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ABSTRACT
Food contact materials (FCMs) can contain hazardous chemicals that may have the potential to migrate 
into food and pose a health hazard for humans. Previous studies have mainly focused on plastic 
materials, while data on packaging materials made from paper and cardboard are limited. We used 
a panel of cell-based bioassays to investigate the presence and impact of bioactive chemicals on human 
relevant endpoints like oxidative stress, genotoxicity, inflammation, xenobiotic metabolism and endo-
crine system effects in extracts made from paper and cardboard. In total, 23 methanol extracts of 
commonly used paper and cardboard available on the Swedish market were extracted as a whole 
product using methanol to retrieve polar substances, and tested at concentrations 0.3–10 mg/mL and 
0.2–6 mg/mL. At the highest concentration bioactivities were observed in a high proportion of the 
samples: oxidative stress (52%), genotoxicity (100%), xenobiotic metabolism (74%), antiandrogenic- 
(52%) and antioestrogenic receptor (39%). Packages of potential concern included cake/pastry boxes/ 
mats, boxes for infant formula/skimmed milk, pizza boxes, pizza slice trays and bag of cookies. It should 
be noted that the extraction for packages like cake/pastry boxes can be considered exaggerated, as the 
exposure usually is shorter. It can be hypothesised that the observed responses may be explained by inks, 
coatings, contaminants and/or naturally occurring compounds within the material. To summarise, an 
effect-based approach enables hazard identification of chemicals within FCMs, which is a valuable tool 
for ensuring safe use of FCMs.
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Introduction

Food contact materials (FCMs) are defined as 
materials intended to come into contact with 
food. These materials should be stable against vary-
ing temperatures, ensure prolonged shelf-life of 
foods, as well as protect against biological and che-
mical contaminations. They can be made from 
a range of materials such as plastic, glass, paper, 
cork and paperboard (Simoneau 2016).

Chemicals present in FCMs can either be inten-
tionally added for a specific function or non- 
intentionally added. Non-intentionally added 
substances (NIAS) can originate from breakdown 
products, chemical interactions with the food item 
and the package material, or from contaminants 
(Peters et al. 2019). Examples of chemicals in FCMs 
are primary aromatic amines, mineral oil 

hydrocarbons, plasticisers (e.g. phthalates, adipates, 
terephthalates etc.), and bisphenol A (BPA), all of 
which have the potential to cause adverse health 
effects in humans (Lopez-Espinosa et al. 2007; 
Lorenzini et al. 2010; Campanella 2015). These che-
micals have mainly been studied in plastic packaging 
materials and it is important to investigate other types 
of packaging materials, such as paper and cardboard 
(Campanella 2015; Severin et al. 2017; Park et al. 2018; 
Schweighuber et al. 2019).

There is currently no harmonised legislation within 
the European Union (EU) for chemical safety of paper 
and cardboard FCMs. The EU framework regulation 
states that FCMs should be in compliance with good 
manufacturing practice and not transfer their sub-
stances in amounts that could negatively affect 
human health or alter the food itself (EU 2004; EU 
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2011; EU 2016). Still, the framework does not regulate 
specific substances, and this is a limitation since 
migration of chemicals from the finished product 
containing inks, additives and adhesives may affect 
human health (Muncke 2010; Koster et al. 2015).

There is limited knowledge on toxicity of chemi-
cals present in the environment. Toxicity testing of 
water samples has demonstrated that unknown com-
pounds account for up to 99.1% of the biological 
effects for certain endpoints when tested in mamma-
lian in vitro systems or in the bacterium Vibrio 
fischeri (Escher et al. 2013; König et al. 2016; Neale 
et al. 2020). Effect-based in vitro methods can be 
used to assess these effects. Our study did not focus 
on identifying chemicals, as known and unknown 
NIAS may exert the identified effects and these may 
not be identified by targeted chemical analyses.

