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A B S T R A C T   

Resident birds in boreal forests can serve as indicators of habitat quality and are often species of conservation 
interest, particularly in multifunctional forests also used for timber production. To make informed forest man-
agement decisions, we must first understand which structural features provide habitats useful for resident birds. 
This is particularly true in winter, an understudied and critical season for their survival. The objective of this 
study was to establish reliable methods for monitoring bird presence and activity during winter, and to use these 
methods to evaluate the relative importance of stand structural features to make inferences about which features 
support and increase winter survival potential. Using a hybrid bioacoustic and ecoacoustic approach, we tested 
the ability of acoustic recordings to identify links between bird diversity and components of structural 
complexity, and compared these results to those from the traditional point count method. We conducted a 
vegetation survey, point count surveys and collected acoustic recordings from December 2019–February 2020 in 
19 sites in a Swedish boreal forest. First, we compared species richness values derived from point counts and 
bioacoustic monitoring methods. Bioacoustic species richness was significantly higher than point count richness, 
although only when the time spent identifying species from recordings exceeded the time spent conducting point 
counts in the field. Next, we demonstrated that bioacoustic species identification yields additional metrics of bird 
activity that point counts cannot. We tested the response of these metrics, and point count metrics, to variables of 
structural heterogeneity and complexity of our sites. Almost all bioacoustic metrics increased significantly with 
increasing structural complexity, while point count richness and abundance did not, indicating that automated 
recording is more effective in identifying forest patches of high quality in winter. Lastly, using an ecoacoustic 
approach, we calculated six of the most common acoustic indices and tested if any could effectively reflect the 
bird-structure relationships described above. Two indices showed significant positive relationships to bioacoustic 
metrics, demonstrating their potential as biodiversity assessment proxies that respond to differences in habitat 
quality. This is the first winter acoustic study to monitor bird assemblages in detail; it employed both bioacoustic 
and multi-index ecoacoustic approaches, which provided evidence that automated acoustic recording can be an 
effective and superior method for monitoring resident forest birds.   

1. Introduction 

Boreal and temperate forests have distinct assemblages of year-round 
resident birds (Barbe et al., 2018; Forsman and Mönkkönen, 2003). 
Resident birds are often used as indicators of forest naturalness and as 

broader environmental indicators applied in monitoring schemes (Oettel 
and Lapin, 2021; Roberge et al., 2008; Roberge and Angelstam, 2006). 
In Sweden, for example, out of 16 bird species used in measuring the 
achievement of the National Environmental Quality Objectives “Sus-
tainable Forests”, 15 are resident birds. 
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In contrast to migratory species, resident birds must cope with winter 
conditions signified by food shortage, increased energy demands at low 
temperatures and reduced vegetation cover, particularly from season-
ally leafless deciduous vegetation (Wesołowski et al., 2018). Winter is 
thus a critical period largely affecting the ability of these species to 
survive in a forest landscape. Resident birds are sensitive to 
forestry-induced changes in forest structure (i.e. reduced habitat qual-
ity) and habitat loss (Helle and Järvinen 1986; Eggers and Low 2014; 
Klein et al., 2020), and particularly in the winter season (Turcotte and 
Desroches 2005). Boreal forests managed for timber production pro-
duced stands with more homogenous forest structure, marked by a 
simplification in understory complexity, unvaried tree age and a scarcity 
of old, large and dead trees. Together, this reduces nesting, foraging and 
concealment opportunities for birds and has led to population declines 
of resident birds and local extinctions of highly specialised species like 
the white-backed woodpecker (Blicharska et al., 2014; Helle and 
Järvinen, 1986). Moreover, a large proportion of resident species are 
cavity-nesters (e.g. woodpeckers, tits, several owls) or also use cavities 
for roosting; scarcity of trees with cavities in intensively managed forests 
may therefore affect the potential of winter survival. 

Monitoring forest birds in boreal and temperate biomes is largely 
based on breeding bird surveys in spring, when bird vocalisations are 
most intense, which encapsulate many species in one visit (e.g. Peter-
john and Sauer, 1994). In spring, point counts usually last 5–10 min 
(Bibby et al., 2000) and are useful in assessing relative densities and 
population trends of birds, although longer-lasting point counts provide 
more accurate estimates (Fuller and Langslow 1984; Hutto et al., 1986; 
Sorace et al., 2000). Winter surveys are much less common due to 
generally low detectability of forest birds, lowered accessibility of forest 
environments due to snow, relatively low densities of birds and the 
decreasing attractiveness for observers during this time, due to the 
combination of these factors (Brewer, 1978). The data available to assess 
the use of different forest structures by resident birds in winter is 
therefore limited. From the perspective of environmentally sustainable 
forest management, it is important to have reliable and feasible methods 
to evaluate to what extent vegetation structures in multipurpose forests 
provide wintering habitats for resident birds, being both indicator spe-
cies and often species of conservation interest. 

Automated acoustic monitoring has recently become a popular 
method for detecting vocalising species, particularly birds, because they 
are highly vocal, play diverse roles in ecosystem functioning and are 
often used as indicators of environmental change (Gasc et al., 2017). 
Acoustic monitoring can be employed to identify birds to species level 
from recordings (bioacoustics) or to quantify patterns of acoustic energy 
in a soundscape via acoustic indices (ecoacoustics). Acoustic indices can 
be rapidly extracted from hundreds of hours of recordings without 
listening to each file, and have been linked to habitat quality, species 
richness, abundance, phylogenetic and functional diversity (Sueur and 
Farina 2015; Gasc et al., 2013; Stowell and Sueur, 2020). Acoustic 
monitoring typically focuses on the breeding season when birds are most 
vocally active, and these results are often directly compared to point 
count surveys conducted in the same season (Darras et al., 2018). 
However, the primary advantage of acoustic monitoring is that devices 
can be left in situ and programmed to survey regularly, with high tem-
poral resolution, over long time periods. Particularly in winter, acoustic 
monitoring is advantageous as data can be passively collected and saved 
while site access is restricted by snow, and retrieved once access is 
regained. A lack of predictable phenological events such as the dawn 
chorus and territorial calls associated with breeding make bird vocal-
isations, which are mostly contact calls, more stochastic in winter; 
recording at regular intervals (instead of one site visit from point counts) 
increases the probability of capturing winter bird activity by distributing 
a similar sampling effort over a longer timeframe. 

