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Detecting alternative attractors in ecosystem
dynamics
Torbjörn Säterberg 1✉ & Kevin McCann2

Dynamical systems theory suggests that ecosystems may exhibit alternative dynamical

attractors. Such alternative attractors, as for example equilibria and cycles, have been found

in the dynamics of experimental systems. Yet, for natural systems, where multiple biotic and

abiotic factors simultaneously affect population dynamics, it is more challenging to distin-

guish alternative dynamical behaviors. Although recent research exemplifies that some

natural systems can exhibit alternative states, a robust methodology for testing whether

these constitute distinct dynamical attractors is currently lacking. Here, using attractor

reconstruction techniques we develop such a test. Applications of the methodology to

simulated, experimental and natural time series data, reveal that alternative dynamical

behaviors are hard to distinguish if population dynamics are governed by purely stochastic

processes. However, if population dynamics are brought about also by mechanisms internal

to the system, alternative attractors can readily be detected. Since many natural populations

display evidence of such internally driven dynamics, our approach offers a method for

empirically testing whether ecosystems exhibit alternative dynamical attractors.
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Dynamical systems theory has been applied extensively in
the quest for a better understanding of critical transitions;
that is, abrupt changes in the dynamics, of ecosystems1–4.

A key result derived from this theory, indeed a common feature
of non-linear mathematical models, is that novel dynamical
regimes may arise through perturbations affecting either para-
meter values (that is, through bifurcations) or state variables of a
system (systems can enter alternative basins of attraction)2. Even
a simple discrete one-dimensional model can display a wide array
of different types of dynamics5, and in higher dimensions - the
dimensionality of which real ecosystems most likely are com-
posed - the set of potential dynamics that can arise from a model
can increase dramatically6. Thus, if non-linear mathematical
models are useful descriptions of real ecosystems we would expect
some ecosystems to display qualitative changes in their temporal
dynamics following critical transitions.

Experiments clearly indicate that alternative dynamical
regimes, including alternative attractors such as cycles and chaos,
can exist in a system7–10. Still, a robust proof of whether a given
ecosystem has switched to an alternative attractor is lacking3. A
number of studies indicate that natural systems may exhibit
alternative attractors3,11–15, yet to our knowledge, only one study
has thoroughly investigated if the temporal dynamics in an eco-
system is qualitatively different pre and post a critical transition.
In this study, it was found through visual inspection of time series
that trajectories were qualitatively different pre and post an
induced trophic cascade in a whole lake experiment16. However,
no formal statistical test was conducted to determine whether the
time series trajectories were indeed different. In fact, no such test
has so far been developed.

Here we develop a formal test for testing whether systems
exhibit alternative dynamical attractors. The test distinguishes if
the trajectories of two-time series (e.g., pre-chosen from break-
point analysis17 or biological knowledge of the system) are qua-
litatively different. It is based on attractor reconstruction
techniques (See “Methods”) and the rationale behind the test is
that predictions of the dynamics in a given dynamical regime
should be significantly more accurate if time series from the same,
rather than a contrasting dynamical regime, are used to inform
predictions. Thus, if regimes (attractors) are dynamically dis-
similar we expect significantly lower prediction errors for within
than across regime (attractor) predictions, and therefore test if
prediction errors of within and across regime predictions are
significantly different.

Results and discussion
We illustrate the approach using a simple example with two
dynamical regimes (Fig. 1): a two-point limit cycle and a four-
point limit cycle (MA and MB in Fig. 1, respectively). The tra-
jectories for two species, a consumer C and its resource R, can
either be plotted as a function of time (left panels Fig. 1a) or in
phase space (right panels Fig. 1a). Now, assume that information
from one dynamical regime (e.g. MA) is used to predict dynamics
from the same dynamical regime, then predictions (ŶAðtÞjMA)
are very similar to the true observed dynamics (comparing
ŶAðtÞjMA and YA(t) in Fig. 1b). However, if information from
another dynamical regime (MB) is used to inform predictions,
then predictions (ŶAðtÞjMB) are completely different to the true
dynamics (comparing ŶAðtÞjMB and YA(t) in Fig. 1b). Predictions
based on data from a contrasting regime (ŶAðtÞjMB) are thus less
accurate than predictions based on data from the same regime
(ŶAðtÞjMA) (Fig. 1c), inferring larger prediction errors for across
regime predictions (ŶAðtÞjMB � YAðtÞ) than within regime pre-
dictions (ŶAðtÞjMA � YAðtÞ) (Fig. 1d). Moreover, larger across

