and Paiva,
1992; Urashima et al., 2009). Infection at the grain filling stage
results in small, wrinkled, deformed, and low test weight kernels
(Figure 1H; Goulart et al., 2007; Malaker et al., 2016), which
become unfit for human consumption (Urashima et al., 2009).

Under field conditions, lesions on the leaves may vary in shape
and size depending on the crop growth stage. Leaves of highly
susceptible cultivars can be infected severely at the seedling stage
and lead to total plant death under conducive weather conditions
(Igarashi, 1990; Singh, 2017). Resistant cultivars may also show
moderately susceptible to susceptible reaction to the disease at
the seedling stage (Roy et al., unpublished). First visible symptom
on young seedling includes water-soaked diamond shaped lesion
which turns grayish white center with dark brown border with
disease progression (Figure 1I). When several lesions coalesce,
the entire leaf could die (Figure 1J; Rios et al., 2013). The old
leaves are more susceptible to MoT than the young ones (Cruz
et al., 2015), in conducive environments in highly susceptible
cultivars. Symptoms on the leaf include the presence of elliptical
or elongated or eye-shaped, grayish to tan necrotic lesions with
dark borders (Figure 1K; Malaker et al., 2016). Lesions can also
be rarely seen on the leaf collar, culm, culm node, and stem. Stem
lesions include those that are elongated or elliptical in shape with
a white center surrounded by a dark-brown or blackish margin
(Figure 1L).

Wheat head blast in the field sometimes can be wrongly
diagnosed, because it somewhat resembles Fusarium head blight
(FHB) and spot blotch, caused by Fusarium graminearum and
Bipolaris sorokiniana, respectively (Pieck et al., 2017; Singh,
2017). When the rachis is infected with FHB, spikelets above
the infection point may also become bleached, with pink
to orange masses of spores of the fungus, in contrast to
the gray masses of MoT (Figure 2A), being observed on
the infected spikelets (Figure 2B; Wise and Woloshuk, 2010;
Valent et al., 2016). In the case of spot blotch, dark brown
or black discoloration develops on the infected spikelets and
such spikes may possess healthy spikelets at both ends from
the infection point (Figure 2C). In the field, blast symptoms
on the leaves are often unidentifiable because of the mixed
infection of spot blotch.

Traditional disease diagnosis based on pathogen morphology
is not reliable, since MoT cannot be morphologically
distinguished from other M. oryzae pathotypes (Thierry
et al., 2019, 2020). Therefore, molecular diagnosis of MoT is
of utmost importance for disease diagnosis and subsequent
management. Pieck et al. (2017) have reported a polymerase
chain reaction (PCR) assay based on MoT3 primer sets, and
Yasuhara-Bell et al. (2018) converted it to a loop-mediated
isothermal amplification (LAMP) assay, enabling rapid detection
of MoT in both laboratory and field conditions. The MoT3
marker was recently used to reveal that MoT causes blast on
some other hosts such as triticale (Roy et al., 2020b), barley
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FIGURE 1 | Wheat blast symptoms on different parts of the plant. (A) initial symptoms of blast in wheat field in a patch, (B) infected field showing silvery bleached
spikes with green canopy, (C) typical partial or full bleached spikes in field, (D) a partially bleached spike with multiple points of infection, (E) dark-gray sporulation of
the fungus MoT on the rachis, (F) infected awns show brown to whitish discoloration, (G) infected glumes show elliptical lesions with white to brown center and dark
gray margins, (H) severely shriveled or wrinkled blast affected vs. healthy grains of wheat, (I) typical eye-shaped lesions with gray or whitish centers surrounded by
dark brown margins on seedling leaf, (J) a severely damaged seedling field affected by MoT infection, (K) typical eye-shaped or elliptical lesions on a mature leaf,
and (L) elliptical or elongated lesions on blast-affected stem having white centers surrounded by brown or blackish margins.

FIGURE 2 | Blast and blast-like symptoms on wheat heads. (A) A typical blasted head having gray colored infection point, (B) symptoms of FHB showing superficial
pink to orange masses of spores of F. graminearum with pink colored infection points, and (C) symptoms of spot blotch giving black discoloration on the infected
spikelets because of B. sorokiniana.

(Roy et al., 2021a), and durum (Roy et al., 2021b). However,
this marker could produce false negative results in MoT
isolates lacking the MoT3 locus, e.g., BR0032. To address
this problem, Thierry et al. (2019, 2020) have developed a
tool kit with novel markers for ordinary PCR, qPCR, and
LAMP that have shown good specificity to MoT, although

false positive results were observed in few non-MoT isolates.
Based on genome sequence comparison of MoO and MoT,
Kang et al. (2020) identified two DNA fragments specific to
MoT and developed markers for a set of rapid diagnostic
tools, which, unfortunately, also exhibited false positive results.
Therefore, no perfect diagnostic tool is currently available
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for MoT, and it is beneficial to apply multiple markers for
cross validation.

PRODUCTION LOSSES

Wheat blast is one of the most devastating and yield limiting
disease in warm and humid wheat production regions. The
economic importance of this disease arises because it reduces
grain yield and quality drastically (Goulart et al., 2007). The
maximum yield damage happens when spike infection occurs
during anthesis or early grain filling stage (Goulart et al., 2007)
and/or when the fungus attacks at the base of the spike, thereby
restricting the development of the grains and killing the head
completely (Kohli et al., 2011). Yield losses can reach up to 100%
when a susceptible cultivar is grown under late sown conditions
in Bangladesh and under early sown conditions in South America
(Roy et al., unpublished; He et al., 2020b). The losses due to
the disease depend upon several factors such as genotype, crop
growth stage, planting date, weather conditions (temperature,
humidity, rainfall, etc.), and disease severity (CIMMYT, 2016;
Cruz and Valent, 2017).

In South America, the losses in grain yield were estimated
in the range of 10–100% (Duveiller et al., 2016a). In 1987,
yield losses incurred in three Brazilian states (Parana, Matto
Grosso do Sul, and Sao Paulo) varied between 10.5 and 53%
(Goulart and Paiva, 1992), thereby influencing farmers not to
grow wheat (Callaway, 2016). The first outbreak of WB in
Bolivia in 1996 resulted in almost 80% of production loss (Barea
and Toledo, 1996). In the subsequent year (1997), the disease
again devastated the early planted crops causing 100% yield
loss, which was responsible for the sharp decline in wheat area
production in subsequent years in Bolivia. In Paraguay where
the first epidemic occurred in 2002, production losses of more
than 70% were recorded in the early broadcasted fields (Viedma
and Morel, 2002). Most of the harvested grain did not meet
marketable values for test weight and had to be used as animal
feed. In 2016 in Bangladesh, the overall yield loss estimates by
the Department of Agricultural Extension were close to 50% in
about 15,000 ha affected, which posed a significant threat to the
aggregate wheat production of the country (Islam et al., 2016).
The disease reappeared in the subsequent years (2017–2020)
with comparatively lower disease severity, and an insignificant
yield loss (1–5%) was incurred because of unfavorable weather
conditions and the adoption of different management packages.

