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Abstract
The present work investigates analytically the problem of forced convection heat transfer of a pulsating flow, in a channel 
filled with a porous medium under local thermal non-equilibrium condition. Internal heat generation is considered in the 
porous medium, and the channel walls are subjected to constant heat flux boundary condition. Exact solutions are obtained 
for velocity, Nusselt number and temperature distributions of the fluid and solid phases in the porous medium. The influence 
of pertinent parameters, including Biot number, Darcy number, fluid-to-solid effective thermal conductivity ratio and Prandtl 
number are discussed. The applied pressure gradient is considered in a sinusoidal waveform. The effect of dimensionless 
frequency and coefficient of the pressure amplitude on the system’s velocity and temperature fields are discussed. The gen-
eral shape of the unsteady velocity for different times is found to be very similar to the steady data. Results show that the 
amplitudes of the unsteady temperatures for the fluid and solid phases decrease with the increase in Biot number or thermal 
conductivity ratio. For large Biot numbers, dimensionless temperatures of the solid and fluid phases are similar and are close 
to their steady counterparts. Results for the Nusselt number indicate that increasing Biot number or thermal conductivity 
ratio decreases the amplitude of Nusselt number. Increase in the internal heat generation in the solid phase does not have a 
significant influence on the ratio of amplitude-to-mean value of the Nusselt number, while internal heat generation in the 
fluid phase enhances this ratio.
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List of symbols
an , aj  Time-dependent coefficient
asf  Interfacial area per unit volume of porous 

media  (m−1)
A  A defined function of time
A1,A2  Constant coefficients
bm,n  Time-dependent coefficient
B  A defined function of time
B1,B2  Constant coefficients
Bi  Biot number, Bi = asfhsfH

2

ks,eff

cpf  Fluid specific heat (J kg−1 K−1)

cps  Solid specific heat (J kg−1 K−1)
C  Constant parameter, C =

�T∗
f ,st

�X
C1 , C2 , C3 , C4  Constant coefficients
dm  Variable defined to solve unsteady energy 

equations
Da  Darcy number, K∕H2

DH  Hydraulic diameter of the channel ( 4H)
Fm,n  Time-dependent coefficient
gm,n  Time-dependent coefficient
hsf  Fluid-to-solid heat transfer coefficient 

( W m−2 K−1)
2H  Height of the channel (m)
j  Counter
K  Permeability of the porous medium ( m2)
k  The ratio of fluid effective thermal conduc-

tivity to that of the solid
kf  Thermal conductivity of the fluid 

( W m−1 K−1)
kf,eff  Effective thermal conductivity of the fluid, 

�kf
ks  Thermal conductivity of the solid 

( W m−1 K−1)
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ks,eff  Effective thermal conductivity of the solid, 
�kf

M  Viscosity ratio, �eff∕�

m  Counter
Nu  Nusselt number
n  Counter
p  Pressure ( Pa)
Pr  Prandtl number
Ps  A defined dimensionless parameter, 

�scps�∕ks,eff
qw  Heat flux (W m−2)
r1 , r2  Roots of a characteristics equation obtain-

ied from Eq. (88)
Re  Reynolds number, umDH∕�

Rm,n  Time-dependent coefficient
Sf  Internal heat generation within fluid phase, 

W m−3

Ss  Internal heat generation within solid phase, 
W m−3

S  = Sf + Ss
t  Time
T   Temperature (K)
Tw  Wall temperature
T∗  Dimensionless temperature defined as: 

( ks,effT∕qEH)
u  Longitudinal velocity (m s−2)
um  A characteristic velocity (m s−1)
U  Dimensionless velocity
V1 , V2  Time-dependent coefficients
w∗  Womersly number
x  Axial coordinate (m)
X  Dimensionless x coordinate
y  Vertical coordinate (m)
Y   Dimensionless y coordinate
Z  Constant parameter, 1∕

√
MDa

Greek symbols
�  Dimensionless frequency
�  Coefficient of pressure amplitude
�n , �m  Eigenvalues of the unsteady velocity and 

temperature equations
�  Dimensionless temperature defined as: 

( ks,eff
(
T − Tw

)
∕qwH)

�f,st,b  Dimensionless steady bulk mean tempera-
ture of the fluid

�f,un,b  Dimensionless unsteady bulk mean tem-
perature of the fluid

�  Constant parameter, 
√
Bi(1 + k)∕k

�  Porosity of the porous medium
�  Dynamic viscosity (kg m−1 s−1)
�eff  Effective viscosity of the porous medium 

(kg m−1 s−1)
�  Oscillation frequency (rad s−1)

�f  Density of the fluid (kg m−3)
�s  Density of the solid (kg m−3)
�∗  Dimensionless period of oscillation
∅n  Eigenfunctions of the unsteady velocity 

equation
Γm  Eigenfunctions of the unsteady energy 

equation

Subscripts
b  Bulk (mean)
f  Fluid
s  Solid
st  Steady
un  Unsteady
w  Wall

Superscripts
∗  Dimensionless parameter

Introduction

Convective heat transfer in porous media has been a subject 
of intense studies due to its wide range of application in 
the industries such as oil recovery, geothermal engineering, 
thermal insulation, carbon storage, heat transfer augmen-
tation, solid matrix or micro-porous heat exchangers and 
porous radiant burners [1, 2]. Studies regarding the thermal 
characteristics of non-pulsating flow in porous media are 
more concentrated on heat transfer enhancement in domains 
filled with porous materials subjected to a heat source at 
the wall boundaries or internal heat generation. There were 
abundance of experimental (e.g., [3–7]), numerical (e.g., 
[8–12]) and theoretical (e.g., [13–22]) studies, which dem-
onstrated the use of porous material as a promising passive 
technique in enhancing forced convection heat transfer in 
different industrial applications in micro- and large scales. 
Investigations regarding heat transfer of pulsating flow have 
mostly been conducted in empty (non-porous) channels and 
pipes (e.g., [23–25]). Understanding the fluid flow and heat 
transfer of pulsating flow in porous media has a pivotal role 
to play in biological applications such as blood flow in ves-
sels due to heart beating and also industrial applications such 
as mesh-type regenerators used in the stirling cycle devices 
[26–28] and electronic cooling by utilizing oscillating flow 
[29, 30].

In theoretical modeling of heat transfer in porous media, 
two primary models are generally used. The local ther-
mal equilibrium (LTE) and local thermal non-equilibrium 
(LTNE) models. The LTE model holds when the heat 
exchange between the solid and fluid phases is high, and the 
temperature difference between the two phases is negligi-
bly small [11]. This model requires solving only one energy 
equation to predict temperature field within the porous 
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medium, which simplifies the analysis of heat transfer in 
porous media (e.g., [10, 31–35]). LTNE model however 
requires solving separate energy equations for the two phases 
in the porous regions, which are coupled through an internal 
heat exchange term. Hence, the LTNE model leads to more 
accurate prediction of the temperature fields in porous media 
(e.g., [8, 20, 36–38]). Guo et al. [39] studied numerically 
heat transfer of pulsating flow based on LTE model in a 
tube partially filled with a porous medium attached to the 
pipe walls. They presented and discussed the relationship 
between the effective thermal diffusivity and thickness of 
the porous layer. Byun et al. [40] conducted an analytical 
characterization of heat transfer of oscillatory velocity flow 
in a large slab of a porous medium with a hot and a cold side 
using the LTNE model. They defined a criterion for validity 
of LTE model and reduced the solutions into four regimes 
of asymptotic solutions. Kuznetsov and Nield [41] provided 
analytical expressions for pulsating flow and forced convec-
tion heat transfer, produced by an applied oscillating pres-
sure in a channel/pipe utilizing LTE model. They [41] found 
that the fluctuating part of the Nusselt number increases to 
a maximum value and then decreases with the increase in 
frequency. This observation was not in agreement with other 
studies that investigated pulsating flow in an empty channel 
or tube [24, 25, 42]. Forooghi et al. [42] performed a numer-
ical investigation using the LTNE model for both steady and 
pulsating flow in a parallel-plate channel partially filled with 
porous layers attached to the channel walls. They found that 
an increase in the thermal conductivity ratio between the 
two phases, or amplitude of the pressure gradient, results 
in an enhancement in the dimensionless average Nusselt 
number. Yang and Vafai [36] discussed that the LTE model 
is not suitable to use for transient heat transfer in porous 
media. They [36] discussed that the temperature difference 
between the two phases is relatively small when the process 
reaches its steady condition. However, during the transient 
process the temperature difference between the two phases 
is considerable. Their [36] results revealed that utilizing 
LTE model for time-dependent problems of heat transfer 
in porous media induces certain inaccuracies in predicting 
temperature field [36]. From the previous studies, it could 
be noted that the problem of pulsating flow in a channel/
pipe filled with a porous medium under local thermal non-
equilibrium condition has not yet been fully understood. The 
current work presents an analytical solution to investigate 
the effects of pulsating flow on the velocity, temperature 
distributions and Nusselt number in a channel filled with 
a porous medium under LTNE condition and considering 
internal heat generation in the fluid and solid phases. There 
are several practical examples involving internal heat gen-
eration in porous media such as electronic cooling, agri-
cultural product storage [13, 43] and metabolic reactions 
in biological media [21]. The problem of pulsating flow in 