(ŶBðtÞjMA � YBðtÞ) than within regime prediction errors
(ŶBðtÞjMB � YBðtÞ), would also be found if dynamical regime
YB(t) was predicted, as within regime predictions (ŶBðtÞjMB) are
more similar to the true dynamics than across regime predictions
(ŶBðtÞjMA) also for this dynamical regime (YB(t)) (last row
Fig. 1b). A comparison of prediction errors for across and within
regime predictions can thus be used to test if the temporal
dynamics in two dynamical regimes are qualitatively different.

Figure 2 shows the probability of detecting difference in across
(Ŷ iðtÞjMj � Y iðtÞ) and within regime (Ŷ iðtÞjMi � Y iðtÞ) predic-
tion errors, in data from a simulated food-chain model (See
“Methods” and Supplementary Figs. 1a–d and 2, 3). Differences
in across and within regime prediction errors is detectable across
all dynamical regimes in which the observed dynamics is a cyclic
regime (i.e. B, C, or D in Fig. 2), except for the obvious case where
across and within regime predictions are based on the same
dynamical regime (diagonal in Fig. 2). For the specific case where
across and within regime predictions are compared across a
stochastic equilibrium and a cyclic regime (A predicts B, C, or D;
and B, C, or D predicts A in Fig. 2), a dichotomous response is
observed. This means that for a given pair of regimes, one test
indicates a significant difference in prediction errors (e.g. A
predicts B in Fig. 2) whereas in the opposite direction (e.g. B
predicts A in Fig. 2) the test is not significant. This result is caused
by the low predictive ability, and the low intrinsic predictability,
of stochastic equilibria (Supplementary Table 1). Overall, our
approach can thus robustly detect dynamical difference among
contrasting regimes when at least one regime is governed by
internally driven signals.

Fussman et al.7 proposed that two qualitatively different
dynamical regimes were apparent in an experimental system. This
conclusion was arrived at through a comparison of the predic-
tions of a mathematical model and the coefficient of variance of
time series produced by experimentally varying the dilution rate
in predator-prey chemostats. Two distinct dilution rate regions,
giving rise to equilibria and cycles, were suggested based on an
abrupt increase in the variability of time series at a specific
dilution rate. This suggests that the system had gone through a
Hopf-bifurcation, yet we note that there was no formal test
conducted on whether the temporal dynamics were qualitatively
different in the different parameter regions.

Our analyses of the Fussman et al.7 data set show that the
temporal dynamics of time series (Supplementary Figs. 4–11),
previously suggested to represent equilibria and cycles, are indeed
different (Fig. 3). This is because: (i) a significant difference in
prediction error for across and within regime predictions is often
found when an “equilibrium” time series is used to predict a
“cyclic” time series (upper left squares Fig. 3a, b; note that the
most obvious exceptions are observed for the two shortest time
series [n= 18 and 21]); and (ii) a difference in prediction errors
for across and within regime predictions is not found when
“cyclic” time series are used to predict “equilibria” (lower right
squares Fig. 3a, b). These results indicate that the “equilibrium”
time series are mainly stochastic, and that the “cyclic” time series
contain a higher degree of predictable information; a result which
resembles the result derived from analyses of data from the food-
chain model (B predicts A, and A predicts B in Fig. 2).