PATHOGEN BIOLOGY

The causal organism of wheat blast is a haploid, filamentous,
ascomycetous fungus named Magnaporthe oryzae B.C. Couch
and L.M. Kohn (anamorph Pyricularia oryzae Cavara) (Couch
and Kohn, 2002). Because of its self-incompatibility, the fungus
reproduces sexually only when there is crossing between two
sexually compatible and fertile individuals (Maciel et al., 2014;
Maciel, 2019). This happens once the female receptive structure
termed ascogonium is able to accept the compatible nucleus or

nuclei of the male benefactor via conidia or receptor hyphae
(Kang et al., 1994; Moreira et al., 2015). The fungus is very
much host-specific and cannot infect incompatible hosts. Based
on host specificity, mating type, and genetic similarity, isolates
of M. oryzae are subdivided into several pathotypes (Urashima
et al., 1993; Kato et al., 2000; Tosa et al., 2004; Tosa and Chuma,
2014). Among the pathotypes, Oryza is responsible for infecting
rice, Setaria for foxtail millet, Eleusine for finger millet, Panicum
for proso millet, Triticum for wheat, Avena for oat, Lolium for
perennial and annual ryegrass, and many other ones for grasses
(Kato et al., 2000; Farman, 2002; Tosa et al., 2004; Maciel, 2019).
It has been proved that MoT is distinct from other host-specific
pathotypes based on host range (Prabhu et al., 1992; Urashima
et al., 1993), sexual fertility (Urashima et al., 1993), and DNA
fingerprinting (Urashima et al., 1999; Urashima et al., 2005).
Isolates from each host are entirely pathogenic on their original
host genus (Tosa et al., 2006). The aforementioned pathotypes
are genetically close and interfertile and were distinct from
the Digitaria isolates originally designated P. grisea (Urashima
et al., 1993; Kato et al., 2000; Murakami et al., 2000; Tosa
et al., 2004, 2006), which was later confirmed with a multilocus
phylogenetic analysis (Kato et al., 2000; Couch and Kohn, 2002).
It is noteworthy that MoT attacks not only wheat but also its
relative triticale, barley, and durum (Roy et al., 2020b, 2021a,b).
There is no cross infection that happened between rice and wheat
blast isolates on either of the alternative host (Prabhu et al., 1992;
Tosa et al., 2004). The Triticum pathotype population evolves fast,
resulting in a level of genetic diversity that is higher than that of
other pathotypes (Urashima et al., 2005; Tosa et al., 2006; Maciel
et al., 2014; CIMMYT, 2016).

The fungus produces pear-shaped two-septate three-celled
asexual conidia, which are hyaline to pale gray-colored
(Figure 3A). The conidia are produced in clusters on long septate,
slender conidiophores in a sympodial manner. Conidiophores
are light brown in color, solitary, and erect. Mycelia are thin,
slightly brownish, septate, and highly branched. The fungus can
be purified by isolation of a single conidium; and when grown
in pure culture, the fungal colony appears white, light gray, or
dark gray (Figure 3B). During infection, the conidia of the fungus

FIGURE 3 | (A) Pyriform two-septate hyaline to pale, gray-colored asexual
conidia under compound microscope (magnification 400×) and (B) dark
gray-colored colony of the fungus grown on potato dextrose agar (PDA)
medium.
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FIGURE 4 | Spread of wheat blast in South America from 1985 to 2021.
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are attached to the plant surface by producing a polarized germ
tube and then start to germinate on the leaf surface by 6 h of
attachment from both apical and basal cells, followed by swelling
at the tip of germ tube known as appressorium, which helps
to penetrate into the leaf epidermis or rachis cuticle, and then
followed by further invasive hyphal expansion to colonize plant
tissues (Tufan et al., 2009). The fungus also secrets antibiotics and
mycotoxin, which help to colonize in plant tissue for successful
biotrophic growth (Patkar et al., 2015; Yan and Talbot, 2016).
Sexually fertile M. oryzae strains also produce small, crescent-
shaped microconidia, which are produced from phialides, but
their role for plant infection in nature is largely unknown
(Zhang et al., 2014).

SPREAD OF WHEAT BLAST IN SOUTH
AMERICA

The first WB epidemic occurred in 1985 in the state of Paraná,
one of major wheat producer of Brazil, affecting its six northern
municipalities, i.e., Primeiro de Maio, Sertanópolis, Rancho
Alegre, Londrina, Engenheiro Beltrão, and São Pedro do Ivaí
(Igarashi et al., 1986). In 1986, WB spread northward from
Paraná to its neighbor states São Paulo and Mato Grosso do Sul,
resulting in 27 municipalities in the three states being affected
by the disease (Picinini and Fernandes, 1990). By 1987, WB
was present in more than 70 municipalities in Paraná, causing
a yield loss of 10–12% (Goulart et al., 1990). In the same year, it
spread further northward to the state of Goias, where the disease
was observed in Vicentinopolis (Prabhu et al., 1992). In order
to have better knowledge of the epidemic region, an intensive
field survey was conducted in Mato Grosso do Sul in 1988,
and the results indicated an occurrence in 14 municipalities,
namely, Dourados, Ponta Porã, Rio Brilhante, Itaporã, Fátima do
Sul, Douradina, Maracaju, Caarapó, Aral Moreira, Bonito, Nova
Andradina, Naviraí, Amambai, and Sidrolândia (Goulart et al.,
1990). Being a neighbor to three WB affected states, the state of
Minas Gerais was soon declared to be also affected by the disease
in 1990 (Ceresini et al., 2018). Then, the incidence in 1993 in the
capital city Brazilia, located between the states of Goias and Minas
Gerais, was not surprising (Dos Anjos et al., 1996). Southward,
WB arrived in 1988 in the other major wheat producer area,
the state of Rio Grande do Sul, and was first found in northern
municipality Lagoa Vermelha (Picinini and Fernandes, 1990).
Nowadays, the disease is present in all wheat production zones in
Brazil (Figure 4) because of both natural spread and lack of strict
seed quarantine measures among states; and the latter served as
the main cause of the WB outbreak in Paraguay, Bolivia, and
Bangladesh (Ceresini et al., 2018).

The main wheat production zones of Paraguay lay in the east
and south, which border to two main WB epidemic states of
Brazil, Paraná and Mato Grosso do Sul. Therefore, WB could
have easily spread from Brazil to Paraguay even if there was
no introduction of MoT-contaminated seeds. Indeed, the first
incidence of the disease was observed in the border region of
the two countries in 1987, only 2 years after the appearance in
Brazil (Cunfer et al., 1993). However, the first WB epidemic and

official report occurred in 2002, causing yield losses of up to
80% in early sown fields, with the Itapúa Department being the
most severely affected, followed by the Alto Paraná Department
(Viedma, 2005). In 2005, another severe epidemic of WB hit
Paraguay, affecting about 10,000 ha in Alto Paraná, Canindeyú,
etc. (Viedma et al., 2010). Currently, the WB-affected regions
in Paraguay include Alto Paraná, Itapúa, Caaguazú, Caazapá,
Canindeyú, and Guairá Departments (Ceresini et al., 2018),
covering most of the wheat production zones in the country.

The first WB epidemic in Bolivia was recorded in 1996 in
the lowland Santa Cruz region, resulting in about 80% of yield
reduction (Barea and Toledo, 1996). The disease was more
devastating in 1997, causing 100% yield loss in early sown fields
and substantial decline in the wheat area in Santa Cruz in
subsequent years (Kohli et al., 2011). So far, WB has occurred
mostly in the lowland wheat fields in Santa Cruz, which is the
most important wheat producer in Bolivia, whereas those in
highlands are not severely affected (Vales et al., 2018).

The first WB incidence in Argentina was in its north-
eastern province Formosa in 2007, followed by reports from two
other northeastern provinces, Chaco (2007/08) and Corrientes
(2012/13), all bordering to Paraguay (Kohli et al., 2011; Gutiérrez
and Cúndom, 2015). The occurrence of this disease in the
above-mentioned three provinces did not pose a big threat to
Argentine wheat production because of the limited wheat area
there; however, the disease arrived in the province of Buenos
Aires in 2012, one of its major wheat producers (Perelló et al.,
2015). This ignited a series of research activities on the disease in
Argentina, although large-scale yield loss due to WB has not been
reported yet (Perelló et al., 2017).

