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Dissection of the genetic basis 
of genotype‑by‑environment 
interactions for grain yield 
and main agronomic traits 
in Iranian bread wheat landraces 
and cultivars
Hadi Alipour1*, Hossein Abdi1, Yousef Rahimi2 & Mohammad Reza Bihamta3

Understanding the genetic basis of performance stability is essential to maintain productivity, 
especially under severe conditions. In the present study, 268 Iranian bread wheat landraces and 
cultivars were evaluated in four well‑watered and two rain‑fed conditions for different traits. 
According to breeding programs, cultivars were in a group with a high mean and stability in terms of 
GY, GN, and SW traits, while in terms of PH, they had a low mean and high stability. The stability of 
cultivars and landraces was related to dynamic and static stability, respectively. The highest number 
of marker pairs and lowest LD decay distance in both cultivars and landraces was observed on the B 
genome. Population structure differentiated indigenous cultivars and landraces, and the GWAS results 
for each were almost different despite the commonalities. Chromosomes 1B, 3B, 7B, 2A, and 4A had 
markers with pleiotropic effects on the stability of different traits. Due to two rain‑fed environments, 
the Gene Ontology (GO) confirmed the accuracy of the results. The identified markers in this study can 
be helpful in breeding high‑performance and stable genotypes and future breeding programs such as 
fine mapping and cloning.

Bread wheat (Triticum aestivum L.) is the most important cereal for humans and has an undeniable role in food 
security. Therefore, increasing grain yield and yield stability have been prioritized by breeding programs to 
maintain wheat productivity. However, such a goal is challenged by the genotype-by-environment interaction 
(GEI) because a polygenic attribute like grain yield is controlled by numerous major and minor effect genes that 
interact with each other and the  environment1,2. Thus, genotypes usually show a wide range of reactions before 
being introduced in a multi-environment trail (MET), leading to changes in their performance rankings and 
thus more confusion for breeders.

Yield stability may be obtained through a combination of agronomic  traits3. Even though wheat grain yield 
stability has been specifically studied so far, in recent years, some studies have correctly focused on the GEI 
pattern in yield  components4–7. In cereals, grain yield can be affected by yield components directly or indirectly. 
However, indirect improvement of yield stability might not be possible through agronomic  traits8. This is due to 
the complex nature of performance stability controlled by genetic  factors9 and can be interpreted using genotypic 
and environmental  covariables10,11.

Stability statistics with almost simple calculation operations have long been the most important methods 
for assessing the stability of genotypes. Such statistics usually have a clear interpretation and can cover various 
aspects of stability, including static and dynamic types. Stability in the static concept refers to the constant per-
formance of the genotype in different environments. In contrast, stability in the dynamic concept is the perfor-
mance of the genotype that is constant according to the estimated or predicted level of the environments. These 
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concepts are equivalent to biological and agronomic stability,  respectively12,13. However, obtaining a genotype 
that maintains its yield in all environments is almost impossible, and such a concept of stability is not appropri-
ate for production as genotypes are expected to behave well under favorable environmental conditions. On the 
other hand, the performance of stable genotype with a dynamic concept in response to different environments is 
parallel to the average response of all studied  genotypes8. Therefore, the use of dynamic stability during breeding 
programs leads to increased resilience to climate change in new  varieties14. So far, about 50 different stability 
statistics, both parametric and non-parametric, have been used. Woyann et al.15 stated that Wricke’s16 ecovalance 
(Wi) and additive main effects and multiplicative interaction (AMMI) statistics, namely AMMI stability value 
(ASV)17 and Modified AMMI stability index (MASI)18, emphasize stability, while Finlay and  Wilkinson19 regres-
sion coefficient (bi) measures adaptability. In other words, Wi measures dynamic  stability20, while low values 
of bi are estimates of static  stability8. The method of harmonic mean of the relative performance of the genetic 
values (HMRPGV) provides estimates of adaptability and genotypic stability based on mixed  models21. Several 
statistics have simultaneously examined performance and stability, including the yield stability index (YSI)22 
and weighted average of absolute scores from the singular value decomposition of the matrix of BLUP for the 
GEI effects generated by an LMM and response variable (WAASBY)  index23. In one of the latest statistics, while 
emphasizing different traits in MET analysis, the multi-trait stability index was  introduced24.

Different chromosomal regions are involved in wheat  adaptation25. Determining molecular markers associ-
ated with quantitative traits and indices of trait stability and adaptability can help identify regions of the genome 
that control  GEI26. Furthermore, identifying genomic regions that affect stability can facilitate the selection 
 process27. In addition, understanding the interaction of QTL-by-environment is also important because most 
related QTLs are not stable across environments, and the repeatability of marker-trait associations (MTA) is 
widely disturbed by the  GEI28. MTAs have been identified for the stability index on chromosomes 4B and  7B29. In 
a genetic architecture study, the grain yield stability of wheat and other traits using the GWAS approach identi-
fied several SNPs on different chromosomes that affected their mean traits and  stability9. In addition, the role of 
functional markers, including photoperiod genes, in performance stability has been  revealed14. The combination 
of GWAS and genomic prediction suggested that dissecting the genetic basis of yield stability would be more 
complex than the one in grain  yield29. Other similar studies identified stability-related QTLs in the  barley20,26,30, 
 soybean27, and  rice31. However, there are a few studies on the dissection of GEI using genome-wide association 
studies in wheat. The present study investigated the stability of Iranian bread wheat in terms of different traits 
and diversity indices of SNP markers. Then, to understand the genetic basis of GEI, we used association analysis 
for stability indices and examined the ontology of the identified genes.

Results
Genotype‑by‑environment interaction. The effects of genotype, environment, and GEI were signifi-
cant at different probability levels for the four traits in the total population and subpopulations (Table 1). Due 
to drought stress in the study and different rainfall patterns in different years (Fig. 1), such a result was not 
unexpected. Broad sense heritability was low for GY, moderate for SW and GN, but high for PH. To select the 
desired genotypes in terms of mean traits and stability, we used different statistics, and the results are presented 
in Fig. 2. Based on these two criteria, genotypes were divided into approximately four classes: (I) high mean 
and stable, (II) high mean and unstable, (III) low mean and stable, and (IV) low mean and unstable. In terms 
of GY, 54, 29, 70, and 115 genotypes were present in these classes, respectively. Cultivars included 37.5%, 9.1%, 
36.4%, and 17%, and landraces included 11.7%, 11.7%, 21.1% and 55.5% of the members of these classes, respec-
tively (Fig. 2A). In terms of GN, in class I 43 genotypes (38.6% of cultivars and 5% of landraces), in class II 113 
genotypes (42% of cultivars and 42.2% of landraces), in class III 99 genotype (14.8% of cultivars and 47.8% of 
landraces), and in class IV 13 genotypes (4.5% of cultivars and 5% of landraces) were present (Fig. 2B). Accord-

Table 1.  Mean, standard deviation (SD), broad sense heritability  (H2), and combined analysis of variance 
based on studied traits in 286 Iranian wheat landraces and cultivars and 6 environments. *, ** and *** are 
significant at the probability level of 5%, 1% and 0.1%, respectively.