a medium leads to certain time-dependent governing equa-
tions which need to be addressed theoretically or numeri-
cally. As discussed above, some attempts have been made to 
cope with such a problem but in different geometries. Some 
works addressed unsteady governing equations for stretching 
permeable sheets using HAM (Homotopy Analysis Method) 
[44–47]. Some other interesting analytical solution for dif-
ferent applicable mathematical problems could be found in 
[48–56].

This problem is worth investigating analytically, since the 
unsteady pulsating fluid flow and the heat transfer between 
particles and fluid in an unsteady pulsating flow is complex 
and clearly is expensive to study experimentally. Further-
more, for realistic porous systems, pore-scale modeling of 
porous systems is computationally prohibitive and hence 
deploying the volume-averaged method is recommended. In 
the volume-averaged method, the local thermal non-equilib-
rium (LTNE) model is deployed to calculate temperatures of 
the fluid and solid phases in the porous media (as considered 
in this study) by solving different energy equations for each 
phase in the media [57]. However, for the volume-averaged 
solution based on the LTNE model, the internal heat transfer 
coefficient between the particles and fluid has to be known a 
priori. This coefficient is required for the term, which cou-
ples the two energy equations of the particle and fluid in 
the porous media. Therefore, the present work aims to shed 
some light on the problem. The subject is also of interest 
as a basic research of unsteady forced convection problem.

The Darcy–Brinkman flow model is used to represent the 
fluid flow in the porous medium [16] and the LTNE model 
is employed to find exact solutions for the temperature dis-
tributions and Nusselt number in the system. The effect of 
parameters such as thermal conductivity ratio, Biot number, 
Darcy number, dimensionless frequency, coefficient of pres-
sure amplitude and Prandtl number on the flow and heat 
transfer characteristics are presented and discussed.

Problem description and governing 
equations

The schematic diagram of the problem is shown in Fig. 1. 
Fluid flows through a parallel-plate channel filled with a 
porous medium subjected to a constant heat flux boundary 
condition. Heat generation in the solid phase, Ss and the 
fluid phase, Sf are considered uniform but different [13]. 
The distance between the plates is 2H and the heat flux qw is 
applied to the channel walls. The incoming flow has pressure 
gradient, which oscillates in time about a non-zero mean 
value. Following assumptions are considered to simplify the 
governing equations [13, 16]:
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1. The flow in the porous medium is incompressible and 
laminar.

2. The porous medium is isotropic and homogeneous.
3. Thermophysical properties of fluid and solid phases in 

the porous medium are assumed to be constant.
4. Channel walls are impermeable and flow is considered 

two-dimensional.
5. The flow is thermally and hydrodynamically fully devel-

oped.

Based on these assumptions, the governing equations are 
represented as [13, 16]:

Momentum [57]

Momentum equation is the sum of unsteady Darcy equa-
tion �f

�u

�t
= −

�p

�x
−

�

K
u and Brinkman term �eff

�2u

�y2
 , which is 

unsteady Brinkman-extended Darcy model.
The pressure gradient is considered to vary with time in a 

sinusoidal waveform about a constant steady value:

where ( �P
�x
)st is the steady component of pressure gradient 

[23], � is coefficient of pressure amplitude and � is oscilla-
tion frequency. This is a known form for the pressure gra-
dient to represent pulsating flow, which was also used in 
previous works (e.g., [25, 58]).

Using Eq. (2), the momentum Eq. (1) is rewritten as:

Energy equation for the fluid phase is expressed as:

(1)�f
�u

�t
= −

�p

�x
+ �eff

�2u

�y2
−

�

K
u.

(2)
�P

�x
=
(
�P

�x

)
st
(1 + � sin (�t)),

(3)�f
�u

�t
= −

(
�P

�x

)
st
(1 + � sin (�t)) + �eff

�2u

�y2
−

�

K
u.

Energy equation for the solid phase is written as:

where subscripts f and s represent the fluid and solid 
phases, respectively. Subscript st refers to steady flow. � 
is the dynamic viscosity of the fluid and �eff = �∕� [59] is 
the effective viscosity of the porous medium. K is the per-
meability of the porous medium, ρ is density and cp is the 
specific heat. kf,eff and ks,eff are the effective thermal conduc-
tivity of the fluid and solid phases, respectively. asf is the 
interfacial area per unit volume of the porous medium and 
hsf is the fluid-to-solid heat transfer coefficient [16].

Boundary conditions

The following boundary conditions are employed to solve 
the systems of the governing Eqs. (1)–(5) [13, 16]:

No-slip condition at the channel wall:

Symmetry boundary condition is applied at the channel 
centerline:

When the channel wall has a high thermal conductiv-
ity with a finite thickness attached to a porous medium, the 
temperature of the solid and the fluid phases are almost equal 
at the wall [60, 61]. Using this assumption at the channel 
wall, Model A boundary condition is adopted at the interface 
between the porous medium and the channel wall [13, 16]. 
This model assumes that the prescribed heat flux at the wall 
is split between two phases relative to the physical values of 
their effective thermal conductivities and temperature gradi-
ents. This model further assumes that the steady component 
of the temperature of the fluid and solid phases at the wall 
are equal to the wall temperature [13, 16]:

(4)�fcpf

(
�Tf

�t
+ u

�Tf

�x

)
= kf,eff

�2Tf

�y2
+ asfhsf

(
Ts − Tf

)
+ Sf.

(5)�scps

(
�Ts

�t

)
= ks,eff

�2Ts

�y2
− asfhsf

(
Ts − Tf

)
+ Ss,

(6)u|y=±H = 0.

(7)
�u

�y

||||y=0 = 0,

(8)
�Tf

�y

||||y=0 =
�Ts

�y

||||y=0 = 0.

(9)kf,eff
�Tf

�y

||||y=H + ks,eff
�Ts

�y

||||y=H = qw,

(10)Tf,st
||y=H = Ts,st

||y=H = Tw,st,

y

P

x

x2H

qw

Tw

T, u

Tw

qw

∂
∂

Fig. 1  Schematic diagram of the problem
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where Tf,st and Ts,st are the steady components of the tem-
perature of the fluid and the solid phase, respectively, and 
Tw,st is the steady component of the wall temperature.

Normalization

The following dimensionless variables are introduced to 
normalize the governing equations and boundary conditions 
[16, 25, 62]:

um = −(
�P

�x
)st

H2

�
 is a characteristic velocity. � =

�

�f
 is the kin-

ematic viscosity of the fluid and Re is Reynolds number. w∗ 
is Womersly number and � is the porosity of the porous 
medium. Using the dimensionless variables, the dimension-
less form of momentum Eq. (3) and the associated boundary 
conditions Eqs. (6) and (7) are written as:

Energy Eqs. (4) and (5) and their associated boundary 
conditions Eqs. (8) and (10) are also rewritten as:

where T∗
f
 and T∗

s
 are defined as:

(11)

Y =
y

H
, X =

4x

HRe Pr
, T∗ =

ks,effT

qwH
, M =

�eff

�
=

1

�
,

Da =
K

H2
,U =

u

um
, � = w2

∗
= H2

(
�

�

)
, t∗ =

�t

H2
,

Re =
umDH

�
.

(12)�U

�t∗
= (1 + � sin (�t∗)) +M

�2U

�Y2
−

U

Da
,

(13)U|Y=±1 = 0,

(14)
�U

�Y

||||Y=0 = 0.