Moreover, a significant difference in prediction errors for
across and within regime predictions are often also found when
“cyclic” time series are used to predict other “cyclic” time series
(upper right squares Fig. 3a, b). This result may seem counter-
intuitive. Yet, if a non-linear mathematical model is a good
description of an experimental system, generically different cycle
periodicities and amplitudes will emerge for different parameter
values within the cyclic parameter region6. That we find
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dynamical difference among “cyclic” time series may thus be
explained by the fact that these time series indeed have qualita-
tively different internal signatures. Our results thus extend the
findings of Fussman et al.7 by showing that the temporal
dynamics of unique time series, from a region of parameter values
producing cyclic dynamics, are often also qualitatively different.

The experimental system and the food-chain model (Figs. 2, 3)
investigated above are examples of deterministic systems, since
mechanisms internal to those systems induce population varia-
bility. However, alternative dynamical regimes may also exist in

systems where population dynamics is brought about by sto-
chasticity. It is for example well-known that the characteristics of
time series (e.g. autocorrelation) produced by stochastic one-
dimensional models depend on their proximity to bifurcation
points4. If a model exhibits alternative stable equilibria this infers
that random perturbations may induce qualitatively different
time-series signals depending on in which basin of attraction the
model’s state resides (Fig. 4a and Supplementary Fig. 1e–g).

We apply our approach to data produced by a stochastic
alternative stable state model (“Methods”; Fig. 4a and
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Fig. 1 An illustration of the methodological approach of detecting alternative attractors in ecosystem dynamics. a Time-series plot (left panels) and
phase space plot (right panels) showing the dynamics of a consumer (C) and its resource (R) in a food-chain model. MA and MB are abbreviations for two
dynamical regimes: a 2-point limit cycle and a 4-point limit cycle, respectively. The gray arrow illustrates the flow in phase space. b The observed dynamics
of two different dynamical regimes (YA(t) & YB(t)) is estimated using information from either of two dynamical regimes (MA and MB) giving rise to within
(ŶAðtÞjMA and ŶBðtÞjMB [in blue]) and across regime predictions (ŶAðtÞjMB and ŶBðtÞjMA [in red]). c Within (ŶAðtÞjMA) and across regime predictions
(ŶAðtÞjMB) for one species in one dynamical regime (YA(t)). d Absolute predictions errors for across and within regime predictions are used to test if the
temporal dynamics within two contrasting regimes are dissimilar. Predator dynamics is here used to predict consumer and resource dynamics
(See “Methods”).
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Supplementary Fig. 1e–g). In general, alternative stochastic
regimes are not distinguishable (Fig. 4b, c). Still, for fixed para-
meters values that may best represent natural systems that have
gone through regime shifts (i.e. parameter values close to bifur-
cation points) dynamical difference is detectable (c≈1.8 or c≈2.7,
in Fig. 4b, c, respectively). However, long time series are required
for a robust detection also for these specific cases. Thus, our
approach has a limited ability of detecting dynamical difference
among alternative stochastic regimes.

As a final example of the approach, we apply it to a phyto-
plankton time series from a eutrophic Lake in Germany. We
tested if pre- and post-critical transition time series, as previously
found using breakpoint analysis18, constitute alternative dyna-
mical attractors in this system (Fig. 5a). The results show a sig-
nificant difference (p ≈ 0.03, permutation test) in across and
within regime predictions for the pre-transition time series, and
no difference (p ≈ 0.98, permutation test) in across and within

regime prediction errors for the post-transition time series
(Fig. 5b). This suggests that the pre-transition dynamics con-
stitute a more strongly internally driven dynamical regime than
the post-transition dynamics, a result resembling the result found
when comparing cyclic and stochastic equilibria produced by a
food-chain model (Fig. 2). A comparison of mean absolute pre-
diction errors (MAPE) of pre- and post-transition dynamics
further supports this assertion by showing that the post-transition
dynamics are associated with overall larger prediction errors
(MAPEW= 0.6; MAPEA= 0.67) than the pre-transition dynam-
ics (MAPEW= 0.53; MAPEA= 0.57). Predictions for post-
transition dynamics are thus less accurate than predictions of
pre-transition dynamics, suggesting that the pre-transition
dynamics is to a larger extent governed by internally driven
dynamics than the post-transition dynamics.