Abb Trait Group Mean SD H2

Mean squares

Env Rep (Env) Gen Env × Gen

GY Grain yield (g/plant)

Total 1.802 0.892 0.418 *** ** *** ***

Landrace 1.713 0.869 0.354 *** * *** ***

Cultivar 1.982 0.912 0.312 *** ** *** ***

GN Grain number

Total 38.72 10.82 0.696 * *** *** ***

Landrace 36.64 10.19 0.594 ** *** *** ***

Cultivar 42.97 10.85 0.628 * *** *** *

SW Spike weight (g)

Total 2.102 0.651 0.679 *** *** *** ***

Landrace 2.013 0.659 0.629 *** * *** ***

Cultivar 2.284 0.594 0.597 ** * *** *

PH Plant height (cm)

Total 100.4 19.34 0.788 ** *** *** ***

Landrace 104.4 19.02 0.703 ** *** *** ***

Cultivar 92.03 17.22 0.788 ** *** *** ***
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ing to SW, 135 genotypes (79.5% of cultivars and 36.1% of landraces), 13 genotypes (3.4% of cultivars and 5.5% 
of landraces), 45 genotypes (6.8% of cultivars and 21.7% of landraces), and 66 genotypes (10.2% of cultivars 
and 36.7% of landraces), were observed in the mentioned four classes, respectively (Fig. 2C). For plant height, 
there were 85 genotypes (19.3% of cultivars and 37.8% of landraces) in class I, 40 genotypes (10.2% of cultivars 
and 17.2% of landraces) in class II, 97 genotypes (62.5% of cultivars and 23.3% of landraces) in class III, and 46 
genotypes (8% of cultivars and 21.7% of landraces) in class IV (Fig. 2D). On the other hand, as expected, some 
indices, especially HMRPGV and WAASBY, were correlated with the mean of the traits and were in the same 
group (Fig. 2). Since it is difficult to select genotypes with simultaneous stability for all four traits, we calculated 
the multi-trait stability index based on yield and yield components (Supplementary Fig. 1). The results interest-
ingly showed that 11 cultivars (12.5%) and 29 landraces (16.1%) formed the genotype selected based on this 
index (Supplementary Table 3).

Genetic data and population structure. Based on the results, the distribution of SNP markers showed 
that genome B alone accounted for 50% of the total markers, while genome D had the lowest number of SNP 
markers by far. In the A, B, and D genomes, chromosomes 7A, 3B, and 2D, respectively, had the highest number 
of SNPs in cultivars, landraces, and the sum of the two (Table 2). The density (SNP/Mbp) was similar, with the 
B genome having the highest density of SNPs, especially for chromosomes 6B and 3B. This is more conveniently 
illustrated in Fig. 3. The average minor allele frequency (MAF) and gene diversity (GD) in cultivars were slightly 
higher than the landraces. The amount of heterozygosity (HET) of the landraces in each of the chromosomes 
and consequently the genomes were higher than the cultivars. The polymorphism information content (PIC) in 
cultivars ranged from 0.240 (4D) to 0.309 (2A) and in landraces from 0.232 (2D) to 0.292 (4A). The mean PIC 
in cultivars, landraces, and the sum of these two was equal to 0.280, 0.267, and 0.270, respectively (Table 2). On 
the other hand, the total number of SNP pairs (TNSP) and the number of significant SNP pairs (NSSP) were 
higher in the B genome (especially on chromosomes 3B, 2B, and 6B) and lower in the D genome (especially on 
chromosomes 4D, 5D, and 3D). The percentage of NSSP in cultivars ranged from 25.11% (4D) to 58.26% (4A) 
and in landraces ranged from 26.16% (4B) to 53.27% (4A). The  r2 values of cultivars were higher than landraces, 
especially in B and D genomes. Such a difference in distance (cM) can also be seen in the D genome (Table 3). 
The results of genetic population structure analysis indicated the existence of two subpopulations (Fig. 4A). The 
highest value of ΔK was observed at K = 2 (Fig. 4B), and its average log-likelihood value confirmed it (Fig. 4C). 
One of these subpopulations consisted mainly of cultivars, and the other contained landraces.

MTAs for mean traits and stability indices. An overview and detailed information of MTAs results 
are provided in Supplementary Tables  4 and 5. A total of 846, 653, and 1023 significant MTAs were identi-
fied for the studied traits and stability indices of cultivars, landraces, and total genotypes, respectively (Fig. 5). 
Circular Manhattan plots for common regions associated with different traits are plotted (Fig. 6). Ten and 12 
markers were related to the mean grain yield of cultivars and landraces, respectively, mainly located in genome 
A. This number was higher with 55 markers for all genotypes. ASV and MASI statistics had the highest MTAs 
in the B genome, while for  Wi in the D genome (especially chromosome 7D) and the B genome, most markers 
in landraces were identified on the B and A genomes. There were 22 and 14 significant associations for HMR-
PGV in cultivars and landraces, respectively. Chromosomes 4A and 2A for cultivars and 3D for landraces were 
important. WAASBY was significantly associated with 24 and 21 SNPs in cultivars and landraces. These markers 
were mainly distributed on chromosomes 6B, 2B, and 2D. Although  bi for cultivars and landraces had the lowest 
MTAs in the D genome, this genome (especially its 6D chromosome) contained the highest MTAs considering 
the total genotypes. Finally, among all the indices, YSI in the cultivars was associated with the highest number 
of SNPs in the B genome (Fig. 5A).