Prior studies have reported effects on the aryl 
hydrocarbon- (AhR), oestrogen- (ER) and androgen 
(AR) receptors, as well as oxidative stress responses 
and genotoxicity by certain paper and cardboard 
FCMs (Bengtström et al. 2014; Rosenmai et al. 
2017; Severin et al. 2017). This indicates that these 
endpoints are relevant human health outcomes to 
examine further when assessing the safety of FCMs.

There are a limited number of studies that use 
effect-based methods to identify bioactive chemicals 
in FCMs. Therefore, we used an effect-based 
approach in this study to evaluate the presence of 

hazardous chemicals in a large number of commonly 
used FCMs made of paper and cardboard. This 
panel of bioassays represented toxicity pathways 
of high relevance to human health. The endpoints 
investigated were oxidative stress (Nrf2 activity), 
genotoxicity (micronucleus test), nuclear factor 
kappa-light-chain-enhancer of activated B cells 
(NFκβ) signalling, oestrogen (ER), androgen 
(AR) and aryl hydrocarbon receptor (AhR). Sixty- 
seven commonly used paper and cardboard FCMs 
available on the Swedish market were chosen, and 
included materials like pizza boxes, microwave 
popcorn bags and fastfood packaging.

Material and methods

Sample preparation and extraction

A total of 67 food packages made from paper and 
cardboard were purchased by the Swedish Chemicals 
Agency from a variety of sources (e.g. supermarkets, 
bakeries and restaurants) in 2019 (Table 1). The 
selection of FCM samples were based on sales statis-
tics of purchased materials on the Swedish consumer 
market (Kemikalieinspektionen 2020).

The sample extraction procedures are described 
in the Supplementary information (Section SI-1). 
Briefly, samples were cut into small pieces, with 
inner and outer surfaces containing inks, glue, 

Table 1. Food packaging materials (FCMs) tested.
FCM Printing Purchased at No. of pooled samples

Baking moulds Yes Supermarket 1
Pizza slice trays Yes Store 1
Paper for baking and baking moulds No, but contained bleached material Manufacturer/bakery/supermarket 5
Boxes for cookies Yes Manufacturer 3
Popcorn boxes Yes Movie theatre/store 3
Cake/pastry boxes/mats Yes Bakery 5
Board samples Yes Manufacturer 2
Boxes for infant formula/skimmed milk Yes Manufacturer 3
Boxes for porridge and flour mixes Yes Manufacturer 6
Paper plate for warm food No Restaurant 1
Paper plate (coated) Yes Store 1
Boxes for cereals Yes Supermarkets 4
Boxes for cookies Yes Supermarket 3
Microwave popcorn bags Yes Supermarkets 6
Straws Yes Movie theatre 1
Pizza boxes Yes Restaurant 2
Papers for wraps Yes Restaurants 3
Hamburger/French fries’ papers Yes Restaurants 5
Boxes for fries’ and hamburgers Yes Restaurant 2
Paper for trays Yes Restaurant 1
Bag for cookies Yes Bakery 1
Coloured paper for baking moulds Yes Manufacturer 1
Packages for frozen food Yes Supermarket 2

FOOD ADDITIVES & CONTAMINANTS: PART A 1595



coatings, lacquers, coatings, etc., consisting of 
approximately 1 g of material, except for the 
extract paper for baking and baking moulds 
which received a weight of 0.6 g. The 67 materials 
were categorised into groups and similar materials 
(like pizza boxes) were pooled together and this 
resulted in a total of 23 extracts (Table 1). Each 
pool of materials contained in total 1 g, except for 
baking and baking moulds. The samples were placed 
in Teflon-coated test tubes and microwaved for 
20 min at 80°C in 15 mL of methanol, before being 
transferred into glass tubes. An additional extraction 
by ultrasonication was performed for 15 min in the 
Teflon-coated tubes using an additional 10 mL of 
methanol (Alin and Hakkarainen 2012; Melski et al. 
2003). Thereafter, the pooled extracts were evapo-
rated under a nitrogen stream to 0.5 mL, and there-
after diluted with 0.5 mL ultrapure water (Milli-Q ®) 
to obtain a final volume of 1 mL. The extraction 
procedure allowed water-soluble chemicals and to 
some extent fat soluble substances to be extracted. 
Three solvent blanks were prepared following the 
same extraction procedure as for the FCMs, but 
without material.

