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Family 7 glycoside hydrolases (GH7) are among the principal
enzymes for cellulose degradation in nature and industrially.
These enzymes are often bimodular, including a catalytic
domain and carbohydrate-binding module (CBM) attached via
a flexible linker, and exhibit an active site that binds cello-
oligomers of up to ten glucosyl moieties. GH7 cellulases
consist of two major subtypes: cellobiohydrolases (CBH) and
endoglucanases (EG). Despite the critical importance of GH7
enzymes, there remain gaps in our understanding of how GH7
sequence and structure relate to function. Here, we employed
machine learning to gain data-driven insights into relation-
ships between sequence, structure, and function across the
GH7 family. Machine-learning models, trained only on the
number of residues in the active-site loops as features, were
able to discriminate GH7 CBHs and EGs with up to 99% ac-
curacy, demonstrating that the lengths of loops A4, B2, B3, and
B4 strongly correlate with functional subtype across the GH7
family. Classification rules were derived such that specific
residues at 42 different sequence positions each predicted the
functional subtype with accuracies surpassing 87%. A random
forest model trained on residues at 19 positions in the catalytic
domain predicted the presence of a CBM with 89.5% accuracy.
Our machine learning results recapitulate, as top-performing
features, a substantial number of the sequence positions
determined by previous experimental studies to play vital roles
in GH7 activity. We surmise that the yet-to-be-explored
sequence positions among the top-performing features also
contribute to GH7 functional variation and may be exploited to
understand and manipulate function.

Cellulose is the most abundant renewable biopolymer on
Earth and, thus, holds tremendous potential in transitioning
energy production from fossil fuels to a renewable carbon
feedstock—a key need to limit anthropogenic climate change.
Sugars derived from the deconstruction of cellulose can be
converted to biofuels and numerous chemicals via myriad
biological or catalytic conversion routes. However, efficiently
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depolymerizing cellulose in a cost-effective manner, such that
biofuels can economically compete with fossil fuels, remains a
substantial challenge to enabling a lignocellulosic economy (1).
In industry, biochemical methods of cellulose deconstruction
employing enzymes are promising due to high selectivity, low
energy consumption, and low amounts of by-product gener-
ation (1–3). As a result, improving the yield of enzymatic
hydrolysis of cellulose by enhancing cellulase activity is a major
research focus.

In nature, microbial cellulose degradation is primarily ach-
ieved via a synergistic cocktail of enzymes consisting of
processive cellobiohydrolases (CBHs), endoglucanases (EGs),
and accessory enzymes such as β-glucosidases and lytic poly-
saccharide monooxygenases (LPMOs) (2). Organisms can
employ these enzymes as free single- or multi-modular con-
structs or as cellulosomes. Industry tends to employ free
enzyme systems, as filamentous fungal hosts are proficient
secretors of these types of cellulose-degrading enzymes. EGs
act by attacking internal bonds in cellulose, thus creating free
chain ends. CBHs attach to free chain ends via exo-initiation,
or internal regions in the chain via endo-initiation, and
processively cleave off cellobiose units as they process along
the chain. Cellobiose products are consequently hydrolyzed by
β-glucosidases to yield glucose (2). Whereas CBHs are known
to be processive and to carry out several cellulolytic cuts before
detaching from the cellulose substrate, EGs are mostly non-
processive or may show little processivity (4–8). Optimum
cellulolytic efficiency is achieved by the synergistic action of
CBHs and EGs. CBHs, EGs, and β-glucosidases, as well as
other glycoside hydrolases (GHs), are currently classified into
168 families in the CAZy database (www.cazy.org) (9).

Family 7 glycoside hydrolases (GH7s) are the powerhouses
of cellulose degradation in nature. They traditionally are found
mostly in fungi, although sequences have been identified in
several nonfungal groups such as Crustacea, Porifera, Alveo-
lata, and Amoeba (10). Because GH7s offer significant cellu-
lolytic potential, they are often the predominant enzymes by
mass in the secretomes of many filamentous cellulolytic fungi
and constitute the primary components of enzyme cocktails in
industrial cellulolytic processes (2, 11, 12).
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ML reveals GH7 sequence–function relationships
GH7s consist of two main subtypes, CBHs and EGs.
Although over 5000 GH7 sequences are known, structural
information is presently available for only 21 GH7s (16 CBHs,
five EGs) (10, 13–30). GH7 CBH and EG structures share a
similar β-jelly roll fold with two antiparallel β-sheets that pack
into a curved β-sandwich (14). Loops protrude from the β-
sandwich and extend over a tunnel-like active site that spans
40–50 Å across the ends of the catalytic domain (CD). The
active site contains at least nine glycosyl subsites for binding
cello-oligomers, which are numbered –7 to +2 from the
nonreducing end of the cellulose chain (Fig. 1). The cellulose
chain is cleaved between the –1 and +1 subsites (2). Despite
the overall similarity in fold, structures of GH7 CBHs and EGs
are strikingly different in their active-site configuration.
Whereas GH7 CBHs exhibit a closed tunnel-like active site,
GH7 EGs possess a more open, groove-like active site. These
differences arise due to the variation in the residue lengths of
Figure 1. Structures of typical GH7 CBH and EG with a cellononaose ligand
4C4C) (23), and the EG (right), Trichoderma reesei Cel7B (TreCel7B, PDB code: 1E
the CBH, the active site is tunnel-like, but is more open and groove-like in the
active-site tunnel entrance (–7) to the reducing end (+2) where the cellobios
subsites.
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the loops that protrude over the active-site groove, labeled
A1–A4 and B1–B4 (Fig. 1) (15).

Several structural and mechanistic studies of GH7s have
proposed that the differences in functional properties of GH7
CBHs and EGs, such as processivity, endo-initiation, and
product inhibition, arise mainly due to the differences in the
active-site architecture in the loops (15, 16, 19, 21, 24, 25, 28,
29). Moreover, GH7 CBHs with a more exposed active site
tend to exhibit functional characteristics intermediate between
typical CBH and EG behavior (6, 19, 31, 32). Besides the dif-
ferences in the configuration of active-site loops, studies have
also indicated that there are key residues in the active site of
GH7s that contribute to the variation in GH7 CBH and EG
behavior. Several aromatic and charged residues in the active
site that interact with the cellulose substrate have been sug-
gested to be crucial for the processive activity of GH7 CBHs
(22, 33–36). Furthermore, mutation of these residues notably
in complex. A, the CBH (left), Trichoderma reesei Cel7A (TreCel7A, PDB code:
G1) (26). The eight active-site loops (A1–A4 and B1–B4) are shown in red. In
EG. B, glycosyl binding sites are numbered from the nonreducing end at the
e product exits the active site. Bond cleavage occurs between –1 and +1
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affects the processive activity of GH7 CBHs on crystalline
cellulose (37, 38).

Like many other cellulases, GH7s can be bimodular, having
a CD attached to a carbohydrate-binding module (CBM) by an
intrinsically disordered glycosylated linker peptide (39–43).
There are currently 87 families of CBMs in the CAZy database
(www.cazy.org/Carbohydrate-Binding-Modules.html) (9), but
GH7s mainly utilize family 1 CBMs (2, 44). It is now generally
accepted that family 1 CBMs function to increase the affinity
of cellulases for crystalline cellulose and, thereby, increase the
surface concentration of the enzymes for catalysis. Thus, by
facilitating two-dimensional diffusion of the CD on the cellu-
lose surface, the CBM improves catalytic efficiency (39).
Furthermore, several studies have revealed that deletion of the
CBM-linker domain dramatically reduces CBH activity on
crystalline cellulose, especially at low enzyme concentration,
but not on soluble substrates (44–49). Takashima et al. (50)
carried out several mutations in the CBM of a Humicola grisea
CBH (HgrCel7A) and observed high positive correlation be-
tween the efficiency of the enzyme on crystalline cellulose and
the binding affinity of the CBM. Similarly, Srisodsuk et al. (48)
observed that replacing the CBM of Trichoderma reesei Cel7A
(TreCel7A) with the CBM of TreCel7B, which has a higher
cellulose-binding affinity, improved the activity of TreCel7A
on crystalline cellulose. Altogether, these results indicate that
CBMs affect GH7 catalytic activity primarily by promoting
binding to the cellulose surface.