To our knowledge, three winter acoustic studies exist to date. Krause 
et al. (2011) and Mullet et al. (2016) sought to broadly characterize the 
sonic components of a winter soundscape, such as distinguishing bird 

calls (biophony) from wind (geophony) or anthropogenic noise from 
planes, automobiles and snowmobiles (anthrophony). Wolfgang and 
Haines (2016) evaluated the use of automated call recognition software 
of wintering birds, but only for 3 species. No studies have examined the 
usefulness of in-situ automated recorders to monitor the full resident 
bird assemblage in detail (e.g. richness) to gain insights into their ac-
tivity and use of vegetation structures throughout the critical winter 
season. This study sought to do this by 1) collecting bird assemblage 
metrics via both bioacoustic and traditional point count methods; 2) 
testing the response of each of these metrics to a gradient of structural 
heteregeneity; and 3) assessing which acoustic indices, derived from 
audio recordings, reflect the bird-structure links established above. 

2. Materials and methods 

2.1. Study area 

The study was conducted in Färna Ecopark, Sweden, a 4000-ha area 
largely devoted to conservation, 2800 ha of which are forested. Färna 
Ecopark is located in a mosaic coniferous-deciduous boreal landscape 
intermixed with wetlands and bogs, rocky outcrops and numerous 
waterbodies and watercourses (Fig. 1). The dominant tree species are 
Norway spruce (Picea abies), Scots pine (Pinus sylvestris), silver birch 
(Betula pendula) and European aspen (Populus tremula). The climate 
displays strong temperature variations between seasons, with average 
temperatures ranging from -5 ◦C to 0 ◦C in winter and 15 ◦C–25 ◦C in 
summer. Using data from 2003 to 2013 vegetation inventories of Färna 
Ecopark in QGIS v.3.10 (QGIS Development Team, 2019), we selected 
19 sites within three forest classifications based on proportion of de-
ciduous tree species: 20–50 % deciduous, < 20 % deciduous, and 0 % 
deciduous (monoculture stands). The 20–50 % deciduous plots were 
identified in QGIS; the sites in monoculture stands, which are located in 
“unclassified forest” areas, were selected in situ. This resulted in a 
gradient of percent deciduous stands, ranging from 0.17 % (conifer 
monocultures) to 73.30 %. Each site was established as a 50-m radius 
around a GPS point centre, while ensuring the forest classification in the 
surrounding 100-m radius remained constant. 

2.2. Vegetation survey 

Six circular 100 m2 subplots were established around the center of 
each site (n = 114). Each Norway spruce, Scots pine, birch, aspen and 
black alder (Alnus gluttnosa) tree with a height greater than 1.5 m was 
measured for height and diameter at breast height (DBH, measured at 
1.3 m from the ground). The height and DBH of each dead tree present 
were also recorded. From this survey, several vegetation metrics were 
developed to reflect aspects of species composition and structural di-
versity, adapted from Storch et al. (2018). These variables include: DBH 
quadratic mean, DBH standard deviation, mean stand height, stand 
height standard deviation, total basal area, percentage of total basal area 
with deciduous trees, mean DBH of standing deadwood, mean diameter 
of downed deadwood, standing deadwood volume, downed deadwood 
volume (see Appendix A for details). 

2.3. Point count survey 

GM conducted two bird surveys at each site from 14.12.19 to 
14.03.20. Visits at a given site were separated by a mean of 29.2 days 
(range: 21–56). All surveys were conducted between 8:00 and 14:20; 26 
surveys started before noon and 12 after. Each survey lasted 20 min and 
all birds seen or heard were recorded, with no distance limit in order for 
this data to be comparable to the detection radius of an acoustic recorder 
(Shaw et al., 2021). Final variables from point counts include species 
richness (hereafter Richness_pc) and Abundance per site. Total sampling 
effort (excluding time spent to access sites) was 40 min per site. 

T. Shaw et al.                                                                                                                                                                                                                                    
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2.3.1. Acoustic survey 
Acoustic data was collected from December 05, 2019 to February 20, 

2020 using automated prototype ‘Soundscape Explorer Terrestrial’ re-
corders by Lunilettronik Cooperativa (Fivizziano, Italy), equipped with 
an omnidirectional EMY-63M/P microphone (sensitivity: -38 dB ± 3 dB, 
signal to noise ratio: > 60 dB). Recorders were installed 1.6 m high on a 
tree nearest the site center, with the microphone oriented southwest, 
away from the prevailing wind direction (Shaw et al., 2021). Devices 
were programmed to record for 1 min every 10 min, 24 h a day, at a 
sampling rate of 24 kHz and gain of +25 dB. In each plot we collected 57 
days of recordings within our data collection period, resulting in 8208 
1-min recordings per site (2599.2 h total). 