For GN, 14 MTAs for the mean and 209 MTAs for the stability parameters were identified in the cultivars, 
compared to 24 and 171 MTAs for the landraces, respectively. Like GY, more MTAs were identified based on all 
genotypes. Chromosomes 6B and 2B in cultivars contained the highest markers associated with ASV and MASI, 
while the SNPs identified for these two indices were low in landraces and scattered on different chromosomes. 
Genome B, especially chromosome 2B, had the highest QTLs associated with  Wi. In total, 14 and 30 MTAs were 
determined for HMRPGV in cultivars and landraces, respectively, with chromosomes 1A, 4A, and 5A having the 
highest SNPs in the landraces. The highest number of SNPs associated with WAASBY in cultivars and landraces 
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Figure 1.  Average rainfall in different months each year.
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Figure 2.  Heatmap based on stability indicators for grain yield (A), number of grains (B), spike weight (C), and 
plant height (D) in Iranian wheat landraces and cultivars. I: high mean and stable, II: high mean and unstable, 
III: low mean and stable and IV: low mean and unstable. Mean: average trait in all environments, ASV: AMMI 
stability value,  bi: Finlay-Wilkinson regression,  Wi: Wricke’s ecovalance measures, MASI: Modified AMMI 
stability index, YSI: Yield stability index, HMRPGV: harmonic mean of the relative performance of the genetic 
values, WAASBY: weighted average of absolute scores from the singular value decomposition of the matrix of 
BLUP for the GEI effects generated by an LMM and response variable. The heatmaps were created using "gplots" 
package "heatmap.2" function in  R32.
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Table 2.  Distribution of SNP markers and indices of genetic diversity by chromosomes. NS number of 
SNPs, D density (SNP/Mbp), MAF minor allele frequency, GD gene diversity, HET heterozygosity, PIC 
polymorphism information content.

Chromosome

Cultivar Landrace

NS D MAF GD HET PIC NS D MAF GD HET PIC

1A 1744 2.94 0.24 0.35 0.030 0.282 1985 3.34 0.20 0.31 0.033 0.252

1B 2640 3.83 0.26 0.36 0.026 0.287 2748 3.99 0.22 0.33 0.033 0.271

1D 777 1.57 0.21 0.32 0.024 0.258 852 1.72 0.22 0.32 0.032 0.261

2A 2419 3.10 0.30 0.39 0.031 0.309 2569 3.29 0.26 0.36 0.029 0.289

2B 3465 4.32 0.25 0.36 0.030 0.287 3168 3.95 0.24 0.35 0.033 0.281

2D 987 1.51 0.19 0.30 0.024 0.247 1170 1.80 0.17 0.28 0.028 0.232

3A 1746 2.33 0.24 0.34 0.032 0.278 1525 2.03 0.22 0.33 0.034 0.268

3B 3589 4.32 0.25 0.36 0.028 0.288 3547 4.27 0.20 0.32 0.030 0.260

3D 551 0.90 0.20 0.30 0.026 0.247 652 1.06 0.18 0.28 0.027 0.235

4A 2378 3.19 0.21 0.33 0.023 0.268 2265 3.04 0.29 0.37 0.026 0.292

4B 1288 1.91 0.21 0.32 0.023 0.257 924 1.37 0.21 0.31 0.029 0.252

4D 235 0.46 0.18 0.29 0.027 0.240 237 0.47 0.24 0.33 0.030 0.265

5A 1214 1.71 0.25 0.36 0.031 0.289 1211 1.71 0.21 0.32 0.034 0.264

5B 2754 3.86 0.26 0.37 0.030 0.292 2755 3.86 0.22 0.33 0.032 0.267

5D 474 0.84 0.22 0.33 0.027 0.271 534 0.94 0.18 0.29 0.029 0.240

6A 1737 2.81 0.24 0.35 0.026 0.281 1800 2.91 0.22 0.33 0.033 0.264

6B 3169 4.40 0.25 0.35 0.026 0.284 3375 4.68 0.23 0.34 0.032 0.275

6D 572 1.21 0.22 0.33 0.029 0.265 717 1.51 0.23 0.33 0.034 0.267

7A 2670 3.62 0.22 0.33 0.028 0.266 2616 3.55 0.24 0.34 0.032 0.277

7B 2757 3.67 0.24 0.34 0.031 0.276 2571 3.43 0.20 0.31 0.032 0.253

7D 731 1.14 0.20 0.30 0.027 0.249 859 1.35 0.20 0.31 0.030 0.249

Unknown 231 – 0.19 0.33 0.050 0.272 269 – 0.17 0.30 0.055 0.250

A genome 13,908 2.82 0.24 0.35 0.028 0.281 13,971 2.83 0.24 0.34 0.031 0.274

B genome 19,662 3.80 0.25 0.35 0.028 0.284 19,088 3.69 0.22 0.33 0.032 0.267

D genome 4327 1.10 0.21 0.31 0.026 0.254 5021 1.27 0.20 0.30 0.030 0.248

Whole genome 38,128 2.71 0.24 0.35 0.028 0.280 38,349 2.73 0.22 0.33 0.031 0.267

Chromosome

Total

NS D MAF GD HET PIC

1A 2233 3.76 0.21 0.31 0.030 0.256

1B 2990 4.34 0.24 0.34 0.030 0.277

1D 958 1.93 0.20 0.31 0.028 0.251

2A 2715 3.48 0.28 0.38 0.030 0.298

2B 3724 4.65 0.24 0.35 0.031 0.279

2D 1352 2.07 0.16 0.27 0.027 0.228

3A 1923 2.56 0.22 0.32 0.032 0.262

3B 3996 4.81 0.24 0.35 0.029 0.282

3D 722 1.17 0.17 0.27 0.025 0.229

4A 2624 3.52 0.26 0.35 0.025 0.282

4B 1202 1.78 0.20 0.30 0.027 0.245

4D 267 0.52 0.21 0.31 0.028 0.255

5A 1425 2.01 0.21 0.32 0.031 0.260

5B 3027 4.25 0.25 0.35 0.031 0.284

5D 634 1.12 0.18 0.28 0.026 0.236

6A 1975 3.20 0.23 0.33 0.030 0.270

6B 3770 5.23 0.24 0.34 0.029 0.277

6D 755 1.59 0.21 0.32 0.031 0.259

7A 2974 4.04 0.23 0.34 0.030 0.272

7B 2985 3.98 0.21 0.32 0.031 0.258

7D 911 1.43 0.20 0.30 0.029 0.249

Unknown 284 – 0.17 0.30 0.055 0.251

A genome 15,869 3.22 0.24 0.34 0.029 0.273

B genome 21,694 4.19 0.23 0.34 0.030 0.275

D genome 5599 1.42 0.19 0.29 0.028 0.242

Whole genome 43,446 3.09 0.23 0.33 0.030 0.270
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were located in B and A genome, respectively. The highest number of  bi and YSI-related SNPs belonged to the B 
genome, and chromosomes 6B and 7A in landraces were important for the YSI index (Fig. 5B).

