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Fishing and translocation of marine species for use in aquaculture is widespread. Corkwing, goldsinny, and ballan wrasse (Symphodus melops,
Ctenolabrus rupestris, and Labrus bergylta) are fished on the Swedish west coast for use as cleaner-fish in Norwegian salmon farms. Here, we
aim to provide knowledge and recommendations to support ecosystem-based management for wrasse fisheries in Sweden. We compared
fished and non-fished areas to test if current fishery levels have led to stock depletion. To gain insight on the role of wrasse in the algal belt
trophic chain, we analysed the gut contents of goldsinny and corkwing using metabarcoding. Finally, we analysed the trophic interactions of
wrasse and potential prey in a mesocosm study. We could not detect any signs of stock depletion or altered size structure in fished areas
compared to the protected control area. Gut analyses confirmed both goldsinny and corkwing as non-specialized, omnivorous opportunists
and revealed, with 189 prey taxa detected, a broader spectrum of prey than previously known. Common prey items included mesoherbivores
such as small gastropods and crustaceans, but also insects and algae. We conclude that there are no visible signs of stock depletion at the
current removal level of wrasses by the fishery. However, this emerging fishery should be closely monitored for potential cascading effects on
the algal belt ecosystem, and our study could provide a baseline for future monitoring.
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wrasse fisheries

Introduction
Sea lice infestation is a major problem faced by the salmon aqua-

culture industry, and the use of wild caught cleaner-fish to con-

trol the lice is seen as the most environmentally-friendly option

compared to other methods (Gonzalez and de Boer, 2017), and

more effective than chemical treatments in the case of diseased or

stressed salmon (Deady et al., 1995). Over the last decade, the

number of cleaner fish used in the Norwegian salmon production

has increased from 1.7 million in 2008, to 61 million in 2019.

This includes farmed lumpfish and ballan wrasse, but 37% is wild

caught fish, of which wrasses constitute the largest share (92%)

(Norwegian Directorate of Fisheries, 2019). Norwegian fisheries

alone can no longer support the demand from the salmon indus-

try, and approximately 1 million wild-caught wrasses are

imported from the Swedish Skagerrak coast yearly since 2010

(Halvorsen et al., 2017a). The Swedish wrasse fishery targets
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corkwing wrasse (S. melops), goldsinny wrasse (C. rupestris), and

ballan wrasse (L. bergylta). Wrasse were not previously considered

a commercial species and information on stock structure and

population dynamics is scarce. There is consequently not enough

data to support an ecosystem-based management plan for the

wrasse fishery.

The three species of wrasse are known to have high site fidelity

and narrow home ranges, which would suggest low levels of mi-

gration and the existence of local populations (Sayer, 1999;

Villegas-Rı́os et al., 2013; Halvorsen et al., 2017a). Recent studies

along the Norwegian Skagerrak coast found that local wrasse

populations show signs of depletion. Catches per unit effort of

goldsinny wrasse were 33–65% higher in marine protected areas

(MPAs) and also higher in three out of four MPAs for corkwing

wrasse (�16 to þ92%). In addition, corkwing wrasse above the

minimum size (12 cm) were older and larger in MPAs, although

this was not the case for goldsinny wrasse (Halvorsen et al.,

2017a). Many wrasse species have complex reproduction strate-

gies, such as sequential hermaphroditism or sneaking behaviour,

and often display large size differences between sexes and repro-

ductive strategies. It has thus been suggested that a minimum size

limit may target the alternative sexes and male strategies differ-

ently (Halvorsen et al., 2016, 2017b). This can have important

consequences for population productivity, especially as both bal-

lan and corkwing wrasse have obligate male parental care and are

considerably larger than their female counterparts. The Swedish

wrasse fishery started in 2010, and no comparisons of fished and

non-fished areas have yet been made.

Wrasses are key intermediate predators in the coastal algal belt

(Skiftesvik et al., 2015). Caging experiments in seagrass meadows

on the Swedish Skagerrak coast show that predatory fish includ-

ing wrasses reduce the numbers of mesoherbivores such as small

crustaceans and gastropods, which in turn results in a several fold

increase in fouling algae (Moksnes et al., 2008). Thus, it is possi-

ble that wrasse fisheries may lead to structuring effects in the algal

belt ecosystem that go beyond the depletion of the target wrasse

species. Mesopredatory fish have generally increased, which has

been attributed to the depletion of larger piscivorous fish stocks

(Sieben et al., 2011). Thus, removing wrasse by fishing should in

theory release mesoherbivores from predation and thereby reduce

fouling organisms.

Traditional gut content analyses have shown that corkwing

wrasse feed extensively on small mesoherbivores. The gut

contents of corkwing from Ireland and France were dominated

by gastropods, amphipods, isopods, ostracods, bivalves, and poly-

chaete worms, with crustaceans favoured by younger, smaller fish

and molluscs by older, larger fish (Deady and Fives, 1995). Other

prey species found included hydrozoans, cirripedes, copepods,

decapods, echinoderms, oligocheates, fish eggs, insects, and algae

(Deady and Fives, 1995; Sayer et al., 1996). Goldsinny have been

shown to feed on small invertebrates such as gastropods, bivalves,

hydrozoans, cirripedes, amphipods, copepods, decapods, isopods,

polychaetes, and bryozoans (Sayer et al., 1996, Deady and Fives,

1995). Traditional gut content analyses are however limited to

morphologically identifiable remains and the full diet and

detailed position in the food web is still poorly known for wrasse.