SPREAD OF WHEAT BLAST IN
BANGLADESH, SOUTH ASIA

The incidence of WB in February 2016 came as a sudden
shock, taking the South Asia wheat production regions off-
guard when a series of reports (Callaway, 2016; Islam et al.,
2016; Malaker et al., 2016) confirmed the epidemic presence
in eight districts, namely, Barishal, Bhola, Chuadanga, Jashore,
Jhenaidah, Kushtia, Meherpur, and Pabna in the southwestern
and southern districts of Bangladesh. This first incidence beyond
South America affected nearly 15,000 ha (3.5% of total 0.43
million ha wheat area in Bangladesh) with an average yield loss
of 25–30% (Islam et al., 2016; Malaker et al., 2016). In the
subsequent 5 years (2017–2021), weather conditions during the
wheat cropping season were cooler and drier, and did not favor
WB infection, development, and spread (Mottaleb et al., 2019;
BWMRI, unpublished). Still, the disease did not remain confined
to the initial eight affected districts but spread further to 14
new districts (Figure 5). In 2017, it spread to four new districts,
Rajshahi, Faridpur, Magura, and Gopalganj, which are adjoined
to previously WB-affected districts. In 2018, the disease spread to
four more new districts: Tangail, Jamalpur, Natore, and Rajbari.
Among these districts, Jamalpur is not adjacent to any of the
previously affected ones. In 2019, there was a further spread of
WB to Naogaon, Mymensingh, Madaripur, and Narail districts.
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FIGURE 5 | Spread of wheat blast in Bangladesh from 2016 to 2021.
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In 2020, a new district, Bogura, which is close to the northwestern
part of the country and is considered as the major wheat-
producing region of the country (BWMRI, 2020), was reported to
have WB. In 2021, the disease has further spread to two districts,
Kurigram and Chapainawabganj, but the infection levels are very
low. The pattern of disease expansion clearly indicated that both
the seed-borne and air-borne means of dispersal is happening in
Bangladesh. Mottaleb et al. (2018) identified several warmer and
humid districts in Bangladesh as vulnerable to WB. In the last few
years, it has been observed that seven districts, namely, Tangail,
Jamalpur, Naogaon, Mymensingh, Kurigram, Chapainawabganj,
and Bogura, which are located in the northern part of Bangladesh
where relatively cooler conditions prevail, were not predicted as
vulnerable to WB, but incidence of the disease was observed in
these districts. This scary situation of WB being identified in

cooler and drier conditions enhanced the vulnerability of South
Asia to WB and indicated the ability of MoT to survive under
harsh conditions.

SPREAD OF WHEAT BLAST IN ZAMBIA,
AFRICA

Wheat blast was first observed in Zambia in February 2018
during the rainfed season in Mpika district of Muchinga province
(Figure 6). During the 2017–2018 season, disease incidence
and severity were high because of favorable weather conditions
supporting the disease development and pathogen proliferation.
However, low disease severity was observed during the 2018–
2019 season in experimental and farmer fields in Mipika district

FIGURE 6 | Spread of wheat blast in Zambia from 2018 to 2021.
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because of hot and dry conditions. During the 2019–2020 crop
season, high disease incidence and severity were observed in both
experimental (Mt. Makulu, Mpika, and Mpongwe) and farmer
fields (Mpika). In some areas where the climatic conditions were
hot and dry, disease incidence and severity were low. In the 2020–
2021 crop season, the disease was observed in experimental fields
(Mt. Makulu, Mpika, and Mpongwe) and also at a farmer field in
Kafue district that grew the susceptible variety Coucal. The spread
of WB in Zambia could be ascribed more as seed-borne rather
than air-borne spread.

AREAS VULNERABLE TO WHEAT BLAST
ACROSS THE WORLD

First, Duveiller et al. (2011) estimated the risk of wheat blast
in other continents and observed areas of high risk in parts of
Central India, Bangladesh, Ethiopia, Eurasia, and North America
using a climate similarity approach. Cao et al. (2011) predicted
vulnerable regions in mid-east South America, southeast and
midwest Africa, southeast of South Asia, east coast of Australia
and south China, using the MaxEnt model. Kohli et al. (2011)
forecasted that climatic changes associated with global warming
could make WB spread to other parts of the world, and
that WB invasion of the Asian continent is likely to cause
devastating effects unless immediate control measures are taken.
Unfortunately, their predictions came true in 2016 with the
WB outbreak in Bangladesh. Since 2016, several studies on
the vulnerability of wheat growing areas to wheat blast have
been published. Studies using different models have revealed
the vulnerable areas in Bangladesh, India, China, and Pakistan
(Sadat and Choi, 2017; Mottaleb et al., 2018). In another study,
Duveiller et al. (2016b) cited that further spread of WB in Latin
America is possible with vulnerable areas in Mexico, Ecuador,
and Andean valleys. Cruz et al. (2016) observed that several
southeastern states (Louisiana, Mississippi, and Florida) in the

United States are vulnerable to WB. Factors such as global
warming, irregular rains, cultivation of susceptible cultivars and
unrestricted wheat grain movement especially from countries
with cases of WB, the increasing virulence of the pathogen, and its
fungicide resistance, potential sexual recombination, and possible
cross-host infections could lead to more frequent outbreaks and
spread of the disease to other major wheat-producing countries.
Grain trade has been attributed to the spread of WB from
South America to Bangladesh and Zambia (Figure 7). Ceresini
et al. (2018) further alerted that strengthening quarantine and
biosafety regulations to prevent further spread in Asia or
introduction of WB into other wheat-growing regions of the
world, such as Europe, Australia, and North America, should be
of the highest priority.

MANAGEMENT STRATEGIES

Wheat blast is a very challenging disease to manage, and
no single strategy is capable of achieving a satisfactory level
of management. Therefore, for blast-free areas, quarantine
measures are paramount to preclude the introduction of the
disease, which would otherwise be impossible to eradicate.
Areas adjoining endemic regions may adopt a wheat holiday
concept to limit the disease spread. For endemic WB regions,
an integrated management approach is recommended, such as
varietal resistance, fungicide application, cultural management,
non-fungicidal chemical treatment, and biocontrol methods.
These strategies are described in the sections below.

CONTAINMENT AND QUARANTINE

Quarantine is one of the best approaches to restrict the spread of
a pathogen from endemic regions to disease-free areas/countries
and to avoid potential outbreaks in new regions. Aerial dispersal

FIGURE 7 | Intercontinental spread of wheat blast attributed to grain trade.
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of the disease is limited as heavier asexual spores are reported
to travel up to 1 km (Urashima et al., 2007), whereas sexual
spores are lighter and, hence, may be able to travel much longer
distances (Maciel et al., 2014). Thus, infected seeds are the most
probable source for disease introduction and spread through
large intercontinental distances. Failure of proper quarantine and
seed trade laws led to the WB pathogen into Bangladesh (Islam
et al., 2016). This strongly implies a likewise invasion of the
pathogen to WB-prone regions in South Asian countries such as
India and Pakistan. Under an assumption of favorable climatic
conditions, Mottaleb et al. (2018) predicted a vulnerability of 17%
of cultivated wheat area or 0.88 million tons of yield loss in South
Asia. An early study exhibited that the MoT pathogen can survive
in seeds for up to 22 months (Reis et al., 1995). Hence, it is
imperative for nations vulnerable to the disease to meticulously
draft and execute their seed entry and quarantine laws. Seeds
from endemic areas may be prohibited for entry. Also within an
endemic region, laws can also be framed so that locally produced
wheat seeds are not used as seed and do not go to flour industries
for direct consumption.

WHEAT HOLIDAY

Wheat holiday is the suspension of wheat cultivation in blast-
affected areas or vulnerable areas with a high probability of
disease dispersal. It encompasses the forceful ban of wheat
cultivation by the respective government with an intention to
stop the spread of the disease to adjoining areas. However,
most farmers in WB-affected areas in Bangladesh are small and
resource-poor, and, hence, there is a need to give alternative
cropping plans to them to make a wheat holiday successful in
holistic terms. India has banned wheat cultivation within 5 km
from the Bangladesh boundary and instead directed for growing
of legumes and oilseeds crops. The state government of West
Bengal (Indian state adjoined to Bangladesh) has prohibited
wheat cultivation in two districts (Murshidabad and Nadia) for
3 years (ICAR-IIWBR, 2020). Similarly, in Bangladesh, a study
by Mottaleb et al. (2019) indicated the feasibility of maize, onion,
garlic, and lentil as profitable alternative crops to wheat. While
considering any alternative plan, it is important that the crops
substituted should not act as an alternative to MoT. Also, for a
successful “wheat holiday” management strategy, the alternative
hosts of MoT such as weeds should be controlled or avoided,
which is very challenging.