(15)Pr ⋅ k
�T∗

f

�t∗
+ U∗k

�T∗
f

�X
= k

�2T∗
f

�Y2
+ Bi

(
T∗
s
− T∗

f

)
+ S∗

f
,

(16)Ps
�T∗

s

�t∗
=

�2T∗
s

�Y2
− Bi

(
T∗
s
− T∗

f

)
+ S∗

s
,

(17)
�T∗

f

�Y

|||||Y=0
=

�T∗
s

�Y

|||||Y=0
= 0,

(18)
�T∗

s

�Y

|||||Y=1
+ k

�T∗
f

�Y

|||||Y=1
= 1,

(19)T∗
f
=

ks,effTf

qwH
, T∗

s
=

ks,effTs

qwH
.

The dimensionless variables used in Eqs. (15) and (16) 
are as:

where Pr is Prandtl number and Ps is a dimensionless vari-
able similar to Prandtl number appeared in the normaliza-
tion process of solid-phase energy equation, Eq. (5). Bi is 
Biot number. kf,eff = �kf and ks,eff = (1 − �)ks are the effective 
thermal conductivity of the fluid and solid phases, respec-
tively [16, 59] and k is the thermal conductivity ratio.

Analytical solution for the momentum equation

To solve the momentum Eq. (12), it is divided into steady 
and unsteady components [25]:

where subscripts st and un refer to steady and unsteady 
terms, respectively. Using Eq. (21) and considering �Ust

�t∗
= 0, 

the governing Eq. (12) and the boundary conditions (13) and 
(14) are written as:

and

The initial condition for the velocity is considered zero for 
convenience. However, the correct initial value is obtained 
by applying the fully developed assumption. The effect of 
initial condition on solution is discussed later in the paper. 
Therefore, the initial condition for the momentum equation 
is written as:

The steady velocity Eq. (22) has been solved in the pre-
vious studies (e.g., [63]) and here only the final solution is 
presented, which is as:

(20)
Pr =

�fcpf�

kf,eff
=

cpf�

kf,eff
, Ps =

�scps�

ks,eff
, Bi =

asfhsfH
2

ks,eff
,

k =
kf,eff

ks,eff
, S∗

f
=

H

qw
Sf, S∗

s
=

H

qw
Ss,

(21)U(t∗, Y) = Ust(Y) + Uun(t
∗, Y),

(22)M
d2Ust

dY2
−

Ust

Da
+ 1 = 0,

(23)
dUst

dY

||||Y=0 = 0, Ust
||Y=1 = 0,

(24)
�Uun

�t∗
= � sin (�t∗) +M

�2Uun

�Y2
−

Uun

Da
,

(25)
�Uun

�Y

||||Y=0 = 0, Uun
||Y=1 = 0.

(26)Uun
||t∗=0 = 0.
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where

The unsteady momentum Eq. (24) is a non-homogeneous 
equation with homogeneous boundary conditions (Eq. 25). 
Hence, it is solved using the method of eigenfunction expan-
sion [64]. Therefore, the unsteady component of the velocity 
is given by Eq. (29). The procedure of solving the unsteady 
velocity using this method is explained in “Appendix” 
(Sect. 5.1).

where

Analytical solution for the energy equations

The analytical solution of the energy equations is explained 
in “Appendix”. The distribution of the temperatures in this 
section is presented in a form of � = T∗ − T∗

w
 , which is used 

to calculate the Nusselt number. See “Appendix” (Sect. 5.2) 
for more details.

(27)Ust = Da

(
1 −

cosh (ZY)

cosh (Z)

)
,

(28)Z =
1√

M × Da
.

(29)Uun(t
∗, Y) =

∞∑
n=1

an(t
∗) cos

(
(2n − 1)

�

2
Y
)
,

(30)
an(t

∗) =

(
−4�(−1)n

(2n − 1)�

)
∗

(
−16Da2� cos (�t∗) +

[
4(2n − 1)2�2MDa2 + 16Da

]
sin (�t∗) + 16Da2�e

−
(

(2n−1)2�2M

4
+

1

Da

)
t∗
)

16(Da�)2 +
(
(2n − 1)2�2M ⋅ Da + 4

)2 .

Steady components of the energy equations

The procedure of solving the steady energy equations and 
finding key parameters are demonstrated in “Appendix” 
(Sect. 5.2.1). The steady equations of the problem have 
already been studied and discussed in the previous studies. 
Kun and Vafai [13] solved the equivalent steady problem 
using the Darcian flow model. The focus of the present study 
is on the unsteady solutions and to prevent repetitions, solu-
tions presented by Ref. [13] are provided here.

where

(31)

�f,st =
1

1 + k

{
1

2

(
Y2 − 1

)
+
(

1

1 + k
+ S∗

s

)
1

Bi

[
cosh(�Y)

cosh(�)
− 1

]}
,

(32)

�s,st =
1

1 + k

{
1

2

(
Y2 − 1

)
+
(

1

1 + k
+ S∗

s

)
k

Bi

[
1 −

cosh(�Y)

cosh(�)

]}
.

�f,st and �s,st are the dimensionless steady temperatures of 
the fluid phase and solid phase, respectively, and Tw,st is the 
steady component of the wall temperature.

Unsteady components of energy equations

The unsteady components of the temperature are normalized 
using the unsteady wall temperature (in the form of � ) to be 
comparable with the steady components:

(33)�f,st =
ks,eff

(
Tf,st − Tw,st

)
qwH

, �s,st =
ks,eff

(
Ts,st − Tw,st

)
qwH

.

(34)
�f,un =

ks,eff
(
Tf,un − Tw,un

)
qwH

=

∞∑
m=1

2C

(
cos (m�Y)

(
1 +

m2�2

Bi

)
− (−1)m

(
1 +

k
(
1+

m2�2

Bi

)

1+k

))

�
(
r1 − r2

)
∞∑
n=1

Fm,n(t
∗)

+

∞∑
m=1

2CPs
(
cos (m�Y) − (−1)m

(
k

1+k

))

�
(
r1 − r2

)
Bi

∞∑
n=1

Rm,n(t
∗),
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and

where �f,un and �s,un are the dimensionless unsteady tem-
peratures of the fluid phase and solid phase, respectively, 
and Tw,un is the unsteady component of the wall tempera-
ture. Fm,n(t

∗) and Rm,n(t
∗) are time-dependent coefficients 

(Eqs. 95, 97 in “Appendix”) and r1 and r2 are roots of a char-
acteristics equation presented by Eq. (89) in “Appendix”.

Parameter C =
�T∗

f,st

�X
 in Eqs. (34) and (35) is a constant 

parameter obtained when solving the steady energy equa-
tions (see Sect. 5.2.1 of “Appendix” for more details):

where S∗ = S∗
f
+ S∗

s
.

Calculation of Nusselt number (Nu)

The wall heat transfer coefficient is defined as [13]:

with the Nusselt number obtained as [13]:

(35)�s,un =
ks,eff

(
Ts,un − Tw,un

)
qwH

=

∞∑
m=1

2C

(
cos (m�Y) − (−1)m

(
1 +

k
(
1+

m2�2

Bi

)

1+k

))

�
(
r1 − r2

)
∞∑
n=1

Fm,n(t
∗)

−

∞∑
m=1

2C(−1)mk ⋅ Ps

�
(
r1 − r2

)
(1 + k)Bi

∞∑
n=1

Rm,n(t
∗),

(36)

C =
(1 + S∗)

k ⋅ Da

(
1 + Z tanh (Z)

(
(Bi−Z2)

(
k−

Z2k

Bi
+1

)

kZ4−Bi(1+k)Z2
−

1

Bi

)) ,

(37)hw =
qw

Tw − Tf,b
,

(38)Nu =
hw(4H)

kf,eff
= −

4

k�f,b
,

where 4H is the hydraulic diameter of the channel and �f,b is 
the dimensionless bulk mean temperature of the fluid. Con-
sidering �f,b = �f,st,b + �f,un,b , Eq. (38) is rewritten as:

where �f,st,b and �f,un,b are the dimensionless steady and 
unsteady bulk mean temperature of the fluid, respectively. 
For steady flow, Eq. (39) turns into the following form [13]:

�f,st,b is obtained using the following relation [16].