Here we aim to gather some of the fundamental data needed

to implement an ecosystem based approach to management of

this new emerging fishery. We compare catch per unit effort in

fished and non-fished areas in Sweden over 4 fishing seasons

from 2014 until 2017. In addition, we monitor coverage of the

epiphytic community on Saccharina latissima, a habitat building

brown alga in the study area. We establish the full diet of two of

the most abundant and harvested species, goldsinny and corkw-

ing wrasse using metabarcoding methods, which combine DNA-

based identification and high-throughput sequencing, allowing

the simultaneous identification of a wide array of prey species,

even from highly digested gut contents (Pompanon et al., 2012).

Metabarcoding allows the identification of many more prey taxa

than visual identification, as well as higher taxonomic resolution

(Jakubavi�ci�ut_e et al., 2017). Accurate diet determination

will provide important information on the role of wrasse as a

mesopredatory fish in the algal belt and the potential cascading

effects of their removal on the ecosystem. To gain a mechanistic

understanding of the effects of wrasse in the algal belt, we

performed a controlled mesocosm study, where wrasse presence

was manipulated in a simplified community of habitat building

brown algae and mesoherbivores, and fouling organisms were

monitored over time.

Material and methods
Fish survey
To understand if local wrasse populations show signs of deple-

tion, such as lower density or average size in fished areas, we

compared a marine protected area (Kåvra: 58.33 N , 11.36E) with

two adjacent fished areas (Byxeskär: 58.25 N , 11.38E and Stora

Kornö: 58.29 N , 11.37E, see Figure 1). Kåvra is a 2.6 km2 marine

protected area in Bohuslän on the west coast of Sweden. Fishing

has been prohibited in Kåvra since 1989, thus predating the start

of the Swedish wrasse fishery by more than twenty years. In the

process of finding fished areas to compare with the marine pro-

tected area Kåvra, a discussion was held with fishermen targeting

wrasse in Lysekil. The fishermen pinpointed fishing grounds

around Stora Kornö and Byxeskär. In order to estimate how

much these areas were potentially being used as fishing grounds,

statistics from the fishermen’s mandatory extended journals were

compiled. Fishermen who have been granted a licence to fish and

sell wrasse are required to report their catch on a daily basis, in-

cluding information on the number of individuals per species,

number of gears used (fyke nets/creels), and area used as a fishing

ground. The area used as a fishing ground is defined by specifying

the northernmost and southernmost positions, allowing the daily

geographical determination of fishing grounds. By doing this and

noting if the reference areas are within the fishing grounds, a ratio

of how much of these areas are potentially being used as fishing

grounds for wrasse was determined for the fishing seasons

2014–2017. The total number of fishing days per season varied

between 102 and 127 days for the years studied. The data

originate from two fishermen active in the area (Table 1).

For the field sampling, wrasse creels (81�40�28 cm with dou-

ble entrances 4�9 cm and a mesh size of 10 mm) and fyke nets

(double-codend with 3 chambers and 7 hoops, the largest 30 cm,

6 m leader, mesh size 10 mm in codend and 15 mm in leader)

were used. These were the same gear as those used by commercial

wrasse fishermen. Sites for fyke net deployment were randomized

within each area (St. Kornö, Byxeskär, and Kåvra) across three

different depth intervals, 0–6, 6–10, and 10–20 m (SwAM, 2016).

Wrasse cages were deployed between 0 and 7 m depth and frozen

shrimp were used as bait. In commercial fishing, fyke nets are

used to target ballan and corkwing wrasse, while cages (creels) are

normally used to target goldsinny wrasse. A total of 108 creels
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and 162 fyke nets were deployed across the three different sites,

12 creels and 18 fyke nets per day over a 9-day period between

14.08.2016 until 23.08.2016 with an average soak time of 23.4 h

(see Figure 1).

Organisms caught were classified to species, counted, mea-

sured, and released immediately after each haul. When larger

numbers of a single species were caught, only a subsample was

measured to minimize suffering and handling time. A subset of

the corkwing and goldsinny wrasse from the three study areas (24

corkwing and 24 goldsinny wrasse individuals from each of the

three study areas, giving a total of 144 fish) was euthanized using

MS222 and kept on ice for gut content analysis. The catch was

standardized to catch per gear per 24 h, defined as catch per

unit effort (CPUE), enabling comparison of data between samples

independent of soak time. To evaluate the difference in

CPUE between the studied areas a permutational MANOVA

(PERMANOVA) was used with Area as a fixed factor. Analyses

were performed using the software Prime 7 version 7.0.10 (with

add on PERMANOVAþ). Resemblance matrices were calculated

upon Bray–Curtis coefficient of similarity with data square

root transformed. To test the data for homogeneity of dispersion,

a PERMDISP test (Distance based test for homogeneity of

multivariate dispersions) was conducted.

Algal samples
In each fishing area (St. Kornö, Byxeskär, and Kåvra), we also

hand-sampled ten individuals of the brown alga S. latissima to-

gether with their associated fauna in six places (Figure 1). Plastic

polyethylene bags approximately 1 m�0.3 m were prepared by

heat sealing polyethylene layflat tubing. The bag was threaded

inside out over the arm of the diver. The diver then submerged to

2–5 m, pinched the apical tip of the first encountered S. latissimia

through the bag, and pulled the base of the bag over the entire

thallus. The hapter was snapped and the alga brought to the

surface inside the bag. Water was drained through a 200 mm mesh

sieve to retain organisms in the sampling bag. The algae were

stored on ice at sea, and frozen at �15�C until further analysis.