Despite the tremendous growth in scientific knowledge of
GH7s over the last few decades, our understanding of how
sequence and structure affect function is far from complete.
Although it is known that the exposure of the active site due to
truncation in the active-site loops can substantially affect
function, little work has been done to elucidate the unique
roles that each of the active site loops plays and how the effects
of truncation vary with function for the different loops.
Recently, Schiano-di-Cola et al. (51) studied the effects of
deletions in the B2, B3, and B4 loops on the activity and ki-
netics of TreCel7A. They found that deletions in the B2 loop,
compared with the B3 and B4 loop, most significantly affect
CBH behavior of TreCel7A. Beyond TreCel7A, there is a need
to investigate how variation of active-site loop lengths relates
to function across the larger GH7 family.

In this work, we employ machine learning (ML) and bio-
informatic analysis to derive relationships between sequence,
structure, and function of GH7s using a dataset of 1748
selected protein sequences. The sequences are aligned via
multiple sequence alignment (MSA) to identify regions of
structural similarity and evolutionary importance. Although
manual inspection of the MSA may reveal several functional
patterns, such as highly conserved positions, many important
but nonintuitive relationships are likely to be missed. ML is an
especially useful statistical tool when data are abundant and
relationships in the data are complex (52). By mapping
sequence variation to functional diversity, ML can discover
sequence features that are statistically related to function and
potentially play critical roles in enzyme activity. In this work,
we apply ML to the MSA of GH7 sequences, mapping
variation in lengths of the active-site loops to functional sub-
types, such that the subtype can be accurately predicted from
loop length. We also derive position-specific classification
rules to highlight positions that play important roles in CBH/
EG function. Lastly, we investigate functional relationships
between the CBM and the CD by utilizing ML to predict the
presence of CBMs in GH7s using residues in the CD, revealing
trans-modular sequence correlation for the first time. It is
important to note that, as the current understanding of GH7
function is based on investigation of a few representatives, this
present study of 1748 GH7 sequences seeks to identify general
sequence–function relationships for the entirety of the GH7
family and the degree to which variation exists. Furthermore,
the main objective of this study is neither to employ ML to
outperform conventional bioinformatics approaches nor to
predict unknown attributes, as is common among ML studies.
Rather, our work is distinct in building ML models to consider
the importance of sequence features in functional diversity and
to subsequently delineate relationships between variation in
protein sequence and function across an entire enzyme family.
In other words, we apply ML to gain new biological insights
into GH7 function rather than in a purely predictive capacity.

Results

Datasets

Three datasets were used in this study. The first dataset con-
tained 1748 full-length GH7 protein sequences retrieved from
the National Center for Biotechnology Information (NCBI)
nonredundant database. Using a strict keyword search, we
queried the NCBI database for the subtype annotation (i.e., CBH
or EG) of these 1748 sequences. In total, 427 sequences were
clearly annotated as CBH or EG in the database (291 CBHs and
136 EGs), and these 427 sequences comprised the second dataset.
For the third dataset, we retrieved 44 GH7 sequences from the
manually curated UniProtKB/Swiss-Prot database (53). Accord-
ingly, the subtype annotations of the 44 GH7s (30 CBHs, 14 EGs)
are less likely to contain errors than the annotations of the 427
sequences from the NCBI nonredundant database.

Discrimination of GH7 subtypes with hidden Markov models

In the annotation of a protein sequence, several computa-
tional prediction methods may be applied. Sequence similarity
methods compare an unclassified protein with well-studied
proteins and assign the unclassified protein to the same class
as the most similar classified proteins (54). Hidden Markov
model (HMM) (55, 56), which describes the protein sequence as
a probabilistic model, is one of the most sensitive and most
accurate methods for discriminating protein functional families
with sequence data alone, provided they are built with correct
alignments (54). Within a given protein family, HMM can also
be applied to discriminate functional subtypes, although the
discrimination accuracy varies across different families (57).

We applied HMM to discriminate between GH7 subtypes:
CBHs and EGs. The performance of HMM was evaluated by a
5-fold cross-validation technique using the datasets of 427
(NCBI) and 44 (UniProtKB/Swiss-Prot) GH7 sequences. First,
J. Biol. Chem. (2021) 297(2) 100931 3
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ML reveals GH7 sequence–function relationships
each dataset was aligned and separated into CBH and EG
subalignments based on the database annotations. Then, each
subalignment was randomly split into 5-folds (Fig. 2A). Sub-
type HMMs (i.e., CBH HMM and EG HMM) were repeatedly
built on four out of 5-folds of the CBH and EG subalignment,
and the sequences in each left-out fold were used as a test set.
To predict the subtype of a sequence, the sequence was aligned
separately to both the CBH and EG HMMs, and then the
alignment scores were compared. If the CBH HMM alignment
score was greater than the EG HMM alignment score, the
sequence was predicted to be a CBH; otherwise, it was pre-
dicted to be an EG (57). The process was repeated so that all 5-
folds were used in training and testing the HMMs.

Figure 2, B and C show the performance of the HMM
method on the UniProtKB/Swiss-Prot dataset (44 sequences)
and on the NCBI dataset (427 sequences), respectively. The
HMM method achieved perfect accuracy on the UniProtKB/
SwissProt dataset. All sequences were correctly predicted, and
there was a substantial difference, of at least 120.0, between the
CBH alignment score and the EG alignment score. On the
NCBI dataset of 427 sequences, which may contain erroneous
subtype annotations, the HMM achieved an accuracy of
99.53% and only misclassified two sequences (accession codes:
AGY80096.1 and AGY80097.1), which are annotated as EGs.
These two sequences may have been erroneously annotated as
EGs because they are much more similar to CBHs in overall
sequence and loop lengths. Furthermore, the value of the
alignment score difference for some sequences in the NCBI
dataset is as low as 2.0.

Discrimination of GH7 subtypes with machine learning:
relationships between active-site loops and CBH/EG function

In this part of the study, our goal was to use ML to map the
variation in amino acid sequence to GH7 CBH and EG activity
and to, consequently, determine which aspects of the sequence
Figure 2. Discrimination of GH7 CBHs and EGs with hidden Markov models
of HMM. The MSA is split into CBH and EG subalignments and each subalignm
the left-out fold. The predicted class (CBH or EG) of a sequence is the class th
dataset of 44 GH7s from the manually curated UniProtKB/SwissProt database. C
database. Only two EG sequences (GenBank accession codes: AGY80096.1 and
assigned sequence numbers (x-axes) are arbitrary.
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and structure predominantly affect CBH/EG function. If a
particular feature is important for the difference in CBH and EG
behavior, we should be able to train ML models on that feature
to discriminate GH7 CBHs and EGs with significant accuracy.
Otherwise, a feature that has no correlation with activity, but
only varies due to phylogenetic diversity, would perform poorly
when applied to predict GH7 subtypes with ML.

We used the dataset of 1748 GH7s to test ML algorithms in
predicting GH7 subtypes. Since only 427 of the 1748 GH7s are
classified as CBH or EG in the databases, we applied the HMM
method described previously to derive the functional classes of
the unclassified GH7 sequences. Our cross-validation tests
showed that the HMM method can correctly classify GH7 sub-
types with an accuracy of almost 100% (i.e., consistent with the
database annotations). This result is similar to the performance of
the HMM method applied to other protein families (57). More-
over, when we trained separate HMMs on the manually anno-
tated dataset of 44 sequences (UniProtKB/Swiss-Prot) and on the
“less perfect” dataset of 427 sequences (NCBI) and then applied
the HMMs to determine the subtype of the 1748 GH7s, the
separate HMMs assigned the same subtype in all but five in-
stances (99.71%). Regardless, misclassification errors of about 1%
are not large enough to alter the relationships that we derived
from ML on the dataset of 1748 GH7 sequences (58, 59).