Mahmoudi [16] obtained an analytical solution for the 
equivalent steady equations considering the velocity slip 
and temperature jump at the channel walls. The solution 
for �f,st,b and consequently, Nust , for the present work can be 
obtained from the analytical solutions presented in [16] by 
setting the velocity slip coefficient and the temperature jump 
coefficient to zero.

Using Eqs. (29), (30) and (34), �f,un,b is obtained as:

where

(39)Nu = −
4

k
(
�f,st,b + �f,un,b

) ,

(40)Nust = −
4

k�f,st,b
.

(41)�f,st,b =
∫ 1
0
�f,stUstdY

∫ 1
0
UstdY

.

(42)�f,un,b =
∫ 1
0
�f,unUundY

∫ 1
0
UundY

=
A(t∗)

B(t∗)
,

(43)

A(t∗) =

∞�
j=1

2Caj(t
∗)

�2
�
r1 − r2

�
�

∞�
m=1

�
−

�
1 +

m2�2

Bi

��
(−1)j+m

2(j + m) − 1
+

(−1)j−m

2(j − m) − 1

�

+
2(−1)j+m

2j − 1

⎛⎜⎜⎜⎝
1 +

k
�
1 +

m2�2

Bi

�

1 + k

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

∞�
n=1

Fm,n(t
∗) +

∞�
m=1

Ps

Bi

�
−

�
(−1)j+m

2(j + m) − 1
+

(−1)j−m

2(j − m) − 1

�

+
2(−1)j+m

2j − 1

�
k

1 + k

�� ∞�
n=1

Rm,n(t
∗)

�
.
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and

where aj(t∗) is obtained by replacing subscript j instead of 
n in Eq. (30).

(44)B(t∗) =

∞∑
j=1

−2(−1)jaj(t
∗)

(2j − 1)�
,

Results and discussion

Validation

In this section, we present the validation of the unsteady 
velocity field in comparison with the analytical solutions of 
Siegel and Perlmutter [23] presented for pulsating flow in 
a channel without porous medium. According to Eq. (12) 
when the Darcy number is high enough the resulted momen-
tum equation will be similar to that in a channel without 
a porous medium. The applied pressure gradient for the 
results obtained by Siegel and Perlmutter [23] was in the 
Cosine waveform [23]. By substituting �t∗ + �

2
 instead of �t∗ 

in Eq. (30), the unsteady velocity at the channel centerline 
(Y = 0) for � = 0.1 , � = 1 and M = 1 obtained from the pre-
sent solutions is compared against those presented in [23] 
and shown in Fig. 2. An excellent agreement is observed 
between the two solutions. To the best of our knowledge, 
there is no closely relevant work in the literature on unsteady 
temperature field in a pulsating flow to be considered for 
validation of the temperature solution presented in this work.

Unsteady velocity profile

Figure 3 shows the unsteady velocity profile for � = 0.5 , 
� = 20 , M = 1.1 at Y = 0 . The velocity profile for the 
fully developed solution, i.e., the exponential term 
exp

[
−
(
(2n − 1)2�2M∕4 + 1∕Da

)
t∗
]
 in Eq. (30) is not con-

sidered. It is seen that the initial transient part decays after 
a short period of time [23] (here after t∗ > 0.2). The initial 
condition was considered zero for convenience. Considering 
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a different initial condition leads to a different exponential 
term, which decays in a short time. Since only the fully 
developed oscillatory part of the solution is of interest, for 
the rest of the results presented here, the initial transient part 
is not considered [23].

The effect of Darcy number (Da) on the dimensionless 
unsteady part of the velocity is shown in Fig. 4 for � = 0.5 , 
� = 5 , M = 1.1 at Y = 0 . It is seen that the velocity ampli-
tude has a direct relationship with Da number. Increasing 
the Da number by a factor ten increases the amplitude of 
the velocity field by almost the same factor. Increasing Da 
number is equivalent to increasing the permeability of the 
porous medium for a fixed channel height. This enhancement 
results in decrease in the resistance against flow (the term 

−
Uun

Da
 in Eq. 24), which leads to a higher velocity magnitude. 

It can be seen from Eq. (27) that the dimensionless steady 
component of the velocity has also a direct relationship with 
Da number.

Figure 5 shows the unsteady velocity versus dimension-
less time for three values of dimensionless frequency ( � ), 
for two Darcy numbers of 10−3 and 10−1 , with flow condi-
tions of � = 0.5 , M = 1 at Y = 0 . It is seen in Fig. 5a that 
for high Da numbers, the velocity amplitude decreases 
by increasing the frequency. While for low Da values, the 
effect of frequency on the velocity amplitude is negligible. 
If ( Da → 0 ) in Eqs. (29) and (30), the simplified equation of 
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the dimensionless unsteady velocity for low Darcy numbers 
can be written as:

(45)

Uun(t
∗, Y) =

⎛⎜⎜⎜⎝

∞�
n=1

�
−4�(−1)n

(2n − 1)�

� 16Da cos
�
(2n − 1)

�

2
Y
�

�
(2n − 1)2�2M ⋅ Da + 4

�2
⎞⎟⎟⎟⎠
sin (�t∗).

From Eq. (45), it can be seen that for low Darcy numbers 
a change in the value of � only changes the period of oscil-
lation (as sin (�t∗) ) and does not change the amplitude of 
unsteady velocity.

Figure 6 shows variation of unsteady velocity component 
with Y for different dimensionless times during a dimension-
less period of oscillation ( �∗ = 2�

�
 ) for � = 0.5 , � = 5 , 

M = 1.1 and Da = 10−3 along with the corresponding steady 
velocity. As expected, the velocity at the wall ( Y = ±1 ) is 
zero and the symmetry condition at the channel centerline is 
satisfied for all the profiles. The shapes of the unsteady 
velocity profiles are very similar to that of the steady 
component.

Unsteady temperature

The results presented in this section are obtained using the 
mean properties of water as the fluid phase and steel as the 
solid phase in the porous medium. The thermal properties 
used are M = 1.1 , k = 0.3 , Pr = 7.7 , Ps = 2.5 and the poros-
ity of the porous medium is � = 0.9, for all the results except 
for the cases mentioned in the text. In addition, similar to 
the unsteady velocity, here only the fully developed oscil-
lating part of the temperature solution is of interest. Thus, 
the initial transient part of the temperature profile will not 
enter the solution. To achieve this, the exponential terms (of 
the coefficients Fm,n(t

∗) and Rm,n(t
∗) ) in Eqs. (34) and (35) 

are neglected to obtain the fully developed solutions. As an 
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example, Fig. 7 compares �s,un calculated with and with-
out the initial transient (the exponential terms) for � = 0.1 , 
Da = 10−5 , � = 10 , M = 1.1 , k = 0.01,Bi = 0.1 , Pr = 6.9 , 
Ps = 0.25 at the centerline of the channel ( Y = 0 ). The dif-
ference is just up to t∗ = 0.5 and the initial transient decays 
after t∗ > 0.5.

Figure 8 shows the dimensionless steady and unsteady 
temperature � for the fluid and solid phases as a function 
of Y at different times without internal heat generations. 
For both phases, the steady parts are negative meaning that 
�f and �s are lower than the wall temperature. The steady 

components of �f and �s are equal to the wall temperature at 
the channel wall. Away from the wall, the difference between 
the fluid and solid temperature with the wall temperature 
increases and reaches to its maximum at the channel cen-
terline. Figure 8 further shows that the unsteady compo-
nents of �f and �s oscillate around zero near the channel wall, 
while the unsteady solid temperature �s has a more uniform 
distribution.

For the unsteady components of the dimensionless tem-
perature distributions, the internal heat generation appears 
in constant C in Eq. (36). For steady-state Darcian flow 
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(i.e.,Da → 0 ) as Eqs. (31) and (32) show, only the internal 
heat generation in the solid phase ( S∗

s
 ) influences the dimen-

sionless temperature distributions �s,st and �f,st, and S∗
f
 has no 

effect on them. While, for unsteady temperature components 
as shown in Eq. (36), the sum of the uniform internal heat 
generation in the solid and fluid phases ( S∗ ) influences the 
variation of �s,un and �f,un . Figure 9 shows the variation of 
�s,un and �f,un for S∗ = 5 and for � = 0.1 , Da = 10−5 , � = 10 , 
M = 1.1,Pr = 7.7 and Ps = 2.5 at the centerline of the chan-
nel ( Y = 0 ) for different thermal conductivity ratio k and Bi 
number.