Gut content analyses
Fish for gut content analysis were kept on ice until transport to

the lab, after which they were frozen whole and kept at �20�C.

Prior to dissection, fish were slowly defrosted at 4�C, measured,

weighed, and sexed. Stomachs were removed and contents were

flushed with 95% ethanol to remove all content. The dissection

tools were cleaned and rinsed with bleach and Milli-Q water

between each dissection to avoid cross-contamination. Dissected

stomach contents were stored at �20�C in 95% EtOH until DNA

extraction. Gut content DNA was extracted from 24 corkwing

and 24 goldsinny wrasse individuals from each of the three

study areas, giving a total of 144 samples. Each sample was

homogenized in ethanol using a Polytron PT1200c handheld

homogeniser (Kinematica AG). A subsample of 0.1–0.6 ml of

the homogenate was taken and transferred to an eppendorf

tube. The ethanol was removed by centrifuging the sample and

removing the supernatant. DNA was extracted using the DNeasy

Blood & Tissue Kit (Qiagen) with optional RNAse treatment

(200 mg RNAse). DNA quantity and quality (i.e. presence of

contaminants, degradation etc.) were assessed using the Qubit

dsDNA BR AssayKit (Invitrogen–ThermoFisher Scientific) and

on a 1% agarose gel. Samples which amplified poorly during

PCR were also purified with standard ethanol/isopropanol

precipitation.

Figure 1. Map of the study area outside Lysekil on the Swedish
Skagerrak coast. The Kåvra area (hashed area) is a marine reserve
where wrasse have not been fished for the last 30 years. Both St.
Kornö and Byxeskär (pink areas) have been subjected to an active
wrasse fishery since 2013. The blue dots show the positions for the
fyke net deployments, the red dots the wrasse creels, and the green
dots represent the localities where 10 S. latissima algae were bag-
sampled.

Table 1. Total number of fishing days for two local fishermen
targeting wrasse during 2014–2017 and the estimated number of
days (given as % of the total number of days per fishing season)
spent fishing within Stora Kornö and Byxeskär.

Year
Total number
of fishing days Area

Days fished (%)
including the area

2014 127 Stora Kornö 74.8
Byxeskär 58.3

2015 116 Stora Kornö 69.0
Byxeskär 85.3

2016 120 Stora Kornö 58.3
Byxeskär 69.2

2017 102 Stora Kornö 65.7
Byxeskär 81.4

There were no records of fishing in the MPA Kåvra.
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Metabarcoding of gut content
Mitochondrial cytochrome oxidase 1 was amplified from

the gut content DNA using metazoan primers developed by

Leray et al. (2013), yielding a 313 bp fragment termed the “mini-

barcode” (mICOIintF-dgHCO2198). The amplicon primers

(mlCOIintF_MiSeq: TCGTCGGCAGCGTCAGATGTGTATAAG

AGACAGGGWACWGGWTGAACWGTWTAYCCYCC and dgH

CO2198_MiSeq: GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAGTAAACTTCAGGGTGACCAAARAAYCA) included illu-

mina overhang adapter sequences (shown in regular font).

Amplicon library preparation was carried out using the dual

PCR amplification method described in (Bourlat et al., 2016).

To avoid preferential amplification of the predominant, less

degraded predator sequences, specific blocking primers were

designed as described in (Leray et al., 2013). These blocking pri-

mers for S. melops (CAAAGAATCAAAATAGATGTTGATAAAG

AA-C3) and C. rupestris (CAAAGAATCAAAATAAGTGTTGATA

AAGGA-C3) include a Spacer C3-CPG at the 30 end to prevent

elongation without affecting annealing. It is worth noting here

that the blocking primer for goldsinny (C. rupestris) was ineffi-

cient. For each sample, three independent PCR reactions were

performed and later pooled, ensuring greater coverage of prey

items amplified. Amplicon PCRs were performed as 25 ll reac-

tions with 20 pm of each primer and 100 pm of blocking primer

and using Pfu proofreading DNA polymerase (Promega). Cycling

conditions were as follows: 2 min at 95�C (1�); 1 min at 95�C,

45 s at 57�C, 1 min at 72�C (25�); 5 min at 72�C (1�); hold at

4�C. Amplicons were checked on a 2% agarose gel. In a second

PCR step, Illumina dual index adapters were incorporated to the

amplicons using a limited number of cycles before sequencing as

paired-ends using Illumina MiSeq 1.8, reagent v3 (Macrogen).

108 stomach content samples were successfully sequenced pro-

ducing a total of 47 129 702 raw reads of 300 bp in length. Raw

sequence data for this project are deposited at the NCBI SRA un-

der BioProject ID PRJNA655463 and BioSample accessions

SAMN15735264–SAMN15735371.

Bioinformatic processing and analysis
Raw reads were demultiplexed using bcl2fastq v2.20.0.422

(Macrogen), yielding a total of 23 563 377 paired-end reads. The

108 forward and 108 reverse demultiplexed fastq sequences were

trimmed of their forward (GGWACWGGWTGAACWGTWT

AYCCYCC) and reverse (TAAACTTCAGGGTGACCAAARAA

YCA) primers using the following parameters (cutadapt -g GG

WACWGGWTGAACWGTWTAYCCYCC -G TAAACTTCAGGG

TGACCAAARAAYCA -e 0.1 -O 10 -m 150 -j 0 –discard-

untrimmed) in cutadapt version 1.18 (Martin, 2011). The primer

trimmed sequences were then imported in Qiime2 version

2018.11 (Bolyen et al., 2019) for further processing using the

denoiser DADA2, which infers amplicon sequence variants

(ASVs) from Illumina amplicon data (Callahan et al., 2016).