2.3.2. Acoustic data processing 
As most resident birds are diurnal and point counts were only con-

ducted during daylight hours, only daytime recordings were used for 
this study. These were determined according to daily sunrise and sunset 
times based on a common set of coordinates and altitude for all sites 
(59◦47′30.7′′N, 15◦53′35.3′′E and 123 m.a.s.l., respectively) using the 
sunrise.m function in Octave v5.0.2 (Beauducel, 2020; Eaton et al., 
2020). Raw acoustic files can contain sounds originating from non-bird 
sources (e.g. geophony and anthrophony), thus we first sampled and 
manually reviewed files to clean the dataset of non-bird vocalisations. 
This sample consisted of 150 files from each site (2850 total) at 2-h 
intervals (recordings from 8:30, 10:30, 12:30 and 14:30). We used 
spectrograms in Kaleidoscope Lite v5.2.1 (Wildlife Acoustics, Inc., 2020) 
to visually screen the files for non-bird sounds, which we classified as 
either rain, wind or glitches. Using acoustic indices generated from these 
files (see section 2.5), we identified index values that enabled us to 
classify non-bird sounds and clean the entire dataset (details in Appen-
dix B). Following the removal of non-bird vocalisations and non-daytime 
files, a total of 22565 recordings remained (between 980 and 1426 
1-min recordings per site), which were used in later analyses. 

2.3.3. Aural identification from recordings 
An expert observer with no prior knowledge of the site from which 

the files originated, identified all detectable bird species. The expert 
identified 200 random non-consecutive daytime recordings per site (n =
3800). Files were randomly selected with the sample_n function in the 
‘dplyr’ R package (Wickham et al., 2020). From the 200 files per site, a 
subset of 40 files were randomly selected, resulting in two species 
richness counts: first, aural identification with a sampling effort equal to 
that of point counts (40 min per site) hereafter called Richness_equal, 
and second, identifications with a maximized sampling effort greater 
than the point count survey (200 min per site) hereafter called 
Richness_max. 

Abundance cannot be reliably estimated from acoustic recordings; 
however different metrics can be derived from an aural identification 
dataset that describe bird activity. We calculated the following vari-
ables: No. Occurrences, quantifying the cumulative number of bird ob-
servations per site, all species pooled; No. Flocks, quantifying the 
cumulative number of files capturing mixed-species flock vocalisations 
per site; and No. Multiple Birds, quantifying the number of files that 
capture more than one vocalising species within 1 min (excluding mixed 
species flocks) per site. No. Flocks was identified by clear flocking 
behaviour, which is an uncountable number of birds calling simulta-
neously, while No. Multiple Birds is the identification of a single indi-
vidual and then another individual calling later in the file (e.g. one blue 
tit vocalising at e.g. 0:11 s, then silence, and at 0:48 a treecreeper 
vocalisation is also detected). 

2.3.4. Acoustic index computation 
Using files cleaned of wind, rain, and device glitches, we computed 

six of the most common acoustic indices used for biodiversity moni-
toring from the ‘soundecology’ package in R (Villanueva-Rivera and 
Pijanowski, 2018), as multi-index studies with these indices have been 
shown to be more effective than single index investigations 

Fig. 1. Map of the study area in Färna Ecopark, Sweden, depicting 19 study sites in a mosaic, multipurpose boreal forest landscape.  
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(Bradfer-Lawrence et al., 2020). Index descriptions can be found in 
Table 1. We calculated index means per site, as means are expected to 
reveal patterns that might otherwise be masked by index variability 
(Bradfer-Lawrence et al., 2019). All index values were normalized on a 
scale from 0 to 1 with the normalize function in the ‘effectsize’ package 
(Ben-Shachar et al., 2020) to facilitate comparisons between indices. 

2.4. Data exploration and spatial correlation metrics 

A series of additional acoustic indices were used to aid in data 
cleaning and to account for potential sources of autocorrelation in the 
data. These indices included the LowFreqCover Index, High Amplitude 
Index, Background Noise Index, Clipping Index and Signal to Noise 
Ratio, which were computed using the Ecoacoustic Audio Analysis 
Software in R (Towsey, 2020). Six spatial variables potentially relevant 
to our research questions were also calculated per site: ‘distance to 
waterways’, ‘distance to waterbodies’, ‘distance to main roads’, ‘dis-
tance to residential buildings’ and ‘number of residential buildings in a 
1000 m radius’. Geospatial analyses were computed in QGIS with the 
NNJoin Plugin using the Nearest Neighbour Analysis. Vector GIS data 
was obtained from the Swedish mapping, cadastral and land registration 
authority ‘Lantmäteriet’. 

2.5. Statistical analysis 

2.5.1. PCA analysis of vegetation variables 
All statistical analyses were performed in R v.4.0.2 (R Core Team, 

2020). Vegetation metrics were combined using a Principal Component 
Analysis (PCA) with the singular value decomposition approach, using 
the R prcomp function with variable centering and scaling. Axis retention 
was aided by the broken-stick model (Borcard et al., 2011), as this was 
found to be an accurate stopping rule to estimate the number of signif-
icant components (Jolliffe, 2002). 

2.6. Comparing species richness between methods 

The only metric we could compare directly between point count and 
aural identification methods was bird richness, thus a two-samples t-test 
was applied to each combination of variables: Richness_pc, Richnes-
s_equal and Richness_max. 

2.6.1. Bird assemblage metrics in response to forest structure 
Next, we sought to investigate forest structure as a direct driver of 

bird assemblage and activity metrics using the vegetation PCs as inde-
pendent variables in Generalized Linear Models (GLMs). The three 
richness metrics, as well as the other bird variables (Abundance, No. 
Occurrences, No. Flocks and No. Multiple Birds), were each modelled 
independently as response variables using Gaussian distributions. All 
GLMs were made using the ‘glmmTMB’ package (Brooks et al., 2017). 

2.6.2. Acoustic indices in response to bird assemblage and forest structure 
To investigate if acoustic indices reflect metrics of bird assemblage 

and activity, we used GLMs to model each acoustic index (ACI, ADI, BIO, 
EVE, H and NDSI) individually in response to the following independent 
variables: one assemblage metric at a time (as a direct driver), vegeta-
tion PCs (indirect drivers) and their interactions. All models used a 
Tweedie distribution with a log-link function. Using an information 
theoretic (IT) approach (Burnham and Anderson, 1998), all models with 
the same acoustic index response variable can be directly compared; the 
best-performing model has high predictive value and minimal 
complexity, with the lowest corrected Akaike information criterion 
(AICc) (Hurvich and Tsai, 1989). IT-modelling is useful for measuring 
the relative strength of evidence for competing hypotheses given the 
data at hand; this approach allowed us to determine the relative strength 
of a given index to reflect each particular aspect of bird assemblages. 
This comparison is facilitated by the Akaiki weight (wi), which can be 

Table 1 
Acoustic index descriptions.  

