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Abstract

Artificial light can be used as a management tool to increase milk yield in dairy production.

However, little is known about how cows respond to the spectral composition of light. The

aim of this study was to investigate how dairy cows respond to artificial achromatic and chro-

matic lights. A tie-stall barn equipped with light-emitting diode (LED) light fixtures was used

to create the controlled experimental light environments. Two experiments were conducted,

both using dairy cows of Swedish Red and light mixtures with red, blue or white light. In

experiment I, the response to light of increasing intensity on pupil size was evaluated in five

pregnant non-lactating cows. In experiment II 16h of achromatic and chromatic daylight in

combination with dim, achromatic night light, was tested on pregnant lactating cows during

five weeks to observe long term effects on milk production, activity and circadian rhythms.

Particular focus was given to possible carry over effects of blue light during the day on activ-

ity at night since this has been demonstrated in humans. Increasing intensity of white and

blue light affected pupil size (P<0.001), but there was no effect on pupil size with increased

intensity of red light. Milk yield was maintained throughout experiment II, and plasma mela-

tonin was higher during dim night light than in daylight for all treatments (P<0.001). In con-

clusion, our results show that LED fixtures emitting red light driving the ipRGCs indirectly via

ML-cones, blue light stimulating both S-cones and ipRGCs directly and a mixture of wave-

lengths (white light) exert similar effects on milk yield and activity in tied-up dairy cows. This

suggests that the spectral composition of LED lighting in a barn is secondary to duration and

intensity.

Introduction

In dairy cows, photoperiod can be used as a management tool to increase milk yield and

improve working conditions for barn staff. When artificial light is used to extend a natural 8-h
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day to 16 h of daylight for lactating cows, milk yield [1, 2] and circulating insulin-like growth

factor-1 (IGF-1) increase [3]. It is not known whether the type of light is important for the

galactopoietic response, but manufacturers of light-emitting diode (LED) fixtures for dairy

barns suggest that specific wavelengths are important for the effect on milk yield. Red light is

often promoted by the industry as night light, because it is claimed not to affect the cows’ diur-

nal rhythm.

LEDs reduce consumption of electricity for illumination in dairy barns and require less

maintenance compared with several other types of light fixtures available for animal houses,

which makes them increasingly popular. The use of LEDs also entails better control of light

intensity as the diodes can be dimmed, as well as better control of the light spectrum as there

are many different color types available. Artificial light supplements daylight, when daylight is

available, and provides adequate levels of illuminance during the rest of the day to allow a day-

light-like environment of 16h per 24h for lactating cows [4]. Humans respond differently to

natural light compared to artificial light [5], and little is known about how cows respond to

lights of different spectral composition. With the increasing use of LED light on dairy farms, it

is interesting to investigate whether specific wavelength mixes are beneficial for increased milk

production.

Mammals, including cattle have two major types of photoreceptors, cones and rods, that

are involved in vision [6]. Cattle, like most mammals, are dichromats and have short-wave-

length-sensitive (S-cones) and medium- to long-wavelength-sensitive cones (ML-cones) with

opsins peaking at 451 (blue) and 555 (greenish-yellow) nm, respectively [7]. However, the eye

also provides sensory input for non-image-forming visual functions, including circadian

photo entrainment for setting internal biological clocks, inhibition of melatonin release, which

plays a pivotal role in the sleep-wake cycle, and adjustment of the number of photons reaching

the retina through the pupillary light reflex [8–11]. A third group of photosensitive receptors

in the retina, intrinsically photosensitive retinal ganglion cells (ipRGCs) containing the photo-

pigment melanopsin, drive or contribute to regulation of all these functions [9, 12–15].

In humans, low light exposure during night-time causes acute suppression of melatonin

[16]. Studies in humans have shown that the most potent part of the spectrum for providing

circadian input for regulation of melatonin secretion is around 446–477 nm [13, 17, 18]. These

wavelengths coincide with the absorption peak of the bovine S-cones (451 nm) and are also

close to the peak absorption maximum of melanopsin [9, 12, 13]. There is also substantial evi-

dence that exposure to blue light can increase alertness and stimulate cognitive function in

humans [19], also after the blue light is turned off [20, 21]. In dairy calves, blue LED light sup-

pressed the expected melatonin increase in the evening when compared to another treatment

with yellow LED light [22]. It is therefore possible that using blue LED light during daytime, or

during part of the day, could increase the activity of cows at night also when the lights are con-

siderably dimmed or turned off to allow the animals a break from artificial light.