Denoising removes errors introduced by amplification and

sequencing, and allows the inference of biological sequences in

the data without the arbitrary dissimilarity thresholds used

for OTU clustering.

After quality filtering, denoising, merging, and chimera-

removal steps in DADA2, a total of 2 514 227 non-chimeric reads

were produced. Taxonomy assignment was carried out with the

Qiime 2 feature classifier using a consensus BLAST search at 97%

identity against the GenBank database downloaded on the 12th of

November 2018. The classification resulted in a total of 3 933

assigned and unassigned ASVs.

The blocking primers designed to block C. rupestris were

inefficient, resulting in this sequence dominating the gut content

samples for this species. This means that the gut content data

produced for our two species are not quantitative with respect to

relative abundances but that presence/absence metrics can be

used instead to infer frequency of occurrence. In addition, preda-

tor sequences (C. rupestris, S. melops, and L. bergylta) were found

in most of the samples, presumably due to cross contamination

from handling of the fish in the field. Therefore, all sequences

derived from our species of interest (C. rupestris, S. melops, and L.

bergylta) were removed from the dataset using the qiime script

taxa filter-table. Records from mammals and birds which are

derived from environmental DNA present in the field were also

removed. To enable analysis independently of read counts, ASV

numbers were transformed into a binary presence/absence ma-

trix. Frequency of occurrence (FOO) of each prey item was then

computed, corresponding to the percentage of individual fish in

which a prey ASV was found (%FOO)(Deagle et al., 2019). For

the plots (Figures 5–7) we used only ASVs identified to at least

family level at 97% sequence similarity and plotted the data in

Excel version 16.16.8.

Mesocosm study
From May 28–June 12, 2017, a mesocosm experiment was run at

Tjärnö Marine Laboratory. A simplified assembly of habitat-

building brown algae consisting of three Fucus serratus sitting at

the bottom of the tank and three S. latissima hanging from the

top of the tank were added to each of eight 1 m3 (1.1�1.4�0.64

m) tanks. In four of the tanks, two individuals of goldsinny

wrasse were added (ethical permit numbers 5.8.18-06922/2017

and Idnr 000818-2017). The remaining four were kept as fish-free

controls. All tanks were enriched with small pieces of tubing at

the bottom for the fish to take shelter in. Invertebrates (amphi-

pods, isopods, gastropods) were caught in the algal belt and

evenly distributed among the tanks at the start of the experiment.

All tanks had a continuous supply of surface water, and drained

through pipes covered with mesh to prevent loss of invertebrates.

The tanks were covered by insect mesh to avoid bird predation

and reduce light intensity. Temperature was recorded each morn-

ing and ranged from 15.1 to 17.5�C.

The goldsinny wrasse used in the experiments were collected

with fyke nets or baited traps within 2 km of the experimental

site. Saccharina latissima were from a nearby aquaculture facility,

and F. serratus individuals were collected from boats in the vicin-

ity of the lab. The invertebrates were collected by shaking algae

into a bucket, as well as trawling with a meshed net at the shores

of the surrounding islands. Individuals caught were evenly di-

vided among all eight tanks. A total number of 25 individual

grazers were added over the course of the experiment to each

tank to simulate replacement of consumed herbivores from

adjacent areas. The additions were made every fifth day, in total

25 invertebrates (20% Palemon elegans, 25% Littorina littorea,

16% Littorina obtusata, and 40% amphipods).

The experiment was terminated after 15 days. Invertebrates

were collected on a 200mm mesh and preserved in ethanol for

later analysis. Each alga was photographed on a light table to

monitor epibiont coverage.
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Image analysis of epibionts
Epibiont coverage on S. latissimia was determined using ImageJ

version 2.0.0-rc-54. For F. serratus the epibionts grew on top of

each other, meaning coverage of individual species could not be

determined. Instead, epibionts were scraped off with a scapula

and epibiont wet weight normalized to algal biomass ([wet weight

of epibionts/wet weight of algae]�100) was determined. The

epibionts were blotted dry five times on a paper towel before

measuring wet weight to standardize water content. Invertebrates

were sorted under a dissecting microscope to determine species;

each individual species was blotted dry as above, weighed, and

the number of individuals counted.

Results
Fish survey
Estimates of the fishery for wrasse during 2014–2017 in the

reference areas Stora Kornö and Byxeskär show that the seasonal

average for Stora Kornö was 67% of the total fishing days

potentially being in the study area. The corresponding value for

Byxeskär was 74%, indicating that both Stora Kornö and

Byxeskär are representative reference fishing grounds for wrasse

compared to the marine protected area Kåvra (Table 1).

The results from the field sampling with fyke nets did not

show any differences in numbers of corkwing, goldsinny, or bal-

lan wrasse between the three different localities (Figure 2). In the

fyke nets, the total abundance of wrasse caught in Kåvra was 1728

individuals, distributed among corkwing (67.7%), goldsinny

(31.7%), and ballan wrasse (0.5%). At Stora Kornö, the total

abundance of wrasse was 2081 individuals distributed among

corkwing (71.8%), goldsinny (26.8%), and ballan wrasse (1.4%).

