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a b s t r a c t

Aquatic hyphomycetes (AHs), a group of saprotrophic fungi adapted to submerged leaf litter, play key
functional roles in stream ecosystems as decomposers and food source for higher trophic levels. Fun-
gicides, controlling fungal pathogens, target evolutionary conserved molecular processes in fungi and
contaminate streams via their use in agricultural and urban landscapes. Thus fungicides pose a risk to
AHs and the functions they provide. To investigate the impacts of fungicide exposure on the composition
and functioning of AH communities, we exposed four AH species in monocultures and mixed cultures to
increasing fungicide concentrations (0, 5, 50, 500, and 2500 mg/L). We assessed the biomass of each
species via quantitative real-time PCR. Moreover, leaf decomposition was investigated. In monocultures,
none of the species was affected at environmentally relevant fungicide levels (5 and 50 mg/L). The two
most tolerant species were able to colonize and decompose leaves even at very high fungicide levels
(�500 mg/L), although less efficiently. In mixed cultures, changes in leaf decomposition reflected the
response pattern of the species most tolerant in monocultures. Accordingly, the decomposition process
may be safeguarded by tolerant species in combination with functional redundancy. In all fungicide
treatments, however, sensitive species were displaced and interactions between fungi changed from
complementarity to competition. As AH community composition determines leaves’ nutritional quality
for consumers, the data suggest that fungicide exposures rather induce bottom-up effects in food webs
than impairments in leaf decomposition.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Aquatic fungi adapted to colonize and degrade submerged leaf
litter (mainly aquatic hyphomycetes; ¼ AHs; Baschien et al., 2013;
Dighton and White, 2017) are key to ecosystems fueled by
allochthonous organic matter. Making use of a diverse set of
extracellular enzymes, AHs efficiently catalyze leaf litter decom-
position, thereby converting non-utilizable biopolymers to
bioavailable substances (Evans and Hedger, 2001). Through the
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simultaneous accumulation of fungal biomass, they additionally
increase leaves’ nutritional quality (i.e., conditioning; Cummins and
Klug, 1979) for consumers, such as shredders.

Globally, the majority of streams are subject to human impact,
including pollution with xenobiotics (V€or€osmarty et al., 2010).
Synthetic fungicides represent a group of xenobiotics applied to
control fungal pathogens and enter streams following their use in
agricultural and urban landscapes (as reviewed by Zubrod et al.,
2019). Since fungicides target evolutionary conserved molecular
processes of close relatives to AHs (Stenersen, 2004), these com-
pounds pose a risk for aquatic fungi and the functions they provide.
Moreover, an overlap of measured field and effect concentrations of
fungicides, which is particularly large for the groups of demethy-
lation inhibitors and strobilurins (e.g., tebuconazole and
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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azoxystrobin, respectively; Zubrod et al., 2019), causes further
concern.

Changes in the functioning of AH communities, mostly assessed
via leaf mass loss or total fungal biomass, are predominantly
induced at high fungicide concentrations (Piment~ao et al., 2020;
Zubrod et al., 2019). In contrast, structural changes (i.e., diversity or
community composition)may already appear at low (field relevant)
concentrations (Fern�andez et al., 2015; Piment~ao et al., 2020;
Zubrod et al., 2019). This discrepancy may be explained by the
replacement of sensitive by tolerant AH species in combination
with functional redundancy (Pascoal et al., 2005). While ecological
mechanisms (e.g., selection or complementarity effects) linking
biodiversity and ecosystem functioning (i.e., B-EF relationships) in
AH communities remain poorly understood (B€arlocher, 2016;
Grossart and Rojas-Jimenez, 2016), it is assumed that resource
partitioning constitutes a major type of interaction in undisturbed
communities (e.g., via complementary extracellular enzyme in-
ventories; Gessner et al., 2010). Assessing impacts of fungicide
exposures on B-EF relationships requires the ability to track the
biomass of individual AH species within a community throughout
various successional stages, which is offered by species-specific
quantitative real-time PCR (qPCR; Duarte et al., 2006; Grossart
and Rojas-Jimenez, 2016). To the best of our knowledge, only one
study exists that applied species-specific qPCR assays to assess B-EF
relationships in AH assemblages under chemical stress (i.e.,
Fernandes et al., 2011). In this study, cadmium exposure altered the
relative abundance of AH species and induced shifts from com-
plementary towards competitive interactions, while leaf decom-
position was maintained by cadmium-tolerant strains due to
dominance effects (i.e., selective pressure of cadmium favored
tolerant species at the expense of others).