Conclusion
Overall, simulation results show that if internally driven signals
are evident in one out of two, or both regimes, of a natural
population time series, our methodology can robustly detect
alternative dynamical attractors (See also Supplementary Dis-
cussion). However, if stochastic processes dominate in both
regimes of a time series, the approach cannot distinguish alter-
native attractors. Therefore, if dynamical difference is detected
using the methodology developed here alternative internally
driven dynamics is detected. On the other hand, if a system is
strongly driven by stochastic processes, alternative stochastic
behaviors may be detected using other approaches such as power
spectrum analyses19.

Since the methodological approach presented in this study is
most likely to detect dynamic dissimilarity among time series
displaying internally driven signals, a key question is whether
natural populations exhibit deterministic signals. To this end,
meta-analyses of population time series have often found that
natural populations display non-linear deterministic dynamics
such as cycles20,21, suggesting that internally driven signals are
not overwhelmed by stochasticity in natural populations. In
natural systems, stochastic processes most likely integrate with
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Fig. 3 Detecting alternative dynamical attractors in an experimental data
set7. This figure shows if there is significant difference in across
(jŶ ijMjðtÞ � YiðtÞj) and within regime prediction errors (jŶ ijMiðtÞ � YiðtÞj)
across each combination of 14 experimental time series (a(n= 87), b
(n= 63), c(n= 75), d(n= 77), e(n= 16), f(n= 94), g(n= 90), h(n= 114), i
(n= 120), j(n= 41), k(n= 18), l(n= 49), m(n= 21) and n(n= 47);
Supplementary Figs. 4–11). These time series were earlier classified as
either equilibria or cycles7; a classification which is here displayed by black
thick lines. Significant, and non-significant, tests are illustrated in orange,
and green, respectively (H0:jŶ i jMi � Yi j>jŶ i jMj � Yi j; permutation test;
p= 0.05). Indexes (i, j) refer to row i and column j in the grids. Subpanels
show cases where (a) Brachionus calyciflorus, and (b) Chlorella vulgaris, time
series are used to predict Chlorella vulgaris, and Brachionus calyciflorus, time
series, respectively (See “Methods”).

Fig. 2 Detecting alternative dynamical attractors in systems dominated
by internally driven signals. This figure shows the probability of detecting
significant difference (P(Detecting dynamical difference); color bar) in
absolute prediction error for across (jŶ iðtÞjMj � YiðtÞj) and within regime
predictions ðjŶ iðtÞjMi � YiðtÞjÞ in data produced by a food-chain model. The
observed dynamical regimes, YiðtÞ, which are predicted using within
(Ŷ iðtÞjMi) and across regime dynamics (Ŷ iðtÞjMj) are shown in the first
column: A, equilibrium; B, a 2-point limit cycle; C, a 4-point limit cycle; D, a
chaotic attractor. Across regime predictors,Mj, are displayed in the top row
(See “Methods”). Time-series length and observation noise level are varied
for each combination of predictor and response regime. Probabilities of
detecting dynamical difference (the color bar) were derived by testing the
null-hypothesis (H0:jŶ ijMi � Yij>jŶ ijMj � Yij; permutation test; p= 0.05)
across 100 replicates for each combination of time series length and
observation noise level. Time-series length was varied from 10 to 100 in
steps of 10, and observation noise, ρ, was varied from 0.01 to 0.3 in steps of
0.01, in total yielding 300 combinations of observation noise and time
series length, for each combination of dynamical regimes i and j. In this
example, predator dynamics is used to predict consumer and resource
dynamics using the multivariate approach (See “Methods”; results for the
cases where consumer or resource dynamics are used to predict the other
species´ dynamics are presented in Supplementary Figs. 2, 3). All time
series were standardized (μ ¼ 0; sd ¼ 1) prior testing for dynamical
difference.
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internal processes22,23, creating novel dynamics that necessarily
still reflects the internal process22–24. As our approach is useful
for such dynamics, we reckon it as part of the growing toolbox of
approaches (e.g. early warning signals) required to understand
and mitigate against ecosystem collapse (e.g. regime shifts). With
the increasing presence of the global footprint development of
such methodologies are critical.