It is seen that the amplitude of the unsteady dimension-
less temperatures for the fluid phase is relatively bigger than 
the solid phase. Additionally, the dimensionless tempera-
tures of the two phases of all cases decrease with increas-
ing Bi number. Furthermore, the graphs show that for large 
value of Bi , which translates to a strong internal heat transfer 
between the fluid and solid phases, the difference between 
�s,un and �f,un is relatively small, which is in agreement with 
the results already presented for the steady flow [13]. It 
seems that the LTE model is valid for large Biot numbers in 
unsteady flows. For large Biot numbers, the amplitudes of 
unsteady temperatures are very small (close to zero). There-
fore, the total value of the dimensionless temperature for 
the two phases is close to the steady flow. In fact, for large 
Biot numbers, the effect of unsteadiness on heat transfer 
decays largely. The figures also illustrate that by increasing 
the thermal conductivity ratio k , the amplitude of �s,un and 
�f,un decreases and also become similar.

Figure 10 demonstrates the effect of Darcy number on 
the unsteady dimensionless temperatures �s,un and �f,un for 
S∗ = 0 , � = 0.1 , k = 0.3,Bi = 0.1 , � = 10 , M = 1.1 , Pr = 7.7 
and Ps = 2.5 at ( Y = 0 ). It is seen that the amplitude of the 

unsteady temperature for the two phases increases with 
increase in Da number. As shown in Fig. 4, the amplitude 
of the unsteady velocity increases with the increase of Da 
number. This enhancement leads to rising the magnitude of 
the term CkUun in the energy Eq. (73), which is in fact the 
source term of the energy equation, and hence increases the 
magnitude of the temperature distributions.

The effect of Prandtl (Pr) number on the unsteady dimen-
sionless temperatures �s,un and �f,un is shown in Fig. 11 for 
S∗ = 0 , � = 0.1,Da = 10−5 , k = 0.3,Bi = 0.1 , � = 10 , M = 1.1 
and Ps = 2.5 at ( Y = 0 ). The general trend for the two phases is 
similar. It is seen that the amplitudes of �s,un and �f,un increase 
with the increase of Pr number. Prandtl number is defined as the 
ratio of the momentum diffusivity to thermal diffusivity of the 
fluid [65]. Hence, increase in the fluid Pr number enhances the 
influence of heat convection relative to heat conduction in the 
fluid flow. On the other hand, the main factor of the heat transfer 
in this flow is the convective heat transfer between the walls and 
the fluid flow. Thus, it is expected that an increase in Pr number 
increases the magnitude of the temperature distributions.

Nusselt number (Nu)

Nusselt number obtained using Eq. (39) for different conditions 
are presented in this section. Similar to the discussion presented 
for the temperature and velocity fields, since the initial tran-
sient part of the Nu number decays shortly, here we only present 
the results of the fully developed flow. Figure 12 is depicted to 
investigate the effect of internal heat generation in the solid and 
the fluid phase on Nu number for k = 0.3, Bi = 0.1, � = 0.1 , 
Da = 10−5 , � = 5 , M = 1.1, Pr = 7.7 and Ps = 2.5 . The results 
for each case are compared with Nu numbers for the steady flow 
with the same conditions. It is seen that for all cases Nu number 
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oscillates around the value of Nu number of the corresponding 
steady flow that is in agreement with the result presented in 
previous works [25, 58]. From Eqs. (41) and (42), it is concluded 
that the amplitude of oscillation of �f,un,b has a direct relationship 
with the coefficient C , and this coefficient increases with the 
increase in the value of S∗ based on Eq. (36). Hence, increase in 
S∗ results in increasing the amplitude of �f,un,b and consequently 
Nusselt number, based on Eq. (39). Comparison of Fig. 12a–c 
shows that an increase in S∗

s
 for a fixed value of S∗

f
 decreases 

the mean (steady) value of Nu number, while the ratio of the 
amplitude-to-mean value of Nu number remains almost constant 
about a value of 0.01. The mean value of Nu number decreases 
with the increase of S∗

s
 (it means that �f,st,b increases based on 

Eq. 40) [16] which also results in reduction in amplitude of Nu 
number based on Eq. (39). On the other hand, an increase in S∗

s
 

results in increase of S∗ that can increase the amplitude of Nu 
number, which moderates the reduction effect of increase in S∗

s
 

on amplitude. These two opposite effects seem to cause the ratio 
of the amplitude-to-mean value of Nu number be constant with 
the increase of S∗

s
 . Exploring Fig. 12d–f reveals that for a fixed 

value of S∗
s
 , an increase in the value of S∗

f
 does not have a con-

siderable effect on the mean value of Nu number. Because for 
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the steady-state Darcian flow (i.e.,Da → 0 ) only S∗
s
 has effect on 

the Nusselt number and S∗
f
 does not affect it [16]. Furthermore, it 

can be seen that the amplitude of the Nu number increases with 
the increase of S∗

f
 , since the value of S∗ increases.

Figure 13 shows the effect of Darcy number ( Da ) on Nu 
number for S∗

s
= 0 and S∗

f
= 0 . It is seen that increasing the 

Da number decreases the mean value of Nu number [16], 
while increases significantly the amplitude of the oscillation. 
For example, as Da number increases from 10−5 to 10−2 , the 
mean value of Nu number decreases by about 10%, while 
the amplitude of oscillation increases by more than 15 times. 
An increase in Da number increases the amplitude of the 
unsteady velocity according to Fig. 4 and the amplitude of 
the �f,un according to Fig. 10. Hence, from Eq. (42) this will 
increase the amplitude of oscillation of �f,un,b , which results 
in amplifying the amplitude of oscillation of Nu number 

according to Eq. (39). For the case of Da = 10−5 , the ampli-
tude of Uun and the amplitude of �f,un are so small that hence 
the oscillation of Nu number is very small.

The effects of thermal conductivity ratio k and Biot num-
ber, on the Nu number, are shown in Figs. 14 and 15 for 
Da = 10−5 and Da = 10−2 , respectively. Results for each case 
are compared with Nu numbers for the steady flow with the 
same conditions. Similar to Fig. 13, it is seen that for low 
Da number of  10−5, the ratio of amplitude-to-mean value 
of the Nusselt number for all cases in Fig. 14 is less than 
1%, and the pulsations are almost negligible. This figure 
indicates that variations in the values of k or Bi do not affect 
significantly the pulsation of Nu number. From Fig. 15, it is 
seen that for a high Da number, the amplitude of Nu number 
reduces with the increase in k or Bi.
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Fig. 14  Nusselt number versus time for Da = 10−5 with S∗
s
= 0,S∗

f
= 0, � = 0.1 , Da = 10−5 , � = 5 , M = 1.1,Pr = 7.7, Ps = 2.5 for a Bi = 0.5 and 

k = 0.1 , b Bi = 50 and k = 0.1 , c Bi = 0.5 and k = 10 , and d Bi = 50 and k = 10
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The effect of the coefficient of pressure amplitude ( � in 
Eq. 2) is shown in Fig. 16. It is seen that an increase in � , 
increases significantly the amplitude of Nu number, which 
was also presented in previous works containing pulsatile 
flow in an empty channel or pipe [24, 25, 62]. This demon-
strates that waveform amplitude has a deterministic role in 
controlling the rate of convective heat transfer between the 
walls and the fluid flowing in the channel. Figure 17 shows 
the impact of the dimensionless frequency ( � ) on Nu number 
for � = 0.1 and for other conditions similar to Fig. 16. It is 
seen that as the value of � increases, the amplitude of pulsa-
tion of Nu number decreases. This is in agreement with the 
findings of previous works (e.g., [24, 25, 58]). The main 
influence of � is on the period of oscillation, as expected.