Using a similar experimental setup and novel species-specific
TaqMan® qPCR assays (Baudy et al., 2019), the present study
aimed at investigating B-EF relationships in AH communities under
fungicide exposure. Employing a factorial microcosm experiment,
leaves were colonized by four AHmonocultures, six binary, and one
quaternary combination (i.e., eleven different cultures). Each cul-
ture was exposed to five concentrations of a five-component
fungicide mixture, reflecting environmentally relevant (i.e.,
chronic exposure to fungicide mixtures in the low mg/L range) to
worst-case exposure scenarios (exposure in the mg/L range;
Zubrod et al., 2019). To assess the functional performance of these
communities, leaf mass loss, fungal biomass production (via
ergosterol), and the activity of seven extracellular enzymes were
analyzed. AH community compositionwas investigated via species-
specific qPCR (Baudy et al., 2019).

We expected that the AH species (in monocultures) differ in
their fungicide tolerance, as has been reported for aquatic fungi
exposed to different concentrations of various fungicides
(Dijksterhuis et al., 2011). We additionally hypothesized that cul-
tures would be more resistant with increasing diversity and
maintain leaf decomposition up to high fungicide concentrations,
due to functional redundancy and the presence of tolerant species
(Biggs et al., 2020; Pascoal et al., 2005). Community composition,
on the other hand, would already be affected at relatively low
concentrations (Zubrod et al., 2019). We finally hypothesized that
fungicide exposure alters the interactions between AH species (e.g.,
complementarity and dominance effects) occurring during leaf
colonization (cf. Fernandes et al., 2011), which would be most
pronounced in assemblages comprising species with marked dif-
ferences in fungicide tolerance.
2

2. Material and methods

2.1. Chemicals

The fungicide mixture comprised the synthetic fungicides
azoxystrobin, carbendazim, cyprodinil, quinoxyfen, and tebucona-
zole applied at equal concentrations. These fungicides cover a broad
range of modes of action (Table 1) currently used in agriculture and
were already detected in the same streams within one year
(Landesamt für Umwelt Rheinland-Pfalz, 2016). The fungicide sum
concentrations of 0, 5, 50, 500, and 2500 mg/L were chosen based on
an earlier study (Zubrod et al., 2015a), and to cover field-relevant
(i.e., 5 and 50 mg/L) to worst-case exposure scenarios (i.e., 500
and 2500 mg/L; Rabiet et al., 2010; Zubrod et al., 2019). Fungicides
were applied as commercial products (Table 1), making the use of
further solvents redundant. The products were diluted in auto-
claved (at 121 �C for 20 min; Systec DE-65®, Systec, Germany)
nutrient medium (for composition see Dang et al., 2005) to obtain
the respective nominal sum concentrations. To verify exposure
concentrations, volumes of 10 mL were sampled in the 0, 5, and
2500 mg/L fungicide treatments (n ¼ 1/3/3) at test initiation and at
the time of the first medium renewal (i.e., after 7 days). Samples
were taken from fresh medium in additionally prepared micro-
cosms at test initiation and old medium of quaternary cultures at
the time of medium renewal on day 7 of the experiment. Samples
were stored frozen at�20 �C until chemical analysis. After thawing,
fungicides were measured by direct injection into a liquid chro-
matography high-resolution mass-spectrometry (LC-HRMS) Orbi-
trap system (Thermo Fisher Scientific, Germany) using matrix-
matched standards for calibration. The limit of quantification
(LOQ) was set to the lowest concentration reliably distinguishable
from blanks and ranged from 0.1 to 0.5 mg/L among fungicides
(Table 1; for details see Fern�andez et al., 2016). Fungicide concen-
trations in the controls were below the LOQ. Due to technical rea-
sons, concentrations of quinoxyfen could not be quantified.
However, as the measured sum concentrations of the other four
fungicides deviated less than 15% of the nominal (Table 1), a proper
dosing with all five fungicides at test initiation is assumed. Thus,
nominal sum concentrations are used throughout the present
manuscript.

2.2. Fungi and leaf substrate

Strains of the AH species Alatospora acuminata,Heliscella stellata,
Neonectria lugdunensis, and Tetracladium marchalianum were used
as model fungi (for strain specifications see Table S1). These species
are representatives of decomposer communities in temperate
streams and are assumed to vary in their tolerance to the fungicide
mixture used in this study (Bundschuh et al., 2011; Zubrod et al.,
2015a). The strains were isolated in 2015 and 2016 from small
streams in Germany and deposited at the German Collection for
Microorganisms and Cell Cultures (Leibniz-Institute DSMZ; Baudy
et al., 2019). Cultures were grown on Petri dishes containing
15 mL of 1% malt extract agar (10 g/L malt extract, 20 g/L agar) at
16 �C in darkness for 21 days. Agar plugs (diameter: 5mm)were cut
from the growing edges of colonies and served as fungal inoculum.