Methods
Detecting alternative attractors in ecosystem dynamics. We use empirical
dynamical modeling, a set of equation-free tools for analyzing non-linear time
series (for a review and assumptions see25,26, respectively), to test if the temporal
dynamics of alternative dynamical regimes are qualitatively different. Empirical
dynamic modeling builds fundamentally on Takens embedding theorem, which
shows that attractors of multi-dimensional dynamical systems can be reconstructed
using higher order lags of its embedded time series27. However, if a dynamical
system has gone through a bifurcation, or switched to an alternative basin of
attraction, attractors are qualitative dissimilar in the two regimes. Theoretically,
this infers that it should be possible to reconstruct the attractor of one regime using
information from the same regime, but not from the other regime. In practice, this
implies that if a model (attractor reconstruction) based on one dynamical regime is
used to predict the dynamics of variables from the same dynamical regime pre-
dictions should be accurate (i.e. low prediction errors), whereas if an attractor
reconstruction based on one dynamical regime is used to predict the dynamics of
variables of another attractor predictions should be less accurate (i.e. high pre-
diction errors). We make use of this idea by specifically testing if prediction errors

of across and within regime predictions are different. As explained below this idea
can be used for both univariate and multivariate time series data.

Univariate approach. Univariate attractor reconstructions can be found using the
simplex algorithm28,29. First, for a given dynamical regime, a time series can be
split into a library of vectors, and each vector is described by

y
A
ðtÞ ¼ <YAðtÞ;YAðt � 1Þ;YAðt � 2Þ; ¼ ;YAðt � ðE � 1ÞÞ>; ð1Þ

where YAðtÞ is an observation of variable Y at time t in dynamical regime A and E
is the reconstructed attractors embedding dimension. Using the simplex projection
algorithm, a one-step ahead forecast is produced as follows:

ŶAðt þ 1ÞjMB ¼ ∑
m¼1¼Eþ1

wmYBðtm þ 1Þ; ð2Þ

where tm is a time index of an observation in dynamical regime B, E is the
embedding dimension of regime B, and wm is an exponential weighting
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Fig. 5 Detecting alternative attractors in a phytoplankton time series
from Lake Müggelse18. a A phytoplankton time series (mg L−1) from Lake
Müggelse (black line). The red vertical line shows a breakpoint18 separating
two potential dynamical regimes: pre- and post-critical transition dynamics,
which are here used to test for alternative dynamical attractors. b The
upper panel shows prediction errors for the case where post-transition
dynamics is predicted using either across regime dynamics
(jŶ ijMj � Yij ϵ j ≠ i; in red), that is pre-transition dynamics, or within regime
dynamics (jŶ i jMj � Yij ϵ j ¼ i; in blue), that is, post-transition dynamics.
The lower panel shows the case where pre-transition dynamics is predicted
using either across regime dynamics (jŶ ijMj � Yi j ϵ j ≠ i; in red), that is,
post-transition dynamics, or within regime dynamics (jŶ ijMj � Yij ϵ j ¼ i;
in blue), that is, pre-transition dynamics. Mean absolute prediction errors
for across and within regime predictions are significantly different for the
pre-transition dynamics (H0:jŶ ijMi � Yij> jŶ ijMj � Yij; P≈0.03;
permutation test), but not for post-transition dynamics
(H0:jŶ i jMi � Yi j> jŶ ijMj � Yi j; P≈0.98; permutation test). Mean absolute
prediction errors for within (MAPEW) and across regime predictions
(MAPEA), for the post- and pre-transition dynamics, are given by 0.6 (n=
610), 0.53 (n= 607), 0.57 (n= 291) and 0.67 (n= 294), respectively. The
univariate prediction algorithm is here used to do predictions (See
“Methods”). Boxplots show the median (center line), upper and lower
quartiles (box limits), 1.5 x interquartile range (whiskers) and outliers
(points). Each part of the time series was standardized (μ ¼ 0; sd ¼ 1) prior
testing for difference in temporal dynamics of contrasting regimes.