Furthermore, the incident of photon flux onto the retina is adjusted by the pupil size. For a

long time, constriction of the pupil in daylight was considered to be driven by retinal cones

and chiefly related to the luminance. More recently, it has been postulated that although the

photoreceptors play a role in regulation of pupil size at least when there is a transient change

in background light, the size of the steady-state pupil is mainly controlled by the ipRGCs [23,

24]. Pupillary dilation is almost completed at one minute in humans and fully completed in 10

minutes at low light levels [25], whereas pupillary constriction is a very rapid process and reti-

nal cone adaptation also seems to be completed in less than 10 minutes [26]. Hence we decided

to study the pupil size in cows under different lighting conditions to understand if pupil size

and thereby retinal illumination changed when different lighting regimes were used.
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The aim of this study was to investigate the effects of different spectral compositions of arti-

ficial light on lactating dairy cows. Specific hypotheses were that: i) Pupil response is driven by

photon flux and does not differ between different wavelengths; ii) blue light during the day

increases the activity of cows at night; and iii) red light does not support diurnal release pattern

of melatonin as well as blue or white light.

Material and methods

The study was conducted at the Swedish Livestock Research Centre, Uppsala, Sweden, and

comprised two experiments. All animal handling was approved by the Uppsala Ethics Com-

mittee for Animal Research, Uppsala, Sweden (reference no. 5.2.18-11064/16).

The experiments were performed in a tie-stall barn with a controlled light environment and

no contamination from external light (hereafter called the ‘Light lab’). The Light lab had tie-

stalls in two rows, on each side of an alley. One light treatment could be applied per row, allow-

ing two treatments to be tested at a time. The tie stalls had rubber mats and wood shavings as

bedding material. The stalls were cleaned and bedding material replaced during milking.

Water was provided ad libitum, from individual automatic water bowls. The Light lab was

equipped with LED light fixtures (Elixia LX602G, Heliospectra AB, Sweden) placed on each

side of the head of every cow, approximately 140 cm above the forehead (Fig 1). The LEDs in

the light fixtures were remotely controlled and hence, both intensity and the spectral composi-

tion of the light could be adjusted.

Light measurements

Light was measured at the level of the cow eye, approximately 125 cm above the floor, with a

photosensor directed towards the ceiling. A luxmeter [Hagner Screenmaster, B. Hagner AB,

Solna, Sweden], a photometer [(IL-1700, International Lights, Peabody, MA, USA], and a

spectrometer [Jaz, Ocean Insight, Inc. Dunedin, Florida, USA] were used for this purpose, and

hence illuminance (lux), luminance (cd/m2), photon flux density (μmol s-1 m-2), and light

spectrum (μmol s-1 m-2 nm-1) were quantified. To simplify reporting, we frequently use the

expression ‘light intensity’ rather than these four physically correct terms when referring to

amount of light in the barn, and we refer to the different mixtures of wavelengths used in the

experiments as ‘colors’ based on the hues a normal human trichromat would perceive on see-

ing the light (Table 1 and Fig 2). The different intensity levels tested (1–10, Table 1) were

designed to provide similar photon flux density, while the illuminance and luminance values

were used for comparison.

Fig 1. Layout of the Light lab. LED fixtures placed on each side of the head of every cow.

https://doi.org/10.1371/journal.pone.0253776.g001
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Experiment I

Size of pupils in response to blue, red, and white light of increasing intensity was studied in

five pregnant non-lactating cows of the Swedish Red (SRB). The exposure started with the

dimmest light (Blue1, followed by White1, and then Red2, Blue2, White2) and the light inten-

sity was increased step-wise as shown in Table 1. When the cows had adapted to the test

light for 10 minutes, photographs of each eye were taken at each light intensity at approxi-

mately 2–3 m distance, using a digital camera (Nikon D800 with a Nikon AF-S Nikkor 70-

200mm f/2,8 lens). Relative area of the pupil (RAP) was calculated as the area covered by

the pupil in the photograph divided by the area circumscribed by the peripheral iris at the

limbus cornea (Fig 3). To ensure a comparable scale in the photographs, a piece of white sur-

gical tape with a centimeter scale was placed below the eye on every cow. All photographs

were analyzed by the same researcher (author S.L.) using imaging software (Adobe Photo-

shop 2020 version 21.0.3). Cow identity and lighting conditions for each image were

blinded for measurements. To estimate the amount of light actually reaching the retina and

to enhance comparison with conventional retinal illumination measured in Trolands

(which is equal to the pupil area in mm2 times the luminance in candela/m2) [27], the pho-

ton flux was multiplied by mean RAP.