Mean SW in cultivars, landraces, and total genotypes was identified as 31, 19, and 57 MTAs, respectively, 
mainly located on chromosomes 6A, 3B, 4B, 6B, and 7D. The B genome and then the A genome had a highly 
significant number of HMRPGV-related SNPs. For WAASBY in the cultivars, 16 and 3 MTAs were identified 
in the B and A genome, respectively. Although no significant MTAs were observed in genome D cultivars, like 
the A genome, it contained SNPs related to the WAASBY index in the landraces. In terms of ASV and MASI 
indices, 6.4 and 2.6 times more MTAs were detected in the cultivars compared to landraces, respectively. More 
MTAs were observed on chromosomes 6B and 6D in cultivars and 1B, 3D, 6A, 6B, and 7B in landraces for  Wi 
index. Most  bi-related SNPs were located on chromosomes 1A, 6B, and 7A in the cultivars and on 1D, 3B, 6B, 
and 7A in the landraces. Finally, for the SW, like GY, the highest number of MTAs we could see in a genome was 
the YSI index (Fig. 5C).

Among the traits, the lowest MTAs were observed for PH and its stability indices. Moreover, 13 markers on 
1D, 2B, 3B, 5B, 7A, 7B, and 7D chromosomes in cultivars and seven markers on 1A, 1D, 2A, 5B, and 7B chromo-
somes were associated with mean trait. The markers identified for ASV and MASI were the same in the cultivars 
and slightly different in the landraces. Such similarity was observed by considering the sum of genotypes, with 
3D and 7A chromosomes having a larger number of SNPs. Although genome B had the lowest number of MTAs 
for  Wi in cultivars, it showed the highest association in landraces. Chromosomes 3A, 6D, and 7A in cultivars and 
chromosomes 4A and 6B in landraces were important for this index. For HMRPGV in cultivars, seven markers 
were identified on chromosomes 6D, 7A, 3D, and 5B. These numbers were equal to 12 and were distributed on 
chromosomes 7B, 5D, 5B, 1D, 1A, 6A, and 2B. According to WAASBY, 14 SNPs were identified in cultivars on 
different chromosomes, including 1A, 1B, 2B, 3B, 3D, 4B, 4D, 5B, 6A, and 7B. In the landraces, 10 SNPs were 
identified, more than half of which were located on chromosome 1D. The  bi, in cultivars on chromosomes 6B and 
in the landraces on chromosomes 3D and 3D, had the highest number of MTAs. Finally, the number of MTAs 
detected for YSI in cultivars was three times higher than in landraces (Fig. 5D).

Among the identified markers, 171, 131, and 224 cases in cultivars, landraces, and the sum of these two over-
lapped with different traits and indices, respectively (Supplementary Table 5). For example, the marker rs65138 
in cultivars and rs51479 in total genotypes were associated with the mean of three traits GY, GN, SW, and some 
of their stability indices and were located on chromosomes 1B and 3B, respectively. One such marker in the 
landraces was rs58587, which was located on chromosome 7B and was associated only with the stability indices 
of GY, SW, and PH. Other SNPs with many pleiotropy effects were located on chromosomes 6B, 2A, 2B, 4D, 3B, 
and 4A in the cultivars. These cases in the landraces included 1A, 2A, 4A, 2D, 6A, 3D, 1B, and 7D. Considering 
the total genotypes, we found that the SNPs associated with most of the traits and indices were on chromosomes 
4B, 4A, 2A, 2B, 7D, 2B, 6A, and 5D (Supplementary Table 5).

Gene ontology. For a closer look, we studied the ontology of highly significant markers (P < 0.0001). Except 
for PH, some of the identified MTAs were involved in important biological and molecular processes for all traits. 
These genes were distributed on different chromosomes, including 1A, 1B, 1D, 2D, 3A, 4A, 4B, 6A, 6B, and 
7A, with chromosome 4B, 1B, and 7A having the highest number (Table 4). Genes with MTAs mainly encoded 
proteins wrapped in biological and molecular processes associated with adaptation, including drought stress 
tolerance. Oxidoreductase activity, DNA-binding transcription factor activity, ATPase-coupled transmembrane 
transporter activity, protein kinase activity, protein binding, and integral component of the membrane were 
some of the molecular processes. Some biological processes also included the oxidation–reduction process, 
regulation of transcription, jasmonic acid biosynthetic process, transmembrane transport, protein phosphoryla-
tion, fatty acid biosynthetic process, and DNA repair. The KEGG orthology system was also used to accurately 
annotate the identified SNPs. The results showed that genes were involved in various pathways such as biosyn-

Figure 3.  Density plot by different chromosomes in total Iranian bread wheat cultivars and landraces.
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thesis of secondary metabolites, carotenoid biosynthesis, fatty acid elongation and ubiquinone, and another 
terpenoid-quinone biosynthesis (Table 5).

Discussion
The high significance of GEI for the studied traits was expected in this study, which accords with the previous 
 reports9. Similar to this study, different monthly rainfall in MET studies, which also has drought stress, is one of 
the main reasons for  GEI10,33. For some traits, the effect of GEI in cultivars was less than in landraces. This result 
is due to breeding programs and the small number of samples in the cultivars compared to the landraces, lead-
ing to fewer effects of GEI. Severe GEI caused low heritability of traits, especially in GY. In general, heritability 
and repeatability for complex traits such as GY are low compared to  PH9,28,34. High yield and stability of wheat 
cultivars were expected since new wheat genotypes tolerate adverse environmental conditions such as drought 

Table 3.  A summary of observed LD  (r2) among SNP pairs and the number of significant SNP pairs per 
chromosomes and genomes of Iranian bread wheat cultivars and landraces. TNSP total number of SNP pairs, 
NSSP number of significant SNP pairs (P < 0.001).