Bioassays

All extracts were analysed in quadruplicate in the 
bioassays mentioned in Table 2. Each bioassay used 
an established cell line and comprehensive informa-
tion of the bioassays are available in Supplementary 
information (Section SI-1).

The vehicle control was the solvent methanol 
MeOH/Milli-Q water (1:1), which samples were dis-
solved in. The standards were dissolved in DMSO 
due to low solubility in MeOH/MQ water, and there-
fore DMSO was included as an additional vehicle 
control. Information on standards for respective 
assay are shown in Table 2. Mitomycin C (MMC), 
tamoxifen and methoxychlor were used as positive 
controls for genotoxicity, antioestrogenic activity 
and agonistic oestrogen activity, respectively.

Data analysis

All sample results and positive controls were nor-
malised to the activity of the vehicle control(s), 
which was set to 1 for reporter gene assays and 
100% for cell viability assays. The standard curves 
for the nuclear-receptor bioassays were created on 
a four parameter non-linear regression sigmoidal 
curve fit using GraphPad Prism 8 Software (San 
Diego, California USA).

The effect concentration (EC50) and inhibitory 
concentration (IC50) were calculated from the four 
parameter regression curve, as previously described 
by Escher et al.(2018) (Table SI-1).

For the transcription factor Nrf2, the standard 
curve was fitted by linear regression using 
GraphPad Prism 8 Software. An effect concentration 
corresponding to an induction ratio of 1.7 was cal-
culated for Nrf2 activity, as no maximum response 
exists (Table SI-1) (Escher et al. 2014). Micronuclei 
results were analysed in quadruplicate with 

Table 2. Summary of bioassays and respective endpoints.

Endpoint Cell line
Standard 

Concentration
Added treatment 
Concentration

Oxidative stress – Nrf2 activation (Lundqvist et al. 2019) MCF7 AREc32 Butylhydroquinone (tBHQ)  
0.8–25 µM

N/A

Genotoxicity – Micronucleus (MN) events (OECD 2016a) TK6 N/A N/A
Agonistic ER activity (OECD 2016b) VM7Luc4E2 Oestradiol (E2)  

0.4 to 367 ρM
N/A

Antiestrogenic activity (OECD 2016b) VM7Luc4E2 Raloxifen (Ral) 
0.1–24.5 nM

E2 
0.1 nM

Agonistic AR activity (OECD 2016c) AR-EcoScreen GR-KO M1 Dihydrotestosterone (DHT) 
0.001–1000 ρM

N/A

Antiandrogenic activity (OECD 2016c) AR-EcoScreen GR-KO M1 Hydroxyflutamide (OHF) 
0.0001–10 µM

DHT 
200 ρM

Xenobiotic metabolism – AhR activation (Rosenmai et al. 2018) DR-EcoScreen 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) 
0.01–1000 ρM

N/A

Inflammatory response – NFκβ activation (Lundqvist et al. 2019) HepG2-NFκβ Tumour necrosis factor α (TNFα) 
0.2–50 ng/mL

N/A

Cytotoxicity (MTS/ATPase*/%EMA**) All mentioned above N/A N/A

* ATPase was only used for VM7Luc4E2 cells ** % EMA was only used for TK6 cells
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GraphPad Prism 8 using one-way ANOVA followed 
by Dunnett’s multiple comparison test. P-values 
<0.05 were considered statistically significant.

For all bioassays, the classification of a sample as 
bioactive was based on a cut-off limit, which was 
calculated as 1 plus 3 times the standard deviation 
(SD) of the normalised vehicle control. The cut-off 
limit for the antioestrogenic and antiandrogenic 
tests were calculated as 1 minus 3 times the SD of 
the normalised vehicle control. More information 
of the cut-off values are presented in Table SI-1. 
The cut-off value for cytotoxicity was set at 75% of 
cell viability compared to the vehicle control for all 
assays, except for the micronuclei test. For this, the 
cut-off limit of cytotoxicity was set at fourfold 
increase in EMA-positive events compared to the 
vehicle control. The bioanalytical equivalent con-
centration (BEQ) was calculated for the highest 
concentration for each bioactive extract based on 
the linear range of the extract’s concentration- 
response and dose–response curves of the assay- 
specific standard (Table SI-2).