Experiment II

Forty lactating SRB cows were blocked according to days in milk (range: 117–331), days in

pregnancy (range: 31–137), parity (range: 2–7), and daily milk yield (range: 22–45 kg) and ran-

domly assigned to one of two light treatments in each of two periods: Blue (n = 10) and Red

(n = 10) in period 1, and White (n = 10) and White-Blue (n = 10) in period 2. Period 1 ran

from January to March 2019, and period 2 from March to May 2019.

A long-day photoperiod (LDPP) was used, with 16 h daylight and 8 h of dim night light

(Fig 4). The cows were moved into the Light lab 22 days prior to the onset of the light experi-

ment, to allow them to acclimatize to the surroundings. Thereafter the treatment period

started and only LED lighting was employed for 33 days. During period 1, the daylight intensi-

ties were Blue9 and Red9, respectively. During period 2, White9 was used as the White light

treatment, while for the White-Blue treatment, White9 was turned on for 10 h and switched to

Blue9 for the last six hours of the daytime period. All daylight treatments had the same dim

night light, White1 (Table 1). The light intensities selected during daytime was a result from

experiment I combined with practicalities as ensuring a safe work environment for barn staff.

Table 1. Light intensity levels used in the experiments, expressed as photon flux density (μmol s-1 m-2), illuminance (lux), and luminance (candela/m2).

Light Red Blue White

Intensity Photon flux density Illuminance Luminance Photon flux density Illuminance Luminance Photon flux density Illuminance Luminance

1 - - - 0.18 1.7 2.2 0.18 11.7 1.87

2 0.36 6.1 0.005 0.4 1.8 4.8 0.4 32 4.8

3 0.83 14.8 0.06 0.73 2.4 12.1 0.62 49.1 9.3

4 1.46 21.4 0.12 1.4 47 24 1.48 115.6 23.7

5 2.78 40.6 0.19 2.85 94 42.1 2.83 219 42.9

6 5.89 86.6 0.49 5.82 127 75.5 5.82 390 85.9

7 11.3 167.4 0.83 11.4 370 158.5 11.6 662 135.7

8 23.4 342 1.72 23.0 773 324 23.1 1070 216

9 34.9 676 31.8 34.7 1674 416 36.9 1668 325

10 - - - - - - 46 3550 745

https://doi.org/10.1371/journal.pone.0253776.t001
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Standing and lying behavior. Standing and lying activity was recorded by HOBO Pen-

dant G Data loggers, model UA-004-64 G (ONSET, Bourne, Massachusetts, USA), attached to

one hind leg of each cow, throughout the experimental period. Loggers and data were handled

using the protocol suggested by UBC AWP [28]. The logger was set to record position (stand-

ing or lying) every five minutes. Number of standing and lying observations were summarized

first per day (24h), daytime (16h), and night-time (8h), and proportion of standing/lying time

was calculated as number of standing/lying observations divided by total observations per day,

daytime, or night-time. Number of standing and lying bouts, and bout durations, were also

measured, according to standard operating procedures [28].

Feed intake. Silage provided ad libitum was replaced daily (0545h) and topped up twice

daily (1300 and 1930h). Concentrate was fed four times per day (0545, 1300, 1630, and 1930h),

on top of the silage. Every cow had their own feeding through providing individual feed intake.