Chromosome

Cultivar Landrace Total

TNSP r2
Distance 
(cM) NSSP TNSP r2

Distance 
(cM) NSSP TNSP r2

Distance 
(cM) NSSP

1A 85,925 0.1484 1.7294 35,439 
(41.24%) 97,975 0.1248 1.5165 33,986 

(34.69%) 110,375 0.1142 1.3482 48,275 
(43.74%)

2A 119,675 0.2887 0.9614 67,776 
(56.63%) 127,175 0.2834 0.9147 65,687 

(51.65%) 134,475 0.2573 0.8659 77,465 
(57.61%)

3A 86,023 0.1587 2.5137 33,993 
(39.52%) 74,975 0.1337 2.8859 26,776 

(35.71%) 94,875 0.1341 2.2837 43,807 
(46.17%)

4A 117,625 0.3719 1.4802 68,532 
(58.26%) 111,975 0.3654 1.6121 59,648 

(53.27%) 129,925 0.3217 1.3765 78,168 
(60.16%)

5A 59,425 0.1685 2.3816 25,001 
(42.07%) 59,275 0.1483 2.3842 22,256 

(37.55%) 69,975 0.1364 2.0229 30,794 
(44.01%)

6A 85,575 0.1799 1.4808 37,229 
(43.5%) 88,725 0.1781 1.4283 38,821 

(43.75%) 97,475 0.1621 1.3001 50,834 
(52.15%)

7A 132,225 0.2269 1.3074 59,606 
(45.08%) 129,525 0.2121 1.3348 61,524 

(47.5%) 147,425 0.1978 1.1729 76,571 
(51.94%)

1B 130,723 0.2081 1.0668 61,775 
(47.26%) 136,125 0.1553 1.0221 61,072 

(44.86%) 148,225 0.1595 0.9410 77,937 
(52.58%)

2B 171,975 0.1960 0.8267 82,286 
(47.85%) 157,125 0.1776 0.9048 74,524 

(47.43%) 184,925 0.1614 0.7688 99,850 
(53.99%)

3B 178,175 0.2431 0.8670 93,890 
(52.7%) 176,075 0.2164 0.8775 86,960 

(49.39%) 198,525 0.2152 0.7791 116,617 
(58.74%)

4B 63,125 0.1958 2.0463 25,951 
(41.11%) 44,925 0.1002 2.8745 11,754 

(26.16%) 58,825 0.1196 2.2020 23,106 
(39.28%)

5B 136,425 0.2029 1.4099 68,173 
(49.97%) 136,475 0.1439 1.4305 54,163 

(39.69%) 150,075 0.1544 1.3015 78,660 
(52.41%)

6B 157,175 0.2086 0.7939 81,206 
(51.67%) 167,475 0.1365 0.7451 67,171 

(40.11%) 187,225 0.1415 0.6665 96,214 
(51.39%)

7B 136,575 0.1550 1.0707 54,978 
(40.25%) 127,275 0.1271 1.1430 46,545 

(36.57%) 147,975 0.1248 0.9916 67,387 
(45.54%)

1D 37,575 0.2956 4.3628 18,745 
(49.89%) 41,325 0.2349 3.8014 19,089 

(46.19%) 46,625 0.2489 3.5197 24,887 
(53.38%)

2D 48,075 0.2330 2.2436 18,823 
(39.15%) 57,225 0.1681 1.8916 20,518 

(35.85%) 66,325 0.1918 1.6327 30,110 (45.4%)

3D 26,275 0.1386 6.0947 7046 (26.82%) 31,325 0.1738 5.1122 11,119 
(35.5%) 34,825 0.1541 4.5999 13,102 

(37.62%)

4D 10,475 0.1616 10.4006 2630 (25.11%) 10,575 0.1488 10.5114 3253 (30.76%) 12,075 0.1368 9.2176 4178 (34.6%)

5D 22,425 0.1544 9.3178 6748 (30.09%) 25,425 0.1371 8.2146 8542 (33.6%) 30,425 0.1377 6.9059 11,849 
(38.94%)

6D 27,325 0.1348 5.5982 8589 (31.43%) 34,575 0.1406 4.4221 12,013 
(34.74%) 36,475 0.1294 4.1966 14,920 (40.9%)

7D 35,275 0.2070 5.6652 13,201 
(37.42%) 41,675 0.1476 4.8058 13,261 

(31.82%) 44,275 0.1531 4.5205 17,051 
(38.51%)

A genome 686,473 0.2332 1.5953 327,576 
(47.72%) 689,625 0.2193 1.5990 308,698 

(44.76%) 784,525 0.1992 1.4046 405,914 
(51.74%)

B genome 974,173 0.2035 1.0559 468,259 
(48.07%) 945,475 0.1590 1.0899 402,189 

(42.54%) 1,075,775 0.1593 0.9600 559,771 
(52.03%)

D genome 207,425 0.2029 5.3158 75,782 
(36.53%) 242,125 0.1687 4.5376 87,795 

(36.26%) 271,025 0.1735 4.0853 116,097 
(42.84%)

Whole 
genome 1,868,071 0.2144 1.7271 871,617 

(46.66%) 1,877,225 0.1824 1.7216 798,682 
(42.55%) 2,131,325 0.1758 1.5211 1,081,782 

(50.76%)
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 stress35,36. On the other hand, breeding programs have improved wheat adaptation throughout a  century25 and 
continued to provide adapted wheat  germplasm37. The genotypes in the fourth group in each of the traits, which 
included unstable low-yield genotypes, mainly consisted of landraces. Also, landraces had the highest percentage 
of genotypes selected by the multi-trait stability index. Most likely, the lack of specific selection for high yield 
and priority of yield stability during wheat domestication has led to such a  result38. However, severe genetic 
heterogeneity in the Iranian wheat landraces and the application of some early breeding  processes39 have put 
landraces in desirable groups in terms of yield and stability. In this context, additional assessments with a large 
number of locations are needed to fully explain GEI patterns.

The concepts of static and dynamic stability can be clearly distinguished based on bi and Wi indices in GY. 
The genotypes of group I, i.e., most cultivars, had dynamic stability. In contrast, although unstable in terms of 
dynamic concept, the fourth group, including the landraces, had static stability due to the low values for bi. The 
static concept is associated with low  GY8. The genotypes of the second group, which included a small number 
of cultivars and landraces, were unstable in terms of both concepts despite their high yield and had good adapt-
ability according to WAASBY and HMRPGV indices. We found a distinction between the concepts of stability 
and adaptability in other traits, especially PH. However, the literature paid scant attention to such a distinction 
between cultivars and landraces in terms of stability.