BREEDING FOR RESISTANCE

Understanding the Enemy (Pathogen)
While breeding for blast resistance in wheat, it is important to
understand pathogen diversity, host specificity, and evolution.
The fungus M. oryzae is reported to infect 137 species in
the Poaceae family (Choi et al., 2013). Various pathotypes are
named after the host crop species infected by the pathogen
such as Oryza, Eleusine, Avena, and Lolium. Apart from crop
species, it infects various weeds and grasses such as Cenchrus

echinatus, Digitaria sanguinalis, and Echinochloa crus-galli (Kohli
et al., 2011). Compared with M. oryzae pathotype Oryza,
sexual reproduction is more frequent in MoT, as reflected
in its high diversity found in fields (Urashima et al., 1999).
However, the predominance of only one mating type suggests
asexual reproduction as the predominant mode of reproduction
(Urashima et al., 2017). Maciel et al. (2014) reported a mixed
reproductive system occurring for MoT where a best-fit strain
produced by sexual reproduction is maintained generation after
generation by asexual reproduction. Strains collected between
2016 and 2017 in Bangladesh indicated a single genotype,
implying its asexual propagation in the natural environment,
which is in sharp contrast to the situation in South America
where high genetic diversity was found among MoT isolates
(Ceresini et al., 2018).

Sources of Host Resistance
Ever since the first wheat blast outbreak in Brazil in 1985,
efforts on identification of resistance sources in both common
wheat and its relatives have been exerted. Several promising
varieties were identified in early studies, but they all became
susceptible in later experiments (Igarashi, 1990; Urashima and
Kato, 1994). A subsequent screening study in Brazil led to the
identification of few moderately resistant varieties such as BRS
49, BRS 120, BRS 220, and IAPAR 53 (Prestes et al., 2007). In
Bolivia and Paraguay, identification of resistant varieties relied
mostly on field observation over years, from which several
moderately resistant varieties have been identified, e.g., Sausal
CIAT, Motacu CIAT, Patuju CIAT, and Urubo CIAT in Bolivia,
and Caninde 1 and Itapua 75 in Paraguay (Buerstmayr et al.,
2017). It was found that many such resistant varieties have the
CIMMYT genotype Milan in their pedigree, and later research
indicated that 2NS translocation was the underlying resistance
factor (Cruz et al., 2016), which was initially introduced from Ae.
ventricosa to a French variety “VPM1” (Helguera et al., 2003).
This translocation is frequent in the CIMMYT germplasm as
it confers a wide range of resistance against stripe rust (Yr17),
leaf rust (Lr37), stem rust (Sr38), cereal cyst nematode (Cre5),
root-and knot nematodes (Rkn3), and also has increased yield
potential (Cruz et al., 2016; Juliana et al., 2020). However, the
translocation exhibited different phenotypic effects across wheat
lines, signifying the role of genetic background in its expression
(Cruz et al., 2016; He et al., 2020a, 2021). “BARI Gom33,” a zinc
bio-fortified blast-resistant wheat variety released in Bangladesh
in 2017 is a success story of utilizing the 2AS/2NS translocation in
breeding (Hossain et al., 2019). However, too much dependency
on this translocation in the form of large acreages in South Asia
and South America is making it vulnerable against new MoT
isolates because of strong directional selection. Virulent strains
on this translocation have been reported across South America
(Cruz et al., 2016), such as the highly virulent Brazilian strain
16MoT001 reported by Cruppe et al. (2020), making it imperative
to look out for novel resistance sources.

Non-2NS resistance sources having moderate levels of
resistance have been identified in both field and controlled
conditions (He et al., 2021). Few accessions of wild relatives
of wheat, namely, Ae. tauschii and Ae. umbellulata, were
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found to have resistance against WB (Buerstmayr et al., 2017).
Resistant (TA10142) and moderately resistant (TA-1624, TA-
1667, TA10140) Ae. tauschii accessions were identified using field
and greenhouse phenotyping facilities in Bolivia, Brazil, and the
United States (Cruppe et al., 2020). Identification of resistance in
wild relatives indicates the potential use of synthetic hexaploidy
wheat (SHW) varieties against the WB disease. CIMMYT SHW
derivatives Patuju CIAT and Motacu CIAT were released in
Bolivia because of their blast resistance (Buerstmayr et al., 2017).
Many of the identified resistant sources need to be widely tested
considering the influence of environmental conditions, e.g., BR
18-Terena and BRS229 are non-2NS wheat varieties widely used
as parents in Brazil owing to their high head blast resistance
(Ferreira et al., 2020), but they exhibited susceptibility in some
environments (Ceresini et al., 2019). While breeding for WB
resistance, consideration of farmers must also be accounted.
A good example of it is the wide cultivation of the “Motacu”
variety in Bolivia. Though this variety is moderately susceptible, it
is still liked by farmers because of its earliness (Vales et al., 2018).

Considering insufficient WB resistance of the non-2NS
sources, currently, it is advised to utilize such resistance together
with 2NS to achieve a satisfactory WB resistance. With the
identification of more non-2NS resistance, such sources could
be crossed with each other to accumulate minor non-2NS
resistance genes to achieve high and durable WB resistance,
just as recommended in breeding for durable rust resistance
(Singh et al., 2016). By that time, 2NS could be used at a lower
frequency to reduce its directional selection on 2NS-virulent
MoT isolates, so that its resistance could remain effective for
a longer time. Breeding for seedling resistance is a target that
has not received sufficient attention, mainly because of less
conducive environmental conditions during the seedling stage
in WB-affected regions. However, with the changing climate, the
situation may change in the future, bringing new challenges in
WB epidemic regions. It has been well demonstrated that WB
resistance at the seedling stage does not correspond well with
that at the adult plant stage (Cruz et al., 2012), emphasizing
the necessity of conducting WB evaluation at both stages. The
advantage of seedling evaluation is that it can be conducted in
a greenhouse with high throughput and is, thus, less expensive
compared with field screening. A good strategy may be to
select only lines with seedling resistance for field evaluation,
which could significantly reduce the workload for field trials.
However, this may neglect lines with poor seedling resistance but
good adult plant resistance; therefore, for regions without major
issues on seedling blast, field evaluation on head blast should
still be preferred.

International collaboration is much needed for screening
and identifying novel sources of resistance. The formation
of WB consortium in the year 2010 and databases such
as the OpenWheatBlast project were a step forward in the
direction. Likewise, institutes in Bangladesh in collaborations
with CIMMYT, Swedish University of Agricultural Sciences,
National Research Council Canada, The Sainsbury Laboratory,
UK, and the University of Exeter are working on novel
genome editing technologies for WB resistance (Singh personal
communication). “Precision Phenotyping Platforms (PPP)” are

established in Bangladesh and Bolivia with the help of CIMMYT
and NARS partners to evaluate germplasm from across the globe
in search of novel blast resistance materials, especially those
of non-2NS. The government of India is utilizing PPPs and
identified five resistant varieties, namely, HD3249, HD3171, HD
2967, DBW 252, and DBW 187, which have been recommended
to farmers of disease-prone areas in West Bengal adjoined to
Bangladesh (ICAR-IIWBR, 2020). Bangladesh released two blast-
resistant varieties, BARI Gom 33 and WMRI Gom 3, Nepal
released Borlaug 2020, and Bolivia released INIAF Tropical and
INIAF Okinawa as blast-resistant varieties within the last 5 years.