Daily concentrate ration was adjusted to the calculated requirements for individual milk yield

according to the NorFor system [29]. Chemical composition of silage, based on samples from

the silo and analyzed with near-infrared reflectance spectroscopy, and of concentrate, is shown

in Table 2. Silage 1 was fed in period 1 and silage 2 in period 2. In both periods, cows were fed

a mix of concentrate 1 and 2. The ratio of the two concentrates were adjusted to ensure an

equal crude protein intake. Silage refusals were collected manually before morning and even-

ing feeding for five consecutive days at the end of the treatment period, to ensure feed intake

for daytime and night-time, respectively. There was concentrate in the silage refusals on very

few occasions. The refusals were weighed, and silage ration was adjusted individually to ensure

ad libitum feeding. Silage samples were taken from each feeding and stored in a plastic bag at

-20˚ C until analyzed. Samples from two weeks were pooled and analyzed for dry matter (DM)

Fig 2. Spectral composition of the light used during daytime in the Light lab. (A) Red light treatments, (B) Blue

light treatments, and (C) White light treatments.

https://doi.org/10.1371/journal.pone.0253776.g002

Fig 3. Photograph illustration for the calculation of relative area of the pupil (RAP). The yellow marks in the right

photograph indicate the pupil area and the iris area. RAP was calculated by dividing the area covered by the pupil with

the area area circumscribed by the peripheral iris at the limbus cornea.

https://doi.org/10.1371/journal.pone.0253776.g003
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content by first drying at 60˚C overnight, grinding, and then drying at 60˚C overnight [30].

Energy balance was calculated according to the NorFor system [29].

Milk. The cows were milked twice daily at 0615 and 1700h (DeLaval DelPro MU480), and

milk yield was recorded automatically. Milk was sampled for five consecutive days at morning

and evening milking at the end of the treatment period. Milk samples were obtained through-

out milking with the Tru-Test technique (Tru-Test Mechanical Milk Meter (MM6) DeLaval

AB, Tumba, Sweden), preserved with 10% bronopol, (2-bromo-2-nitropopane-1�3-diol VWR

International AB, Stockholm, Sweden), stored at 8˚C, and analyzed within five days.

Milk samples were individually analyzed for content of fat, protein, lactose, and somatic cell

count, using infrared Fourier-transform spectroscopy (CombiScope FTIR 300 HP, Delta

Instruments B.V., Drachten, The Netherlands). The mean value for 10 milk samples for each

period were used in the statistical analyses. Energy-corrected milk (ECM) yield was calculated

based on fat, protein, and lactose content according to Sjaunja et al. [31].

Melatonin and IGF-1. Blood was sampled from the tail vein (v. caudalis mediana) four

times (at 0830, 1600, 2230 and 0400h) during the last 24 hours of the treatment period. The

samples were collected in tubes containing Na-EDTA (0.9 x 38 mm; Vacutainer No. 360215;

BD; Franklin Lakes, NJ) and placed on ice immediately after collection. Plasma aliquots were

obtained after centrifugation for 10 min at 4000 x g and stored at -20˚C until analysis, within

one day of sampling. A commercial ELISA kit was used for analyzing melatonin (IBL Interna-

tional 2014) and IGF-1 (Mediagnost 2018). Average sensitivity and intraassay and inter-assay

coefficient of variation was 0.09 μg/mL, 2.5%, and 7%, respectively, for IGF-1 (10 assays), and

1.6 pg/ml, 5.3%, and 15%, respectively, for melatonin (13 assays).

Statistical analysis

The mixed procedure in SAS (SAS version 9.4, SAS Institute Inc., Cary, NC.) was used to test

whether pupil size was affected by light color (blue, red or white) or light intensity (level 1-9/

Fig 4. Schematic illustration of the light treatments during 24 hours. Daylight was provided during 16 hours and dim night light during eight hours. Symbols indicate

times of feeding, milking, and blood sampling.

https://doi.org/10.1371/journal.pone.0253776.g004

Table 2. Chemical composition of silage and concentrate.

Item Silage 1 Silage 2 Concentrate 1 Concentrate 2

Period 1 (% of diet) 67 - 25 8

Period 2 (% of diet) - 60 36 5

Dry matter (DM, g/kg) 391 464 880 890

Ash (g/kg DM) 76 114 - -

Crude protein (g/kg DM) 139 181 170 280

Neutral detergent fiber (g/kg DM) 424 411 260 250

Metabolizable energy (MJ) 10.6 10.7 13.3 14

Both fed in Experiment II to lactating dairy cows exposed to light of different wavelengths during 33 days. Silage 1 was fed in period 1 and silage 2 in period 2 and a mix

of concentrate 1 and 2 was fed in both periods to ensure an equal crude protein intake.

https://doi.org/10.1371/journal.pone.0253776.t002
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10). Color, intensity, and their two-way interaction were included as fixed effects, and cow

nested within treatment as a random effect, with an unstructured covariance structure.