For the steady-state fully developed flow in a channel 
filled with a porous material, Nu number is independent of 
the Prandtl (Pr) number [13, 16]. While for the pulsating 
flow, Pr number has significant influence on Nu number [25, 
41]. Figure 18 shows the effect of Pr number on the Nu 
number under LTNE condition for Da = 10−5 (Fig. 18a) and 
Da = 10−2 (Fig. 18b). It is seen that for small Da number, the 
amplitude of Nu number increases slightly with the increase 
in Pr number. For large Da numbers, as Da increases the 
amplitude of Nu oscillation increases. Further increase in Da 
number decreases the amplitude of Nu number. Additionally, 
it is seen that the effect of Pr number on the Nu number is 
profound for high Da numbers. Comparing Fig. 18a and b 
indicates that the effect of Pr number for low Da number 
is almost negligible. These findings are consistent with the 
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Fig. 15  Nusselt number versus time for Da = 10−2 with S∗
s
= 0,S∗

f
= 0, � = 0.1 , Da = 10−5 , � = 5 , M = 1.1,Pr = 7.7, Ps = 2.5 for a Bi = 0.5 and 

k = 0.1 , b Bi = 50 and k = 0.1 , c Bi = 0.5 and k = 10 , and d Bi = 50 and k = 10
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results of Kuznetsov and Nield [41] obtained incorporating 
the LTE model. Kuznetsov and Nield [41] investigated the 
effect of the Pr number in a channel filled with a saturated 
porous medium under LTE model. They found that for large 
Da numbers, increasing Pr number decreases the amplitude 
of Nu number. While for small Da numbers, the effect of Pr 
number on Nu number is found to be negligible.

Conclusions

This paper studied analytically the problem of forced con-
vection heat transfer of pulsating flow due to oscillatory 
applied pressure gradient in a channel filled with a porous 
medium subjected to a constant wall heat flux. By consider-
ing internal heat generations in the solid and the fluid phases 
in the porous region, energy equations were solved using a 
local thermal non-equilibrium (LTNE) model. Considering 
specific conditions at the wall interface, the approach known 
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as Model A for the thermal boundary conditions was used 
to solve the governing equations. Exact solutions for the 
unsteady velocity ( Uun ), temperature of the solid phase ( �s,un ) 
and temperature of the fluid phase ( �f,un ) and Nusselt number 
(Nu) were obtained. The effect of different parameters is 
analyzed. These parameters are Darcy number (Da), Prandtl 
number (Pr), Biot number (Bi), fluid-to-solid thermal con-
ductivity ratio ( k ), heat generation in the solid phase ( S∗

s
 ) 

and fluid phase ( S∗
f
 ), dimensionless frequency ( � ) and the 

coefficient of pressure amplitude ( � ). Important results of 
this study are summarized as follows:

• The amplitude of the unsteady velocity increases with the 
increase of � or Da , while decreases with the increase in 
dimensionless frequency �.

• The amplitude of the unsteady dimensionless tempera-
tures for the fluid phase is relatively higher than that of 
the solid phase.

• Increasing the value of k or Bi, decreases the amplitude 
of the unsteady dimensionless temperature for the two 
phases, while results in reducing the difference between 
the values of �s,un and �f,un.

• For large Bi numbers, the total dimensionless tempera-
ture (sum of steady and unsteady components) for each 
phase was observed to be close to the steady flow. Moreo-
ver, for large Bi number the difference between the tem-
peratures of the two phases is small and hence the LTE 
model is valid.

• Results indicate that Nu number oscillates harmonically 
around the steady counterpart, which is equal to the mean 
value of the oscillating Nu number.

• The ratio of amplitude-to-mean value of Nu number 
remains almost constant with the increase in internal heat 
generation in the solid phase ( S∗

s
 ), while enhances with the 

increase in internal heat generation in the fluid phase ( S∗
f
).

• Increasing the thermal conductivity ratio k or Bi number 
reduces the amplitude of Nu number.

• Amplitude of the Nu number increases with the increase 
in � and Da , while decreases with the increase in �.

• The variation of the Nusselt number due to change in the 
Prandtl number was found to depend on the value of Da 
number. For small Da numbers, the amplitude of Nu num-
ber increases slightly with the increase in Prandtl number. 
While, for high Darcy numbers, the amplitude of Nu num-
ber increases up to a maximum value. Further increase in 
Prandtl number decreases the amplitude of Nu number.
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Appendix

This section includes solution procedures for the momentum 
and energy equations in a porous medium with pulsating 
flow.

Momentum equation

Solutions are obtained using the method of eigenfunction 
expansion. According to this method, solution for unsteady 
momentum Eq.  (24) is written in the general form as 
following:

The eigenfunction �n(Y) is found using the related homo-
geneous problem obtaining from Eq. (24) [64] as:

The eigenfunctions of this related homogeneous problem 
Eq. (47), using boundary conditions Eq. (25), satisfy the 
following equation:

Equation (48) is a Sturm–Liouville eigenvalue problem 
[64] and the corresponding eigenfunctions are:

Using Eq. (49), Eq. (46) is written as:

(46)Uun(t
∗, Y) =

∞∑
n=1

an(t
∗)�n(Y).

(47)
�Uun

�t∗
= M

�2Uun

�Y2
−

Uun

Da
.

(48)

d2�

dY2
+ �2� = 0,

d�

dY

||||Y=0 = 0, �(1) = 0.

(49)
�n(Y) = cos

(
�nY

)
; �n = (2n − 1)

�

2
, n = 1, 2, 3,…

(50)Uun(t
∗, Y) =

∞∑
n=1

an(t
∗) cos

(
(2n − 1)

�

2
Y
)
.

2769

http://creativecommons.org/licenses/by/4.0/


 A. Fathi-kelestani et al.

1 3

Using Eq. (50), the initial condition given in Eq. (26) is 
written as:

So, the initial value in Eq. (51) is zero;

All that remains is to determine an(t∗) in Eq. (50) which 
solves the non-homogeneous partial differential equations 
of momentum Eq. (24). To find an(t∗), the term-by-term dif-
ferentiations are calculated as:

Equations (53) and (54) are now substituted into Eq. (24), 
and the resultant equation can be written as:

Due to orthogonality of the eigenfunctions ( �n(Y) ) obtain-
ing from the Sturm–Liouville eigenvalue problem of 
Eq. (34), the following equation for the time-dependent coef-
ficient of the term 

[
cos

(
(2n − 1)

�

2
Y
)]

 in Eq. (55) is obtained 
[64]:

Equation (56) is a first-order ODE problem with respect 
to t∗ which can easily be solved to find an(t∗) . Using initial 
condition presented in Eq. (52), an(t∗) is obtained (Eq. 30).

Energy equations

Similar to the procedure deployed to solve for the veloc-
ity, the solutions for the temperatures of the two phases are 
divided into steady and unsteady components [25] as:

(51)0 =

∞∑
n=1

an(0) cos
(
(2n − 1)

�

2
Y
)
.

(52)an(0) = 0.

(53)
�Uun

�t∗
=

∞∑
n=1

dan(t
∗)

dt∗
cos

(
(2n − 1)

�

2
Y
)
,

(54)

�2Uun

�Y2
=

∞∑
n=1

(
−
(2n − 1)2�2

4

)
an(t

∗) cos
(
(2n − 1)

�

2
Y
)
.

(55)

∞∑
n=1

{[
dan(t

∗)

dt∗
+

(
M
(2n − 1)2�2

4
+

1

Da

)
⋅ an(t

∗)

]

⋅ cos
(
(2n − 1)

�

2
Y

)}
= � sin (�t∗).

(56)

[
da

n(t
∗)

dt∗
+

(
M
(2n − 1)2�2

4
+

1

Da

)
⋅ an(t

∗)

]

=
∫ 1
0
� sin (�t∗) ⋅ cos

(
(2n − 1)

�

2
Y

)
dY

∫ 1
0
cos2

(
(2n − 1)

�

2
Y

)
dY

=
−4 ⋅ (−1)n ⋅ � sin (�t∗)

(2n − 1)�
.

Substituting Eqs. (57) and (58) into Eqs. (15) and (16), 
the resultant equations are as:

Since 
�T∗

f,st

�t∗
= 0 and according to Eq. (57) T∗

f,un
 is not a 

function of X [25], each of the energy Eqs. (59) and (60) can 
be divided into two separate steady and unsteady equations 
and solved separately as explained in the following.

Steady energy equations

Using Eqs. (59) and (60), a new set of steady equations are 
derived as:

The flow is considered to be fully developed, implying 
that 

�T∗
f,st

�X
= C is constant [66]. Using a dimensionless vari-

able �st =
ks,eff(T−Tw,st)

qwH
= (T∗ − T∗

w,st
) , Eqs. (61) and (62) are 

rewritten as:

where �f,st =
ks,eff(Tf,st−Tw,st)

qwH
 and �s,st =

ks,eff(Ts,st−Tw,st)
qwH

 are the 
steady dimensionless temperature of the fluid phase and 
solid phase, respectively.