Acoustic Index 
(citation) 

Abbreviation Calculation Details Interpretation 

Acoustic Complexity 
Index (Pieretti 
et al., 2011) 

ACI Calculates the 
difference in 
amplitude from one 
specified time to 
the next, within 
one frequency 
band, relative to 
the total amplitude 
of that band. The 
values from each 
frequency band are 
then added. 

Designed to reflect 
complex sound; it 
captures rapid 
variations in 
frequency and 
amplitude that are 
typical of 
biophony 
(especially 
birdsong). This 
index typically 
does not respond 
to persistent sound 
such as machinery 
noise or buzzing 
insects. 

Acoustic Diversity 
Index ( 
Villanueva-Rivera 
et al., 2011) 

ADI Divides a recording 
into frequency 
bands and applies 
the Shannon index 
to each band, only 
considering signals 
above an amplitude 
threshold. 

High levels of 
geophony or 
anthrophony that 
extend over the 
entire spectrogram 
will result in 
higher values, 
while lower values 
will indicate sound 
occurring in a 
narrow frequency 
band. 

Bioacoustic Index ( 
Boelman et al., 
2007) 

BIO Computes the area 
under each curve, 
including all 
frequency bands 
from 2 to 11 kHz 
with a dB value 
greater than the 
minimum dB value 
for each curve. 

A combination of 
sound intensity 
and frequency 
bands occupied. 
Designed to reflect 
biophony. Low 
values indicate 
little to no acoustic 
activity. 

Evenness Index ( 
Villanueva-Rivera 
et al., 2011) 

EVE Divides a recording 
into frequency 
bands and applies 
the Gini index to 
the proportion of 
signals in each bin 
above a dB 
threshold. 

If frequency bands 
are evenly 
occupied (a very 
quiet or very noisy 
file), value will be 
low. When sounds 
occur in an 
isolated range of 
frequencies, or 
there is an uneven 
distribution of 
sound across the 
recording, value 
will be high. 

Entropy (Sueur et al., 
2008) 

H Assesses the 
amplitude evenness 
across frequency 
bands and time 
samples. Similar to 
ADI, but on a finer 
scale and including 
narrower 
frequency bands 

Even signals, such 
as a very quiet or 
uniformly noisy 
recording, 
produce high 
values. Recordings 
with very loud 
bird calls produce 
low values. 

Normalized 
Difference 
Soundscape Index ( 
Kasten et al., 2012) 

NDSI Calculated based 
on a hypothesised 
categorisation 
between the 
frequency 
spectrum of 
anthrophony (1 
kHz–2kHz) and the 
frequency range in 
which biophy 
typically occurs (2 
kHz–11kHz). The 
value returned is 

Resulting values 
between -1 and 1, 
with >0 value 
indicating 
biopohony 
dominating the 
soundscape. 
Negative values 
indicate 
anthrophony is 
dominating the 
soundscape. 

(continued on next page) 
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interpreted as the approximate probability that a given model would be 
the optimal model (lowest AICc) in that set of models, if this test were 
repeated many times (Burnham and Anderson, 1998). 

Model diagnostics were performed with the ‘DHARMa’ package and 
model residuals were checked for spatial autocorrelation using the 
testSpatialAutocorrelation function (Hartig, 2020). Any models showing 
significant autocorrelation via the Moran’s I test were further investi-
gated; alternative models using additional spatial and acoustic variables 
(see section 2.5) were tested to explain spatial autocorrelation patterns 
and therefore achieve a more accurate estimate of the effect of the main 
variable in question. The best alternative model was chosen based on the 
highest Moran’s I test p-value and lowest AICc value. 

3. Results 

3.1. PCA analyses of vegetation and acoustic indices 

For vegetation structural variables, Axis 1 accounted for 39.8 % of 
the variation in our data, and largely reflected variables related to 
structural heterogeneity and complexity. Quadratic DBH, DBH standard 
deviation, mean stand height, height standard deviation and basal area 
contributed to 82.2 % of this axis (Appendix C), and will hereafter be 
referred to as the Structural Heterogeneity axis. The second axis 
explained 26.1 % of the variation, with metrics related to standing and 
downed deadwood volume having the largest contributions (73.8 %; 
Appendix C); it will be referred to as the Deadwood Volume axis. Two 
PCs were retained following the broken-stick model, accounting for 
65.8 % of the variation in the vegetation structure data. As both axes 
decrease, the structural heterogeneity and deadwood volume increase, 
respectively (Appendix C). 

3.2. Bird richness: point count versus bioacoustic identification 

Of all recordings reviewed for aural identification, 45.1 % of files 

contained bird vocalisations (n = 1710); of these files, 116 contained 
vocalisations too faint to identify, 29 vocalisations identified with un-
certainty, and 2427 bird vocalisations identified with certainty (the 
latter was used for all analyses). 

Across all sites, 30 species were identified from point counts, 25 
identified from recordings with equal sampling effort and 37 identified 
from recordings with maximizing sampling effort (Appendix D for spe-
cies occurrence lists). Species occurring on every or almost every site 
were similar between methods, including the great spotted woodpecker 
(Dendrocopos major) (point count = 12 sites, bioacoustic ID (40 min) =
14 sites, bioacoustics ID (200 min) = 16 sites), great tit (Parus major) 
(12,15,18) and Eurasian siskin (Spinus spinus) (12,13,19). Aural identi-
fications captured six additional species at that frequency, including the 
goldcrest (Regulus regulus) (4,19,19), Eurasian treecreeper (Certhia 
familiaris) (1,17,19), long-tailed tit (Aegithalos caudatus) (2,9,19), blue 
tit (Cyanistes caeruleus) (4,13,17), crested tit (Lophophanes cristatus) 
(7,10,16) and Eurasian nuthatch (Sitta europaea) (6,8,14), which reveals 
a detectability bias in the point count method that the recorders did not 
suffer from. Twenty-five species were identified by both methods at the 
same site(s); five species were identified only by point count and twelve 
species only from recordings (see Appendix E for full details and 
discussion). 