Leaves of Alnus glutinosa (L.) GAERTN. (black alder), a wide-spread
European riparian tree species (Copolovici et al., 2014), with no
visible signs of damage or symptoms of diseases, were handpicked
from trees near Landau, Germany (49.20116 �N; 8.09331 �E) shortly
before abscission in 2015 and stored frozen at �20 �C (instead of



Table 1
Information on origin, mode of action and concentrations of the applied fungicides.

Fungicide Product Manufacturer Mode of actiona Analytical limit
of
quantification
(mg/L)

Fungicide concentrations (mg/L)

5 mg/L fungicide treatment 2500 mg/L fungicide treatment

Nominal Measured in
fresh nutrient
mediumb (n ¼ 3)

Measured in old
nutrient
mediumb (n ¼ 3)

Nominal Measured in
fresh nutrient
mediumb (n ¼ 3)

Measured in old
nutrient
mediumb (n ¼ 3)

Azoxystrobin Ortiva® Syngenta
Agro GmbH,
Germany

Inhibition of
respiration

0.4 1 0.68 ± 0.03
(68.0%)

0.50 ± 0.06
(50.3%)

500 481.3 ± 58.8
(96.3%)

256.0 ± 22.3
(51.2%)

Carbendazim Derosal® Bayer Crop
Science,
Germany

Inhibition of
mitosis and cell
division

0.1 1 1.04 ± 0.30
(104.3%)

0.16 ± 0.07
(15.7%)

500 447.7 ± 78.0
(89.5%)

295.7 ± 34.6
(59.1%)

Cyprodinil Chorus® Syngenta
Agro GmbH,
Germany

Inhibition of
amino acids and
protein synthesis

0.1 1 0.84 ± 0.03
(84.0%)

< LOQc 500 453.0 ± 67.4
(90.6%)

38.3 ± 5.7
(7.7%)

Quinoxyfen Fortress™
250

Dow
AgroSciences
GmbH,
Germany

Inhibition of signal
transduction

e 1 NAd NAd 500 NAd NAd

Tebuconazole Folicur® Bayer Crop
Science,
Germany

Inhibition of sterol
biosynthesis in
membranes

0.5 1 1.41 ± 0.34
(140.7%)

0.79 ± 0.01
(79.0%)

500 373.3 ± 49.4
(74.7%)

156.7 ± 10.1
(31.3%)

Mixture All of the
above

All of the
above

All of the above e 5 3.97 ± 0.36
(99.3%e)

1.45 ± 0.01
(36.3%e)

2500 1755.3 ± 250.9
(87.8%e)

746.7 ± 67.6
(37.3%e)

a Fungicide Resistance Action Committee (2020).
b Mean concentration and standard deviation (percent recovery from nominal concentration).
c Limit of quantification.
d Not analyzed.
e Recovery based on nominal sum concentrations adapted to the proportion of the measurable four fungicides (i.e., 4 and 2000 mg/L), excluding quinoxyfen.
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dry storage) for practical reasons. It is noted that frozen storage can
impact leaching and conditioning of leaves (B€arlocher, 1992), which
does, however, not impede comparability across treatments (see
below for details). Upon thawing, disks (diameter: 16 mm) were
cut, excluding the midrib. In the test vessels (i.e., 100-mL Erlen-
meyer flasks), 20 leaf disks were leached in 20 mL of autoclaved
nutrient medium for 48 h. Subsequently (i.e., one day prior to the
experiment), leachates were decanted, whereas flasks and leaf
disks therein were autoclaved to eliminate unwanted microbial
activity. The sterile test vessels were kept overnight in a sealed
ethanol-disinfected box.

2.3. Experimental design

The microcosm experiment was employed as an 11� 5-factorial
design. Eleven fungal treatments e comprising four monocultures,
six binary, and a quaternary combination of the four speciesewere
exposed to five fungicide sum concentrations (i.e., 0, 5, 50, 500, and
2500 mg/L) leading to 55 treatments. Additionally, two sterile
(fungus-free) treatments receiving either no fungicides or a fungi-
cide sum concentration of 2500 mg/L were prepared. These treat-
ments served as references for later analyses (see below for details).
All 57 treatments were replicated five times (n ¼ 5). Inoculation of
themicrocosms largely followed themethods described in Andrade
et al. (2016). Microcosms were initiated under sterile conditions in
a laminar flow cabinet (UV-treated for 30min prior to use; NU-437-
500 E; Nuaire, USA). Each microcosm consisted of a 100-mL
Erlenmeyer flask containing 20 leaf disks, four agar plugs, and
60 mL of nutrient medium spiked with the respective fungicide
concentration. Microcosms receiving one, two, or four species were
equipped with four, two, or one cultivated agar plug(s) per species.
Reference microcosms containing no fungi were equipped with
four sterile agar plugs. The test vessels were closed with gas-
permeable cellulose stoppers. Incubation of the microcosms was
carried out on a horizontal shaker (model VKS 75 B control;
Edmund Bühler GmbH, Germany) at 115 rpm at 16 �C in darkness.
3