Some of the previous studies obtained an average value 
for �Tf,st

�X
 based on the flow characteristics [13, 16, 67]. Param-

eter C =
�T∗

f,st

�X
 is used to solve the unsteady equations, and its 

(57)T∗
f
= T∗

f,st
(X, Y) + T∗

f,un
(t∗, Y),

(58)T∗
s
= T∗

s,st
(X, Y) + T∗

s,un
(t∗, Y).

(59)

Pr ⋅ k

(
�T∗

f,st

�t∗
+

�T∗
f,un

�t∗

)
+ k

(
Ust + Uun

)(�T∗
f,st

�X
+

�T∗
f,un

�X

)

= k

(
�2T∗

f,st

�Y2
+

�2T∗
f,un

�Y2

)
+ Bi

(
(T∗

s,st
+ T∗

s,un
) − (T∗

f,st
+ T∗

f,un
)
)
+ S∗

f
,

(60)

Ps

(
�T∗

s,st

�t∗
+

�T∗
s,un

�t∗

)
=

(
�2T∗

s,st

�Y2
+

�2T∗
s,un

�Y2

)

− Bi
(
(T∗

s,st
+ T

∗
s,un

) − (T∗
f,st

+ T
∗
f,un

)
)
+ S

∗
s
.

(61)kUst

�T∗
f,st

�X
= k

�2T∗
f,st

�Y2
+ Bi

(
T∗
s,st

− T∗
f,st

)
+ S∗

f
,

(62)0 =
�2T∗

s,st

�Y2
− Bi

(
T∗
s,st

− T∗
f,st

)
+ S∗

s
.

(63)kUstC = k
�2�f,st

�Y2
+ Bi

(
�s,st − �f,st

)
+ S∗

f
,

(64)0 =
�2�s,st

�Y2
− Bi

(
�s,st − �f,st

)
+ S∗

s
,
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exact solution is found in the present work. To solve steady 
equations and find C, �s,st is obtained from Eq. (63) and then 
is substituted into Eq. (64). From Eq. (63), �s,st is derived as:

Substituting Eq. (65) into Eq. (64) and applying velocity 
solution from Eq. (27) yields:

The boundary conditions for the steady equations are also 
derived utilizing a same procedure as for momentum equa-
tion by separating steady and unsteady components from 
Eqs. (17) and (18). The heat flux, qw , is a constant value, and 
therefore, it is applied to boundary condition of the steady 
components [24]; so employing the dimensionless variable 
� , boundary conditions can be rewritten as:

Furthermore, one more boundary condition is needed to 
solve steady set of energy equations that is derived from 
Eq. (10).

Equation (66) is a fourth-order ODE problem and the 
solution of �f,st is as:

where

Applying the boundary condition Eqs. (67)–(70) results 
in:

(65)�s,st =
Ck

Bi
Ust −

k

Bi

�2�s,st

�Y2
+ �f,st −

S∗
f

Bi
.

(66)

k
�4�f,st

�Y4
− Bi(1 + k)

�2�f,st

�Y2

= Ck

⎛
⎜⎜⎜⎝

�
Bi ⋅ Da −

1

M

�
cosh

�
Y√
MDa

�

cosh
�

1√
MDa

� − Bi ⋅ Da

⎞⎟⎟⎟⎠
+ BiS∗.

(67)
��s,st

�Y

|||||Y=0
=

��f,st

�Y

|||||Y=0
= 0,

(68)
��s,st

�Y

|||||Y=1
+ k

��f,st

�Y

|||||Y=1
= 1.

(69)�s,st
||Y=1 = �f,st

||Y=1 = 0.

(70)

�f,st = C1 + C2Y + C3 sinh (�Y) + C4 cosh (�Y)

+

(
k ⋅ C ⋅ Da − S∗

2(1 + k)

)
Y2 +

(
k ⋅ C ⋅ Da

(
Bi − Z2

)
kZ4 − Bi(1 + k)Z2

)
cosh (ZY)

cosh (Z)
,

(71)� =
√
Bi(1 + k)∕k.

(72)C2 = C3 = 0.

By applying the boundary condition Eq. (68), the solution 
for C is finally obtained (Eq. 36).

Unsteady energy equations

Using Eqs. (59) and (60), a new set of unsteady equations 
are derived as:

Obtaining T∗
f,uu

 from Eq. (74) yields:

Substituting Eq. (75) into Eq. (73) and using Eq. (29), the 
resultant equation is as:

Equation (76) is a non-homogeneous PDE that can be 
solved using a similar procedure as momentum equation. 
Separating components of Eq. (17), this boundary condition 
for unsteady energy equations is derived as:

As it was explained previously, the applied heat flux is 
applied to steady components of the temperature [24]; con-
sequently, the unsteady components will not have conduc-
tion heat transfer at the wall interface;

The final form of the temperature is considered to be as:

As there are second-order differentiations of t∗ in Eq. (76), 
two initial conditions are required. Based on the same idea 
explained for the momentum unsteady equation, the initial 
conditions for the unsteady energy equation (Eq. 76) are 

(73)Prk
�T∗

f,un

�t∗
+ CkUun = k

�2T∗
f,un

�Y2
+ Bi

(
T∗
s,un

− T∗
f,un

)
,

(74)Ps
�T∗

s,un

�t∗
=

�2T∗
s,un

�Y2
− Bi

(
T∗
s,un

− T∗
f,un

)
.

(75)T∗
f,un

=
Ps

Bi

�T∗
s,un

�t∗
−

1

Bi

�2T∗
s,un

�Y2
+ T∗

s,un
.

(76)

Pr ⋅ Ps

Bi

{
�2T∗

s,un

�t∗2

}
−

(Pr + Ps)

Bi

{
�3T∗

s,un

�2Y�t∗

}

+
(
Pr +

Ps

k

){ �T∗
s,un

�t∗

}
+

1

Bi

{
�4T∗

s,un

�Y4

}

−
(
1 + k

k

){ �2T∗
s,un

�Y2

}
= −C

∞∑
n=1

an

(
t
∗
)
cos

(
(2n − 1)

�

2
Y

)
.

(77)
�T∗

f,un

�Y

|||||Y=0
=

�T∗
s,un

�Y

|||||Y=0
= 0.

(78)
�T∗

f,un

�Y

|||||Y=1
=

�T∗
s,un

�Y

|||||Y=1
= 0.

(79)T∗
s,un

(t∗, Y) =

∞∑
m=1

bm,n(t
∗)Γm(Y).
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considered zero for simplicity. However, the correct values 
are obtained by omitting the developing terms finally, as 
discussed in the paper.

To calculate the related eigenfunctions ( Γm(Y) ), the 
eigenfunctions were considered in the sinusoidal form as 
follows:

where A1 and A2 are constant values. Applying the boundary 
conditions Eqs. (77) and (78) to Eq. (81), the general form 
of the eigenfunctions will be as:

Substituting Eq. (82) into Eq. (79) yields:

Applying the initial conditions (Eq. 80) into Eq. (83), the 
following results are obtained:

Substituting Eq. (83) into Eq. (76) yields:

where

The right-hand side of Eq. (85) is specified with respect 
to variables Y and t∗ ; and the left-hand side of the equation 
is a Fourier Cosine series on the interval 0 ≤ Y ≤ L (where, 
L = 1 in this study) [64]; so the Fourier coefficient ( gm,n(t

∗) ) 
can be found using the Fourier series properties as:

(80)T∗
s,un

|||t∗=0 =
�T∗

s,un

�t∗

|||||t∗=0
= 0.

(81)Γm(Y) = A1 cos
(
�mY

)
+ A2 sin

(
�mY

)
,

(82)Γm(Y) = cos
(
�mY

)
; �m = m�, m = 1, 2, 3,…

(83)T∗
s,un

(t∗, Y) =

∞∑
m=1

bm,n(t
∗) cos (m�Y).

(84)bm,n(t
∗)||t∗=0 =

dbm,n(t
∗)

dt∗

|||||t∗=0
= 0.

(85)

∞∑
m=1

gm,n(t
∗) cos (m�Y) = −C

∞∑
n=1

an(t
∗) cos

(
(2n − 1)

�

2
Y
)
,

(86)

gm,n(t
∗) =

Pr ⋅ Ps

Bi

{
d2bm,n

dt2

}
+

((
m2�2

Bi
+ 1

)
Pr

+

(
m2�2k

Bi
+ 1

)
Ps

k

)

{
dbm,n

dt

}
+

(
m2�2

(
1 + k

k
+

m2�2

Bi

)){
bm,n

}
.