Fig. 4 Detecting alternative attractors in alternative stochastic regimes.
This figure shows the probability of detecting significant difference (P
(Detecting dynamical difference); color bar) in absolute prediction errors
for across (jŶ iðtÞjMj � YiðtÞj) and within regime predictions ðjŶ iðtÞjMi �
YiðtÞjÞ in data produced by a stochastic alternative stable state model (See
“Methods”). a Model equilibria (stable [black solid lines] and unstable [red
dashed line]) as a function of harvest rate, c, for the model skeleton. b The
probability of detecting significant difference in absolute prediction error
when SS2 is used to predict SS1 (i.e. across regime prediction). c As in (b)
but here SS1 is used to predict SS2. Probabilities were derived by testing the
null-hypothesis H0:jŶ ijMi � Yij>jŶ ijMj � Yij (permutation test p= 0.05)
across 100 simulated data sets for each combination of time series length
and harvest rate, c. Time-series length was varied between 50 and 150 in
steps of 10, and harvest rate c was varied between 1.83 and 2.73 in steps of
0.05, in total yielding 209 combinations of time series length and harvest
rate. Each time series was standardized (μ ¼ 0; sd ¼ 1) prior testing for
difference in temporal dynamics of contrasting regimes.
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described by:

wm ¼ um= ∑
n¼1;¼ ;Eþ1

un; ð3Þ

where n and m belongs to the set of the E+1 nearest neighbors of vector y
A
ðtÞ in

the set of vectors fy
B
ðtmÞg, um ¼ expf�d½y

A
ðtÞ; y

B
ðtmÞ�=d½yAðtÞ; yBðt1Þ�g, and

d½y
A
ðtÞ; y

B
ðt1Þ� is the Euclidean distance between the prediction vector y

A
ðtÞ and its

nearest neighbor y
B
ðt1Þ in the set fy

B
ðtmÞg.

The only parameter that is estimated using the simplex algorithm is the
embedding dimension E. This parameter is estimated by optimizing the correlation
between observations (YAðt þ 1Þ) and predictions ðŶAðt þ 1ÞjMAÞ using a leave-
one-out cross validation approach (See Supplementary Discussion). The
embedding dimension E and its corresponding set of E-dimensional vectors (Eq. 1)
constitutes the reconstructed attractor, MA, of a given dynamical regime A. This
reconstructed attractor (MA) is then used to predict data for both the same
dynamical regime (ŶAðt þ 1ÞjMA), and the contrasting dynamical regime
ŶBðt þ 1ÞjMA. Likewise, the reconstructed attractor MB can be used to predict time
series dynamics from both dynamical regimes; that is, ŶAðt þ 1ÞjMB and
ŶBðt þ 1ÞjMB, respectively.

Multivariate approach. A multivariate time series describes a number of simul-
taneously evolving variables. For example, a bivariate time series can be described
by variables X and Y. For such time series, Sugihara et al.30 developed an approach
for testing if two variables (time series) are dynamically coupled. Their metho-
dology builds on the fact that a reconstructed attractor should map 1:1 to the
original attractor on which the reconstruction is based. This infers that two
attractor reconstructions (based on two different variables) should also map 1:1 to
each other30. Practically, this means that if two variables are dynamically coupled
one-time series should be predictable based on an attractor reconstruction of
another variable. However, if a dynamical system has gone through a bifurcation,
or potentially switched to an alternative basin of attraction, a new set of rules will
govern the dynamics of the system. Hence, a new attractor should have emerged.
Now, since this new attractor is most likely governed by a new set of rules it should
be difficult to predict the dynamics of this new alternative attractor based on
information from the former attractor. Thus, if one variable in one dynamical
regime is used to predict another variable in another dynamical regime, predictions
should be biased. Yet, if one variable from one dynamical regime is used to predict
another variable from the same regime predictions should be more accurate.