To test whether standing, lying, milk production, feed intake, melatonin, or IGF-1 was

affected by light treatment (Blue, Red, White, or White-Blue), the mixed procedure in SAS was

used. In all models, treatment and period (first or second) were included as fixed effects, and

cow nested within treatment as a random effect, with an unstructured covariance structure.

The model for standing and lying also included the fixed effect of time of day (day and night);

the model for milk yield, milk composition, and feed intake included the fixed effect of days in

milk; and the model for melatonin and IGF-1 included the fixed effect of sampling time (0830,

1600, 2230, 0400h). Interactions of fixed effects were excluded using stepwise backwards elimi-

nation; any interaction effect with P>0.10 was excluded from the model until all remaining

interactions showed P<0.10. The two-way interaction of treatment × period was kept in the

models for standing, lying, milk yield, milk composition, and feed intake, and the three-way

interaction of treatment × period × sampling time was kept in the models for melatonin and

IGF-1. Melatonin and IGF-1 were also tested for correlation, both within 24 hours and at the

sampling times (0830, 1600, 2230, 0400h), using the correlation procedure in SAS.

Values presented are least squares mean (LSM) ± standard error of the mean (SEM), unless

otherwise stated. Results were considered significant at P�0.05, while a trend was assumed for

probabilities 0.10> P> 0.05. Post-hoc means separation for significant main effects was

applied using Tukey-Kramer’s adjustment of probability values.

Results

Experiment I

There was no significant difference in RAP for the red light intensities tested in experiment I,

despite an almost 100-fold increase in photon flux (Fig 5). The average RAP over the entire

range of red light intensities tested was 40±1.2%.

In contrast, the brightest blue and white lights produced significant constriction of the

pupils, whereas there were no differences for light intensities from 1 to 3 (p = 1) in experiment

I. On increasing from Blue3 to Blue8, RAP decreased from 39.5±2.1% to 23.5±2.1% (p<0.001)

and from 42±2.1% to 27±2.1% using white light (p<0.001). The average RAP for Blue9 was 24

±2%, for Red9 38±2%, and for White9 27.5±2%. In dim night light (White1 used in all the day-

light treatments in experiment II), the average RAP was 42±2%. The relative number of pho-

tons reaching the retina (RAP x photon flux) for Blue9 was 8.3, for Red9 13.2, and for White9

10.0. For the dim night light (White1), the relative number of photons reaching the retina was

0.08 (Fig 6), implying that the relative number of photons reaching the retina during daylight

conditions was approximately 100 to 165 times higher than in dim night light.

Experiment II

Standing and lying behavior. Light treatment did not affect cow activity, with an overall

standing proportion of 54±1% during daytime and 40±2% during night-time (Fig 7). The

overall number of standing bouts was 6±0.4 bouts during daytime and 3±0.2 bouts during

night-time. Mean standing bout duration was 78±4 min during daytime and 41±3 min during

night-time.

The overall mean number of lying bouts was 8±0.3 bouts during daytime and 4±0.2 bouts

during night-time. Mean lying bout duration was 59±2 min during daytime and 55±3 min

during night-time.

Feed intake and milk yield. There was no difference in feed DM intake (DMI) between

the treatments (P>0.1) (Table 3). There was no difference in calculated energy balance
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between the treatments (p>0.7). Milk yield (kg) was maintained during the five weeks of treat-

ments, with no difference between treatments (P = 0.1). Additionally, the treatments did not

affect ECM (P = 0.3), fat content (P = 0.2), protein content (P = 0.4), or lactose content

(P = 0.6).