Richness_max was significantly higher than Richness_equal and 
Richness_pc (Fig. 2). On average Richness_equal exceeded Richness_pc, 
although at seven sites Richness_pc was equal to or exceeded Richnes-
s_equal, therefore no statistically significant difference between richness 
was found between these methods. 

3.3. Response of bird assemblage and activity metrics to forest structure 

Point count richness, Richness_pc, had no significant relationship to 
either vegetation PC axis, although both bioacoustic metrics, Richnes-
s_equal and Richness_max, increased significantly with higher structural 
heterogeneity (PC1) (Fig. 3). Neither bioacoustic richness metrics had a 
significant relationship to deadwood (PC2). 

Mean Abundance per site, derived from point count data, was 9.68 
(SD ± 6.89) individuals. Means for the following three bird activity 
metrics derived from acoustic recordings were: No. Occurrences 127.63 
(±53.14), No. Flocks 25.74 (±9.49) and No. Multiple Birds 30.16 
(±17.62). No. Occurrences and No. Multiple Birds increased signifi-
cantly with structural heterogeneity and complexity (PC1), while 
Abundance and No. Flocks did not (Fig. 4). None of these metrics 

Table 1 (continued ) 

Acoustic Index 
(citation) 

Abbreviation Calculation Details Interpretation 

the ratio between 
the two 
components.  

Fig. 2. Bird richness data, by method and by site. Significance notation from two-samples t-test: NS = not significant, * <0.05, ** <0.01, *** <0.001.  
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showed significant relationships to deadwood (PC2). 

3.4. Relationship of acoustic indices to bird metrics 

The ACI and BIO indices increased significantly with higher bird 
assemblage and activity values: Richness_equal, Richness_max, No. Oc-
currences and No. Multiple Birds (Fig. 5). ACI and BIO indices reflect 
multiple facets of bird assemblage and activity, although wi values 
indicate they reflect certain aspects more strongly than others (Table 2). 
No. Multiple Birds, followed by No. Occurrences, are the variables with 
the strongest positive relationship to ACI values, while Richness_max is 
most strongly related to BIO values. The other acoustic indices (ADI, 

EVE, H, NDSI) showed no relationship to bird assemblage metrics. 

3.5. Spatial autocorrelation 

None of the models with bird metrics as the response variable (Figs. 3 
and 4) showed spatial autocorrelation, and neither did ADI, BIO, EVE 
nor H acoustic indices. However, two NDSI and four ACI models showed 
significant spatial autocorrelation. The landscape metrics ‘number of 
residential buildings in a 1000 m radius’, ‘distance to waterbodies’ and 
‘distance to waterways’ accounted for spatial autocorrelation in ACI 
models, however no spatial metrics explained the autocorrelation in 
NDSI models. Instead, LowFreqCover (an acoustic index capturing low- 

Fig. 3. The response of bird richness to vegetation 
PCA axis 1 and 2. Richness_pc was derived from point 
count data; Richness_equal was derived from acoustic 
recordings with a sampling effort equal to that of the 
point count (40 min per site); Richness_max is derived 
from acoustic recordings with a maximized sampling 
effort (200 min per site). Decreasing values on the 
Structural Heterogeneity axis indicate higher struc-
tural heterogeneity. Solid lines indicate a significant 
relationship, dashed lines indicate non-significance, 
shaded areas indicate 95 % confidence interval.   

Fig. 4. The response of bird assemblage metrics to vegetation PCA axis 1. Abundance was derived from point count data; No. Visits, No. Flocks and No. Multiple Birds 
was derived from acousitc recordings. Decreasing values on the Structural Heterogeneity axis indicate higher structural heterogeneity. Solid lines indicate a sig-
nificant relationship, dashed lines indicate non-significance, shaded areas indicate 95 % confidence interval. 
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Fig. 5. The response of the ACI and BIO acoustic indices bird assemblage and activity metrics. Solid lines indicate a significant relationship, dashed lines indicate 
non-significance, shaded areas indicate 95 % confidence interval. 

Table 2 
Models results of all models testing one acoustic index as the dependent variable, and one bird assemblage metric as the independent variable (all models also included 
vegetation PCs 1 and 2). Each row is a set of seven models, and each column is the bird assemblage metric used as the independent variable. Models can be compared 
row-wise by their ΔAICc and Akaike weights (wi). Models with a significant response to the bird metric are bolded.  

Acoustic Index Richness_ pc Richness_ equal Richness_max Abundance No. Occurrences No. Flocks No. Multiple Birds 

ACI 22.78 9.43 15.84 22.14 2.14 19.75 0 
wi 0 0.01 0 0 0.25 0 0.74 
ADI 7.11 4.39 5.43 6.74 5.14 0 4.26 
wi 0.02 0.08 0.05 0.02 0.05 0.7 0.08 
BIO 7.52 3.14 0.23 7.95 3.99 0 3.36 
wi 0.01 0.08 0.36 0.01 0.06 0.41 0.08 
EVE 5.39 2.69 1.29 1.46 1.77 0 0.65 
wi 0.02 0.07 0.15 0.14 0.12 0.29 0.21 
H 25.64 22.19 22.49 24.96 23.29 0 22.46 
wi 0 0 0 0 0 1 0 
NDSI 1.5 0.33 0.89 1.55 0.63 3.28 0 
wi 0.11 0.19 0.15 0.11 0.17 0.04 0.23  
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frequency noise typical of wind or machinery) accounted for the auto-
correlation in NDSI models. This variable also greatly improved the AICc 
of the other five NDSI models, so it was included in all NDSI models 
(Appendix F). For full discussion of spatial autocorrelation of acoustic 
indices, see Appendix G. 