Resistance Mechanism: Major vs. Minor
Genes
Understanding and identification of “R” (resistance) genes in
host and avirulence/virulence genes in MoT is the cornerstone
for successful breeding. Effectors coded by avirulence (AVR)
genes are recognized by the “R” gene products of the host
plant to confer resistance. The identified AVR and R genes
in the WB pathosystem are very limited compared with those
in rice blast. Comparative transcriptomics studies can help in
hunting for new AVR and R genes effective in WB (Ferreira
et al., 2020). Genetic studies have pointed toward the important
role of AVR and minor pathogenicity genes in conditioning the
virulence of blast pathogens, where loss of AVR and selective
accumulation of minor pathogenicity genes help in slowly
evolving an M. oryzae strain to adapt new host species (Cruz
and Valent, 2017). Avirulence genes in MoO (PWT1, PWT2, and
PWT5), MoS (PWT1 and PWT2), MoA (PWT3 and PWT4),
and MoL (PWT3) confer avirulence to wheat crop (Table 1),
whereas none of the MoT isolates have any of these AVR genes
(Cruz and Valent, 2017).

The identified resistance genes can be categorized into non-
host resistance genes and host resistance genes. Non-host
resistance genes are the “R” genes in wheat conferring resistance
against the non-MoT isolates, whereas host resistance genes are
effective against MoT. Some of the identified non-host resistance
genes protecting the wheat plant against non-host isolates include
Rmg1 against MoA (Takabayashi et al., 2002), Rmg4 and Rmg5
against M. oryzae Digitaria isolates (Nga et al., 2009), and Rmg6
against MoL isolates (Vy et al., 2014). Rmg6 was identified on
chromosome 1D in wheat variety Norin4 and is effective against
MoL having the AVR gene PWT3 (Table 1). A host jump of
an M. oryzae lineage to wheat was exemplified in “Anahuac,” a
widespread Brazilian variety in the 1980s. This variety lacking
Rmg6 (Rwt3) is susceptible to MoL with PWT3. Therefore, MoL
population massively built up on the variety and mutations
occurred in PWT3, resulting in pwt3-carrying MoL isolates that
are virulent even to wheat cultivars with Rmg6, turning MoL into
MoT (Inoue et al., 2017). RmgTd(t) was detected by a mutant
isolate from a cross between MoA and MoT, which was avirulence
to most bread and durum wheat cultivars barring few susceptible
tetraploid wheat cultivars (Cumagun et al., 2014).

Host resistance genes identified so far include Rmg2, Rmg3,
Rmg7, Rmg8, and RmgGR119 (Table 1). Rmg2 and Rmg3
located on chromosomes 7A and 6B, respectively, were found
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TABLE 1 | List of identified and postulated resistance genes in wheat against different Magnaporthe oryzae pathotypes.

Resistance gene/locus Chromosome Donor genotype Corresponding AVR
gene

Corresponding
pathotype&

References

Rmg1 (Rwt4) 1D Norin 4 PWT4 MoA Takabayashi et al., 2002

Rmg2 7A Thatcher MoT Zhan et al., 2008

Rmg3 6B Thatcher MoT Zhan et al., 2008

Rmg4 4A Norin 4 MoD Nga et al., 2009

Rmg5 6D Red Egyptian MoD Nga et al., 2009

Rmg6 (Rwt3) 1D Norin 4 PWT3 MoL, MoE, MoA Vy et al., 2014

Rmg7 2A T. dicoccum lines KU112,
KU120, and KU122

AVR-Rmg8 MoT Tagle et al., 2015

Rmg8 2B S-615 AVR-Rmg8 MoT Anh et al., 2015

RmgTd(t) 7B T. dicoccum KU109 A mutant progeny of MoA
and MoT

Cumagun et al., 2014

RmgGR119 GR119 MoT Wang et al., 2018

Rwt1# PWT1 MoS, MoO Tosa et al., 2006; Chuma
et al., 2010

Rwt2# PWT2 MoS, MoO Murakami et al., 2000; Tosa
et al., 2006

Rwt5# PWT5 MoO Tosa et al., 2006

2NS/2AS translocation 2AS/2NS Ae. ventricosa MoT Cruz et al., 2016

&MoA represents the Avena pathotype of M. oryzae, MoT the Triticum pathotype, MoD the Digitaria pathotype, MoL the Lolium pathotype, MoE the Eleusine pathotype,
MoS the Setaria pathotype, and MoO the Oryza pathotype.
#These three genes have not been identified in wheat.

to be effective seedling resistance genes detected in the variety
“Thatcher” (Zhan et al., 2008). However, they were not effective
at the head stage, and their resistance had been overcome by
new MoT strains (Cruppe et al., 2020). Rmg7 was identified
on chromosome 2A in tetraploid wheat (Tagle et al., 2015),
whereas Rmg8 was detected on chromosome 2B in hexaploid
wheat (Anh et al., 2015). They had a common AVR gene, i.e.,
AVR-Rmg8, implying that they may be homologous, at least from
a breeding perspective (Anh et al., 2018). Rmg7 and Rmg8 showed
resistance at both the seedling and head stages (Tagle et al.,
2015; Anh et al., 2018). The resistance of Rmg7 is reported to
be overcome by recent MoT strains (Cruz and Valent, 2017).
RmgGR119 was identified in the Albanian wheat landrace GR119
and was found to be effective against many MoT isolates. This
landrace also has Rmg8, indicating that Rmg8 and RmgGR119
collectively conferred a good level of blast resistance (Wang et al.,
2018). However, their performance in field conditions needs to
be tested before being utilized in a breeding program. Both Rmg7
and Rmg8 work fine at 21–24◦C; however, as the temperature
goes over 26◦C, Rmg7 loses its resistance, whereas Rmg8 remains
effective (Anh et al., 2018).

Apart from the Rmg genes, some R genes with broad
spectrum resistance might also confer WB resistance. Lr34
is a non-NBS-LRR gene belonging to the ABC transporter
gene family, exhibiting durable resistance against rusts,
powdery mildew, and spot blotch. Krattinger et al. (2016)
demonstrated its effectiveness against rice blast in a transgenic
Nipponbare variety, implying its possible resistance to
WB. Accumulation of minor genes by eliminating highly
resistant and susceptible individuals in advanced segregating
populations has been tried in rice blast resistance breeding
(Khush and Jena, 2009) and could be used in WB resistance
breeding as well.

The above genes were identified in greenhouse experiments
conducted mostly at the seedling stage. In field experiments,
however, resistance to WB appears to be more of quantitative
resistance. An example in this regard was reported by He
et al. (2020b), in which the 2NS translocation explained 22.4–
50.1% of the blast variation across diverse environments in
the Caninde#1/Alondra mapping population. Additional minor
quantitative trait loci (QTL) were identified on chromosomes
1AS, 2BL, 3AL, 4BS, 4DL, and 7BS, acting in an additive
mode to 2NS translocation. In another study, Goddard et al.
(2020) mapped WB resistance in two mapping populations and
identified five QTL for seedling blast resistance on chromosomes
2B, 4B, 5A, and 6A, and four QTL for head blast resistance
on chromosomes 1A, 2B, 4A, and 5A, and concluded that
the common resistant parent BR 18-Terena had quantitative
resistance against WB. Additionally, genome-wide association
studies (GWASs) for field WB resistance have been reported in
international nurseries of CIMMYT (Juliana et al., 2019, 2020)
and in a diverse panel of lines from South Asia and CIMMYT (He
et al., 2021). The common finding was that the 2NS translocation
was the only major and consistent resistance locus, whereas loci
on other chromosome regions were of low phenotypic effects and
were not stably expressed across experiments.