In choosing features for the ML models, we capitalized on
the observation that crystal structures of GH7 CBHs and EGs
differ in their active-site architecture, due to the degree of
truncation in the eight active-site loops (Fig. 1). Hence, we
used the number of residues in the active-site loops as features
for ML to discriminate between GH7 CBHs and EGs. First, a
structure-based MSA of all 1748 sequences was carried out
(See Materials and Methods for details). For each sequence in
the MSA, we counted the number of amino acid residues in
the eight active-site loops and derived a vector of the eight
loop lengths as features (Fig. 3).
(HMM). A, 5-fold cross-validation technique for evaluating the performance
ent into 5-folds. HMMs are repeatedly trained on 4-folds and then tested on
at yields the highest HMM alignment score. B, performance of HMM on the
, performance of HMM on the dataset of 427 GH7s from NCBI nonredundant
AGY80097.1) were misclassified in the NCBI dataset. Note that in B and C, the



Figure 3. Generating features for discriminating GH7 CBHs and EGs with ML. A, segments of a selection of six well-studied GH7s from the structure-
based sequence alignment of 1748 sequences showing the active-site loops. The sequences include the CBHs: Trichoderma reesei Cel7A (TreCel7A) (23),
Penicillium funiculosum Cel7A (PfuCel7A) (20), and Phanerochaete chrysosporium Cel7D (PchCel7D) (19); and the EGs: Trichoderma reesei Cel7B (TreCel7B) (26),
Fusarium oxysporum Cel7B (FoxCel7B) (24), and Humicola insolens Cel7B (HinCel7B) (25). B, the number of residues in the eight active-site loops as
determined from the structure-based alignment. C, procedure for generating features for 1748 GH7s. First, the sequences are aligned as in (A). Then, a count
of the number of residues in each loop is obtained. Residue counts are scaled to Z-scores before ML is applied.

ML reveals GH7 sequence–function relationships
Four ML methods were applied: decision trees, logistic
regression, k-nearest neighbors (KNN), and support vector
machines (SVM). For each ML method, nine models with
different combinations of features were tested. One model
involved training the ML algorithms on the lengths of all eight
loops, and the remaining eight models involved using each
loop length as the sole feature for the training (single-feature
models). The performance of the ML models was measured
using four metrics: sensitivity (or true positive rate), specificity
(or true negative rate), overall accuracy, and Matthew’s cor-
relation coefficient (MCC). Here, the sensitivity is the percent
of CBHs (the true class) correctly predicted, the specificity is
the percent of EGs (the false class) correctly predicted, and the
overall accuracy is the percent of both CBHs and EGs correctly
predicted. MCC ranges from –1 to +1 and measures the cor-
relation between the predicted and true classifications. An
MCC value of +1 indicates perfect prediction, 0 indicates no
concordance between predicted and actual classes, and –1
indicates perfect disagreement. MCC has been recommended
as the most informative performance metric in evaluating bi-
nary classification performance, especially when the dataset is
imbalanced since other metrics such as overall accuracy and
F1 score can be hugely misleading (60–63). Hence, we use
MCC as the primary metric in evaluating the performance of
the ML models.

Moreover, we are faced with the problem of an imbalanced
dataset: 1306 (75%) of the 1748 sequences in the dataset are
CBHs. Ordinarily, imbalanced data will skew the results by
causing the ML classifiers to place most of the data in the
majority class (CBH). To deal with the imbalance problem, we
applied random undersampling (64, 65) to the majority class so
that the distribution of CBH and EGs was balanced. We
evaluated the performance of the ML models on the redis-
tributed data with 100 repetitions of 5-fold cross-validation,
with the dataset undersampled and reshuffled in each repeti-
tion (Fig. 4). Repeating the 5-fold cross-validation numerous
times is a highly effective way to mitigate the effects of vari-
ability in the train-test splits and to ensure that the data space
is thoroughly explored despite loss of data in the under-
sampling step (66).

Our results show that ML is able to accurately discriminate
between GH7 CBHs and EGs using only information about the
length of the active-site loops (Table 1). However, the per-
formance varied significantly for the different single-feature
models (Fig. 5A). The models trained on the A2 and A3
loops exhibited the worst performance with MCC values close
to 0, indicating that they did not perform better than a random
classification. The models trained on A1 and B1 loops showed
intermediate performance with MCC values widely varying
from –0.08 to 0.79 for the A1 models and from –0.03 to 0.63
for the B1 models. Interestingly, the A4, B2, B3, and B4 models
showed very high predictive performance, with MCC values
ranging from 0.94 to 0.98 and with much lower variation
among the different ML methods. The models trained on these
four loops (A4, B2, B3, B4) achieved nearly the same high
performance as the models trained on all eight loops (Table 1).
J. Biol. Chem. (2021) 297(2) 100931 5



Figure 4. Procedure for evaluating the performance of ML models us-
ing 100 repetitions of 5-fold cross-validation with undersampling. The
dataset is reshuffled and resampled in each repetition.
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ML reveals GH7 sequence–function relationships
Furthermore, we observed that the variation in the lengths
of the loops correlates with the discriminative performance of
the loops (Fig. 5, A–C). The loops with very poor discrimi-
natory performance (A2 and A3) show the lowest relative
variation in lengths across the 1748 GH7s and nearly identical
distributions between CBHs and EGs (Figs. 5B and S1). In
contrast, loops with intermediate discriminatory performance
(A1 and B1) show a greater level of variation in lengths than
A2 and A3 loops and noticeably different distributions for
CBHs and EGs, although there is a considerable amount of
overlap. The loops with near-perfect predictive performance
(A4, B2, B3, B4) show the highest variation in lengths.

One major advantage of the tree-based methods over other
ML algorithms is the possibility of deriving and visualizing
interpretable classification rules (67, 68). In many applications
of ML to biological problems, it is desirable to gain knowledge
of biological relationships rather than merely applying ML as a
predictive tool. Figure 5D shows rules derived from the single-
node decision-tree classifiers trained on the A4, B2, B3, and B4
loops. A classification accuracy of 96.9% was achieved by the
simple rule: if a GH7 has more than four residues in the B2
loop, then it is a CBH, else it is an EG. Overall, the decision
trees reveal that GH7 EGs tend to possess three or less resi-
dues in the B3 and B4 loops, four or less residues in the B2
loop, and five or less residues in the A4 loop.

Since the lengths of the A4, B2, B3, and B4 loops can
independently discriminate between GH7 CBHs and EGs with
accuracies greater than 94%, it is expected that there is a
substantial degree of correlation between them. We conducted
correlation analysis by computing the Pearson’s correlation
coefficient between the lengths of the eight loops of 1748
GH7s (Fig. 6). As expected, there is significant positive
6 J. Biol. Chem. (2021) 297(2) 100931



Figure 5. Predictive performance and variation of active-site loops in GH7s. A, Matthews’ correlation coefficient (MCC) values of four ML algorithms
trained separately on the length of each active-site loop and on all eight loops together. The A4, B2, B3, and B4 loops achieve near-perfect performance in
discriminating 1748 GH7 CBHs and EGs. Box and whisker plots indicate distribution of MCC values over 100 repetitions of 5-fold cross-validation (center line:
median, box limits: upper/lower quartiles, whiskers: full data range). B, distribution of the lengths of active-site loops in 1306 GH7 CBHs and 442 GH7 EGs.
Box and whisker plots are as in (A). C, the relative standard deviation of the length of the eight active-site loops. Generally, variation in the length of a loop
correlates with predictive performance of the loop as a ML feature. D, rules derived from the single-node decision trees trained on the lengths of the A4, B2,
B3, and B4 loops. The accuracy of the rules in discriminating GH7 CBHs and EGs, i.e., the sensitivity and specificity, respectively, are shown in brackets.

ML reveals GH7 sequence–function relationships
correlation between the lengths of the A4, B2, B3, and B4 loops
(r ≥ +0.76, p < 0.0001). The highest correlations are observed
between the A4 and B2 loops (+0.84) and between the A4 and
B4 loops (+0.83).