In Byxeskär, the total abundance of wrasse was 2086 individuals

distributed between corkwing (67.2%), goldsinny (31.9%),

and ballan wrasse (0.8%). The distribution and ratio of the three

species of wrasse were similar among the three areas. Noticeably,

other wrasse species were also caught in the field sampling such

as rock cook and cuckoo wrasse. However, these species are not

target species for wrasse fishermen in Sweden and are therefore

not presented in detail.

The size distributions of corkwing and goldsinny wrasse in

Kåvra were similar to those at Stora Kornö and Byxeskär

(Figure 2). The average body size of corkwing wrasse in Kåvra

was 12.1 cm, in Stora Kornö 11.8 cm, and in Byxeskär 12.0 cm.

The average body size for goldsinny wrasse in Kåvra was 10.0 cm,

in Stora Kornö 9.8 cm, and in Byxeskär 10.2 cm. Regarding ballan

wrasse, the number of fish caught in the sampling with fyke nets

was too low to enable any conclusions regarding size distribution

in the studied areas.

Field sampling with creels show no differences in CPUE of

goldsinny wrasse and corkwing wrasse in Kåvra compared to

Stora Kornö and Byxeskär (Figure 3). The size distribution for

corkwing and goldsinny wrasse in Kåvra was also similar to the

results from Stora Kornö and Byxeskär (Figure 3). The average

body size of corkwing wrasse was 12.7 cm in Kåvra, 12.2 cm in

Stora Kornö, and 12.5 cm in Byxeskär. The average body size for

goldsinny wrasse was 9.0 cm in Kåvra, 9.2 cm in Stora Kornö, and

9.2 cm in Byxeskär.

Algal samples
In line with the lack of difference in wrasse densities in the differ-

ent areas, we found no difference in the fauna found on

individually bag-sampled S. latissima. In total, 62 samples were

analysed and 26 taxa were identified to species or to the nearest

possible taxonomic level. The fauna was dominated by small gas-

tropods, mainly of the genera Lacuna and Rissoa. Isopods and

amphipods were the most abundant crustaceans, and polychaetes

and echinoderms were commonly found but in lower numbers

(full details in Supplementary Table S2). Neither biomass nor

species richness differed among the three areas (ANOVA,

p¼ 0.42 and 0.63 respectively). When each measurement of total

epibiont biomass was compared to the nearest estimate of wrasse

density however, there is a trend towards a positive relationship

(p¼ 0.20, Figure 4).

When each measurement of total epibiont biomass was

compared to the nearest estimate of wrasse density however, there

is a trend towards a positive relationship between total epibiont

biomass and wrasse density (biomass caught per unit effort,

Figure 4).

Gut content analysis
Using metabarcoding, 189 taxa were identified in the gut contents

of 67 goldsinny and 30 corkwing individuals: 15 phyla, 29 classes,

65 orders, 135 families, 166 genera, and 161 species. The whole

list of prey amplicon sequence variants (ASVs) found with full

taxonomic lineage and frequency of occurrence is presented in

Supplementary Table S1. Arthropods were the prey type most

commonly found in our samples, in 69% of goldsinny and 97%

of corkwing (Figure 5). Most of the arthropods found belong to

the class Malacostraca (51% goldsinny and 90% corkwing) and

Insecta (27% goldsinny and 63% corkwing) (Figure 6). The sec-

ond most commonly found group are algae, with Rhodophyta

found in 33% of goldsinny and 57% of corkwing, and

Ochrophyta found in 21% of goldsinny and 53% of corkwing

(Figure 5). Goldsinny have previously been observed to graze on

algae off the nets of salmon cages suggesting that algae might be

grazed directly by the wrasse (Deady et al., 1995).

At the species level, the most frequently found taxa in the gut

of goldsinny were the red alga Bonnemaisonia hamifera (27%),

the pelagic copepod Paracalanus parvus (24%), the amphipods

Monocorophium insidiosum (21%), Aora gracilis (19%), and Jassa

marmorata (18%), the gastropod Pusillina inconspicua (18%), the

amphipod Jassa falcata (15%), the pelagic copepod Centropages

typicus (13%), the amphipods Ischyrocerus anguipes (10%) and

Dexamine spinosa (10%), and the red alga Delesseria sanguinea

(10%).

In corkwing, the most frequently found species in the gut

contents were the red alga Bonnemaisonia hamifera (50%), the

alga Halidrys siliquosa (43%), the amphipods Ischyrocerus

anguipes (43%), Aora gracilis (40%), Jassa marmorata (40%),

Dexamine spinosa (37%), Ampithoe rubricata (37%), and Jassa

falcata (33%), the amphipod Scopelocheirus schellenbergi (33%)

and the amphipods Monocorophium insidiosum (30%) and

Parajassa pelagica (30%).

Fewer individuals were successfully amplified and sequenced

in corkwing (30 individuals) due to the successful use of our

blocking primer. As expected, the blocking primer resulted in

fewer reads attributed to corkwing itself and more reads attrib-

uted to prey species. The blocking primer was not functional in

C. rupestris, resulting in a higher PCR success rate (67 individu-

als), but with fewer reads attributed to prey species and more

reads attributed to C. rupestris itself.
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Prey overlap between the two species is represented in

Figure 7. Out of 189 prey taxa, 130 are found in corkwing and

127 in goldsinny, with 68 taxa in common between the two spe-

cies. The large number of prey species found in the gut contents

of wrasse and the low level of overlap between the species suggest

that they may be feeding opportunistically.