Juliana et al. (2019) performed a GWAS on a panel of 271
wheat-breeding lines from CIMMYT that was evaluated for field
response to wheat blast in Quirusillas, Bolivia. They reported the
association of Qcim.2A.1 in the position of the 2NS translocation,
and a locus on chromosome 3BL with field blast resistance. In
another study, Juliana et al. (2020) performed a large multi-
environment GWAS using 8,607 observations on 1,106 lines from
CIMMYT, to identify genomic regions associated with field blast
resistance in Bolivia and Bangladesh. They identified 36 markers
on chromosomes 2AS, 3BL, 4AL, and 7BL that were consistently
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associated with blast resistance in different environments, with
more than half of them tagging the 2NS translocation and
explaining up to 71.8% of the blast variation. A recent GWAS on
field and greenhouse resistance to wheat blast was done by He
et al. (2021) using a diverse panel of 184 genotypes from South
Asia and CIMMYT. While the authors identified a significant
marker trait associations on chromosomes 1BS, 2AS, 6BS, and
7BL, only those on chromosome 2AS were consistent in the
different datasets.

Genomic Selection
Given the critical need to shift focus from breeding for
qualitative blast resistance to quantitative resistance, genomic
selection (GS) is a promising tool that can accelerate genetic
gains, reduce cycle time, and facilitate accurate selection for
quantitative disease resistance (Poland and Rutkoski, 2016). In
GS, a training “population” comprising individuals with whole-
genome marker data and phenotypes is used to train prediction
models and estimate marker effects, which are then used to
obtain genomic-estimated breeding values of individuals that
have not been phenotyped but only genotyped (referred to
as “selection candidates”) (Meuwissen et al., 2001). As several
studies have demonstrated GS to be promising for rice blast
(Huang et al., 2019) and wheat diseases such FHB, rusts, Septoria
tritici blotch, Stagonospora nodorum blotch, and tan spot
(Rutkoski et al., 2012; Juliana et al., 2017a,b), it is an attractive
breeding strategy that can be effectively integrated in wheat blast
resistance breeding to minimize time, cost, and resources for
blast phenotyping in the field. In addition, GS can be potentially
used by breeding programs to select individuals for resistant line
advancement and crossing prior to phenotyping, and to increase
the selection intensity by scaling-up selections for blast resistance
to early generations of the breeding cycle, where large segregating
populations pose a challenge for blast evaluation.

Mutation Breeding Potential
The AVR gene product (effectors) of the blast pathogen interacts
with “R” genes to confer resistance to the disease. The “R”
genes and plant defense machinery are under constant selection
pressure due to pathogen evolution and hence newer “R” genes
are evolving by spontaneous mutation events such as natural
recombination, gene duplication, and uneven crossing over.
However, the low frequency of spontaneous mutation viz. 1 in 106

per gene necessitates the need for induced mutagenesis (Kozjak
and Meglic, 2012). Mutation breeding has evolved from the use
of physical and chemical mutagens to genomics technologies of
modern times such as RNA interference (RNAi) using siRNA and
miRNA, virus-induced gene silencing (VIGS), Agrobacterium-
mediated insertional mutagenesis (AIM), and targeting-induced
local lesions in genome (TILLING), all of which have a potential
in breeding for WB resistance. The advantage with the modern
techniques includes precise site-directed mutagenesis in genes of
interest. Physical mutagens (α and β rays, X-rays, γ-irradiation,
etc.) cause high amount of DNA damage/rearrangements as
compared with chemical mutagens (EMS, MMS, sodium azide,
etc.) and, thus, the latter are preferred for creating point mutation
(e.g., EMS used in TILLING population), which may provide gain

or loss of gene function (Kozjak and Meglic, 2012). The gain or
loss in function is important, in particular for targeting “R” genes,
which can be modified to be recognized by multiple AVR effectors
or multiple allelic forms of an AVR gene, thus, providing a broad-
spectrum resistance. The “R” genes corresponding to the effectors
(AVR) essential for pathogen survival are a good candidate for
durable resistance (Vleeshouwers and Oliver, 2014). The number
of currently known “R” genes for WB is low. Hence, mutations
can help in identifying novel “R” genes along with modifying the
existing ones for improving WB resistance.

According to the IAEA database, mutation breeding programs
in different countries lead to the release of 69 wheat cultivars
resistant to various fungal infections. Wheat variety Dharkhan-
172 developed using sodium azide as mutagen is latest in the
series that was released in Mongolia in 2018. It was resistant
against spot blotch, loose smut, and stripe rust and moderately
resistant to Septoria nodorum blotch (SNB) and Alternaria
leaf blight1. Recently in Bangladesh, gamma radiation has been
used in wheat seeds for obtaining mutant resistant lines against
WB, and some of the mutated plants exhibited improved WB
resistance (Rashid et al., 2019). Mutation breeding has also
been successful in developing Ug99-resistant wheat varieties in
Kenya. More than 34 M1 populations and around 284,000 M1
plants were grown and screened under the field and greenhouse
conditions and the material after M4 generation narrowed down
to four resistant entries, out of which two cultivars, namely,
Eldo Ngano1 and Eldo Mavuno1, were released for the farmers
of Kenya in 2014 (Bado, 2015). Thus, type of the mutagen to
be used, population size to handle in subsequent generations,
identification of the mutant and their preservation from the
natural out-crossing (especially recessive mutations) are some
of the important factors to be considered while breeding for
resistance to diseases, such as WB, which requires more research
initiatives in the upcoming times.

Biotechnology That Includes Gene
Editing
Biotechnology has proven to be an effective tool in modern
breeding for most of the important crop plant species, especially
in areas where conventional breeding has reached its limits.
Sequence information (wheat and pathogen), bioinformatics
tools, and DNA based markers have much contributed toward
crop improvement including breeding for disease resistance.
DNA markers, especially SNPs, are being used to locate QTLs
for resistance to diseases such as WB. Studies on effective QTLs
conferring field blast resistance in wheat are very few, and
the available ones have not identified major and stable QTLs
beyond the 2AS/2NS translocation (He et al., 2020b; Juliana
et al., 2020). Sequence information is also utilized to differentiate
strains based on differential DNA fingerprinting. SSR marker
(Pereira et al., 2014), transposons viz. Pot2 (Kachroo et al.,
1994), MGR586 (Farman et al., 1996), and grh retroelement
(Dobinson et al., 1993), etc., can be used for detection and
classification of MoT isolates. Technologies such as conventional
PCR, quantitative real-time PCR (qPCR), LAMP, recombinase

1https://mvd.iaea.org/#!Search
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polymerase amplification (RPA), and nucleic acid lateral flow
immunoassay (NALFIA) are used for pathogen detection (Kang
et al., 2020; Thierry et al., 2020), for which MoT-specific markers
as determinant factors are still being developed and validated as
discussed before.

In recent years, CRISPR/Cas9 has been demonstrated to be a
powerful tool for the improvement of crops via genome editing.
It can be done either by stacking of “R” genes or deletion or
disruption of S genes or transcription factors in the genome
of commercial varieties (Wang et al., 2016; Kim et al., 2018).
Genome editing has been applied to improve important crop
plants, such as rice, wheat, maize, and soybean (Wang et al.,
2016; Bhowmik et al., 2018). With the advent of novel genome
editing tools, it is possible to create modified resistance genes
through targeted gene mutagenesis such as CRISPR-Cas9 (Haque
et al., 2018). A relevant example is the disruption via CRISPR-
Cas9 of a blast susceptibility gene in rice OsERF922, which
enhanced the resistance to rice blast (Wang et al., 2016). In
wheat, CRISPR-Cas9 has been used to disrupt various genes such
as TaDREB2 and TaERF3 (Kim et al., 2018), demonstrating its
strong potentiality in mutating WB susceptibility genes once
identified. The availability of wheat genomic resources and the
molecular biology of regulation of blast resistance response in rice
might help in the identification of target genes for genome editing
in wheat for MoT resistance.