Discrimination of GH7 subtypes with position-specific
classification rules: important residues for CBH/EG function

In discriminating GH7 CBHs and EGs with ML, we have
used only the lengths of the active-site loops as features
without considering the contributions of specific amino acids
in the proteins. However, the interactions of specific residues
are known to affect GH7 CBH/EG function, and mutagenesis
studies have confirmed that certain positions play essential
roles in GH7 activity (6, 37, 38, 69). In this section, we
investigate the relationships between specific residues in the
proteins and the functional subtype.

It is common knowledge that although a protein’s function
arises from the combined effects of multilevel interactions
between all residues in the protein, some residues contribute
to function more significantly than others. Consequently, it is
likely that in GH7s, if a position is considerably conserved in
CBHs such that CBHs tend to utilize a particular amino acid at
that position, and EGs tend to not utilize the same amino acid
at that position, or vice versa, then that position plays a vital
role in the difference in CBH/EG function or structural sta-
bility. A typical example is position 40 (i.e., Trp40 in Tre-
Cel7A). From analysis of the structure-based MSA, we observe
that this position is strongly conserved in CBHs with 92.5%
exhibiting a Trp at this position, whereas it is notably variable
in EGs with only 28.5% exhibiting a Trp at this position
(Fig. 7A). Considering only this clear difference in the amino
acid distribution at position 40, we can infer that Trp40 likely
contributes to CBH function. Mutation of Trp40 to Ala has, in
fact, been shown to considerably decrease the activity of Tre-
Cel7A on crystalline cellulose but not on amorphous cellulose
(37), indicating that Trp40 is critical for processivity (38).
Consequently, we propose that applying a statistical method to
mine for positions in GH7s that are conserved but have
J. Biol. Chem. (2021) 297(2) 100931 7



Figure 6. Pearson’s correlation coefficient between the lengths of the
eight active-site loops in 1748 GH7s. The matrix of correlation coefficients
is clustered so that loops with a similar pattern of correlation are grouped
together. There is a high degree of positive correlation (darker red) between
the lengths of the A4, B2, B3, and B4 loops.

ML reveals GH7 sequence–function relationships
remarkably different amino acid distributions between CBHs
and EGs can identify positions that play critical roles in CBH/
EG function and processivity.

From the amino acid distribution at position 40, we obtain
a single-node decision tree with the rule: Trp at position 40
Figure 7. Top-performing position-specific classification rules for discrimin
at position 40 (TreCel7A numbering). Position 40 is strongly conserved as Trp
sification rules derived from the MSA. The top 90 rules have MCC scores of 0.7
ligand in TreCel7A (PDB code: 4C4C) (23) and positions from which the top 90 c
positions within 5 Å of the substrate. D, alpha carbons of 42 positions from w
TreCel7A. Most of these positions are near the substrate sites toward to the n
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implies CBH, else EG. This simple rule classifies 1748 GH7
CBHs and EGs with an accuracy of 87.2%. Thus, a rational
strategy for identifying positions likely associated with CBH/
EG function is to derive similar rules for all positions in the
MSA and select positions that yield high-performing rules.
First, we split the MSA of 1748 GH7 sequences into CBH and
EG subalignments and then identified the consensus amino
acid and the consensus amino acid type (i.e., aliphatic, aro-
matic, polar, positive, or negative) for each position in the
subalignments. For each position, if X and Z are the
consensus amino acids (or type) in the CBH and EG sub-
alignment, respectively, we derived the following classifica-
tion rules: X=>CBH and Z=>EG, X=>CBH and not X=>EG,
and not Z=>CBH and Z=>EG. Applying this strategy to 434
positions in the MSA (TreCel7A numbering), we derived
1799 classification rules. For each rule, we measured the
classification accuracy, sensitivity, specificity, and MCC and
tested the statistical significance by conducting Chi-square
test of independence. The 1799 rules have fairly normally
distributed MCC scores (Fig. 7, B), and the top 5% of rules (90
rules) have MCC scores of at least +0.73 and classification
accuracies of at least 87% (Tables 2 and S1, Figs. 7 and S2).
These 90 rules are derived from 42 positions, which are
generally in close proximity to the cellodextrin ligand in the
crystal structure. More than half of the top 90 rules are from
positions within 5 Å of the cellononaose ligand bound in
TreCel7A structure (PDB code: 4C4C). Moreover, most of the
positions are closer to the tunnel entrance where cellulose
chains are recruited by the enzyme for processive hydrolysis
(Fig. 7, D and E).
ating GH7 CBHs and EGs. A, amino acid distribution of GH7 CBHs and EGs
in GH7 CBHs but not in EGs. B, MCC scores of 1799 position-specific clas-
3 or greater. C, Histogram of minimum distance between the cellononaose
lassification rules are derived. More than half of top 90 rules are derived from
hich the top 90 classification rules are derived shown on the structure of
onreducing end (NRE). E, posterior view of crystal structure.



Table 2
Top-performing position-specific classification rules relating amino acid residues and GH7 subtype (CBH/EG)a

TreCel7A
position Rule

Closest
subsite

Distance to
closest subsite (Å) Sensitivity (%) Specificity (%) Accuracy (%) MCC Ref.

16 not Thr=>CBH, Thr=>EG −2 19.0 97.7 82.6 93.9 0.83
37 Asn=>CBH, not Asn=>EG −4 3.1 92.8 86.0 91.1 0.77 (79, 82)
38 Trp=>CBH, not Trp=>EG −4 3.2 93.2 96.2 93.9 0.85 (35, 79, 82)
39 Arg=>CBH, not Arg=>EG −5 3.6 96.4 79.9 92.2 0.79 (82)
39 Arg=>CBH, His=>EG −5 3.6 98.2 70.1 91.1 0.76 (82)
49 Asn=>CBH, not Asn=>EG −7 2.7 90.9 85.3 89.5 0.73 (79, 83)
51 Tyr=>CBH, not Tyr=>EG −5 3.6 88.4 99.1 91.1 0.80 (82)
53 Gly=>CBH, not Gly=>EG −5 4.9 90.6 90.7 90.6 0.77
56 Trp=>CBH, not Trp=>EG −5 8.9 93.2 99.3 94.7 0.88
81 Thr=>CBH, not Thr=>EG −5 4.1 88.1 91.2 88.9 0.74
82 Tyr=>CBH, not Tyr=>EG −5 3.8 91.6 86.2 90.2 0.75 (82)
95 Phe=>CBH, not Phe=>EG −4 7.0 84.0 97.5 87.4 0.74
97 Thr=>CBH, not Thr=>EG −5 6.7 89.2 93.4 90.3 0.77
103 Asn=>CBH, not Asn=>EG −5 2.7 92.1 87.8 91.0 0.77 (79, 82, 83)
105 Gly=>CBH, not Gly=>EG −4 4.8 94.8 86.0 92.6 0.80
105 not Ser=>CBH, Ser=>EG −4 4.8 99.7 74.9 93.4 0.82
105 Gly=>CBH, Ser=>EG −4 4.8 97.2 80.4 93.0 0.81
106 Ser=>CBH, not Ser=>EG −2 4.8 89.9 88.7 89.6 0.75
106 not Pro=>CBH, Pro=>EG −2 4.8 99.2 86.9 96.1 0.89
106 Ser=>CBH, Pro=>EG −2 4.8 94.5 87.8 92.8 0.81
120 Phe=>CBH, not Phe=>EG −1 15.7 93.0 83.3 90.6 0.75
140 Leu=>CBH, not Leu=>EG −1 8.5 83.2 98.2 87.0 0.73
146 Phe=>CBH, not Phe=>EG −1 7.9 91.8 93.9 92.3 0.81
146 not Leu=>CBH, Leu=>EG −1 7.9 94.3 79.4 90.6 0.75
146 Phe=>CBH, Leu=>EG −1 7.9 93.1 86.7 91.4 0.78
179 Asp=>CBH, not Asp=>EG −3 2.6 92.9 99.1 94.5 0.87 (82)
181 Lys=>CBH, not Lys=>EG −5 2.8 92.0 99.3 93.8 0.86 (79, 82, 83)
192 Trp=>CBH, not Trp=>EG −4 7.0 93.8 100.0 95.4 0.89
200 Asn=>CBH, not Asn=>EG −4 3.5 85.5 99.3 89.0 0.77 (79, 80, 82)
202 Gly=>CBH, not Gly=>EG −4 6.5 94.0 100.0 95.5 0.89
204 Gly=>CBH, not Gly=>EG −4 10.7 95.0 99.5 96.2 0.91
251 Arg=>CBH, not Arg=>EG 2 3.4 86.9 99.8 90.2 0.79 (6, 35, 36, 82)
262 Asp=>CBH, not Asp=>EG 2 4.1 95.1 97.3 95.7 0.89 (8, 36, 82)
262 not Gly=>CBH, Gly=>EG 2 4.1 98.7 69.0 91.2 0.76 (8, 36, 82)
262 Asp=>CBH, Gly=>EG 2 4.1 96.9 83.1 93.4 0.82 (8, 36, 82)
338 Phe=>CBH, not Phe=>EG 2 7.7 91.8 99.8 93.8 0.86
340 Asp=>CBH, not Asp=>EG 2 9.1 83.1 99.3 87.2 0.74
381 Tyr=>CBH, not Tyr=>EG 2 3.5 83.7 99.8 87.8 0.75 (36, 82)
382 Pro=>CBH, not Pro=>EG 2 5.0 93.3 98.4 94.6 0.87
391 Gly=>CBH, not Gly=>EG 2 6.9 94.6 91.0 93.7 0.84
394 Arg=>CBH, not Arg=>EG 2 3.1 95.1 96.4 95.4 0.89 (34, 35, 82)
394 Arg=>CBH, Ala=>EG 2 3.1 97.4 72.6 91.1 0.76 (34, 35, 82)
396 not Pro=>CBH, Pro=>EG 2 12.9 85.5 96.6 88.3 0.75
401 not Glu=>CBH, Glu=>EG −3 13.5 98.8 72.9 92.2 0.79
423 not Trp=>CBH, Trp=>EG −1 18.1 97.4 72.6 91.1 0.76