The simplex algorithm can be used to make predictions of a variable Y using a
time series of another variable X30. Predictions are produced as follows:

ŶAðtÞjMB ¼ ∑
m¼1¼Eþ1

wmYBðtmÞ; ð4Þ

where tm is the time series index of a vector of variable X of dynamical regime B,
wm is an exponential weighting based on variable X:

wm ¼ um= ∑
n¼1;¼ ;Eþ1

un; ð5Þ

where n and m belongs to the set of the E+1 nearest neighbors of xAðtÞ in fxBðtmÞg,
um ¼ expf�d½xAðtÞ; xBðtmÞ�=d½xAðtÞ; xBðt1Þ�g, and d½xAðtÞ; xBðt1Þ� is the Euclidean
distance between the prediction vector xAðtÞ and its nearest neighbor xBðt1Þ in
dynamical regime B.

The reconstructed attractors, MA and MB, for each variable and regime are
found using the univariate simplex algorithm described above28–30. Similar to the
univariate case, the reconstructed attractor (MA) is used to predict data from the
same dynamical regime (ŶAðtÞjMA), and to predict time series of a contrasting
dynamical regime (ŶAðtÞjMB). Yet, it is important to stress that MA here reflects an
attractor reconstruction based on a variable that is not being predicted (that is,
variable X is used to predict variable Y). This prediction approach thus infers that
predictions are made on data that was not used to fit the model (X predicts Y and
vice versa). Thus, neither across nor within regime predictions are made on data
used to fit a model.

Test statistic. We used mean absolute prediction errors to test for difference
between across and within regime predictions. Alternative metrics, such as mean
sum of square errors, can also be used. However, since our approach gives skewed
prediction errors we used mean absolute prediction errors to reduce the impact of
extreme values. Further, since the absolute prediction errors are non-normally
distributed we used a permutation test. The null hypothesis that is tested reads:

H0 : MAPEA < MAPEw; ð6Þ
where MAPEA is the mean absolute prediction error for across regime predictions
(that is, MAPEA ¼ 1

n ∑
t¼1:n

absðŶMA
ðtÞjMB � YMA

ðtÞÞ, and MAPEw is the mean

absolute prediction error for within regime predictions (that is,
MAPEw ¼ 1

n ∑
t¼1:n

absðŶMA
ðtÞjMA � YMA

ðtÞÞ. A test is consider significant if

observed difference in across and within regime mean prediction errors is larger
than the 95th percentile of 1000 permuted data sets.

Food-chain model. We used a food-chain model parameterized as in McCann and
Yodzis31 to simulate food-chain dynamics:

dR
dt

¼ R 1� R
K

� �
� xcycCR

Rþ R0
ð7Þ

dC
dt

¼ xcC �1þ yCR
Rþ R0

� �
� xPyPPC

C þ C0

dP
dt

¼ xPP �1þ yPC
C þ C0

� �
;

where R is the resource density, C consumer density, and P predator density. All
parameters, except half-saturation constants R0 (here set to 0.16129) and C0 (here
set to 0.5), and resource carrying capacity K, are derived from bioenergetics and
body size allometry30 (xc= 0.4, yc= 2.009, yp= 2.876, R0, r= 1, xp= 0.08).

This model can display a rich set of dynamics depending on parameter values31.
Here we alter resource carrying capacity K in order to simulate the dynamics (using
the deSolve package32 in R) of qualitatively different attractors (See Supplementary
Fig. 1; K= 0.78, equilibrium; K= 0.85; two-point limit cycle; K= 0.92, four-point
limit cycle; K= 0.997, chaotic dynamics). Every fifth time step of the simulated
dynamics, corresponding to a sampling frequency of ≈10 samples per cycle for the
2-point limit cycle, was sampled. Observation noise was thereafter added to the
deterministic dynamics produced by the model:

NlðtÞ ¼ N 0
lðtÞ þ ρ � eðtÞ; eðtÞ � Nð0; σN 0l Þ; ð8Þ

where N 0
l ðtÞ is the abundance of species l (P, C or R) simulated by the food-chain

model at time point t, ρ is the level of observation noise and σN 0
l
is the standard

deviation of the deterministic dynamics of species l produced by the food
chain model.