We found that the studied SNPs covered the wheat genome well. The number of SNPs based on the new 
wheat reference genome was higher in the B genome and lower in the D genome. There also seemed to be a 
direct relationship between marker density and chromosome size, and such a frequency of SNPs results from the 
evolutionary process of wheat. This conclusion was reported by Alipour et al.39 in Chinese Spring and W7984 
reference genomes. Other similar results were confirmed by Mourad et al.40 and Edae et al.41. The difference of  r2 
in cultivars, landraces, and different chromosomes, in addition to the evolutionary process, indicates the effect of 
breeding  programs42. In this regard, comparing landraces and cultivars of wheat in China and Pakistan showed 
that the distances of LD decays in the landraces were less than cultivars. On the other hand, LD decays in genome 
A was slower than that of  B43. Given that the landraces are genetically heterogeneous and are collected from areas 
with different climates, we expected that their heterozygosity would be high. Environmental factors affect genetic 
diversity and the structure pattern of plant  populations44. Therefore, the high level of gene diversity in the studied 
population can be attributed to the geographical diversity of collection sites, differences in growth habit, etc. 
These factors led us to observe two subpopulations that separated cultivars well from the landraces. Moreover, 
the breeding programs and improved accessions are the reasons for such a separation. Iranian wheat genotypes 
have been categorized into two subpopulations in the previous  studies40. The mean PIC value for all genotypes 
was 0.27, which is a good value for the bi-allelic  marker39,45, and given their good distribution throughout the 
genome, they can be used to understand the genetic basis of GEI control.

Figure 4.  Barplot (A), the average log-likelihood value (B), and delta K for different numbers of sub-
populations (C), in the analysis of population structure using 43,446 SNP markers.
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Genome-wide association studies capture the genetic loci linked to significant variation for traits of interest 
in a vast collection of wild relative populations, breeding cultivars, and  landraces46,47. It is also an important tool 
for selecting high-yield genotypes in a group of  environments33. In the current study, genomic regions control-
ling GY, GN, SW, and PH traits and stability indices based on these traits were identified on all 21 chromosomes, 
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Figure 5.  GWAS results stability indicators for grain yield (A), number of grains (B), spike weight (C), and 
plant height (D) in Iranian wheat landraces and cultivars.
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including those that were not mapped to any chromosome. The number of MTAs identified in all genotypes was 
higher for GY and its indices in the D genome compared to the B genome, and for PH, it was higher than in the 
A and B genomes. In a study, GWAS for GY was run in each environment due to the presence of GEI, and the 
results showed that the D genome had the highest number of  SNPs33. This suggests that the role of the D genome 
in wheat adaptability should be further  addressed48. The greatest number of significant MTAs were identified on 
chromosome 6B in both cultivars and landraces datasets, while the least numbers were detected on chromosomes 
5D and 4D in cultivars and landraces datasets, respectively. Acuña-Galindo et al.49 also found two meta-QTL for 
adaptation to drought stress on chromosome 6B in wheat. A recent study also reported a major grain yield QTL 
on chromosome 6B and fifteen haplotype blocks associated with two stability indices, including Lin and Binn’s 
superiority index and Eberhart and Russell’s coefficient on chromosomes 1A, 4A, 4B, 5B, 6B, 7A, 7B, and  7D29. 
In addition, genomic regions associated with grain yield and yield stability on chromosomes 2B, 3A, 4A, 5B, 7A, 

Figure 6.  Circular Manhattan plots to draw common regions associated with grain yield (A), number of 
grains (B), spike weight (C), and plant height (D) in Iranian wheat landraces and cultivars. Inner to outer 
circles represents average trait and stability indices including ASV, bi, HMRPGV, MASI WAASBY, Wi, and YSI, 
respectively. The chromosomes are plotted at the outmost circle where thin dotted blue and red lines indicate 
significant level at p value < 0.001 (−  log10 (p) > 3) and < 0.00001 (−  log10 (p) > 5), respectively. Green and red 
dots indicate genome-wide significantly associated SNPs at p value < 0.001 and < 0.00001 probability level, 
respectively. Scale between ChrUn and Chr1A indicates −  log10 (p) values. Colored boxes outside on the top 
right side indicate SNP density across the genome where green to red indicates less dense to dense.
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No SNP Sequence Trait- Index Chromosome Position (bp) Molecular process Biological process

1 rs10875

TGC AGC AAA GAA AGG AGA 
GCAC 
GAG GGG GTG GCC CAG GCC 
CTTA 
CCG TGA ACA GCT CGC CGA 
GA_20

SW- Mean 4B 56.065 Oxidoreductase activity Oxidation–reduction process

2 rs2321

TGC AGA AGT AGA ACC AGA 
GGCG 
CCC TTC TCC TCT CTA TAC 
CCCGC 
AAC CGT CAC AGG ATT AAT A_48

GY- Mean 6A 55.893 DNA-binding transcription factor 
activity

Regulation of transcription, DNA-
templated

3 rs30755

TGC AGC GCG GCA ACG CCG 
TGGT 
CGT CAT GTC GGG CTT CGC 
CATG 
GAC TCC GTG ATG AGG GCC 
GT_13

SW- WAASBY 4B 58.338 Fatty-acyl-CoA synthase activity jasmonic acid biosynthetic process

4 rs41275

TGC AGC TTG ATC ACG CGC 
ATGT 
AGC TGA GCA ACT CGG TGA 
TGGC 
CTT CAT GCG CTC GTC TCG 
CT_43

GN- Wi NA NA ATPase-coupled transmembrane 
transporter activity Transmembrane transport

5 rs41740

TGC AGC TTT AAC ACT GTT 
TAACC 
CCC CCT GTG CAG CCT GAT 
GGCC 
AGA TGC CCG AGA TCG GAA 
G_21

GN- Wi 1D 77.324 Structural constituent of cytoskel-
eton

Microtubule cytoskeleton organiza-
tion

6 rs53737

TGC AGG TGA GCC GCC GAG 
CTGC TGC TGC TGC TTC CGC 
CCG ATTT 
GAT TTA CAA ATT CTG TTC 
TG_37

SW- YSI
SW- ASV 1B 104.719 Anaphase-promoting complex -

7 rs57405

TGC AGT ATC TGA GTG TGA 
ACTA 
GTC GCA GTG ACA ATG CAT 
GTCG 
TTA AAA AGA ATA TGA ACT 
AC_55

SW- YSI
GY- YSI 7A 111.704 Protein kinase activity Protein phosphorylation

8 rs57539

TGC AGT ATT CAT AGT GTG 
GCTT 
TGA GTG GAA CTA CAC GAT 
TTAG 
AGT TCA CCA CCT GCA TTC 
TG_31

SW- YSI 6B 50.104 Peptidase activity Signal peptide processing

9 rs5823

TGC AGA GCA CGA AGT CCA 
CGG 
CGT GAT CCT TTT ACT TTA 
TTCCT 
TAA GCC AAG GGA GGT CGT 
AC_18

GY- Mean 4A 9.109 Oxidoreductase activity Oxidation–reduction process

10 rs59777

TGC AGT CTT TCA GAA GTG 
CAGA 
TGT AAA CGT ATT GCT ATA TCAG 
TGG TTT GAA CTA CAT GGT 
AA_10

GY- WAASBY 2D 58.883 Protein binding Positive regulation of protein 
catabolic process