Prey species from metabarcoding were categorized according

to their occurrence along the Swedish coast by using GBIF

records and consultation with experts (data not shown). Of the

189 taxa, 107 species were confirmed to occur in the region. A

further 67 taxa were found to occur at the family or genus level,

suggesting that there may be no close match from a local species

in the reference database. Only 15 taxa were categorized as not

found or unlikely to exist in the studied area at family level or

lower. Perhaps surprisingly, of the 173 taxa found in the area, 41

were found to be terrestrial insects (93%).

Mesocosm study
The controlled mesocosm study confirmed that wrasse are effi-

cient predators on mesoherbivore crustaceans and littorinid snails

(Figure 8) but also on other intermediate consumers such as

A B

C D

E F

Figure 2. Results from field sampling with fyke nets in a marine protected area (Kåvra) and two nearby areas used as fishing grounds for
commercial wrasse fishery (Stora Kornö and Byxeskär): (a and b) represent the results for corkwing wrasse; (c and d) represent the results for
goldsinny wrasse and (e and f) represent the results for ballan wrasse. The panels to the left show catch per unit effort (CPUE695% CI) based
on 18 samples per area and depth interval. No statistical differences in fish numbers (CPUE) were documented among areas for thecorkwing
wrasse (F2, 159¼ 1.35546; p> 0.05) or goldsinny wrasse (F2, 159¼ 0.62802; p> 0.05) three wrasse species. Only a descriptive comparison is
done with the result for Ballan wrasse (e and f). The panels to the right represent size distribution for the three wrasse species in the three
areas. Black arrows show minimum landing size, for ballan wrasse there is a legal size interval for landings in commercial fishery.
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Palaemonidae shrimps which complicates the effects of wrasse on

food web dynamics. The only significant effect on the fouling

community was an increased coverage of bryozoans on

A B

C D

Figure 3. Results from field sampling with wrasse creels in the marine protected area Kåvra and two nearby areas used as fishing grounds for
commercial wrasse fishery (Stora Kornö and Byxeskär): (a and b) represents the results for corkwing wrasse and (c and d) represents the
results for goldsinny wrasse. The figures to the left show catch per unit effort (695% CI) based on 36 samples per area. No statistical
differences among areas were documented for corkwing wrasse (F2, 105¼ 1.9356; p> 0.05) or goldsinny wrasse (F2, 105¼ 0.48744; p> 0.05).
The figures to the right represent size distribution for the wrasse species. Black arrows represent the minimum catch size for commercial
fishery.

Figure 4. Epibiont biomass expressed as percent of wet weight of
the field sampled S. latissima leaf it was scraped off from in relation
to fish abundance (p¼ 0.2, R2¼0.086). The fish catch per unit effort
comes from the nearest test fishing site.
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Figure 5. Bar chart showing frequency of occurrence [% of fish in
which this amplicon sequence variant (ASV) was found] of various
phyla in the gut contents of goldsinny (C. rupestris) and corkwing
wrasse (S. melops).
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S. latissima leaves in tanks with wrasse (Figure 8b). The F. serratus

at the bottom of the tanks were generally more fouled already

at the start at the experiment, but total biomass of fouling

organisms was not different between wrasse and control

tanks (Figure 8c).

Discussion
Fish survey
The comparison between the protected area and the two fished

areas did not show any differences in catch per unit effort

(CPUE) or size distribution of goldsinny or corkwing wrasse that

would suggest a local depletion of the wrasse populations in the

fished areas. The design of the present field study was based on

earlier findings indicating a decline in CPUE and a change in size

structure over time in sites with a high fishing intensity (Darwall

et al., 1992; Sayer et al., 1996; Varian et al., 1996). Our findings

are also in contrast to a Norwegian study showing that MPAs

exhibited higher densities and larger sizes of wrasse only a few

years after establishment (Halvorsen et al., 2017a). The analysis of

the Swedish fishing journals agreed with the suggestion by the

commercial fishermen that the two fished areas are important

fishing grounds. Fishing pressure may, however, be relatively low

with only 14 fishermen currently allowed to fish wrasse along the

Swedish west coast and with no more than 50 pieces of gear each

in the water at any one time. The much larger wrasse fisheries in

Norway started already in 1988, and have been going on for more

than 20 years longer than the Swedish fisheries (Bjordal, 1991).

On the other hand, the wrasse fishery that started in Sweden in

2010 was preceded by a larger eel fishery (in terms of fishing

effort) in the same general habitats as the wrasse fishery

(Lagenfelt and Svedäng, 1999). The eel fishery that was discontin-

ued in 2012 was mainly done with fyke nets and eel-traps and

had considerable mortality of bycaught wrasses (Svedäng, 1999).

Consequently, the lack of difference between protected and fished

areas should only be considered in the spatial context investigated

here, and does not imply that the demography and densities of

wrasse populations all along the Swedish west coast represent

completely undisturbed populations. Ecosystem effects of
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Figure 6. Bar chart showing frequency of occurrence [% of fish in
which this amplicon sequence variant (ASV) was found] of various
classes in the gut contents of goldsinny (C. rupestris) and corkwing
wrasse (S. melops).

Figure 7. Overlap of prey species between goldsinny (C. rupestris)
and corkwing wrasse (S. melops).

Figure 8. Results from mesocosms with and without wrasse. The wrasse tanks held two goldsinny wrasse in one cubic metre tanks. A. The
total number of mesoherbivores was 40% less in tanks with wrasse at the end of the experiment. B. The coverage of bryozoans on S. latissima
hanging in the tank was significantly lower in the control tanks. C. The total biomass of epibionts on the F. serratus algae on the bottom of
the tank was not different between control and wrasse tanks.
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selectively removing wrasses through fishing on other compo-

nents of the foodweb may however not be expected to occur in

the area studied here.