Results and discussion

Cell viability

FCM extracts were evaluated for cytotoxicity in MCF7 
AREc32, HepG2-NFκβ, AR-EcoScreen GRKO M1, 
DR-EcoScreen and VM7Luc4E2 cell lines at concen-
trations from 0.3 to 10 mg food packaging material/ 
mL of cell medium, to ensure that specific toxic 
responses were evaluated under non-cytotoxic condi-
tions (Figure SI-1 – 5). The extract from baking and 
baking moulds was tested at concentrations from 0.2 
to 6 mg food packaging material/mL of cell culture 
medium because of technical reasons. Samples caus-
ing a cell viability of <75% were defined as cytotoxic. 
Any sample that was cytotoxic is represented by 
hashed grey-black bars in the graphs for each end-
point. As these samples were cytotoxic, although not 
severely, the results for those exposure concentrations 
should be interpreted with care. All other extracts were 
found to be non-cytotoxic (Figure SI-1 – 5).

Oxidative stress

Oxidative stress was assessed using a stably trans-
fected breast cancer cell line (MCF7 AREc32). This 

cell line contains a luciferase reporter gene that is 
under the control of an antioxidant responsive ele-
ment (ARE), meaning that induction of ARE will 
result in increased luciferase activity. Activation in 
ARE triggers an upregulation of genes that code for 
enzymes and antioxidant proteins involved in the 
body’s defence against oxidative stress.

Twelve of the FCMs had Nrf2 activity above the 
cut-off level of 1.7-fold activation at 10 mg/mL 
(Figure 1). The extracts showing the highest 
potency for oxidative stress were cake/pastry 
boxes/mats, boxes for infant formula/skimmed 
milk, boxes for cereals and pizza boxes. These sam-
ples displayed a 5.1–8.9-fold increase in Nrf2 activ-
ity at 10 mg/mL compared to the vehicle control. 
Most of the extracts that activated Nrf2 at the high-
est concentration also exerted an activation at the 
lower concentration 3 mg/mL, in a dose-related 
manner. tBHQ was used as the standard for the 
assay (Figure SI-9). The BEQ values, at non- 
cytotoxic concentrations, ranged from 4.2 to 
28 µM tBHQ equivalents (Table SI-2).

In line with these results, Rosenmai et al. (2017) 
observed an oxidative stress induction for 16 out of 
20 board and paper samples in the Nrf2 CALUX 
reporter gene bioassay. The highest activities in 
their study were observed for the cereal box, sau-
sage tray, tomato punnet, imported paperboard, 
paperboard with water-soluble print and offset 
print materials.

Based on our results, the four FCMs showing the 
highest potency for Nrf2 activation (i.e. boxes for 
cereals, pizza boxes, cake/pastry boxes/mats and 
boxes for infant formula/skimmed milk) were 
selected for evaluation of genotoxicity.

Genotoxicity

Based on the results from the Nrf2 activity assay, 
four samples (boxes for cereals, pizza boxes, cake/ 
pastry boxes/mats and boxes for infant formula/ 
skimmed milk) were tested at 3 and 10 mg/mL in 
the in vitro micronucleus (MN) test using TK6 cells.

Ethidium monoazide (EMA) was used to mea-
sure cytotoxicity, in which a cut-off for cytotoxicity 
was set as a fourfold increase in EMA-positive 
events compared to the vehicle control (Bryce 
et al. 2013). None of the samples caused cytotoxi-
city (Figure 2b). All four samples induced 
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a statistically significant increase in micronucleus 
events at the highest concentration tested com-
pared to the vehicle control, showing that these 
samples contain genotoxic compounds (Figure 2a).