11 rs63903

TGC AGT TGA GGA CAA GCA 
CACG 
GAT GGA GTC TGG GGC GAC 
GCCT 
GTC CTG GAG AGC AGG TCA 
TC_13

GY- YSI 7A 111.704
Transferase activity, transferring 
acyl groups other than amino-acyl 
groups

Fatty acid biosynthetic process

12 rs6859

TGC AGA GGG CGC GCG GGG 
ACAG 
AGT GAA TCG GGC AGA AGC 
AGAG 
GAG GAT AAG AGA GAC GAA 
GC_16

GN- bi 1B 66.042 Integral component of membrane –

13 rs6887

TGC AGA GGG GGG CCA GGT 
AGGC 
GTG TGC TAT GGG AGG ATG 
GCCA 
CTA ACC TGC CTG ACC CGA 
CG_42

SW- bi 1A 111.964 Hydrolase activity, hydrolyzing 
O-glycosyl compounds –

Continued
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and 7B were identified in CIMMYT’s spring bread  wheat50. Considering all genotypes, we located about 44% and 
24% of the markers associated with the mean GY on chromosomes 6A and 7D, respectively.

Interestingly, GO results showed that one of these markers is in the coding region of proteins that regulate 
transcription. Previous reports indicate that chromosome 6A contains GY and TGW-related locus in MET data 
that harbored a TaGW2-6A gene and that other genes influence its  expression51. Chromosome 7D is of great 
importance in explaining GY phenotypic  variation28. Muhu-Din Ahmed et al.52 identified MTAs for GY on chro-
mosomes 1A, 3A, 4A, 1B, 4B, 6B, 7B, 5D, and 7D under both well-watered and water-deficit conditions. Several 
studies also demonstrated MTAs for GY in various wheat panels analyzed thorough GWAS on chromosomes 2B, 
3A, 3D, 5B, 7A and  7B53, 1A, 2D, 3A, 7B and  7D1, and  1B54 under different water regimes. The marker locus on 
4B in GY under water stress conditions was also associated with this trait in the Pakistani wheat  population55. 
Similarly, in genome-wide association mapping, Edae et al.56 reported MTAs for GY on chromosomes 4A, 1B, 5B, 
and 2B of spring wheat association panel under contrasting moisture regimes. Moreover, Lozada et al.57 found 
MTAs for GY on chromosomes 5A, 1B, 2B, and 4B in a diverse panel of 239 wheat genotypes evaluated across 
two growing seasons using SNP markers. Tadesse et al.58 reported GY-related MTAs on 1B in 120 elite hexaploid 
wheat genotypes, which were evaluated under rain-fed and irrigated conditions for a genome-wide study.

The multi-trait loci controlling performance and stability were located on chromosomes 1B, 3B, and 7B. 
Furthermore, chromosomes 2A and 4A in all three cultivars, landraces, and the sum of these two had multi-trait 
control loci. All chromosomes, except for chromosome 3B, were reported in a similar  study9. In another study, 
chromosomes 3B and 2B, 3A, 4A, 5B, 7A, and 7B were associated with wheat yield stability  coefficient50. Major 
QTLs with pleiotropic effects on chromosomes 3B and 7B have also been  confirmed59. One study concluded that 
a specific combination of photoperiod genes increases the yield stability of durum  wheat14. Also, the best allelic 
combination using stepwise regression in markers identified by genome-wide association mapping (GWAM) can 
lead to increased stability and yield in  wheat50. Therefore, it is possible to say that yield stability is controlled by 
genes with pleiotropic effects. However, as the experiment was performed in the same place and under different 
conditions, the correlation between grain yield in different environments may be a reason to observe common 
SNPs. In this regard, the lack of correlation between the environments resulted in no common SNP for the GWAS 
performed in 9  environments33. Although several common MTAs were identified in for GY, GN, SW, and PH 
traits and different stability indices, these traits are not exclusive and independent. Thus, it is possible to select 
both traits and stability indices in Iranian wheat cultivars and landraces since most significant MTAs (almost 
90%) were not common among the trait values and stability indices. Lozada and  Carter9 identified 12 SNP loci 
linked to both trait value and stability parameters in Pacific Northwest winter wheat. Two major effect SNP 
markers of Tdurum_contig61410_542 (1B) and BS00022542_51 (7B), were associated with grain yield and yield 
stability indices. The common MTAs between different traits and yield stability coefficient have already been 
 reported50. The low number of MTAs identified for PH is probably due to the fact that this trait is controlled by 
a small number of genes compared to other traits. However, the above results for yield and its components show 
that they are controlled by several genes that interact with each other and the environment. Stability-associated 
genes can also be stress-responsive  genes50. Therefore, GO results could be well described, given that two of the 
six environments are under rain-fed conditions. Proteins phosphorylation, especially in wheat grains, play an 
important role in drought  stress60. Jasmonic acid biosynthetic modulates drought stress in  wheat61. Markers 
related to mean GY and SW were annotated with antioxidant activity. Reducing the effects of drought stress by 
such activity with various enzymes in wheat was demonstrated by previous  researchers62. The Synthesis of fatty 

Table 4.  Description and annotation of identified markers (P < 0.0001). GY grain yield, SW spike weight, GN 
grain number.

No SNP Sequence Trait- Index Chromosome Position (bp) Molecular process Biological process

14 rs736

TGC AGA AAG GTA CCA CTC 
ATTC 
GTA CAT CAC TCC AAC TGA 
TGTA 
TGA AGG TTG TTC ATG GCG 
AC_18

SW- HMRPGV 4B 56.065 Hydrolase activity Phosphatidylinositol dephospho-
rylation

15 rs2302

TGC AGA AGT AAA GAA GCT 
GAGA 
TGC GAG ACA GTA TAA ATT 
TGCT 
AAT AGA CTA GCT TTG AAA 
GA_28

GN- WAASBY 3A 11.391 – DNA repair

Table 5.  KEGG orthology-based annotation system for significant SNP sequences.