a All rules discriminate GH7 CBHs and EGs with accuracies of at least 87.0% and MCC scores of at least 0.73. Nearest distance to the nearest glycosyl residues was measured from
the TreCel7A structure (PDB code: 4C4C). Statistical significance was tested by a Chi-square test of independence. All rules are significant at p < 0.0001. See Table S1 for rules
between amino acid type and GH7 subtype. Positions from which the rules have been derived are shown on the crystal structure of TreCel7A in Figure 7.

ML reveals GH7 sequence–function relationships
Conserved aromatic residues in the active site of GH7s

GH7s possess several aromatic residues lining the active-site
tunnel, which have been suggested to play key roles in cellu-
lolytic bond cleavage and processive action (35). We have
conducted bioinformatic analysis of conserved aromatic resi-
dues in the active site of GH7s. From the MSA of 1748 GH7s,
we selected positions that are located within 6 Å of the cel-
lononaose substrate in the structure of TreCel7A (PDB code:
4C4C), and that have aromatic residues (Phe, Trp, Tyr, or His)
at that position in the consensus sequence of CBHs or EGs
(Fig. S3). There are 17 of such aromatic positions in the MSA,
and on the protein structure, these positions are distributed
across the nine glycosyl subsites.

Furthermore, these 17 positions can be classified into three
groups based on the conservation of aromatic amino acids
(Table 3). The first group consists of positions that are
conserved in both CBHs and EGs such that more than two-
thirds of CBHs and EGs utilize aromatic residues at these
positions. Positions 145, 171, 216, 228, 367, and 376 (TreCel7A
numbering) fall in the first group. The second group consists
of positions that are conserved as aromatic residues (>66%) in
CBHs but not in EGs. Positions 38, 40, 51, 82, 252, 370, and
381 fall in the second group. The third group contains posi-
tions that are neither conserved (<66%) as aromatic residues
in CBHs and EGs although the consensus amino acids are
aromatic. Positions 39, 47, 53, and 247 fall in the third group.

When these positions are viewed on the crystal structure
(Table 3, Fig. 8), an interesting pattern is observed. Whereas
positions that are strongly conserved in both CBHs and EGs
(first group) are located near the catalytic center of the active
site, positions which are conserved in CBHs but not in EGs
flank the catalytic center nearer to the “substrate-binding” sites
(–7 to –1) or the “product-binding” sites (+1 to +2).

Predicting the presence of CBMs with machine learning:
relationships between the CD and the CBM

The CD of GH7 proteins may be attached to a second
domain (the CBM) via a flexible linker. The CBM function is
J. Biol. Chem. (2021) 297(2) 100931 9



Table 3
Positions within 6 Å of the cellononaose ligand in TreCel7A (PDB code: 4C4C) with aromatic residues in CBH/EG consensus sequencesa

TreCel7A
position

TreCel7A
residue

CBH
consensus
residue

EG consensus
residue

Frequency of aro
matic residues in

CBHs (%)

Frequency of aro
matic residues in

EGs (%)
Closest
subsite

Distance to
closest

subsite (Å)

Aromatic
residues conserved

(>66%) in Ref.

47 S Y - 46.8 13.8 −7 3.9 None
40 W W W 93.3 36.0 −6 3.4 CBH (35, 79,

82, 83)
39 R R H 0.0 60.4 −5 3.6 None (82)
53 G G W 0.3 29.4 −5 4.9 None
51 Y Y G 92.6 2.0 −5 3.6 CBH (82)
82 Y Y Y 94.9 31.7 −5 3.8 CBH (82)
38 W W A 94.2 29.4 −4 3.2 CBH (82)
370 Y H E 87.3 1.8 −3 5.3 CBH
247 Y Y - 46.9 0.0 −2 2.7 None (82)
145 Y Y Y 97.9 98.9 −2 2.7 CBH and EG (82)
367 W W W 94.3 98.6 −1 3.0 CBH and EG (82)
171 Y Y Y 98.0 97.3 −1 3.8 CBH and EG (82)
216 W W W 97.9 68.1 −1 5.6 CBH and EG
228 H H H 96.6 97.5 1 2.8 CBH and EG (82)
376 W W W 96.8 99.1 2 3.5 CBH and EG (35, 36,

82)
252 Y Y - 85.0 17.2 2 5.8 CBH
381 Y Y - 92.8 0.2 2 3.5 CBH (36, 82)

a The positions are listed in order of proximity to the glycosyl subsites. Aromatic positions conserved in both CBHs and EGs are near the catalytic center, whereas aromatic
positions conserved in only CBHs flank the catalytic center. All conserved positions are shown on the crystal structure of TreCel7A in Figure 8.

ML reveals GH7 sequence–function relationships
mostly attributed to enhancing the binding of the enzyme to
the cellulose substrate and thus, facilitating turnover by
increasing enzyme concentration on the cellulose surface (2).

We studied the distribution of family 1 CBMs in our dataset
of 1748 GH7s. First, a database of the 1748 sequences was
created, and then a BLAST search of TreCel7A CBM was
performed against the database. From a careful manual in-
spection of the BLAST alignment output, we selected an
alignment score of 30 as the threshold so that GH7 sequences
that yielded BLAST alignment scores of 30 or greater were
determined to possess a family 1 CBM. We compared the
distribution of CBMs among GH7 CBHs and EGs in our
dataset and determined that 27% of GH7s contain a CBM, with
31% and 15% of GH7 CBHs and EGs exhibiting CBMs,
respectively (Table 4). Thus, GH7 CBHs appear to be roughly
Figure 8. Conserved aromatic residues in the active site of TreCel7A
(PDB code: 4C4C) within 6 Å of the cellononaose ligand. Residues in
magenta are conserved (>66% frequency) in both GH7 CBHs and EGs and
are found close to the catalytic center between –1 and +1 glycosyl subsites.
Residues in blue are conserved in GH7 CBHs but not in EGs and flank the
catalytic center.
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two times more likely than EGs to contain a CBM. Moreover, a
Chi-square test of independence indicated that the relation-
ship between CBM utilization and GH7 subtype (CBH/EG) is
significant (p < 0.001).