In order to investigate how time series length and observation noise affects the
probability of detecting alternative attractors we derived probability landscapes.
These were derived by testing the null-hypothesis (H0:jŶ ijMi � Yij>jŶ ijMj � Yij;
See Test statistic above) across 100 replicates for each combination of time series
length and level of observation noise, ρ. Time-series length was varied from 10 to
100 in steps of 10, and observation noise, ρ, was varied from 0.01 to 0.3 in steps of
0.01, in total yielding 300 combinations of observation noise and time series length,
for each combination of dynamical regimes i and j. Predator dynamics was used to
predict consumer and resource dynamics using the multivariate approach
described above (results for the cases where consumer or resource dynamics are
used to predict the other species´ dynamics are presented in Supplementary Figs. 2,
3). All time series were standardized (μ ¼ 0; sd ¼ 1) prior testing for dynamical
difference.

Experimental data set. The experimental data set was given by Fussman et al.7.
This data set contains 14 time series of a predator Brachionus calyciflorus and its
prey Chlorella vulgaris derived from chemostat experiments. Time series for dif-
ferent dilution rates were produced by keeping the dilution rate fixed in different
chemostats (Supplementary Figs. 3–11). Brachionus calyciflorus and Chlorella
vulgaris time series were used to predict Chlorella vulgaris and Brachionus calyci-
florus time series, respectively, using the multivariate approach described above.
We tested for qualitative difference in the temporal dynamics across all time series,
which were standardized (μ ¼ 0; sd ¼ 1) prior testing.

Alternative stable state model. We used a stochastic version of a well-known
alternative stable state model4,33 to produce alternative stochastic dynamical
regimes. The model is described by:

dx ¼ x 1� x
K

� �
þ cx2

1� x2

� �
dt þ σdw; ð9Þ

where K is the carrying capacity (here set to 11), c is a harvest rate, and σ (here set
to 0.01) is the magnitude of noise which is described by a Wiener process (dw).

The model was simulated for fixed harvest rates (c) assuming that the system
state resides in either of its two basins of attraction. The initial value for the
simulation was set to the equilibrium of the noise-free model skeleton for fixed
harvest rates c, and σ is set low in order to avoid stochastic flips, so-called
flickering, between alternative basins of attraction. Dynamics was integrated (Δt=
0.01) using the matlab-package SDE-Tools34.

In order to investigate how time-series length and harvest rate, c, affects the
probability of detecting alternative attractors in stochastic regimes we derived
probability landscapes.

These were derived by testing the null-hypothesis
H0:jŶ ijMi � Yij>jŶ ijMj � Yij (permutation test p= 0.05) across 100 simulated
data sets for each combination of time series length and harvest rate, c. Time-series
length was varied between 50 and 150 in steps of 10, and c was varied between 1.83
and 2.73 in steps of 0.05, in total yielding 209 combinations of time series length
and harvest rate. Each time series was standardized (μ ¼ 0; sd ¼ 1) prior testing for
difference in temporal dynamics of contrasting regimes.
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Natural time-series data. In a previous study on early warning signals of
impending regime shifts, Gsell et al.18 used breakpoint analysis to identify two
potential alternative dynamical regimes. We here test if these two-time series
segments constitute alternative dynamical attractors. Prior analysis, we imputed a
few missing observations (n= 24) using a kalman smoother35. The two time series
segments, i.e. pre- and post-breakpoint time series, were standardized
(μ ¼ 0; sd ¼ 1) prior testing for dynamical difference.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The experimental data set and the phytoplankton time series analyzed in this study were
gathered from two previous studies7,18 and all other data was simulated using theoretical
models. All figures have associated raw data. The phytoplankton time series is available
through the IGB database36 and all other data, including experimental data from
Fussmann et al.7, is available through an open repository37.

Code availability
The code and simulated data for conducting all analyses and reproducing the figures in
this manuscript are publically available37.
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