4. Discussion 

4.1. Bird richness: point count versus bioacoustic identification 

This is the first winter study to apply a combined bioacoustic and 
ecoacoustic monitoring approach, and compare it to traditional point 
count surveys. Bird identifications from acoustic recordings yielded 
significantly higher bird richness, although only when the sampling 
effort was greater than that of point counts. This is partially due to an 
increase in sampling effort, but an increase in sampling effort is feasible 
for acoustic monitoring (by simply reviewing more files in the lab—an 
addition of minutes), however point counts would require multiple field 
visits (and therefore an addition of hours or days). Both bioacoustic 
metrics of bird richness (40 and 200 min) showed significant relation-
ships to the Structural Heterogeneity axis, while point count richness did 
not. This suggests that although richness_equal and richness_pc were not 
statistically different, they were different enough for bioacoustic rich-
ness to serve as a better metric than point counts for revealing re-
lationships between bird richness and forest structure. Both bioacoustic 
richness values were also significantly related to ACI and BIO indices, 
while point count richness was not (Fig. 5, Table 2), suggesting that 
bioacoustic richness values are better ground-truth metrics with which 
to test acoustic indices as proxies for bird richness. Currently point count 
surveys are the industry standard for ground-truthing acoustic indices, 
however our results indicate that if we had relied solely on point count 
data, we would have concluded that there was no relationship between 
any acoustic index and bird richness when there was in fact a strong, 
positive relationship that the winter point counts did not capture. Other 
studies combining bioacoustic and ecoacoustic approaches exist, 
although not in winter and not using the new metrics outlined in our 
study, which have shown similar positive findings between bioacoustic 
identifications and acoustic indices (Eldridge et al., 2018; Deichmann 
et al., 2017; Ferreira et al., 2018; Towsey et al., 2014; Depraetere et al., 
2012). Our results provide strong evidence that the point count method 
is disadvantageous in winter when bioacoustics monitoring is available 
as an alternative. In spring, 20 min point counts have been shown to be 
efficient for estimating species richness (Fuller and Langslow, 1984; 
Hutto et al., 1986; Bibby et al., 2000; Sorace et al., 2000), but our results 
suggest that in winter, even doubling that survey time to two 20-min 
surveys is insufficient. 

Other studies comparing point counts to acoustic recordings found 
either similar outcomes between methods (Alquezar and Machado, 
2015; Castro et al., 2019; Celis-Murillo et al., 2012; Darras et al., 2018; 
Klingbeil and Willig, 2015; McGuire et al., 2011; Van Wilgenburg et al., 
2017; Yip et al., 2017) or that recorders outperformed humans (Borker 
et al., 2015; Digby et al., 2013; Haselmayer and Quinn, 2000; Hutto and 
Stutzman, 2009; Klingbeil and Willig, 2015; Tegeler et al., 2012; Venier 
et al., 2012; Zwart et al., 2014).The differences between study outcomes 
depend on factors such as distance from recorder, recorder type, species 
of interest, vegetation density, habitat type, climatic zone and if detec-
tion probabilities were calculated and standardised. These studies were 
not conducted in winter, however, and they noted that is it difficult to 
directly compare sampling methods, all factors considered. Numeric 
species richness may be greater from one method, but the species 
compositions of birds identified between methods are not directly 
comparable (Celis-Murillo et al., 2009; Haselmayer and Quinn, 2000; 
Leach et al., 2016), which we also observed in our data. Further, some 
acoustic datasets have hidden costs of time-consuming data cleaning 
(rain, wind, etc.), however improvements in automated file processing 
are rapidly advancing (e.g. Oliver et al., 2018; Huancapaza Hilasaca 

et al., 2021) and minimizing this disadvantage. 
Our results provide evidence that bioacoustic monitoring performs 

well as a method for estimating resident bird richness, activity and 
habitat selection during winter in a heterogeneous boreal forest 
landscape. 

4.2. Response of bird assemblage and activity to forest structure 

Richness and abundance metrics derived from point counts showed 
no response to either vegetation structure PC, highlighting the difficulty 
in relying on winter point count surveys to yield useful assemblage data. 
However, bird activity metrics that leverage the advantages of long-term 
acoustic recordings can be created: No. Occurrences, No. Flocks and No. 
Multiple Birds. All three activity metrics are theoretical indicators of 
habitat quality: the number of vocalisation events (by individuals, flocks 
or multiple birds) increases the more time species spend in a given 
habitat, due to provisioning of food, shelter from low temperatures, 
precipitation and wind, or protection from the sight of predators. 
Therefore, cumulative counts observations of individuals, mixed-species 
flocks or multiple individuals calling within the same minute should 
each increase with higher habitat quality. Interestingly, this was 
confirmed for No. Occurrences and No. Multiple Birds, as they both 
showed clear positive significant responses to increased structural het-
erogeneity (Fig. 4), but No. Flocks did not have a significant relationship 
to either vegetation PC. One explanation for this is that there are 
different mix-species flocking events each with different structural re-
quirements for food provisioning. For example, multiple tit species, 
nuthatches, goldcrests, treecreepers and sometimes lesser spotted 
woodpeckers flock together and primarily eat canopy insects; redpolls 
and siskins flock together and prefer small seeds from e.g. alder trees; 
crossbill flocks feed on conifer seeds; and waxwing flocks prefer fruits. 
Each of these species were observed in our flocking events, but the No. 
Flocks metric did not distinguish between them; multiple signals were 
thus collapsed into one, potentially explaining a flatter response to 
either structural PC, particularly the Structural Heterogeneity axis. 