The genotoxicity data were obtained from the 
human lymphoblastic cell line TK6 that is p53 
competent and karyotypically stable, which has 
proven to produce more reliable results than false- 
positive prone rodent cell lines (Fowler et al. 2012). 
Compared to the classical chromosomal aberration 
test, where structural chromosomal damage is stu-
died, the MN test allows detection of both 

structural and numerical alterations. The usage of 
TK6 cells has been highlighted to be both highly 
sensitive and specific (Pinter et al. 2020). To our 
knowledge, this is the first study using 
a micronucleus test with TK6 cells to investigate 
paper and board FCMs.

The possible explanation for the high micronucleus 
events for the pizza box may be due to the fact that 
cardboard is often manufactured from recycled mate-
rials containing inks. Previous studies using DNA 
repair Rec assay and Comet assay supported the posi-
tive genotoxic response for paperboard samples 

Figure 1. Oxidative stress response in MCF7 AREc32 cells exposed to FCM extracts for 24 h (a, b). The graphs represent mean ± SD of 
quadruplicates (n = 4) from one representative experiment, and the dotted line is the induction ratio 1.7 fold change, which was 
defined as the cut-off for bioactivity. The hashed grey black bars represent concentrations that were cytotoxic.
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(Ozaki et al. 2004, 2005). Ozaki et al. (2004, 2005) 
suggested that the genotoxicity might be explained by 
potential mixture effects, unknown toxicants, paper 
resins and/or the amount of recycled matter. The 
recycled material showed a higher induction of 
DNA damage compared to virgin samples in their 
study. Still, varying results have been reported for 
in vitro genotoxicity tests and they appear to be influ-
enced by the extraction method, material, cell type, 
genotoxic endpoint, dose and metabolic capacity of 
used cells. Additional research is needed in the use of 
recycled material in food packages, as there is an 
increased demand for its use, particularly for circular 
economies.

Furthermore, the genotoxic responses observed in 
all other materials in this study may be explained by 
the extensive usage of coatings or inks (Figure 2a). It is 
possible that genotoxic and hazardous substances 
exist in packages in form of ink and coatings, since 
these are not regulated within the EU, making it 
difficult to ensure that coatings and inks do not con-
tain hazardous substances.

The ink can be mineral oil based and/or contain 
photoinitiators that have the ability to generate 
highly reactive species that covalently can bind to 
DNA and create DNA adducts (Szeliga and Dipple 
1998; Tarnow et al. 2016). The findings of this study 

highlight the importance to further evaluate geno-
toxic substances in FCMs.

Oestrogen receptor activity

Oestrogenic response was assayed in the VM7Luc4E2 
cell line, which stably expresses the luciferase gene 
under control of the oestrogen responsive ele-
ment (ERE).

Only three extracts out of 23 samples exerted ER 
agonistic activity above the cut-off value (Figure SI- 
6). The BEQ for microwave popcorn bags was cal-
culated to 10.6 ρM oestradiol equivalents in 10 mg 
FCM/mL (Table SI-2).

Antioestrogenic effects were assayed by stimulat-
ing VM7Luc4E2 cells with oestradiol in the cell 
culture medium and measured as a decrease in 
activity compared to the oestradiol-treated control 
(Figure 3).

Nine of the samples exerted strong antioestro-
genic activity at the highest concentration tested. 
The effect was dose-related and higher concentra-
tions exerted stronger antioestrogenic effects.

Raloxifen was used as a standard for antioestro-
genic activity (Figure SI-10). The BEQ values were 
1.9–8.2 nM raloxifen equivalents in 10 FCM mg/ 
mL (Table SI-2). Tamoxifen at a concentration of 

Figure 2. Micronuclei formation in TK6 cells after exposure to FCM extracts for 24 h (a) and cytotoxicity test (b) Mitomycin C (MMC) was 
used as a positive control at concentrations 100 and 200 nM (a,b). The graphs illustrate mean ± SD of quadruplicates (n = 4) from one 
representative experiment. The dotted line in graph B represent the cut-off limit determined by the manufacturer’s protocol. Data was 
analysed using one-way ANOVA, followed by Dunnett’s post-hoc test. Results that were statistical significant are indicated by asterisks 
(* p-value < 0.05, *** p-value < 0.001, **** p-value < 0.0001).
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3.36 μM was used as a positive control for antioes-
trogenic activity and had a response between 0.3- 
and 0.6-fold change compared to the solvent 
control.