Wrasse population structure varies along the Scandinavian

coast, where Norwegian west coast populations generally show a

higher degree of genetic differentiation among localities com-

pared to what has been found within the Kattegat–Skagerrak

area. This pattern is more pronounced for corkwing (E. Faust,

pers. comm.) than ballan (Seljestad et al., 2020) and goldsinny

wrasse (Jansson et al., 2017). One possible explanation is that

Kattegat–Skagerrak wrasse are less geographically stationary than

wrasse found on the Norwegian west coast. However it is also

possible that the lack of differentiation is a result of historical

connectivity and other demographic events such as bottlenecks

and subsequent increases in population size, and that movement

of fish between areas contributes to even out the densities

(Mattingsdal et al., 2020).

Algal samples
Data on fouling organisms and associated fauna on S. latissima

algae showed no differences between the protected area Kåvra

and the two fished localities. This is expected as there were no

differences in CPUE or size distribution of wrasse between the

marine reserve and the fished areas. The current study, however,

serves as a good baseline for follow up studies on this wrasse

fishery. Should stock depletion commence, it will be possible to

evaluate the effect in a before and after controlled design.

Gut contents
Our results largely confirm previous morphological studies of gut

contents from wrasse (Deady et al., 1995; Sayer et al., 1996) with

added breadth and taxonomic information up to the species level,

and show that Arthropoda (Crustacea and Insecta) are the most

commonly found prey taxa. Within Crustacea, the class

Malacostraca was the most commonly found group, followed by

Hexanauplia and Branchiopoda. Within Malacostraca,

Amphipoda dominated followed by Decapoda and Isopoda.

Within Insecta, the classes Diptera, Lepidoptera, Hemiptera, and

Hymenoptera were commonly found, with chironomids the most

commonly found family within the Diptera (see Supplementary

Table S1).

Insect larvae such as chironomids have previously been

established through metabarcoding as an important food source

for the three-spined stickleback (Gasterosteus aculeatus)

(Jakubavi�ci�ut_e et al., 2017). Chironomid larvae and other dipter-

ans were previously reported in corkwing and goldsinny through

morphological analysis of their gut contents (Sayer et al., 1996),

and were shown to be most abundant in smaller fish between 6

and 8.9 cm in length, indicating that they might constitute an

important food source for young fish. Corkwing also displayed

opportunism with respect to seasonal variation in prey availabil-

ity, with the increased consumption of chironomid larvae during

the months when they were the most abundant (Deady and Fives,

1995; Deady et al., 1995). Even though insects were found in 27%

of goldsinny and 63% of corkwing in our study, we cannot say in

what proportion they contribute to the bulk of their diet, since

our study is not quantitative. A previous study from Galway

Bay, which has looked at gut food items quantitatively, suggests

that insects constitute only 2.4–4.8% of food items consumed

(Deady and Fives, 1995).

Algae constituted the second most commonly found food item

in the gut contents of wrasse with Rhodophyta dominating, then

Ochrophyta. The high frequency of occurrence of algae in the gut

contents of wrasse might seem surprising given wrasse are

thought to be primarily carnivorous. However, this has previously

been observed in another study from Galway Bay showing that

48.6% of corkwing had ingested algae (Deady and Fives, 1995).

This shows that algae might be grazed intentionally rather than

accidentally from the sea bed while searching for prey. Algae even

comprised the bulk of ingested food in corkwing from salmon

cages (Deady and Fives, 1995; Deady et al., 1995). Even though

algae are frequently found in the guts of wrasse, we cannot say if

they constitute a large proportion of the food ingested by wrasse

as our study is not quantitative. The study from Galway Bay

which has looked at gut food items quantitatively suggests that

algae constitute only 3.1–3.6% of the bulk of food items

consumed, but that they were found in almost half the fish, with

an increasing frequency with increasing fish length (Deady and

Fives, 1995).

It should be noted that male corkwing have been shown to use

algae for building nests in which eggs are deposited. Corallina

officinalis is one of the principal algal components of the nest of

the male corkwing (Deady and Fives, 1995), but male corkwing

have also been observed with Halidrys siliquosa at Tjärnö Marine

Laboratory (E. Faust Pers. comm., also see Figure 9: photos of

Figure 9. Male corkwing wrasse engaged in nest building. Photos by
Dr Paul Naylor in Devon, UK.
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corkwing males fetching Corallina sp. taken in Devon, Great

Britain, by Dr Paul Naylor). In contrast to corkwing wrasse,

goldsinny wrasse are pelagic spawners and only use available

crevices and seaweed for shelter. Although they do defend the

area around their shelter, literature suggests that they are

dependent on the already present algae (Hilldén, 1981), and there

are no known observations of goldsinnies carrying algae for

nest building.

The Mollusca (mostly Gastropoda and some Bivalvia) also

constituted some of the most commonly found prey items in our

study. Using molecular methods, we were able to detect 189

species belonging to 15 phyla, obtaining information from

even highly digested prey. Our results suggest that wrasse feed

opportunistically and according to prey availability, although

there may be size and age related differences which we have not

explored in this study (Deady and Fives, 1995).