No bird assemblage metrics showed a significant response to the 
Deadwood Volume axis (Figs. 3 and 4), although bird richness has been 
shown to increase with deadwood volume in previous research (Bouvet 
et al., 2016; Cadieux and Drapeau, 2017; Reise et al., 2019; Zan et al., 
2017). These studies, however, were conducted in spring, and often 
contained a gradient of deadwood much larger than what was available 
in our sites. These studies captured maximum deadwood volumes up to 
370 m3/ha, while our sites contained from 0 to 40 m3/ha of standing or 
downed deadwood, with the exception of one site. 

4.3. Response of acoustic indices to bird metrics 

Our results suggest that the ACI and BIO indices can serve as proxies 
for winter bird richness and activity in a boreal forest. This is consistent 
with research in other seasons and climatic zones that found relation-
ships between these indices and species richness (Dröge et al., 2021; 
Eldridge et al., 2018; Towsey et al., 2014), abundance (Boelman et al., 
2007; Bradfer-Lawrence et al., 2020) and activity (Fairbrass et al., 2017; 
Pieretti et al., 2011). ACI and BIO were both significantly driven by the 
same bird metrics: Richness_equal, Richness_max, No. Occurrences and 
No. Multiple Birds, although ACI was most strongly linked to No. Mul-
tiple Birds and BIO was most strongly linked to Richness_max (Table 2). 
The ACI was also susceptible to spatial autocorrelation, while BIO was 
not. The ACI, which is an additive index designed to reflect rapid vari-
ations in frequency and intensity typical of birdsong, may be more 
sensitive to the addition of vocalising species to the soundscape, either 
in a 1-min file (No. Multiple Birds) or across the entire recording period 
(No. Occurrences). This is supported by wi values across all ACI models, 
which indicate that No. Multiple Birds and No. Occurrences would be 
the ACI’s strongest predictors if this study were to be repeated many 
times (Table 2). Gasc et al., (2015) have also demonstrated the ACI to be 
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sensitive to the addition of another species, and even more so when 
songs from different species do not overlap within the song file. 

Compared to the ACI, BIO is a more generalized index that increases 
with increasing biophony; it responds not only to complex birdsong but 
also blanket noise such as insect stridulations. It computes the area 
under the curve of high amplitude signals across all frequency bands 
relative to the band with the lowest amplitude. Although the wi values 
for BIO models indicate that the relative strengths of the four significant 
bird metrics differ in their probabilities of being the best-fitting model 
(Table 2, bolded), they all share some percentage of the Akaike weight, 
making BIO the index that best reflects multiple aspects of bird assem-
blage and activity simultaneously. Overall, ACI and BIO are promising 
indices as winter monitoring proxies, but multi-year studies are needed 
to assess the degree to which these results replicate interannually with 
different temperature fluctuations, wind events and levels of rain- and 
snowfall. This is particularly relevant because bird activity is known to 
vary with environmental conditions (Oliver et al., 2018), and in our 
study the 2020 winter was unusually warm, with very little snow. 

ADI, EVE, H and NDSI were not significantly predicted by any bird 
metric, unlike some studies that found these indices reflected bird 
richness well (Jorge et al., 2018; Machado et al., 2017; Mammides et al., 
2017). This is likely due to seasonality; past studies were conducted in 
spring, and our data was collected in winter when there is a drastically 
lower bird vocalisation frequency. Krause et al. (2011) found that 
soundscapes in a temperate montane evergreen forest were quietest in 
winter and lacked biophony compared to all other seasons. Of our 200 
recordings reviewed per site, 55 % did not contain any bird vocal-
isations, meaning over half of the acoustic index values that comprised 
our index means were reflecting non-bird sounds (likely silence or 
wind). Further, ADI and H are indices that similarly quantify spectral 
entropy, and EVE quantifies how evenly sound signals are distributed 
across twelve frequency bands. These three indices excel at reflecting 
coarse differences in large-scale acoustic activity, for example between 
different times of day (dawn chorus vs. night), or between distinctly 
different habitats (mature oak forest, secondary forest, wetland, plan-
tation, etc.). It is unlikely that they were able to distinguish between 
sites of the same habitat type during the same time of day, at least when 
over half the files did not contain bird vocalisations. The ACI and BIO 
indices are more robust for monitoring across seasons (BIO’s robustness 
has also been demonstrated across temperate and tropical climatic zones 
(Eldridge et al., 2018)), while the ADI, EVE, H and NDSI indices are 
likely only useful when bird vocalisations dominate the soundscape and 
the higher frequency of vocalisations increase the performance of these 
indices (Zhao et al., 2019). 

5. Conclusion 

To our knowledge, this is the first study of its kind using acoustic 
monitoring for resident bird assemblages in the winter season. Acoustic 
monitoring was a superior method to point counts for determining 
species richness, particularly if resources allow for bioacoustic identi-
fication effort greater than 40 min per site (in our case, 200 1-min files 
per site). Automated monitoring allows for more distributed sampling 
effort across time, and less detectability bias. The bioacoustic approach 
is additionally useful because it yields new metrics about bird activity 
that have direct links to structural complexity, which can serve as in-
dicators of habitat quality. On the contrary, 40-min point count richness 
and abundance showed no link to habitat quality, demonstrating the 
relative ineffectiveness of point counts compared to the spring season. 