Both agonistic and antioestrogenic receptor 
effects were seen in the FCM extracts, indicating 
that chemicals within FCMs have multiple mechan-
isms of action on the oestrogen receptor. 
Nevertheless, the antioestrogenic response was 

observed in more extracts in our experiments. 
Similarly, activation of ER by paper for household 
use and food container cardboard has been 
reported in E-Screen, BG1luc4E2 (renamed 
VM7Luc4E2) and YES assays (Vinggaard et al. 
2000; Lopez-Espinosa et al. 2007; Rosenmai et al. 
2017). A possible explanation is the presence of 
bisphenol A (BPA) and certain phthalates. 
Exposure to chemicals like BPA and BPA analogues 

Figure 3. Antioestrogenic effects in VM7Luc4E2 cells after 24 h of exposure to FCM extracts (a,b) The graphs illustrate mean ± SD of 
quadruplicates (n = 4) from one representative experiment. Unspiked medium with MeOH/MQ water was used as a control for the 
assay (1%). The dotted line shows the cut-off limit of 0.7. Samples with an activity below the cut-off were defined as bioactive. The 
hashed grey black bars represent concentrations that were cytotoxic.
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have been linked to impaired ovary function as well 
as reduced sperm production and quality (Siracusa 
et al. 2018).

Effects on the oestrogen receptor could also be 
linked to UV-photoinitiators in printing inks that 
may leach from the outer carton, which previously 
have been observed with benzophenones (Muncke 
2010). Studies on the oestrogenicity of benzophe-
nones are however debatable, as oestrogenicity has 
been observed in vitro using MCF7 cell proliferation 
and YES assays, while in vivo uterotrophic assay and 
in vitro human ERα reporter gene assay failed to 
demonstrate any oestrogenicity (Muncke 2010).

Androgen receptor activity

Androgenic effects were examined with the AR- 
EcoScreen GR-KO M1 assay, which employs stably 
transfected CHO cells with human androgen recep-
tor elements linked to a luciferase gene (Zwart et al. 
2018).

No agonistic activity of the androgen receptor 
was exerted in any of the samples (Figure SI-7).

Antiandrogenic activities were assayed by stimu-
lating AR-EcoScreen GR-KO M1 cells with DHT in 
the cell culture medium, and effects were measured 
as decreased activity compared to the DHT-treated 
control (Figure 4). Twelve out of 23 FCM extracts 
induced an antiandrogenic response in a dose- 
related manner. Hydroxyflutamide was used as 
a standard for antiandrogenic effects (Figure SI- 
11). The BEQ values ranged from 0.1 to 3.7 µM 
hydroxyflutamide equivalents in 10 mg FCM/mL 
(Table SI-2). The antiandrogenic responses may be 
explained by chemicals like phenols, phthalates or 
organotins; the latter is used as a fungicide in paper 
and pulp (Muncke 2010). Phenolic compounds 
found in coatings and plastic food packaging have 
been reported to induce antagonistic response of 
the androgen receptor in the AR CALUX (Krüger 
et al. 2008).