Melatonin and IGF-1. Plasma melatonin was higher during dim night light than during

daylight (P<0.001) (Fig 8). At 2230h, melatonin was significantly higher (p<0.05) for cows

exposed to Blue or Red light during the day (27.7±1.7 pg/ml vs. 28.3±1.7 pg/ml) than cows

exposed to White-Blue light (17.6±1.7 pg/ml), and tended to be higher (p<0.1) than in cows

exposed to White light (19.2±1.7 pg/ml). The highest melatonin levels were detected at 0400h

(P<0.001) in all treatments (28.6±1.2 pg/ml), when no difference was found between treat-

ments (p>0.8). At 1600h, the lowest melatonin level (P<0.001) was detected in all treatments

(8.2±0.5 pg/ml). No significant difference between the light treatments (p>0.8) was observed

at 1600h or at 0830h.

Plasma IGF-1 concentration was higher at 2230 h than at 0830 h for cows in the Blue treat-

ment (148.8±10.4 ng/mL vs. 129±10.2 ng/mL) p = 0.0002) (Fig 9). No difference was observed

within the other treatments. Including all treatments, IGF-1 concentration was lowest

(P<0.001) at 0830 h (143.4±5.1 ng/mL and highest (P<0.001) at 2230 h (150.5±5.2 ng/mL. No

correlation was observed between melatonin and IGF-1 concentrations within 24 hours.

Fig 5. Relative area of the pupil (RAP) of cows exposed to Red, Blue, and White light intensity. There was no difference in relative pupil area

for cows under red light. Under blue and white light, the relative pupil area decreased by almost half (���p<0.001).

https://doi.org/10.1371/journal.pone.0253776.g005
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Discussion

Red light, regardless of intensity, had no significant effect on pupil size, with the RAP value

obtained under red light being similar to that obtained under the dim night light (White1) con-

ditions. In contrast, bright blue and bright white lights constricted the pupils effectively, con-

tradicting our hypothesis (i). This difference in efficacy between short and long light

wavelengths is well-established in some other diurnal mammals, including humans [32].

Pupillary constriction is largely mediated through ipRGCs, but these light-sensitive ganglion

cells also receive input from retinal cones and rods [13, 33]. However, cone inputs contribute

less than a minute to pupillary constriction when steady-state levels of light are used, whereas

rods may contribute longer, but only at light levels below saturation of the rod response [24].

In our experiments, steady levels of light were maintained for several minutes, implying no or

very little cone input. Additionally, most of the light intensities tested were clearly above, the

mesopic range of the bovine retina, suggesting that rod input was low. Peak absorption of mel-

anopsin has been shown to be approximately 480 nm in other species [34–36]. The blue and

white lights used in our study (the latter containing a substantial amount of short to medium

wavelengths) were therefore strong stimuli for melanopsin-based photoreception, whereas red

light was barely absorbed by melanopsin. Under low light intensities, our results showed no

difference in pupillary size between the light colors’, which indicates that our results on

Fig 6. Relative number of photons reaching the retina when different light-emitting diode (LED) lights were employed. Grey area indicates

dim night light treatment and daylight treatment in Experiment II.

https://doi.org/10.1371/journal.pone.0253776.g006
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pupillary constriction were not affected by environmental factors, e.g., stress [37]. This led us

to conclude that the pupillary responses to the different lights in our experiments were mainly

melanopsin-driven.

The longer resting time observed during the dark hours corresponds with results reported

by Suarez-Trujillo et al. [38]. The lack of differences in activity between treatments may be an

effect of the tie-stall system used, which restricts activity per se compared with loose housing.

We did not detect any specific patterns in the activity data, e.g., whether all cows were standing

or lying down at the same time, contradicting our hypothesis (ii). However, changes in activity

as a result of spectrally different lighting regimes may be more apparent in a loose housing sys-

tem, an issue which warrants further investigation.

Fig 7. Treatment least squares means (LSM) for activity. Standing proportion per treatmeant, and in daytime (16 h) and night-time (8 h).

https://doi.org/10.1371/journal.pone.0253776.g007

Table 3. Least squares mean (LSM) ± standard error of: Milk yield, energy-corrected milk (ECM), milk composition, dry matter intake (DMI), and energy balance

for cows exposed to the Blue, Red, White and White-Blue light treatments.