Term ID Chromosome Pathway

Biosynthesis of secondary metabolites—unclassified osa00999 IWGSC:4B:544042415:544043078:-1 Not found

Carotenoid biosynthesis osa00906 IWGSC:4A:3139025:3139688:1 Supplementary Fig. 2

Fatty acid elongation osa00062 IWGSC:7A:711171746:711172409:1 Supplementary Fig. 3

Ubiquinone and other terpenoid-quinone biosynthesis osa00130 IWGSC:4B:544042415:544043078:-1 Supplementary Fig. 4
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acids is useful in counteracting the drought stress in  oats63. Transmembrane transport, DNA-binding transcrip-
tion factor activity, DNA repair, and peptidase activity were other examples that were annotated and possibly 
involved in response to drought stress. These results are similar to the previous  reports64. Earlier efforts have 
been made to interpret GWAS results and understand GEI using gene  annotation33. KOBAS is a useful tool for 
genome  annotation65. It has been shown that ubiquinone and other terpenoid-quinone biosynthesis are meta-
bolic pathways of response to drought stress in  plants66. In addition, carotenoid biosynthesis is involved as one 
of the KEGG pathways in drought stress  tolerance67. Such an important role for the biosynthesis of secondary 
metabolites has been  proven68.

Conclusions
In the current study, GWAS was performed for some important agronomic traits and different static and dynamic 
stability indices based on those traits were calculated in a diverse panel of 268 Iranian wheat cultivars and lan-
draces. The highest number of marker pairs and lowest LD decay distance in both cultivars and landraces was 
observed on the B genome, whereas the D genome had the least number of marker pairs and most significant 
LD decay distance. A total of 846, 653, and 1023 significant MTAs were identified for the traits and their related 
stability indices in cultivars, landraces, and total genotypes datasets, respectively. The chromosomes 6B and 4D 
had the highest and lowest number of MTAs, respectively. The multi-trait loci controlling mean traits and stability 
were located on chromosomes 1B, 3B, and 7B, and GO results for highly significant MTAs almost confirmed the 
accuracy of the identified markers. The identified markers in this study could provide valuable genetic resources 
to initiate marker-assisted selection, fine mapping, and cloning the underlying genes and QTLs.

Methods
Plant materials and field evaluation. A set of 268 Iranian bread wheat genotypes, including 180 lan-
draces and 88 cultivars, were studied in six environments (Supplementary Table 1). The environments included 
four well-watered environments during 2014, 2015, 2017, and 2018 and two rain-fed environments in 2017 
and 2018 (Supplementary Table 2). Trials were planted in early November and harvested in July of the next 
year. The experiments were performed on the research farm of the University of Tehran with latitudes of 50.58 
E and 35.56 N and 1112.5 m above sea level in a randomized complete block design with two replications. The 
dimensions of the plots consisted of four lines with a length of 1 m (80 × 100 cm). The distance was 20 and 5 cm 
between and within the rows. Plant height (PH, cm), grain number per spike (GN), spike weight (SW, g), grain 
yield per plant (GY, g  plant-1) were traits that were measured based on ten randomly selected samples from each 
plot. Plant height was recorded from ground level to tip of the spike, excluding awns, at maturity stage. After 
harvesting, all spikes were hand-threshed to determine the GY, SW, and GN. Then, stability parameters (Table 6) 
of each trait were calculated using ‘agricolae’69, ‘ammistability’18, and ‘metan’70 packages in the R and STABILI-
TYSOFT online  programs71. Broad sense heritability of traits was calculated using the following equation:

where σ 2
g  and σ 2

ge are the variance due to genotype, and genotype-by-environment interaction, respectively. σ 2
ε  is 

the residual variance, and e and r are the number of environments and replications,  respectively72.

Genotyping. The development and genetic material studied was previously described based on genotyping 
by sequencing of a GBS library for the Iranian wheat samples have been by Alipour et al.39. In brief, sequence 
reads were first trimmed to 64 bp and were grouped into sequence tags. Then, SNPs were identified using inter-
nal alignment allowing for mismatch up to 3 bp. The UNEAK (Universal Network-Enabled Analysis Kit) GBS 
pipeline was used for SNPs calling, where reads with a low-quality score (< 15) were discarded. Imputation was 
performed in BEAGLE v3.3.273 using w7984 reference  genome74. Finally, SNPs with heterozygotes < 10%, and 
minor allele frequency > 5% were used for further analysis.

Genome‑wide association study. Both general linear model (GLM) and mixed linear model (MLM) 
were employed to obtain the unbiased estimation of marker effects using TASSEL 5.075 software and GAPIT 
R-package76. The results of GLM was adjusted using the first three principal components (PCA) and population 
structure (Q) and MLM was corrected using kinship-matrix with the first three principal components (PCA + K) 
and population structure (Q + K). Results of all approaches from both TASSEL and GAPIT were evaluated based 
on the Q-Q plot and significance of associated loci using t-tests. In general, the results of the MLM approach 
of the first three principal components and kinship-matrix (PCA + K) obtained from GAPIT provided a more 
robust control of confounding effects. We, therefore, only reported the results MLM obtained from GAPIT. In 
the MLM model, individuals are considered random effects, and the relatedness among individuals is conveyed 
through a kinship matrix. A threshold of –log10 (p) > 3 was used to state statistically significant  MTAs77,78. Con-
fidence intervals (CIs) for MTAs were calculated for each chromosome using the linkage disequilibrium (LD) 
decay. Circular Manhattan plots were performed using the CMplot R-package79.

Gene annotation. Sequences surrounding all significantly associated SNPs were obtained from the 
blast tools in EnsemblPlants database (http:// plants. ensem bl. org/ index. html) to assess gene annotation using 
Gramene (http:// www. grame ne. org/) by aligning them to the IWGSC RefSeq v1.0 annotation (https:// wheat- 
urgi. versa illes. inra. fr/ Seq- Repos itory/ Annot ations). After aligning SNPs sequences to the reference genome, we 
selected overlapping genes with the highest identity percentage and blast score for further processing. The gene 
ontology of each selected gene, including molecular function and biological process, was extracted from the 

H2
= σ 2

g /(σ
2

g + (σ 2

ge/e)+ (σ 2

ε /er))

http://plants.ensembl.org/index.html
http://www.gramene.org/
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
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ensemble-gramene database (http:// ensem bl. grame ne. org). In addition, the sequences of significant SNPs were 
used for GO enrichment analyses using KOBAS (KEGG Orthology-Based Annotation System)  software80 to 
test for statistically enriched pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG, https:// www. 
genome. jp/ kegg/) database.
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