The microcosms were randomly distributed on the shaker and
shuffled daily to avoid location effects. After 7 days of incubation,
the nutrient medium and the respective fungicide concentrations
were renewed in all microcosms (cf. Andrade et al., 2016). After the
total incubation time of 14 days, leaf disks from all microcosms
were sampled for later analyses as follows: for analysis of enzyme
activity, one leaf disk was preserved in a 12-mL plastic centrifuge
tube and stored at �20 �C; for assessment of bacterial contamina-
tion (this was largely prevented; see Supporting Information), two
leaf disks were preserved in 10 mL of a 2% formaldehyde/0.1% so-
dium pyrophosphate solution and stored at 4 �C; for potential
analysis of sporulation, which was, however, not within the scope
of this study, two leaf disks were agitated in deionized water for
96 h, fixed using formaldehyde (resulting in a 2% formaldehyde
solution), and stored at room temperature; the remaining 15 leaf
disks were preserved in pre-weighed 2-mL Eppendorf tubes,
lyophilized, analyzed for dry mass to the nearest 0.01 mg and af-
terwards used for ergosterol and DNA analyses.

2.4. Enzyme activity analyses

Activities of hydrolytic and oxidative enzymes were assessed
based on DeForest (2009) with a detailed overview of the modifi-
cations being highlighted in Baudy et al. (accepted). Briefly, leaf
disks were homogenized in 350 mL of sterile nutrient medium
using an Ultra-turrax® blender (24000 rpm for 30 s; IKA®-Werke
GmbH & Co. KG, Germany). Using fluorescence- and absorbance-
based reporter substrates, leaf homogenates were analyzed for
activities of phosphatases (EC 3.1.3.1 and 3.1.3.2; targeting phos-
phate esters), a-1,4-glucosidase (EC 3.2.1.20; targeting starch and
maltose), b-1,4-glucosidase (EC 3.2.1.21; targeting cellulose), cel-
lobiohydrolase (EC 3.2.1.91; targeting cellulose), b-1,4-xylosidase
(EC 3.2.1.37; targeting hemicellulose), peroxidase (EC 1.11.1.7; tar-
geting lignin), and phenol oxidase (EC 1.10.3.2; targeting lignin).
Reactions were performed in 96-well 300-mL well plates (Thermo
Fisher Scientific, USA), which were incubated on a rotary shaker
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(120 rpm; KS 15; Edmund Bühler GmbH, Germany) in darkness for
approximately 1 h (hydrolases) or 2 h (oxidases). Fluorescence and
absorbance were measured using a microplate reader (Infinite 200,
Tecan Group, Switzerland). The remaining leaf homogenate of each
sample (~340 mL) was filtered through pre-weighed glass fiber
filters (GF/6; Whatman GmbH, Germany), which were subse-
quently dried at 60 �C for 24 h and weighed to the nearest 0.01 mg.
The difference of the filter weights was used to normalize enzyme
activity to leaf dry mass.
2.5. Ergosterol analysis

Total fungal biomass was estimated as the fungal-specific
membrane molecule ergosterol as described in Gessner (2005),
without any further conversion (e.g., the average conversion factor
of 5.5 mg ergosterol/mg fungal dry mass; Gessner and Chauvet,
1993). Briefly, ergosterol was extracted from 30 to 50 mg of
lyophilized leaf sample in 10 mL of alkaline methanol. Extracts
were purified via solid-phase extraction (Sep-Pak® Vac RC tC18
500 mg sorbent, Waters, USA), and eluted in isopropanol. Ergos-
terol was finally quantified using a high-performance liquid chro-
matography (HPLC) system (1200 Series, Agilent Technologies,
USA).
2.6. Fungal biomass quantification via DNA analysis