(87)

gm,n(t
∗) =

2

1

(
−C

∞∑
n=1

an(t
∗)

1∫
0

(
cos

(
(2n − 1)

�

2
Y
)
cos (m�Y)dY

))

=
2C

�

∞∑
n=1

an(t
∗)(−1)m+n

(
1

2(m + n) − 1
−

1

2(m − n) + 1

)
.

Using Eq. (87), the following important ODE is obtained 
from Eq. (86):

The ODE Eq. (70) is a second-order linear inhomogene-
ous ODE with respect to t∗ ; as the associated homogeneous 
problem is a constant-coefficient one and consequently its 
solutions can be obtained easily, method of variation of con-
stants (Lagrange’s Method) can be used to find the general 
solution of the ODE [68]. To find the solutions, the roots of 
the characteristic equation for the corresponding homoge-
neous ODE (Eq. 88) are needed to be obtained in advance.

where r1, r2 are the roots of the characteristic equation of the 
homogeneous ODE, and dm is defined as:

The solution of the ODE Eq. (88) can be found now based 
on the solutions of the associated homogeneous problem 
employing the method of variation of constants as follows 
[68]:

where B1 and B2 are constant values; V1(t
∗) and V2(t

∗) are 
functions that are obtained using the method of variation 
of constants, resulting in the following relations after some 
brief computations [68]:

with this reminder that the term gm,n(t
∗) is the inhomogene-

ity of the ODE (Eq. 87).
Substituting V1(t

∗) and V2(t
∗) from Eq. (92) (or after inte-

grating and obtaining their values) into Eq. (91) and apply-
ing Eq. (84) yields:

(88)

Pr ⋅ Ps

Bi

{
d2bm,n

dt∗2

}
+

((
m2�2

Bi
+ 1

)
Pr +

(
m2�2k

Bi
+ 1

)
Ps

k

)

{
dbm,n

dt∗

}
+

(
m2�2

(
1 + k

k
+

m2�2

Bi

)){
bm,n

}

=
2C

�

∞∑
n=1

an(t
∗)(−1)m+n

(
1

2(m + n) − 1
−

1

2(m − n) + 1

)
.

(89)r1, r2 =
−
��

m2�2

Bi
+ 1

�
Pr +

�
m2�2k

Bi
+ 1

�
Ps

k

�
±
√
dm

2
�

Pr⋅Ps

Bi

� ,

(90)

dm =
m4�4

Bi2
(Pr − Ps)2 +

2m2�2

Bi
(Pr − Ps)

(
Pr −

Ps

k

)
+
(
Pr +

Ps

k

)2

.

(91)
bm,n(t

∗) = B1e
r1t

∗

+ B2e
r2t

∗

+ V1(t
∗) ⋅ er1t

∗

+ V2(t
∗) ⋅ er2t

∗

,

(92)

V1(t
∗) =

t∗

∫
0

gm,n(t
∗) ⋅ e−r1t

∗

(
r1 − r2

) dt∗, V2(t
∗) =

t∗

∫
0

gm,n(t
∗) ⋅ e−r2t

∗

(
r2 − r1

) dt∗,

(93)B1 = B2 = 0.
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Calculating V1(t
∗) and V2(t

∗) from Eq. (92) and applying 
their values along with Eq. (93) into Eq. (83), the distribu-
tion of T∗

s,un
 is obtained as:

where

(94)T∗
s,un

(t∗, Y) =

∞∑
m=1

2C ⋅ cos(m�Y)

�
(
r1 − r2

)
∞∑
n=1

Fm,n(t
∗),

(95)

Fm,n(t
∗) =

−4(−1)m�
�

1

2(m+n)−1
−

1

2(m−n)+1

�

(2n − 1)�
�
16(Da�)2 +

�
(2n − 1)2�2M ⋅ Da + 4

�2�

∗

�
−16Da2�

�
−r1cos(�t

∗) + � sin (�t∗) + r1e
r1t

∗

�2 + r2
1

−
−r2cos(�t

∗) + � sin (�t∗) + r2e
r2t

∗

�2 + r2
2

�

+
�
4(2n − 1)2�2M ⋅ Da2 + 16Da

��−�cos(�t∗) − r1 sin (�t
∗) + �er1t

∗

�2 + r2
1

−
−�cos(�t∗) − r2 sin (�t

∗) + �er2t
∗

�2 + r2
2

�

+ 64Da3�

⎛⎜⎜⎝
er1t

∗

− e
−
�

(2n−1)2�2M

4
+

1

Da

�
t∗

(2n − 1)2�2M ⋅ Da + 4
�
1 + Dar1

� −
er2t

∗

− e
−
�

(2n−1)2�2M

4
+

1

Da

�
t∗

(2n − 1)2�2M ⋅ Da + 4
�
1 + Dar2

�
⎞⎟⎟⎠

⎫
⎪⎬⎪⎭

One condition of Eq. (77) was satisfied (i.e., 
�T∗

s,un

�Y

|||Y=1 = 0 ) 
in the solving process. Checking the resultant equation for 
T∗
f,un

 (Eq.  96) specifies that the second condition (i.e., 
�T∗

f,un

�Y

||||Y=1 = 0 ) is automatically satisfied.

The unsteady component of the wall temperature is 
required to calculate Nusselt number. Since the heat flux qw 
at the wall interface is a constant value which is applied to 

the steady components boundary condition [24], the follow-
ing approximate relation based on the energy balance at the 
wall (Eq. 18) was derived to find the dimensionless unsteady 
temperature, T∗

w,un
.

where ΔY  is a small distance close to the wall, and ΔT∗
s,un

 
and ΔT∗

f,un
 are defined as:

(98)

(
ΔT∗

s,un

ΔY
+ k

ΔT∗
f,un

ΔY

)||||||Y≈1
= 0,

Substituting T∗
s,un

 from Eq. (94) into Eq. (75), the distribu-
tion of T∗

f,un
 is also obtained as:

where
(96)

T
∗
f,un

(t∗, Y) =

∞∑
m=1

2C ⋅ cos (m�Y)
(
1 +

m2�2

Bi

)

�
(
r1 − r2

)
∞∑
n=1

Fm,n(t
∗)

+

∞∑
m=1

2C ⋅ cos (m�Y)
(

Ps

Bi

)

�
(
r1 − r2

)
∞∑
n=1

Rm,n(t
∗),

(97)

Rm,n(t
∗) =

−4(−1)m�
�

1

2(m+n)−1
−

1

2(m−n)+1

�

(2n − 1)�
�
16(Da�)2 +

�
(2n − 1)2�2M ⋅ Da + 4

�2�

∗

�
−16Da2�

�
r1�sin(�t

∗) + �2 cos (�t∗) + r2
1
er1t

∗

�2 + r2
1

−
r2�sin(�t

∗) + �2 cos (�t∗) + r2
2
er2t

∗

�2 + r2
2

�

+
�
4(2n − 1)2�2M ⋅ Da2 + 16Da

���2sin(�t∗) − r1� cos (�t
∗) + �r1e

r1t
∗

�2 + r2
1

−
�2sin(�t∗) − r2� cos (�t

∗) + �r2e
r2t

∗

�2 + r2
2

�

+ 64Da3�
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r1e
r1t

∗

+
�

(2n−1)2�2M

4
+

1

Da

�
e
−
�

(2n−1)2�2M

4
+

1

Da

�
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(2n − 1)2�2M ⋅ Da + 4
�
1 + Dar1

� −
r2e

r2t
∗

+
�

(2n−1)2�2M

4
+

1

Da

�
e
−
�

(2n−1)2�2M

4
+

1

Da

�
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(2n − 1)2�2M ⋅ Da + 4
�
1 + Dar2

�
⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭
.
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where T∗
w,un

= (ks,effTw,un)∕(qwH) is the dimensionless 
unsteady wall temperature. Substituting Eq. (A. 2.43) into 
Eq. (98) yields:

Finally, the unsteady temperatures of the two phases can 
be also normalized in the � form ( �un = T∗

un
− T∗

w,un
 ) using 

the unsteady wall temperature (see Eqs. 34, 35).
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