To investigate the relationships between the CD and the
CBM, we applied ML to predict the presence of CBMs using
the specific amino acid residues in the CD as features. Posi-
tions flanking the CD in the MSA were removed, and one-hot
encoding was applied to transform the amino acids in the MSA
to binary variables (70). Therefore, the MSA was transformed
to a matrix such that the rows indicate the sequences and
columns denote the amino acid at positions in the MSA
(features). Columns are labeled as “residue-position” and can
take values of 0 or 1. For example, a value of 1 at columns Q1
and S2 for TreCel7A indicates that Gln and Ser are present at
positions 1 and 2 in the MSA, respectively (Fig. 9, B). Subse-
quently, one-hot encoding resulted in a high-dimensional
matrix with 1748 rows and 5933 columns. We implemented
the random forest algorithm (71) with 500 trees to predict the
presence of a CBM using the 5933 one-hot encoded features.
The random forest algorithm is especially suitable for this
classification problem because it is capable of robustly dealing
with high-dimensional data by performing implicit feature
selection in the learning process (72), is more tolerant to noise
and overfitting (71, 73), and can be used to evaluate the relative
importance of the features (74).
Table 4
Distribution of CBMs in GH7s showing the relationship between
subtype (CBH/EG) and the presence of a CBMa

CBH EG Total

Has CBM 407 66 473
No CBM 899 376 1275
Total 1306 442 1748
CBM frequency (%) 31.2 14.9 27.1

a GH7 CBHs are roughly two times more likely to possess a CBM than GH7 EGs (p <
0.0001, Chi-square test).



Figure 9. Top-performing features of the random forest classifier in predicting the presence of CBMs in GH7s. A, relative importance (Gini) of all 5933
features derived from one-hot encoding of the MSA. Most features provide little information to the model. B, relative importance (Gini) of top 20 features in
the random forest classifier retrained on only top 20 features. Box and whisker plots indicate the distribution over 100 repetitions of 5-fold cross-validation
(center line: median, box limits: upper/lower quartiles, whiskers: full data range). C, residues of top 20 features (green sticks) shown on the structure of
TreCel7A (tan cartoon) on cellulose (gray sticks). The structure is derived from a snapshot (t = 0.73 μs) of MD simulations conducted in a previous work (97).

ML reveals GH7 sequence–function relationships
The performance of the random forest classifier was eval-
uated with 100 repetitions of 5-fold cross-validation with
random undersampling, as described previously (Fig. 4). Only
90% of the dataset was used for the cross-validation; 10% of the
dataset (174 sequences) was randomly selected and set aside
for a separate final test. The random selection of the test
dataset was implemented in such a way that a similar distri-
bution (27% CBM, 73% no CBM) was maintained. In the
validation routine, an accuracy of 90.8% was achieved by the
500-trees random forest trained on all 5933 features (Table 5).
A plot of the relative (Gini) importances (74) of the features
shows that most of the 5933 features contribute little or no
information to the performance of the random forest classifier
(Fig. 9, A). We reapplied the random forest algorithm using
only the top 50 and the top 20 features with the highest Gini
importances. The classifiers trained on only the top 20 and top
50 features showed fairly similar validation performance to the
classifier trained on all 5933 features (Table 5). Some residues
at the C-terminus of the CD (where the CD connects with the
CBM-linker domain) were identified to be among the most
important positions in predicting the presence of CBMs (Fig. 9,
B, Table S2).
Table 6
Distribution of CBMs in GH7s showing the relationship between the
presence of the rare disulfide bond (C4-C72 in TreCel7A) and the
presence of a CBMa

Has disulfide bond Lacks disulfide bond Total

Has CBM 105 368 473
No CBM 54 1221 1275
Total 159 1589 1748
CBM frequency (%) 66.0 23.2 27.1

a GH7s possessing this disulfide bond (mostly CBHs) are roughly three times more
likely to possess a CBM than GH7s lacking the disulfide bond (p < 0.0001, Chi-square
test).
To confirm that the random forest algorithm was not pre-
dicting the presence of a CBM mainly by looking at these
interdomain connecting residues (S431, G432, S433, G433,
T433, L434), we repeated the validation procedure with the top
50 features but excluded features derived from positions near
the C-terminus (six features removed, 44 features remaining).
The results show that the performance of the new classifier
trained on 44 features was only slightly lower, with the accu-
racy dropping by less than 3%. Moreover, on the separate test
set, the classifier trained on the top 20 features achieved an
accuracy of 89.7%, confirming that the presence of a CBM can
be predicted from a few residues in the catalytic domain with
considerable accuracy. In addition, we derived position-
specific classification rules with each of the top 50 features,
as described previously (i.e., X=>CBM, else, no CBM). As
expected, all 50 rules independently performed worse,
compared with the random forest classifier trained on all the
50 features (MCC < 0.60, versus 0.81, see Table S2). Among
these 50 rules, the top six rules are derived from L434, G433,
T433, G432 (C-terminus residues) and C4 and C72, which are
the Cys residues in TreCel7A forming a rare disulfide bridge
that is virtually absent in GH7 EGs. Overall, disulfide bonds
are more frequent in GH7 CBHs than EGs (Table 6 and
Fig. 10) (20).
Discussion

In this study, we apply data mining techniques along with
the wealth of experimental GH7 data to investigate statistical
relationships between sequence and function GH7s and to
further identify known and novel sequence features that
correlate with function. We are able to accurately discriminate
1748 GH7 CBHs and EGs with ML using only the number of
residues in the active-site loops as features. However, whereas
J. Biol. Chem. (2021) 297(2) 100931 11



Table 5
Performance (%) of random forest classifiers in predicting presence of CBMa

Performance metric

Validation Testing

All 5933 features Top 50 features 44 features (no C-terminus) Top 20 features Top 20 features

Accuracy 90.8 ± 2.1 90.9 ± 2.1 88.2 ± 2.5 89.3 ± 2.4 89.7
Sensitivity 93.7 ± 2.8 92.2 ± 2.9 89.6 ± 3.4 90.0 ± 3.2 95.7
Specificity 87.9 ± 3.5 89.7 ± 3.3 86.9 ± 3.7 88.5 ± 3.6 87.4
MCC 0.80 ± 0.05 0.81 ± 0.05 0.76 ± 0.05 0.78 ± 0.05 0.68

a Validation and testing are performed on a 90%:10% split of the dataset, respectively. Validation performance is reported as the mean over 100 repetitions of 5-fold cross-
validation ± 1 standard deviation.

ML reveals GH7 sequence–function relationships
the ML models trained on the lengths of A4, B2, B3, and B4
loops achieved high predictive performance (>94% accuracy),
the models trained on the other loops demonstrated mediocre
or poor performance (Table 1, Fig. 5, A). These results indicate
that the lengths of the A4, B2, B3, and B4 loops are primarily
important for the difference in GH7 CBH and EG behavior.
Greater exposure of the active site is generally accepted as a
hallmark of nonprocessive cellulases (EGs). In addition, the
ML results indicate that exposure of the active site in GH7 EGs
occurs primarily at the product-binding region (+1 and +2
glycosyl subsites) due to deletions in the A4 and B4 loops, at
the region below the catalytic center due to deletions in the B3
loop, and at the region to the lower left of the catalytic center
due to deletions in the B2 loop (Figs. 1 and 5C).