To estimate the biomass of individual fungi, DNA was extracted
and species-specifically quantified (Baudy et al., 2019). Since the
relationship between DNA concentrations and fungal dry mass is
subjected to considerable interspecific variability (Baudy et al.,
2019), DNA concentrations between species are not readily com-
parable. Briefly, genomic DNA was extracted from 25 to 50 mg of
lyophilized leaf sample using the FastDNA® Spin Kit for Soil in
conjunction with the FastPrep™-24 5G Instrument (MP Bio-
medicals, Germany). Extracted DNA amounts of individual species
were quantified via TaqMan® qPCR reactions (Applied Biosystems,
USA) performed in a Mastercycler® ep gradient S (Eppendorf,
Germany).
2.7. Data analyses

Leaf mass loss (L; in percent) was calculated as follows:

L ¼

�
wsterile �wfungi

�
�
wsterile

� � 100

where wsterile is the mean final dry mass of leaf disks in sterile
referencemicrocosms andwfungi is the final drymass of leaf disks in
individual microcosms containing fungi. Ergosterol and DNA con-
centrations (expressed as mg/g leaf dry mass, respectively) were
calculated as described in Baudy et al. (2019). Enzyme activities
(expressed as mmol/(h*g leaf dry mass); for calculation see Baudy
et al. (accepted)) were normalized to pooled fungicide-free and
fungicide-treated (2500 mg/L) sterile reference microcosms, if var-
iables in both treatments were not significantly different (as judged
by t-tests). Otherwise, each treatment was normalized individually.
In this case, reference values for the fungicide sum concentrations
of 5, 50, and 500 mg/L were interpolated from linear regression
curves based on the available reference data. Predictions for leaf
mass loss (Plml) and ergosterol concentrations (Perg) in mixed cul-
tures were calculated as follows:
4

Plml=erg ¼
Xn
i¼1

Flml=erg species i � cDNA species i

where Flml/erg species i is the mean specific leaf mass loss or mean
specific ergosterol concentration (Table S1) of component species i
in the mixed culture, cDNA species i is the DNA concentration of
component species i in the mixed culture and n is the number of
species in the mixed culture (i.e., 2 or 4).

Multiple comparisons of leaf mass loss, ergosterol and DNA
concentrations, as well as diversity effects between fungicide-free
controls and fungicide treatments were performed via analysis of
variance (ANOVA) followed by Dunnett’s tests. Comparisons be-
tween observed and predicted leaf mass loss and ergosterol con-
centrations were performed using paired t-tests. For multivariate
analysis, enzyme activities were log(xþ1) transformed and min-
max normalized to decrease the discriminatory power of en-
zymes with high activities. To assess the effects of fungal diversity,
species combination (nested within diversity) and fungicide
exposure as well as their interactions on enzyme activity profiles,
permutational multivariate analysis of variance (PERMANOVA) was
performed on enzyme activity profiles of all cultures. Distances
between enzyme activity profiles were calculated using Euclidean
distance. For the visualization of dissimilarities of the enzyme ac-
tivity profiles, the distance matrix was subjected to non-metric
multidimensional scaling (NMDS). All statistics and figures were
prepared using R version 3.5.2 (R Core Team, 2018) as well as the
add-on packages “multcomp”, “plotrix” and “vegan”. The term
“significant(ly)” is only used with regard to statistical significance
(p < 0.05) throughout this study.
2.8. Diversity effects on leaf colonization

To assess interactions between AH species during the coloni-
zation of leaf substrate, diversity effects were calculated from
species-specific DNA concentrations in monocultures and mixed
cultures within the same fungicide treatments, applying a modified
Price equation (Fox, 2005). The calculation of these effects (in
percent) is based on the assumption that species perform in mixed
cultures equally well as in monocultures (i.e., additivity). Calculated
net diversity effects can be partitioned into three component ef-
fects comprising trait-independent complementarity, dominance,
and trait-dependent complementarity.

Net diversity effects are deviations between observed DNA
concentrations in mixed cultures and DNA concentrations pre-
dicted from monocultures, weighted by the initial proportion of
inoculum of each species in the mixture. Trait-independent
complementarity is positive if the majority of species show
higher DNA concentrations in mixed culture than expected based
on their performance in monoculture, indicating synergistic in-
teractions. It is negative if the majority of species show the opposite
response, thus indicating antagonistic interactions. Dominance
provides insights into the dominance relation between species.
Dominance is positive if species with high DNA concentrations in
monoculture perform better in mixed cultures, but at the expense
of species with lower DNA concentrations in monoculture. It is
negative if species with low DNA concentrations in monoculture
perform better in mixed cultures, but at the expense of other
species. Trait-dependent complementarity is positive if species
with high DNA concentrations in monocultures perform better in
mixed cultures, but not at the expense of other species. It is nega-
tive if species with low DNA concentrations in monoculture
perform better in mixed cultures, but not at the expense of other
species (for more details see Fox, 2005).
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3. Results and discussion