The ecoacoustic approach of acoustic index computation also proved 
useful: the ACI and BIO indices showed significant relationships to 
almost all bird assemblage metrics, indicating they could serve as 
proxies for bird richness and activity that reflect differences in habitat 
quality. No relationship was found between point count metrics (rich-
ness and abundance) and acoustic indices, further indicating that point 
counts are not a sufficient ‘ground truth’ of ecoacoustic indices for 

winter monitoring schemes, compared to the greater potential data 
available in acoustic recordings. Acoustic monitoring, in the form of 
bioacoustic and ecoacoustic data, can provide new insights about winter 
behaviour that can allow for more efficient monitoring and inference 
about habitat choice, improving our ability to identify forest patches 
important for birds in winter. 
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Dröge, S., Martin, D.A., Andriafanomezantsoa, R., Burivalova, Z., Fulgence, T.R., 
Osen, K., Rakotomalala, E., Schwab, D., Wurz, A., Richter, T., Kreft, H., 2021. 
Listening to a changing landscape: acoustic indices reflect bird species richness and 
plot-scale vegetation structure across different land-use types in north-eastern 
Madagascar. Ecol. Indicat. 120, 106929 https://doi.org/10.1016/j. 
ecolind.2020.106929. 

Eaton, J., Bateman, D., Hauberg, S., Wehbring, R., 2020. GNU Octave. Version 5.2.0 
[Windows].  

Eggers, S., Low, M., 2014. Differential demographic responses of sympatric Parids to 
vegetation management in boreal forest. For. Ecol. Manag. 319, 169–175. https:// 
doi.org/10.1016/j.foreco.2014.02.019. 

Eldridge, A., Guyot, P., Moscoso, P., Johnston, A., Eyre-Walker, Y., Peck, M., 2018. 
Sounding out ecoacoustic metrics: avian species richness is predicted by acoustic 
indices in temperate but not tropical habitats. Ecol. Indicat. 95, 939–952. https:// 
doi.org/10.1016/j.ecolind.2018.06.012. 

Fairbrass, A.J., Rennert, P., Williams, C., Titheridge, H., Jones, K.E., 2017. Biases of 
acoustic indices measuring biodiversity in urban areas. Ecol. Indicat. 83, 169–177. 
https://doi.org/10.1016/j.ecolind.2017.07.064. 

Ferreira, L.M., Sousa-Lima, R.S., Oliveira, E.G., Lopes, L.C., Brito, M.R., Baumgarten, J., 
Rodrigues, F.H., 2018. What do insects, anurans, birds, and mammals have to say 
about soundscape indices in a tropical savanna. J. Ecoacoustics 2 (1), 1. https://doi. 
org/10.22261/jea.pvh6yz, 1.  

Forsman, J.T., Mönkkönen, M., 2003. The role of climate in limiting European resident 
bird populations. J. Biogeogr. 30 (1), 55–70. https://doi.org/10.1046/j.1365- 
2699.2003.00812.x. 

Fuller, R.J., Langslow, D.R., 1984. Estimating numbers of birds by point counts: how long 
should counts last? Hous. Theor. Soc. 31 (3), 195–202. 

Gasc, A., Pavoine, S., Lellouch, L., Sueur, J., 2015. Acoustic indices for biodiversity 
assessments: analyses of bias based on simulated bird assemblages and 
recommendations for field surveys. Biol. Conserv. 191, 306–312. https://doi.org/ 
10.1016/j.biocon.2015.06.018. 

Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., Depraetere, M., 
Pavoine, S., 2013. Assessing biodiversity with sound: do acoustic diversity indices 
reflect phylogenetic and functional diversities of bird communities? Ecol. Indicat. 
25, 279–287. https://doi.org/10.1016/j.ecolind.2012.10.009. 

Gasc, A., Francomano, D., Dunning, J.B., Pijanowski, B.C., 2017. Future directions for 
soundscape ecology: the importance of ornithological contributions. Auk 134 (1), 
215–228. https://doi.org/10.1642/AUK-16-124.1. 

Hartig, F., 2020. DHARMa: Residual Diagnostics for Hierarchical (Mulit-Level/Mixed) 
Regression Models. R package version 0.3.3.0. https://CRAN.R-project.org/packa 
ge=DHARMa. 

Haselmayer, J., Quinn, J.S., 2000. A comparison of point counts and sound recording as 
bird survey methods in amazonian southeast Peru. Condor 102 (4), 887–893. 
https://doi.org/10.1093/condor/102.4.887. 

Helle, P., Järvinen, O., 1986. Population trends of north Finnish land birds in relation to 
their habitat selection and changes in forest structure. Oikos 46 (1), 107–115. 
https://doi.org/10.2307/3565386. 

Huancapaza Hilasaca, L.M., Gaspar, L.P., Ribeiro, M.C., Minghim, R., 2021. Visualization 
and categorization of ecological acoustic events based on discriminant features. Ecol. 
Indicat., 107316 https://doi.org/10.1016/j.ecolind.2020.107316. 

Hurvich, C.M., Tsai, C.-L., 1989. Regression and time series model selection in small 
samples. Biometrika 76 (2), 297–307. https://doi.org/10.1093/biomet/76.2.297. 

Hutto, R.L., Stutzman, R.J., 2009. Humans versus autonomous recording units: a 
comparison of point-count results. J. Field Ornithol. 80 (4), 387–398. https://doi. 
org/10.1111/j.1557-9263.2009.00245.x. 

Hutto, R.L., Pletschet, S.M., Hendricks, P., 1986. A fixed-radius point count method for 
nonbreeding and breeding season use. Auk 103 (3), 593–602. 

Joliffe, I., 2002. Principal Component Analysis. Springer Science + Business Media, New 
York, pp. 111–149. 

Jorge, F.C., Machado, C.G., da Cunha Nogueira, S.S., Nogueira-Filho, S.L.G., 2018. The 
effectiveness of acoustic indices for forest monitoring in Atlantic rainforest 
fragments. Ecol. Indicat. 91, 71–76. https://doi.org/10.1016/j.ecolind.2018.04.001. 

Kasten, E.P., Gage, S.H., Fox, J., Joo, W., 2012. The remote environmental assessment 
laboratory’s acoustic library: an archive for studying soundscape ecology. Ecol. Inf. 
12, 50–67. https://doi.org/10.1016/j.ecoinf.2012.08.001. 
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