Earlier works have indicated that GH processivity correlates
with ligand-binding affinity, ligand solvation, and the flexibility
of catalytic residues (32, 75, 76). In TreCel7A, binding affinity is
stronger at product-binding sites (+1, +2) than at the substrate-
binding sites (−7 to −1), and this binding affinity difference has
been proposed to be the driving force for the forward processive
motion of the cellulase chain (8, 32, 35, 77). Consequently, a
logical explanation for why the lengths of the A4 and B4 loops
strongly correlate with GH7 CBH/EG function is that deletions
in the A4 and B4 loops increase ligand solvation, disrupt
protein–substrate hydrogen bonds, and lower binding affinity at
the product-binding sites, leading to a decrease in processivity.
Similarly, the strong relationship between the lengths of the B2
and B3 loops and GH7 CBH/EG function can be explained by
the rationale that deletions in the B2 and B3 loops lead to an
increase in solvation and a decrease in protein–ligand
Figure 10. Frequency of Cys at positions forming disulfide bonds in GH7 s
the frequencies were determined from the structure-based MSA (1748 sequen
present in roughly at least 80% of the sequences. A rare disulfide bond, forme
and is virtually absent in EGs. Overall, disulfide bonds are more prevalent in G
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interactions in the substrate-binding sites and an increase in
solvation and flexibility of catalytic residues. It is interesting that
although the A2 and A3 loops also overlay the catalytic center
of the active site, their lengths show practically no correlation
with GH7 CBH/EG function (Figs. 5A and S1), and exposure of
the catalytic center in GH7s is achieved primarily by deletions in
the B2 and B3 loops instead.

Moreover, the level of variation in lengths of the loops, as
measured by the relative standard deviation, positively corre-
lates with the predictive performance of the loops in
discriminating GH7 CBHs and EGs (Fig. 5, A and B). This
suggests that variation in the lengths of active-site loops was a
major strategy in the evolutionary design of processivity in
GH7s such that variation was allowed in the loops that
significantly affect processivity and limited in other loops that
have little impact on processivity (A2 and A3).

Furthermore, there is a strong positive correlation between the
lengths of the A4, B2, B3, and B4 loops (Fig. 6). Hence, in wild-
type GH7s, the shortening of any one of these four loops is
highly associatedwith truncation of the other three loops. Onour
dataset of 1748 sequences, we observed that if the B4 loop of a
sequence is shortened, as is typical of GH7 EGs (i.e., possessing
three residues or less), the probability that the A4, B2, and B3
loops are all shortened to typical GH7 EG lengths (i.e., five, four,
and three residues or less, respectively) is 0.97 (Fig. 5,D). In other
words, thepronounced concomitant shortening of theA4, B2, B3,
andB4 loops observed in all crystal structures ofGH7EGs (26, 29,
78) is remarkably conserved in EGs across the GH7 family. This
distinct bimodal distribution (Fig. S1) and strong correlation
between loop lengths and GH7 subtype may serve as a valuable
equences. Cys positions (x-axis) are labeled using TreCel7A numbering and
ces). GH7 sequences may have up to ten disulfide bonds, nine of which are
d by C4 and C72 in TreCel7A, is present in less than 10% of GH7 sequences
H7 CBHs than EGs.
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tool for correct gene annotation. Moreover, the strong conser-
vation of loop lengths also indicates that there are coupled in-
teractions between the A4, B2, B3, and B4 loops (24). This might
explain why in the recent work of Schiano-di-Cola et al. (51),
independent deletions in the B3 and B4 loops did not lead to
significant improvements in the activity of TreCel7A on amor-
phous cellulose, and deletions in the A4 loop rendered the
enzyme inactive. Cooperative synergy of deletions in other loops,
as well as point mutations at key positions, may be required to
fully exploit the effects of deletions in the B3, B4, and A4 loops.

Beyond the active-site loops, we have derived 90 position-
specific classification rules from 42 positions in the MSA
such that the specific amino acid, or amino acid type, at these
positions can independently predict the GH7 functional sub-
type, with accuracies ranging from 87% to 97%. The high ac-
curacy of these classification rules implies that there are strong
constraints on the specific amino acids, or amino acid types,
utilized by GH7 CBHs and EGs at these 42 positions. Such
differential constraints likely signify that these positions are
imperative to the distinction between GH7 CBH and EG
behavior. More than half of these positions are within 5 Å of
the cellononaose substrate bound in the TreCel7A structure,
and many of these positions cluster around the B2 loop (Figs. 1
and 9, D and E). This finding provides a possible explanation
for the observation that deletions in the B2 loop led to much
greater changes in the CBH behavior of TreCel7A than de-
letions in the B3 and B4 loops, relative to TreCel7B (51). Since
more of the important residues that yield high-accuracy po-
sition-specific classification rules cluster around the B2 loop
than other loops, deletions in the B2 loop likely lead to a
disruption of a greater number of interactions necessary for
CBH activity than deletions in the B3 and B4 loops.

Many of the 42 positions from which we derived classification
rules have been identified and studied in previous works, and
mutations at these positions have led to significant increase in
catalytic efficiency relative to thewild type (79–81).Trp38,Tyr51,
Asn103, Lys181, Asn200, Asp179, Arg251, Asp262, and Arg394
were identified in a docking study as residues that directly interact
with and stabilize the cellulose substrate in the active site of
TreCel7A (82). Several of these positions have been further
shown to form important stabilizing interactions with the sub-
strate.Arg394 formshydrogen bondswith the+2 glycosyl residue
(34, 35), Arg251 forms a salt bridge with Asp259 and hydrogen
bonds with the +1 and +2 glycosyl residues (6, 35, 36), and
Asn103 and Lys181 form hydrogen bonds with the -5 glycosyl
residue (18, 83). Sørensen et al. (80) studied mutants of Rasam-
sonia emersoniiCel7A in which two Asn residues on the B2 loop,
Asn194 and Asn197 (Asn197 and Asn200 in TreCel7A, respec-
tively) were replaced with Ala. They observed that the mutations
led to a decrease in substrate affinity and processivity, thus
enabling faster enzyme–substrate dissociation and a corre-
sponding increase in activity on crystalline cellulose. In this
present work, the Asn200 position yields the following classifi-
cation rule: Asn implies CBH, and not Asn implies EG, which
discriminates GH7 CBHs and EGs with an accuracy of 89%.
Similarly, Bu et al. (36) conducted computational studies of
several TreCel7A residues including Arg251, Asp262, and
Tyr381. These residues were identified to substantially interact
with the cellobiose substrate and mutation to Ala resulted in
considerably weaker binding of cellobiose in the product-binding
site. It was suggested that these mutants would demonstrate
improved biomass conversion efficiency due to accelerated
expulsion of the cellobiose product. In this present study, these
positions (251, 262, and 381) also yield high-accuracy classifica-
tion ruleswith accuracies of at least 88%.Additionally,Mitsuzawa
et al. (79) determined that mutation of Asn63 and Lys203 to Ala
in Talaromyces cellulolyticus Cel7A (Asn37 and Lys181 in Tre-
Cel7A, with classification accuracies of 91% and 94%, respec-
tively) led to a remarkable increase in activity on cellulose.

Some positions farther away from the active site also yielded
high-accuracy classification rules. For example, position 401—
conserved as Ser in CBHs but as Glu in EGs and more than
13 Å away from the cellodextrin ligand in the TreCel7A
structure—generates a CBH/EG classification rule with an
accuracy of 92%. Although residues at positions such as 401
may not directly interact with the cellulose substrate in the
active site, they may participate in long-range interactions that
affect GH7 CBH and EG behavior. The fact that our approach
has accurately returned so many of the known position-
specific relationships (Table 2) builds confidence that the
novel positions with relationships yet to be determined will
impact enzyme function. As such, further studies are war-
ranted to determine the specific roles these correlative posi-
tions play in function and structural stability. Altogether, we
surmise that the positions that yield high-accuracy classifica-
tion rules play key roles in GH7 CBH/EG function and, as
such, should be carefully considered when engineering the
protein at or around these sites.

Bioinformatic analysis of the MSA revealed conserved aro-
matic positions in the active site that are within 6 Å of the
cellulose substrate in TreCel7A (Table 3, Fig. 8). The results
indicate that whereas conserved aromatic residues in the active
site of GH7 CBHs span the entire active-site tunnel, conserved
aromatic residues in the active site of GH7 EGs are clustered
around the catalytic center. Moreover, aromatic positions near
the catalytic center are conserved in both GH7 CBHs and EGs.
This arrangement of conserved aromatic residues in the active
site suggests that while aromatic residues near the catalytic
center (Y145, W216, H228, W367, and W376) play major roles
in catalytic bond cleavage, conserved aromatic residues that
flank the catalytic center (W38, W40, Y51, Y82, Y252, Y370,
and Y381) are utilized mainly by CBHs for processive motion.
Several experimental and computational studies support this
hypothesis (36, 38, 84, 85).