Variable Blue Red White White-Blue P-value

Milk yield (kg) 32.3 ± 1.4 28.5 ± 1.4 32.2 ± 1.4 32.2 ± 1.4 0.16

ECM (kg) 33.2 ± 1.4 31.3 ± 1.3 33.7 ± 1.3 34.9 ± 1.4 0.32

Milk fat (%) 4.2 ± 0.2 4.7 ± 0.2 4.2 ± 0.2 4.6 ± 0.2 0.20

Milk crude protein (%) 3.8 ± 0.1 3.9 ± 0.1 3.8 ± 0.1 3.9 ± 0.1 0.42

Milk lactose (%) 4.4 ± 0.05 4.5 ± 0.05 4.4 ± 0.05 4.4 ± 0.05 0.61

DMI (kg) 24.8 ± 0.9 25.4 ± 0.9 25.4 ± 0.9 26.5 ± 0.9 0.57

Energy balance (%) 99.7 ± 2.6 97.4 ± 2.6 95.3 ± 2.6 95.5 ± 2.6 0.67

https://doi.org/10.1371/journal.pone.0253776.t003
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The diurnal rhythm in melatonin concentrations observed here, with the highest concen-

trations during the dark period, confirms previous findings in dairy cows [38–40] and younger

cattle [22, 41–45]. The melatonin concentration increased rapidly on switching to a low light

intensity, which is consistent with previous results [22, 42]. The peak melatonin level was

found in the second set of samples after onset of darkness (after 7 hours in the dark), confirm-

ing results in several other studies [41, 43, 45, 46]. Interestingly, the Red and Blue light treat-

ments caused a more rapid increase in melatonin after the onset of darkness than the White

and White-Blue light treatments, contradicting our hypothesis (iii). This could be a period-

treatment confounding effect, or cessation of the intense red and blue lights may have elicited

more rapid secretion of melatonin. The White-Blue treatment (White9 light for 10 h, Blue9

light for 6 h) did not cause such a rapid increase in melatonin at night as seen with the Blue

treatment (Blue9 light for 16 h). Thus, the shorter exposure to blue light before the dim night

light in the White-Blue treatment may not have been sufficient for a rapid response in melato-

nin secretion. The highest melatonin levels were obtained after the long-wavelength Red day-

light treatment, although the levels were not significantly different from those in the Blue and

White treatments. Elsabagh et al. [22] found that two hours of dim yellow LED light increased

melatonin concentration faster than two hours of dim short-wave blue LED light treatment,

Fig 8. Treatment least squares mean (LSM) of plasma melatonin within 24 hours. Cows exposed to the Blue and Red light treatments had

higher plasma melatonin than cows exposed to White light (�p<0.1) and White-blue light (�� p<0.05).

https://doi.org/10.1371/journal.pone.0253776.g008
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which suggests that dimming light after exposure to longer wavelengths is at least as effective

in replenishing plasma melatonin levels as when short-wavelength light has been employed

during the day. However, the light intensities used by Elsabagh et al. [22] were similar to our

light intensity 2 and only 8-week-old calves were studied, which makes comparison with our

results more difficult.

Throughout the study period in experiment II, DMI and milk yield were maintained in all

treatments. Although, milk yield can be expected to decline post peak lactation [47]. Since

both DMI and milk yield were maintained it suggests that LED light regardless of color stimu-

lated a more persistent lactation. However, earlier studies have showed that a LDPP increased

milk yield when compared to NDPP [3]. In our study, the maintained milk yield might be an

effect of the LDPP, the effect could also be a result of the maintained DMI and the positive

energy balance. Despite no effect of treatments on DMI, actual nutrient intake is unknown

and may have been moderately affected by actual intake proportions of forages and concen-

trates. However, daily visual inspection indicated that concentrate intake was complete, and

thus, confounding from this factor is unlikely. To give the concentrate in a separate bowl

might be preferable, though it was not manageable in this barn due to the construction of the

head fronts. In addition, when the cows moved into the Light lab, there was a change in both

their environment and their milking system, from an automatic quarter milking system to a

cluster milking system. A Light lab with the automatic quarter milking system used in standard

Fig 9. Treatment least squares mean (LSM) of plasma IGF-1 within 24 hours. Cows exposed to the Blue light treatment had higher plasma

IGF-1 concentration at 2230 h than at 0830 h (��� p< 0.001).

https://doi.org/10.1371/journal.pone.0253776.g009
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management of cows in the herd could have helped to study the impact of the lighting condi-

tions alone. No effects on milk composition caused by the prolonged photoperiod were

observed, which is in agreement with previous studies [3, 46].