Mesocosm study
The mesocosm experiments confirm that wrasse prey efficiently

on mesoherbivores. The experiment lasted 15 days and in that

time period total invertebrate abundance was decimated by 61%

in the wrasse tanks and by 36% in the control tanks. Wrasse,

however, do not only feed on mesoherbivore snails and crusta-

ceans, but also on intermediate consumers such as Palemon sp.

and also primary producers, which indicates that wrasses may

have multiple effects on food web dynamics. Moreover, the

Saccharina algae in the experiments were significantly less fouled

by epiphytic bryozoans in the control tanks which suggests that

cascading effects may result if wrasses are decimated by fishing.

Towards ecosystem-based management of wrasse
fisheries
Currently, Sweden has adopted a precautionary approach to

wrasse fishery management since no management plan exists that

connects exploitation rates with the biology of any of the wrasse

species. The Swedish fishery is limited by effort, and fishermen

can only fish for wrasse after receiving an exemption for using

gear without escape openings. Indeed, only 14 such exemptions

are in place (as of 2020). In this study, we could not detect any

differences in fish nor potential prey between fished and non-

fished areas, but we provide a baseline for future monitoring. The

continued monitoring of abundance and size structure of fish

stocks is necessary for sustainable fisheries management. This is

especially true for wrasse, as traits like high site fidelity, narrow

home range and complex life history suggest that an increased lo-

cal fishing pressure could quickly alter population demographics

or even deplete local stocks. For future monitoring, both fishery-

independent and fishery-dependent programs will be valuable.

Catchability (affecting the estimates of abundance) and demogra-

phy depend on many factors such as temperature, season, depth,

or exposure, which is especially evident for passive fishing gears.

Therefore, it is important to account for spatial and temporal

heterogeneity in the monitoring data, while taking population

structure into account.

The present fishery management—only safeguarded by a pre-

cautionary approach and without quantitative reference levels for

sustainable use—raises concerns of potential future overfishing

and the possible effects on local ecosystems. The use of no-take

areas to infer effects on target species as well as ecosystem effects

of fishing in this and earlier studies e.g. (Halvorsen et al., 2017a),

may contribute to a future ecosystem approach to wrasse fishery

management. The county administration has implemented limits

on the number of fishermen that are allowed to fish in individual

Natura 2000-areas, a concept that could be extended to create

“scientific reference areas”. This approach would assist in disen-

tangling the effects of the fishery on the target species and the

ecosystem from other impacts such as climate change and coastal

exploitation. The combination of catch data from onboard

observers of the fishery with monitoring data from fished areas

and no-take areas could form the basis for the biological advice

needed for ecosystem-based fisheries management.

Concerns associated with the use of cleaner fish in the
aquaculture industry
In this study, we investigated the effects of wild cleaner fish

targeted by fishery on the Swedish west coast. However, the

1 million wrasse caught annually in Sweden are only a small

fraction of the total number of cleaner fish used in aquaculture

for parasite control. In Norway, over 60 million cleaner fish were

put into salmon farms in 2019, and of these, approximately 30%

were wild caught wrasse. The UK applies a similar system to

Norway with a mix of farmed and wild-caught cleaner fish for

parasite control. Currently, an estimated 1 million wrasse are

harvested in southwestern England annually for live transport to

salmon farms in Scotland every year (Riley et al., 2017). Other

countries, e.g. Canada, do not allow the use of wild caught cleaner

fish in open marine aquaculture (Boyce et al., 2018). The use of

cleaner fish for parasite control in other parts of the world is still

relatively rare but is likely to increase as more countries have

started to investigate the possibility of utilizing cleaner fish for

parasite control (Sánchez et al., 2018).

Besides overfishing and cascading ecological effects, there are

additional concerns with the current use of cleaner fish in the

aquaculture industry. Cleaner fish are often transported long dis-

tances to be used in areas far away from where they were caught.

Translocated cleaner fish may act as vectors of disease, being

asymptomatic carriers of bacterial, viral, and parasitic disease

agents (Korsnes et al., 2017). These diseases may pose a risk to

farmed Atlantic salmon that have not developed the same natural

resistance. The risks are however not restricted to farmed fish, but

as cleaner fish have been shown to escape (Faust et al., 2018),

they also pose a threat to other local species and populations. In

addition to spreading disease, escaping translocated wrasse may

also affect the genetic makeup of local populations by introducing

new genetic material or even establishing new populations

outside their original distribution range. Previous studies have

shown that transported fish are able to escape and hybridize with

local populations and have also contributed to newly established

populations (Jansson et al., 2017; Faust et al., 2018; Seljestad

et al., 2020). Introduced individuals can also have ecological

impacts on their new environment. Even if a species is already

present in an ecosystem, introduced individuals of the same spe-

cies may not be ecologically equivalent. Translocated organisms

can vary strongly in their ecological impacts compared to the pre-

existing population, for example through differences in prey con-

sumption (Evangelista et al., 2019). Finally, an annual use of ap-

proximately 60 million fish with the only purpose of de-lousing

another aquaculture species raises ethical concerns. Many cleaner

fish are killed during handling and transportation (up to 40%) or

during other salmon delousing procedures. At present, the loss of
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approximately 20% of farmed salmonids is considered unaccept-

able, while it has been suggested that a mortality rate of near

100% in a production cycle is normal for cleaner fish (Hjeltnes

et al., 2019). Thus, more work is needed to increase cleaner fish

welfare and to minimize the risks associated with the increasing

use and translocation of cleaner fish for salmon lice control.

Supplementary data
Supplementary material is available at the ICESJMS online

version of the manuscript.
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