AGRONOMIC MANAGEMENT

Management of wheat blast calls for the adoption of integrated
disease management approaches as its causal pathogen MoT
has a wide host range including crop species and weedy grasses
(Pagani et al., 2014). A live example is the extensively grown
pasture grass in Brazil, i.e., Urochloa brizantha (signal grass),
which was later found to harbor strains of MoT and may have
an important role in WB epidemic (Castroagudín et al., 2017).
Thus, the management of grassy hosts around wheat fields is
very important, as it can reduce inoculum buildup (Mehta,
2014). Inoculum is reported to survive on crop residues and,
hence, deep plowing and destruction or removal of residues
is an effective strategy (Ceresini et al., 2019). However, such
management protocols are not followed in WB-affected South
American countries either because of its high cost or because
of the prevalent conservation agricultural practices that are
popular among farmers (Duveiller et al., 2016a). The highest
yield reduction happens at the heading stage by airborne conidial
infection coming from within the field or from the nearby
secondary hosts. Nevertheless, seed treatment with fungicide
is reported to limit the initial infection and inoculum buildup
in the field, thereby being beneficial to WB control (Prabhu
et al., 1992; Urashima et al., 1993). Rotating the cropping
pattern with non-host crops, such as pulses and oilseed, can
help in minimizing inoculum density and reduce disease pressure
(Pagani et al., 2014). However, it is difficult to apply this strategy
in practice because of the wide range of alternative hosts of
MoT that significantly limit the crops in rotation with wheat.
Indeed, studies on the effects of rotation with prevalent crops

(maize, soybean, mucuna, crotalaria) in South America were
performed, but the results were not encouraging (Kohli et al.,
2020). Another important issue with farmers in affected South
American countries is their tendency to use a high seeding rate.
The idea was to get more spikes to compensate for the loss of
some tillers due to the disease, but this practice may lead to
earliness in flowering and dense canopy micro-climate conducive
for WB development, which ultimately may increase yield loss
(Kohli et al., 2020).

Adjustment in planting date is another effective mitigating
strategy against the disease. Congenial conditions for the disease
include warmer temperature (25–30◦C), long wet hours of
the spike (25–40 h), and high relative humidity (>90%);
thus, planting dates have to be decided considering the local
conditions. Rains during the flowering stage followed by hot and
humid days can lead to disease development (Kohli et al., 2011).
Early planting in Brazil, Bolivia, and Paraguay (before 10–20th
April) is highly risky, as the flowering coincides with ambient
conditions favorable for WB development (Kohli et al., 2020).
Hence, sowing is recommended in May. However, in Bangladesh,
avoiding the late sown conditions (after 30th November) was
effective for managing blast, as rains and humidity coincide with
heading under late sown conditions (He et al., 2020a). Kohli
et al. (2020) recommended the use of a variety combination with
genotypes differing in maturity and WB resistance, in the hope to
reduce the amount of field inoculum. Along with timely planting,
treating seed with thiram and carboxin, and prophylactic foliar
spray of triazoles and strobilurins were found to be effective in
managing WB in Bangladesh (Roy et al., 2020a).

MINERAL NUTRITION AND ADDITIVES
FOR MANAGING WHEAT BLAST

Various elements and chemicals such as silicon (Si), magnesium
(Mg), calcium (Ca), potassium phosphate, potassium silicate,
and ethephon are reported to affect blast resistance by altering
physiological pathways in a plant (Cruz et al., 2011). For efficient
working of the photosynthetic machinery and scavenging of the
reactive oxygen species (ROS), a plant needs high Si and low
Mg in the nutrition (Rodrigues et al., 2017). Calcium is needed
to induce defense-related genes, but high Mg reduces Ca in the
plant and makes it susceptible to blast disease (Debona et al.,
2016). Likewise, potassium phosphate and ethephon are reported
to enhance resistance against blast (Cruz et al., 2011).

Blast infection in wheat reduces the activity of the enzyme
RUBISCO, net carbon assimilation, and photosynthetic activity.
This results in lowered accumulation of storage and soluble
sugars, i.e., glucose, fructose, sucrose, and ultimately, reduction
in storage starch in grains (Debona et al., 2016; Rios et al., 2017).
The application of silicon is reported to enhance incubation
period and limit disease progression. Si has been hypothesized
to provide mechanical support by depositing below the cuticle
in epidermal and collenchyma cells of the spike of wheat and,
hence, physically limiting pathogen penetration (Cruz M.F.A.
et al., 2015). It stimulates flavonoid accumulation inside the
epidermal cell, which may lead to the activation of many

Frontiers in Plant Science | www.frontiersin.org 14 July 2021 | Volume 12 | Article 710707

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-710707 July 22, 2021 Time: 13:40 # 15

Singh et al. Distribution, Damage and Management of Wheat Blast

defense genes. Expression levels of various defense-related genes
that are involved in the salicylic acid (SA) and jasmonic
acid (JA) pathways viz. pathogenesis-related1 (PR-1), β-1,3-
glucanase, chitinase, peroxidizes, phenylalanine ammonialyase,
etc., were significantly expressed in higher amounts when
provided with external silicon (Cruz M.F.A. et al., 2015)
and calcium (Debona et al., 2017). Genotypic difference in
response to silicate application has been observed in WB
(Pagani et al., 2014), indicating that there is a need to screen
out the genotypes responding better to external application of
chemicals. Another positive effect exerted by silicon is the higher
expression of ROS-scavenging enzymes. Upon WB infection,
ROS triggers defense genes in wheat; and, at the same time,
they cause lipid peroxidation of cell membranes, resulting
in loss of photosynthetic pigments and machinery (Debona
et al., 2012). Hence, the scavenging of ROS becomes necessary
for the plant. Silicon increases the activities of antioxidant
enzymes such as superoxide dismutase (SOD), peroxidase (POX),
and ascorbate peroxidases (APX), which in turn reduce ROS
(Debona et al., 2012).

High doses of nitrogen have been associated with increased
blast severity, where the relative growth of the fungal mycelia is
enhanced, especially in varieties with high nitrogen use efficiency
(Ballini et al., 2013). In fact, resistance genes are reported to
be moderated by the levels of nitrogen. Pi1 gene in rice was
partially broken down with high doses of nitrogen. However,
there are genes independent from the dose of nitrogen, e.g., Pia
gene remains effective under high nitrogen (Ballini et al., 2013).
Thus, identification and utilization of the latter type of genes are
beneficial in managing WB in a high-nitrogen regime.

The importance of iron (Fe) against M. oryzae was found
in rice where high Fe supply and down-regulation of a Fe
transporter macrophage protein gene OsNramp6 resulted in
enhanced resistance against rice blast (Peris-Peris et al., 2017).
Therefore, wheat NRAMP6 homologs might play a similar role
in resistance to WB, which needs to be validated in later studies.

DISEASE MODELING AND
FORECASTING

There is a need for WB forecasting, so that prophylactic control
measures can be taken well in advance for minimizing losses
due to the disease. Several researchers have tried to develop
models based on humidity and temperature, the two most
important factors for WB development (Alves and Fernandes,
2006). The optimal temperature of 30◦C with no less than
10 h wetting period may result in WB development. However,
with wetting hours exceeding 40, the disease may develop even
at 25◦C (Cardoso et al., 2008). The 2009 epidemic in Parana
coincided with the heavy rainfall received during June and July,
again emphasizing the importance of high humidity (Duveiller
et al., 2016a). Remote sensing can be utilized to identify spectral
signatures for WB. Healthy and blast-infected plants can be
differentiated by spectral signatures between 650 and 1050 nm
wavelength, using a handheld spectro-radiometer in farmer fields
in Bangladesh (Yesmin et al., 2020), which can be scaled up

via mounting multispectral cameras on drones, aeroplanes, or
even satellites. Fernandes et al. (2017) developed a model based
on weather parameters, with which they correctly predicted the
epidemic (2015) and non-epidemic (2016) years in Northern
Paraná, Brazil. The advantage of such forecasting tools is in
the ability of the tools to concern farmers and policymakers
well in advance for initiating control measures such as fungicide
sprays. Similar models can be made and adjusted to disease-prone
areas in South Asia.