Cows in the Blue treatment in experiment II showed a tendency for a diurnal pattern in

plasma IGF-1, though none of the other treatments indicated a diurnal pattern in IGF-1. This

corresponds with earlier findings in one study [44] but not in others [3, 48]. Our results

showed no correlation between plasma levels of melatonin and IGF-1 throughout the 24 hours

when samples were taken. Muthuramalingam et al. [44] discovered a tendency for a negative

correlation between IGF-1 and melatonin during night-time. However, other factors not mea-

sured in the present study may also have caused variation in circulating IGF-1, and some of

these factors may have influenced plasma levels more than the light treatment. Negative energy

balance is one factor that causes a decrease in circulating IGF-1 [49, 50], and often arises close

to the onset of lactation [51]. Negative energy balance can explain findings that the number of

days in milk, counted from the onset of lactation, and IGF-1 are positively correlated [52, 53].

In addition, IGF-1 plays an important role during pregnancy, in gonadotropin-induced folli-

culogenesis [50], meaning that days in pregnancy can affect the dynamics of circulating IGF-1.

All cows in experiment II were pregnant, within the range of post peak lactation and prior to

month 7 of pregnancy. In a previous study on cows treated with LDPP, Dahl et al. [3] observed

increased concentrations of IGF-1 that were independent of changes in growth hormone and

IGF-binding-proteins-2 and -3. A later study by Kendall et al. [48] showed increased concen-

trations of IGF-1 in LDPP calves, regardless of nutritional status. The IGF-1 concentrations

reported in the literature differ markedly [3, 44, 48, 49, 52, 53], possibly due to the factors men-

tioned above and/or the method of analysis used in the laboratory. Our plasma IGF-1 results

are similar to those obtained in a pilot study performed by Ferneborg et al. [54] on the same

herd and with the same method of analysis. However, the number of animals in the present

study was insufficient to give the statistical power needed to detect differences below 25 ng/ml.

It is interesting that melatonin and activity levels, two parameters related to diurnal rhythm,

were essentially similar regardless of daylight regime. The light-driven circadian oscillator

(process C) is required for partitioning sleep during the day-night cycle, whereas prolonged

periods of wakefulness increase the propensity to sleep (homeostatic mechanism or process S)

(see Borbely et al. [55] for review). In experiment II, we used a period of acclimatization before

feed and milk data were sampled. Sampling for melatonin and IGF-1 analyses, and activity

measurements, were made at the end of each trial period (lighting regime). Hence, we believe

that our data mainly reflect the effect of the different daylight regimes on the light-driven cir-

cadian oscillator.

Both short and medium wavelengths, which are easily absorbed by ipRGCs and short-wave-

length (blue) cones, had a similar effect to long-wavelength (red) light, although red light is

unlikely to be absorbed by melanopsin, at least to any substantial degree. We do not believe

that the higher RAP we observed for Red daylight could compensate for the poor absorption

by ipRGCs. It has been shown in transgenic mice that both the rod-cone and melanopsin-

driven pathways are required for normal entrainment of the circadian rhythm, and thereby

the sleep cycle [8]. Therefore, it is more likely that the sleep cycle in cows under red light con-

ditions is driven by medium- to long-wavelength cone input to ipRGCs, whereas blue and

white daylight can affect both cone types in the bovine retina, as well as the melanopsin-path-

way directly. Thus, we suggest that the retinal circuitry conveying light signals to the circadian

oscillator in the cow shares basic features with that of both mouse and human.

In conclusion, our results show that LED fixtures emitting red light driving the ipRGCs

indirectly via ML-cones, blue light stimulating both S-cones and ipRGCs directly and a mix-

ture of wavelengths (white light) exert similar effects on milk yield and activity in dairy cows.
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Furthermore, the feed intake required is not significantly different between light treatments.

This suggests that the spectral composition of LED lighting in a barn is secondary to duration

and intensity. Thus, the choice of spectral composition better be based on other preferences,

such as visual comfort for barn staff and suitable lighting for surveillance systems. However,

long-term effects of LED lighting with different spectral compositions on production parame-

ters, as well as activity and sleep patterns in dairy cows in loose housing, warrant further

investigation.
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