3.1. Responses of monocultures

Since virtually no leaf mass loss was observed for A. acuminata
and H. stellata under control conditions (2.6% and �4.4%, respec-
tively; Fig. 1a), potential effects of fungicide exposure on these
species’ degradative capacity could not be detected. In contrast,
N. lugdunensis and T. marchalianum efficiently decomposed leaves
(up to 25% in the control), while this functional variable was only
for N. lugdunensis significantly affected at a fungicide sum con-
centration of 2500 mg/L (Fig. 1a). Generally, as indicated by ANCOVA
(Table S2), among all monocultures andmixed cultures, therewas a
strong linear relationship between leaf mass loss and cumulative
enzyme activities. This relationship was not significantly modified
by fungicide exposure (Table S2), which generally has the potential
to affect the substrate affinity of enzymes (Artigas et al., 2012). In
line with earlier studies (e.g., Suberkropp et al., 1983; Abdel-
Raheem and Shearer, 2002; Baudy et al., accepted), the degrada-
tive capacity of the investigated AH species seems to be based on
distinct enzyme activity profiles (Fig. 2aed). While A. acuminata
and T. marchalianum show a similar profile, characterized by hy-
drolases (Fig. 2a, d), the profile of N. lugdunensis is characterized by
oxidases (Fig. 2c). The profile of H. stellata, however, does not seem
to include the investigated enzymes (Fig. 2b), which may be
explained by the low biomass of this species observed in this
experiment, resulting in lower productivity (Fig. 1b) or a different
leaf colonization strategy (Baudy et al., accepted). Similar to leaf
mass loss, fungicide exposure affected enzyme activity profiles only
at high concentrations of 500 and 2500 mg/L (Fig. 2aed), indicating
no pronounced alterations in the regulation of the investigated
enzymes at environmentally relevant fungicide concentrations.

Fungal biomass (independent whether assessed as ergosterol or
DNA) of A. acuminata and H. stellata was maintained at constant
levels up to a fungicide sum concentration of 50 mg/L. At higher
fungicide concentrations, no or very low biomasses could be
detected (Fig. 1b; Fig. 3a and b). Again, N. lugdunensis and
T. marchalianum had measurable ergosterol contents, even at the
highest fungicide sum concentration, which were, however,
significantly lower compared to controls (�84% and �64%,
respectively; Fig. 1b). This pattern was also reflected by DNA con-
centrations of T. marchalianum (Fig. 3d). In contrast, N. lugdunensis
showed a substantial increase (up to 65%) in DNA levels at fungicide
sum concentrations of 50 and 500 mg/L, while ergosterol remained
constant (Fig. 1b; Fig. 3c), leading to an over-prediction of DNA-
based ergosterol concentrations (Fig. 1b). This pattern is likely
triggered by a direct effect of one fungicide of the mixture, namely
tebuconazole, on the production of both biomarkers (Baudy et al.,
2020). Such an effect can result in altered biomarker levels, not
reflecting true mycelial biomass (Baudy et al., 2020). Nonetheless,
A. acuminata and H. stellata can be considered as more sensitive
compared to N. lugdunensis and T. marchalianum. This sensitivity
pattern is in line with previous laboratory studies assessing AH
species’ productivity via morphological identification and quanti-
fication of asexual spores termed conidia (Bundschuh et al., 2011;
Zubrod et al., 2015b). In these studies, it was observed that
increasing fungicide concentrations reduced sporulation of
A. acuminata and H. stellata and maintained or even increased
sporulation of N. lugdunensis and T. marchalianum in near-natural
decomposer communities.

In the field, N. lugdunensis and T. marchalianum frequently
dominate AH communities inhabiting aquatic ecosystems severely
contaminated with metals or xenobiotics (Sol�e et al., 2008; Sridhar
et al., 2000, 2005). Therefore, and considering the stressors applied
in this study specifically target fungi, the remarkable tolerance of
5