Tests of antiandrogenic effects have been carried 
out by Mertl et al. (2014) with yeast androgen 
screen (YAS) and human cell-based AR CALUX 
bioassays. Two out of three paperboard samples 
showed antagonistic effects in the YAS reporter 
gene assay. However, the response was not detected 
in the antagonistic AR CALUX assay, except in one 
sample that showed a positive response in both 

assays. The difference in responses between the 
two models are not known, but it may be explained 
by underlying cytotoxicity of the FCM extracts 
causing false-positive results in the yeast screen 
assay. Conversely, Rosenmai et al. (2017) also tested 
antiandrogenic activity, in which nine out of twenty 
paper and board samples had antiandrogenic activ-
ity. It was speculated by the authors that the effect 
may be explained by the resin acids abietic (AA) 
and dehydroabietic (DHA) used in paper products, 
as seen in a study by Rostkowski et al. (2011). 
Rosenmai et al. (2017) reported antiandrogenic 
effects for cake tray, baking mould and paper 
wraps, which is similar to observations in this 
study. Besides this, other studies have focused on 
studying chemicals on food packaging materials 
like inks. Peijnenburg et al. (2010) studied the 
commonly used ink component photoinitiator 2 
isopropylthioxanthone (2-ITX), which was found 
to have antioestrogenic and antiandrogenic effects 
in two yeast-based assays.

Aryl hydrocarbon receptor activity

The AhR assay utilises DR-EcoScreen cells, which 
are mouse hepatoma cells stably transfected with an 
aryl hydrocarbon responsive element (AhRE) that 
regulates the expression of the luciferase gene 
(Anezaki et al. 2009).

A dose-related increase in AhR activity was 
observed for nearly all of the samples (20/23) 
(Figure 5). The strongest effects were observed for 
pizza slice trays, cake/pastry boxes/mats, pizza 
boxes and bag of cookies.

Strong activity was already observed at the lowest 
concentrations for boxes for porridge and flour 
mixes, boxes of cereals and pizza boxes. At the 
highest concentrations, the boxes for infant for-
mula/skimmed milk and boxes for cookies (from 
the supermarket) showed a slight reduction in AhR 
activity compared to the lower concentration of 
3 mg/mL, indicating cytotoxicity that was not 
detected in the MTS assay. TCDD was used as 
a standard (Figure SI-12). The BEQ values, at non- 
cytotoxic concentrations, ranged from 0.2 to 13 ρM 
TCDD equivalents (Table SI-2).

The positive response in AhR is supported by 
previous data on both paper and cardboard using 
the stably transfected rat hepatoma CALUX-assay 
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(Binderup et al. 2002; Bengtström et al. 2014; 
Rosenmai et al. 2017). In a recent study by 
Rosenmai et al. (2017), all samples induced AhR, 
with the pizza box, tomato punnet, sausage tray and 
paperboard with offset print showing pronounced 
inductions of the AhR. The strong response was 
suggested to be due to additive response caused by 
the presence of contaminants and/or natural com-
ponents within the paper and board that have the 

ability to function as AhR ligands. Furthermore, the 
photoinitiator 2-ITX in ink have shown to have 
AhR agonistic activity in the DR CALUX assay, as 
well as induce the AhR responsive enzyme cyto-
chrome P450 1A1 activity in the EROD assay using 
the rat hepatoma H4IIE cell line (Peijnenburg et al. 
2010). Further studies are needed to understand 
FCMs impact on AhR, as it has vital functions in 
biotransformation of xenobiotic substances, 

Figure 4. Antiandrogenic response in AR-EcoScreen GR-KO M1 cells after 24 h of exposure to FCM extracts (a,b). Unspiked medium with 
MeOH/MQ water was used as the control for the assay (1%). The panel shows mean ± SD of quadruplicates (n = 4) from one 
representative experiment. The dotted line illustrates the cut-off of 0.7. Samples with an activity below the cut-off was defined as 
bioactive.
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reproduction, development and intestinal immu-
nological response (Gutiérrez-Vázquez and 
Quintana 2018; Bock 2019).

NFκβ activity

NFκβ activity was tested in HepG2-NFκβ cells, 
which is a stably transfected cell line with a NFκβ 
responsive element controlling the luciferase gene 
(Figure SI-8). The transcription factor NFκβ has 

vital functions in the immune system, and dysfunc-
tion has been related to cancer, autoimmune dis-
eases and viral infections (Brasier 2006). None of 
the FCM extracts caused an increased activity in 
NFκβ, which had the cut-off at 1.5.