Taylor et al. (20) assayed chimeras derived from inter-
changed subdomains of PfuCel7A and TreCel7A. Although the
CD of PfuCel7A exhibited greater efficiency on biomass than
the CD of TreCel7A, interchanging CBM and linker regions
did not yield a uniform trend in catalytic efficiency. As a result,
it was concluded that there are complex interactions that are
not yet well understood between the domains. In this work, we
have applied ML to predict, for the first time, the presence of
CBMs from amino acid positions in the CD so as to map those
nonintuitive relationships between the CBM and CD of GH7s;
J. Biol. Chem. (2021) 297(2) 100931 13
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such relationships are not readily identifiable by manual in-
spection of a gene. First, our data indicate that GH7 CBHs are
roughly two times more likely to utilize CBMs than GH7 EGs,
which is as expected since CBMs likely enable CBHs to stay
longer on the cellulose substrate to facilitate consecutive hy-
drolysis. Furthermore, ML results show that the presence of a
CBM in GH7s can be accurately predicted (89.3% accuracy)
using only 20 features derived from 19 positions in the cata-
lytic domain (Table 5). This high predictive accuracy largely
suggests that there are constraints and key functional re-
lationships between residue positions in the CD and the
presence of a CBM in the gene. Interestingly, on the protein
structure, these 19 positions are mostly located on loops or at
turns all over the protein structure (Fig. 9, C). Moreover, the
amino acid residues constituting the 20 features are mostly
small amino acids (such as Gly, Ser, Thr, Asp, and Asn) that
are known to affect the conformational flexibility of proteins
(86, 87). Taken together, our ML results, while preliminary,
suggest that the presence of CBMs in GH7s correlates with the
overall conformational flexibility of the CD and that CBMs
may exist, in part, to compensate for highly flexible CDs that
are more likely to detach from the cellulose surface. Moreover,
the position-specific classification rules we derived from the
top 50 random-forest features in predicting CBMs indicate
that GH7s possessing a rare disulfide bond (C4-C72 in Tre-
Cel7A) are about three times more likely to possess a CBM
than GH7s that lack this disulfide (Tables 6 and S2, Fig. 10). In
a previous work, mutation of C4 and C72 in TreCel7A was
shown to increase cellulolytic efficiency and flexibility of the
tunnel entrance (20). Since an extra disulfide bridge would
generally decrease the flexibility of the CD, the positive cor-
relation of C4 and C72 with the presence of a CBM is contrary
to our hypothesis that CBMs compensate for the flexibility of
the CD. This paradoxical correlation, thus, warrants further
experiments to investigate such relationships.

In conclusion, we have used ML to uncover key positions in
GH7 sequences that appear to be related to function and
broader statistical relationships between GH7 sequence and
functional diversity. Specifically, we identified aspects of GH7
sequence that correlate with activity across the entire family,
including the lengths of the A4, B2, B3, and B4 loops and key
positions such as 38, 251, 256, and 394. While some of these
features have previously been examined for a handful of spe-
cific GH7 enzymes, our work here is the first to demonstrate
that such features are not just characteristic of a singular GH7
enzyme but are, instead, coevolved with functional distribution
across the entire family. Moreover, we also identified other
positions that strongly correlate with activity but have yet to be
considered in the structural or biochemical literature (such as
16, 146, and 338). By extension, these novel positions are very
likely to play similarly critical roles in GH7 activity and can
inform future experimental studies. Additionally, we demon-
strated that ML applied to a MSA can uncover key positions in
an enzyme family that are important for activity. These ML
strategies will prove beneficial as a systematic screening
technique to identify the positions that strongly correlate with
the functional distribution in a given enzyme family. Thus, we
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anticipate that our findings will inform further propitious
studies for the design of more efficient cellulases. While these
sequence–function relationships are statistically significant, we
stress that they may be influenced by sampling and phyloge-
netic biases inherent to the dataset. Nonetheless, the strategies
we have applied here are extensible to other protein families,
particularly where multiple functional classes exist (such as
CBH/EG or CBM/no-CBM), and as such, this work provides a
solid basis for future statistical investigations to establish
sequence–function relationships as well as to identify
sequence positions that are promising targets for protein
engineering.

Experimental procedures

Sequence datasets

Sequences were retrieved by protein–protein BLAST
searches against the NCBI nonredundant database by using
TreCel7A (P62694.1) and FoxCel7B (AAA65586.1) as query
sequences. BLAST search was implemented with the NCBI
web server (https://blast.ncbi.nlm.nih.gov/Blast.cgi) using
default settings. Only sequences with E-values of 1e-20 or
better and query cover of 60% or more were retained. The
query cover threshold of 60% was applied to exclude the large
number of fragment sequences returned by the BLAST search.
A total of 2024 sequences were retrieved. A sequence identity
threshold of 99% was applied to remove redundant sequences
so that only 1748 sequences were left in the dataset. From
manual inspection of the BLAST output, 60 of these sequences
consisted of multiple domains other than GH7. Other domains
were deleted in these sequences leaving only one GH7 domain
for each sequence. The UniProtKB/SwissProt dataset of 44
sequences was obtained by a similar BLAST search against the
UniProtKB/SwissProt database.

Sequence alignments

Sequence alignments of the UniProtKB/SwissProt dataset
(44 sequences) and the annotated NCBI dataset (427 se-
quences) were conducted with MAFFT version 7 (88) using
BioPython (89) with default settings. Due to the greater di-
versity of the larger dataset (1748 sequences), in order to avoid
generating erroneous alignments, a structure-based sequence
alignment was implemented for the larger dataset. First,
structural alignment of 20 GH7 structures (16 CBHs, four
EGs) was conducted with the Promals3D web server (90). The
structural alignment was manually edited in UGENE (91)
following standard manual adjustment methods (92). Then, an
MSA of the 1748 sequences was generated with the MAFFT
add-sequences option (88) by adding the sequences to the
structural alignment. Sequence alignments were viewed with
ESPript (http://espript.ibcp.fr) (93), and sequence logos
(Fig. S4) were generated with WebLogo (https://weblogo.
berkeley.edu/logo.cgi) (94).

Machine learning and performance evaluation

Profile-hidden Markov models were constructed from the
MSAs with a local version of the HMMER software (version
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3.1b2) (55, 95). All ML methods were implemented using the
Scikit-learn Python package (version 0.20.3) (96). The
K-nearest neighbor (KNN) classifier was trained with the
“n_estimators” parameter (k) set to an optimal value of 10
(best of 5, 10, and 15). A radial basis function (RBF) kernel was
applied in the SVM classifiers, and default settings were used
for the logistic regression classifiers. To avoid overfitting with
the decision trees, the depth of the trees was limited to the
number of features. Hence, single-feature decision trees had a
“max-depth” of 1, and the decision tree trained on all eight
features had a “max-depth” of 8.

There were severe outliers in the lengths of active-site loops
that would have skewed the ML results. For example, from the
MSA, a sequence (GenBank accession: CRK24563.1) had 140
residues in the B2 loop. These extremities may have resulted
from sequencing or splicing errors. Before the ML procedure,
outliers were capped to an arbitrarily selected maximum limit
(60) (Fig. S5). All nonbinary features applied in ML were
standardized by converting them to Z-scores according to
following equation:

zi ¼ xi−μ
σ

(1)

The ML algorithms were applied to discriminate between a
positive class (CBH or CBM) and a negative class (EG or no
CBM), resulting in four classification outcomes: true-positives
(TP), true-negatives (TN), false-positives (FP), and false-
negatives (FN). The performance of the ML algorithms was
evaluated by computing the sensitivity, specificity, accuracy,
and MCC according to the following equations:

Sensitivity¼ TP
TPþFN

(2)

Specificity¼ TN
TNþFP

(3)

Accuracy¼ TNþTP
TNþTPþFNþ FP

(4)

MCC¼ ðTN×TPÞ−ðFP×FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTNþFPÞ×ðTNþFNÞ×ðTP×FPÞ×ðTNþFNÞp (5)
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