these species to fungicides can be assumed to be based on highly
sophisticated detoxification systems. Detoxification processes in
AHs have, however, mostly been investigated with respect to
metals (Krauss et al., 2011) and increases in glutathione synthesis
are suspected to play a major role in the metal tolerance of
N. lugdunensis and T. marchalianum (Braha et al., 2007; Miersch
et al., 2005). Yet, this detoxification pathway may also explain the
tolerance of these species to synthetic fungicides, as glutathione is
involved in the elimination of reactive oxygen species formatted
upon xenobiotic action as well as in the conjugation of xenobiotics
during phase II biotransformation reactions (P�ocsi et al., 2004).
Moreover, fungal ligninolytic enzymes (e.g., peroxidase and phenol
oxidase) can metabolize aromatic xenobiotics (Harms et al., 2011),
mitigating their toxicity (Artigas et al., 2017). However, as the most
tolerant AH species of the present study had no elevated oxidase
activities (i.e., T. marchalianum; Fig. 2d) this degradation pathway
seems less relevant. To unravel the underlying biotransformation
processes, the combination of “-omics” (e.g., a well-coordinated use
of genomics, transcriptomics and proteomics; Tsui et al., 2016) and
chemical analyses (internal vs. external concentrations of fungi-
cides and their metabolites) is a promising approach.

Predictions of leaf mass loss based on DNA concentrations
largely matched the observations in fungicide-exposed mono-
cultures (Fig. 1a). Accordingly, fungicide exposure does not seem to
affect biomass-specific functional performances. However, three
out of these 16 comparisons indicated significant differences
(Fig. 1a): Two cases are likely the result of fungicide-altered DNA
concentrations (as discussed above) over-estimating leaf decom-
position by N. lugdunensis (Baudy et al., 2020). Additionally, at a
fungicide sum concentration of 500 mg/L, T. marchalianum decom-
posed more leaf mass than predicted (Fig. 1a). As this effect seems
independent of fungicide mixture concentrations and could not be
explained by enzyme activity or other variables (Fig. 1b; Fig. 2d),
this observation may be the result of chance.

3.2. Responses of mixed cultures

Irrespective of the fungicide concentration, leaf mass loss, fungal
biomass production and enzyme activity profiles in binary cultures
and the quaternary culture show similar patterns as observed in the
respective most productive and tolerant species in monoculture
(Fig. 1; Fig 2). Accordingly and as hypothesized, functions are
maintained in mixed cultures up to high fungicide concentrations
(Piment~ao et al., 2020; Zubrod et al., 2015a). For both functional
variables, predictions significantly deviating from observations
mainly concerned mixed AH cultures containing N. lugdunensis (6
out of 70 comparisons; Fig. 1), which is discussed above. Again, the
few significant deviations concerning other mixed cultures (i.e., 3)
are likely not the result of fungicide impacts, as these responses
were not concentration-dependent and could not be explained by
other variables (Fig. 1b; Fig. 2). Accordingly, and as observed in
monocultures, fungicide exposure did not affect biomass-specific
functional performances in mixed cultures.

In binary cultures, fungicide exposure resulted in a similar
response pattern of individual species’ DNA concentrations as
observed in monocultures (Fig. 3). In the quaternary culture,
however, exposure to already the lowest fungicide sum concen-
tration (i.e., 5 mg/L) significantly reduced DNA concentrations of
A. acuminata and H. stellata by 60% and 50%, respectively (Fig. 3a
and b). This may be explained by an intensified resource competi-
tion in the quaternary culture further increasing sensitivity to
fungicides in sensitive species (i.e., synergistic effects of multiple
stress factors; Steinberg, 2012). While trade-offs between somatic
(mycelial) growth and (asexual) reproduction cannot be ruled out
(i.e., increased conidial production at the expense of mycelial
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growth on the leaf substrate), it has been shown previously that
fungicide exposure overall counteracts conidial production in AHs
(Bundschuh et al., 2011; Dimitrov et al., 2014; Zubrod et al., 2015).
Nonetheless and despite the low biomass of A. acuminata and
H. stellata in the quaternary culture (compared to N. lugdunensis
and T. marchalianum; Fig. 3), the present study confirms pro-
nounced fungicide effects on community composition at environ-
mentally relevant concentrations up to 50 mg/L.

This shift in community composition is accompanied by alter-
ations in species interactions during leaf colonization. Net diversity
effects, which are positively correlated with genetic divergence of
the communities (i.e., synergistic interactions increase with genetic
distance; Fig. S1; cf. (Baudy et al., accepted)), remained largely
unaffected in binary cultures (Fig. 4). Yet, in the quaternary culture,
net diversity effects were (partially significantly) reduced from 3%
in the fungicide-free control to �32% and �38% at fungicide sum
concentrations of 5 and 50 mg/L, respectively (Fig. 4g). These re-
ductions are driven by significant alterations of trait-independent
complementarity effects from positive, in the fungicide-free con-
trol (i.e., 35%), to negative, at fungicide sum concentrations of 5 and
50 mg/L (�7% and �32%, respectively; Fig. 4g). Accordingly and as
6