The lack of response in the NFκβ reporter gene 
assay could be explained by several factors, that the 
extracts did not induce an immune response, potential 
immunosuppressive effects or lack of cell communi-
cation that is critical for proper immunological. 

Figure 5. AhR activity in DR-EcoScreen cells after 24 h of exposure to FCM extracts (a,b). The graphs illustrates mean ± SD of 
quadruplicates (n = 4) from one representative experiment. The dotted line shows the cut-off limit of 1.5. The hashed grey black bars 
represent concentrations that were cytotoxic.
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Kejlová et al. (2019) also investigated the inflamma-
tory response and observed the induction of cytokine 
IL-8 in heavy-printing FCM samples in the sophisti-
cated 3D human intestine model EpiIntestinal FT, 
which suggest that FCMs may affect important func-
tions of leukocytes. Still, few studies have investigated 
the inflammatory response from FCM and future 
studies should focus on the potential immunotoxic 
effects in the gut, since it is the main route of exposure 
of FCMs.

Future perspective

We have observed activation of oxidative stress, gen-
otoxicity, xenobiotic metabolism and antagonistic 
effects on the oestrogen as well as androgen receptors. 
Packages that are of potential concern includes cake/ 
pastry boxes/mats, boxes for infant formula/skimmed 
milk, pizza boxes, pizza slice trays and bag of cookies. 
Two materials that were particularly noticeable were 
cake/pastry boxes/mats and boxes for infant formula/ 
skimmed milk, which suggests that these materials 
seem to be the most problematic, potentially due to 
the heavy colouration from the printing inks. These 
findings are of importance given that substances that 
causes these effects could migrate into food and thus 
constitute a health hazard for humans.

One important aspect of the present study is 
whether the extraction method is representative of 
realistic migrations from the FCMs to food and subse-
quently in relation to human exposure. The methanol 
extraction with microwave treatment at high tempera-
ture may exaggerate the migration of water-soluble 
compounds, although conversely more-lipid-soluble 
contaminants may not be extracted. Additionally, the 
extraction procedure was done on the food packaging 
as a whole product, and single sided extraction of 
materials having a secondary packaging like infant 
formula/skimmed milk could have resulted in different 
results. Nevertheless, the resin acids dehydroabietic 
(DHA) and abietic (AA) in paper products have 
shown to migrate under mild extraction procedures, 
and have been speculated to cause antiandrogenic 
effects in food package materials (Ozaki et al. 2006; 
Rosenmai et al. 2017). In addition, worst-case scenario 
extractions can be relevant for certain materials that are 
exposed to high temperatures in their normal use, for 
example, microwave popcorn bags, and as a screening 

method to identify potential problematic substances/ 
FCMs.

It is important to keep in mind that volatile 
substances may seep through cardboard and plastic 
bag materials, such that dry foods can still be con-
taminated with chemicals from inks or recycled 
fibres, particularly after longer storage conditions 
(Lorenzini et al. 2010). Furthermore, it is essential 
to ensure that observed effects are not from sub-
stances present in the food itself.

Several challenges exist when studying food 
package materials and one of these are NIAS, 
which currently are not possible to identify and 
quantitatively determine in targeted chemical ana-
lysis. As toxicity can arise from both unknown and 
known compounds individually and as compo-
nents in mixtures, it is necessary to base the hazard 
identification and risk assessment on the material 
as a whole and not the single known chemicals. An 
effect-based strategy enables hazard identification; 
however, there is a need to standardise bioassays in 
future studies to ensure high-quality performance, 
reporting, sensitivity, specificity and consistency 
between laboratories (Groh and Muncke 2017).

The results presented here prompt future studies 
on the presence of hazardous chemicals in paper 
and board FCMs. Specifically, studies should focus 
on using more relevant extraction methods and 
investigate potential alterations in toxicity during 
passage through the intestinal epithelium in com-
bination with reporter gene bioassays. Finally, the 
use of effect-based approaches to evaluate the 
potential effects of such chemicals in food packages 
should be emphasised, since it cannot be ruled out 
that the chemicals causing activity in the FCM 
extracts could migrate and contaminate the food.
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