FUNGICIDES FOR WHEAT BLAST
MANAGEMENT

Fungicides are currently indispensable for WB management,
considering the limited effects of varietal resistance. Fungicide
efficacy can be judged by its outcome on a susceptible variety,
but the results are not very promising and was found to
be cultivar dependent in South America while it was found
effective in Bangladesh (Kohli et al., 2011; Roy et al., 2020a).
Fungicides become ineffective under high-disease pressure or
congenial environmental conditions against the disease (Kohli
et al., 2020). It is reported that sometimes even four sprays were
not able to completely control WB infection in some areas of
Brazil (Urashima et al., 2017), thereby affirming the fact that
genetic resistance in combination with fungicides is much needed
(Ceresini et al., 2018). Although fungicides are mostly used at
the heading stage, their application at the seedling stage is also
important in reducing inoculum load on basal or older leaves
(Cruz et al., 2015).

Both seed treatment and foliar spray with fungicides in
isolation or combination have been tried against wheat blast.
Infected seeds while germinating can perpetuate the growth
of fungi to cotyledons and primary leaves (Buerstmayr et al.,
2017). Thus, seed treatment with fungicides, such as benomyl
(Sadat and Choi, 2017), difenoconazole (Yesmin et al., 2020), and
carboxin+ thiram (BWMRI, 2020), is recommended. A spray of
mancozeb-based fungicides and a mix of QoI + DMI (quinone
outside inhibitor, QoI, and demethylation inhibitors, DMI) were
found effective in Brazil and Bolivia, respectively (Cruz et al.,
2019). The combination of triazole and strobilurin fungicides
(e.g., Nativo75 WG, Amister Top 325 SC) is also advised to
farmers in Bangladesh (Sadat and Choi, 2017; BWMRI, 2020;
Roy et al., 2020a). MoT isolates collected from farmer fields
in Bangladesh revealed that carbendazim (Autostin 50WGD,
Knowin 50WP) and QoI + DMI fungicides, viz. Nativo 75WG
(tebuconazole + trifloxistrobin), of as low as 50 ppm were
able to completely inhibit MoT mycelial growth under in vitro
conditions. However, the two mancozeb-based fungicides used in
the same study were not effective (Debnath et al., 2019).

DMI + QoI fungicides are working well in Bolivia but
not in Brazil, implying different prevailing MoT isolates and
influence from different climatic conditions in the two countries.
Strobilurin fungicides, belonging to the QoI type that attacks
mitochondrial respiration in the pathogen, were in extensive
use against the disease in Brazil. In recent years, new MoT
isolates with mutated mitochondrial cytb gene emerged, which
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are resistant to QoI fungicides (Castroagudin et al., 2015).
During the span of 7 years (2005–2012), the frequency of this
mutation has increased from 36 to 90% in the sampled population
(Castroagudin et al., 2015). In recent years, a new generation of
fungicide, SDHI (succinate dehydrogenase inhibitors), has been
used frequently. However, it is very likely that MoT will develop
resistance to SDHI fungicides if they are used singly, and hence it
is recommended to use them in combination or in rotation with
other types of fungicides (Ceresini et al., 2019).

INDUCED RESISTANCE AGAINST
WHEAT BLAST

Disease resistance can be induced in a plant via external
stimuli, such as pathogen attack and external application of
phytohormones or their inducers. The effectiveness of SA against
Magnaporthe spp. has been reported in rice (Manandhar et al.,
1998) and wheat (Rios et al., 2014). For rice blast, both foliar spray
and soil drenching (but not the seed treatment) of SA limited
blast infection on foliage, and the latter suggests the induced
resistance to be systemic (Manandhar et al., 1998). SA activates
many pathogenesis-related (PR) genes viz. peroxidases (POX),
polyphenoloxidase (PPO), chitinase (CHI), and β-1,3-glucanase
(GLU), which have been associated with WB resistance (Rios
et al., 2014). In a study on two wheat cultivars, BRS-229 and BR-
18, in Brazil, all three phytohormones: SA, jasmonic acid (JA) and
ethylene (ET) were found effective to reduce WB, although the
effectiveness of JA and ET was much higher than that of ASM (SA
analog) (Rios et al., 2014). Apart from phytohormones, beneficial
microorganisms can also induce resistance in the plant by
various induced systemic resistance (ISR) elicitor molecules such
as lipopeptides, siderophores, antibiotics, and volatile organic
compounds (De Vleesschauwer et al., 2008).

Beneficial microorganisms against rice blast have been
reported, in which control agents, such as bacterial strains of
Pseudomonas spp., Bacillus spp. (Gnanamanickam and Mew,
1992), and Streptomyces spp. (Law et al., 2017), and fungi such
as Trichoderma harzianum (Singh et al., 2012), were effective
against rice blast and, therefore, hold promise against WB.
Bacteria, in particular Bacillus spp., were reported to act against
MoT either by inducing systemic resistance in wheat or releasing
antagonizing antimicrobial compounds (Gilroy et al., 2017).
Pseudomonas fluorescens strain WCS417r and P. aeruginosa
strain 7NSK2 limited rice blast pathogen by activating JA-
and ET-regulated genes (De Vleesschauwer and Hofte, 2006).
B. methylotrophicus was able to inhibit M. oryzae mycelium
growth in in vitro studies (Nascimento et al., 2016).

The containment of MoT under in vitro conditions has been
reported in recent studies. Streptomyces spp. with the help of
elicitor molecules, viz. oligomycins B and F, was able to inhibit the
mycelial growth of MoT (Chakraborty et al., 2020). Lipopeptides
are another class of elicitor molecule extracted from bacteria,
especially Bacillus spp., and are reported to inhibit the growth
of conidia, germ tube, and appressorium in MoO (Liao et al.,
2016). Unlike fungicides, they are environment friendly, which
is attributed to easy biodegradation and less toxicity. They have

an additional advantage due to their receptor unspecificity, which
does not assert selection pressure on Magnaporthe strains. Their
usefulness for WB was reported from marine B. subtilis strain
109GGC020, from which five different extracted lipopeptides
(gageotetrin B, gageopeptide C, gageopeptide D, gageopeptide A,
and gageopeptide B) had an inhibitory effect on the growth of
MoT either by blocking spore germination or interfering with the
germ tube or appressoria formation (Chakraborty et al., 2020).
There are some fungal toxins that can mimic the disease and
induce resistance in plants if used in lower concentrations. Alpha-
picolinic acid is a tryptophan derivative fungal toxin whose
spray in lower concentration is found to lower MoT infection.
It protects the photosynthetic machinery because of increased
antioxidant accumulation (Aucique-Pérez et al., 2019). However,
it is important to note that many of these experiments were
performed under in vitro conditions; and, hence, the efficacy of
these biocontrol agents need to be tested under field conditions
before application in practice.

CONCLUSION

This review updates about the spread of WB in different
continents of the globe and discussed potential management
approaches to mitigate this problem. Currently, wheat blast is
considered as an explosive and significantly damaging disease
of wheat worldwide. From its origin in Brazil in 1985, it has
spread to many South American countries and then made
intercontinental jumps to Bangladesh in South Asia and Zambia
in Africa. Although most wheat-growing regions/countries of
the world are still free from this disease, it has a potential
to spread in other countries of the world especially Europe,
the United States, Australia, China, India, etc., which is an
alarming situation for future food security. Several management
strategies for mitigating the effects of wheat blast exits, but
a holistic and sustainable approach is needed. The MoT
pathogen is fast-evolving, highly aggressive, and potentially
devastating in various agro-ecological zones; therefore, a globally
intensive effort is needed to prevent its damage and limit its
introduction and spread.
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