hypothesized, fungicide stress apparently induced a shift from
complementary towards competitive interactions at the mutual
expense of the community (Fox, 2005). Although in binary cultures
net diversity effects remained unaffected, fungicide exposure lead
to significant alterations of dominance between sensitive and
tolerant species (Fig. 4c and d) as well as between the two tolerant
species (Fig. 4f). The dominance of T. marchalianum over
A. acuminata was slightly reduced from 31% in the control to 26%
and 19% at fungicide sum concentrations of 5 and 50 mg/L,
respectively (Fig. 4c). In contrast, the dominance of N. lugdunensis
over H. stellatawas substantially increased from 3% in the control to
9% and 43% at fungicide sum concentrations of 5 and 50 mg/L,
respectively (Fig. 4d). In the binary culture comprising of the two
most tolerant species, the dominance of N. lugdunensis over
T. marchalianum seems to be maintained up to a fungicide sum
concentration of 500 mg/L (�32% to �25%; Fig. 4f), retrospectively
characterizing N. lugdunensis under environmentally relevant
conditions as the most competitive species. As this relationship is
reversed at a fungicide sum concentration of 2500 mg/L (31%;
Fig. 4f), T. marchalianum seems to be the most tolerant species to
fungicide stress (cf. Zubrod et al., 2015a).
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3.3. Implications for ecosystem functioning in streams

The results of this microcosm study indicate that AH-mediated
leaf litter decomposition may not be affected by environmental
fungicide exposures (Fig. 1a). As already low fungicide concentra-
tions can have pronounced effects on community composition
(Fig. 3) and diversity (Fern�andez et al., 2015), the maintenance of
the decomposition process (in quantitative terms) seems to be
safeguarded by highly tolerant species such a N. lugdunensis and
T. marchalianum (Fig.1), which together cover all of the investigated
hydrolytic and oxidative enzymes involved in leaf degradation
(Fig. 2c and d). Yet, the universality of these findings needs to be
further validated, which may be pursued in future experiments
using the tools applied in this study in combinationwith higher-tier
test systems (e.g., indoor or outdoor stream mesocosms), involving
7

different AH species, higher fungal diversity, leaf substrates of
varying toughness and fluctuating test conditions.

Analogous to leaf litter decomposition, it could be concluded
that AH-mediated leaf conditioning in streams remains unaffected
by environmental fungicide exposures, when considering solely
total fungal biomass (i.e., ergosterol concentrations) as a surrogate
variable for this process (Fig. 1b; Foucreau et al., 2013). However,
the leaves’ nutritional quality for consumers depends on fungal
community composition (Danger et al., 2016). Assessment of
community composition in the quaternary culture under fungicide
exposure reveals a substantial decline of A. acuminata (Fig. 3a), an
AH species known to be preferably consumed by stream in-
vertebrates (Arsuffi and Suberkropp, 1989). AH species rather
rejected by these consumers, on the contrary, persisted in this
community, that is N. lugdunensis and T. marchalianum (Arsuffi and
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Suberkropp, 1989; Rong et al., 1995). Moreover, these fungicide-
induced alterations of AH community composition reflect those
observed in earlier studies, demonstrating the above-discussed
feeding preferences in an invertebrate leaf consumer (Bundschuh
et al., 2011; Zubrod et al., 2015a). While mechanisms behind this
selective feeding are not fully understood, a possible explanation
might be fungal interspecific differences in the composition of
macronutrients such as amino acids or essential fatty acids (as
reviewed by Danger et al., 2016). Accordingly, chemical stress-
induced alterations of AH community composition may affect the
physiological fitness of consumers if alternative food sources are
lacking (cf. Konschak et al., 2019, 2020).
8

4. Conclusion

Leaf mass loss and total fungal biomass production are, amongst
others, the most widely used variables to assess the functional
integrity of detritus-based stream ecosystems (Colas et al., 2019;
Gessner and Chauvet, 2002; Graça et al., 2005). Although the
stressors applied in this study (i.e., fungicides) specifically target
organisms playing key functional roles in these ecosystems (i.e.,
fungi), no adverse functional effects were indicated at environ-
mentally relevant concentrations. The presence of highly tolerant
species combined with functional redundancy (with respect to
these variables), however, masks alterations of AH community
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composition. Although previous studies provide a strong indication
of a close link between AH community composition and leaf con-
sumers’ physiological fitness (Konschak et al., 2019, 2020), the
9

mechanistic basis of this relationship is not well understood and
requires further research. Accordingly, filling this knowledge gap
may foster the assessment of potential (fungicide) stress-induced
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cascading effects on detritus-based stream food webs.
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