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Abstract 

Background: Body weight (BW) is an economically important trait in the broiler (meat-type chickens) industry. 
Under the assumption of polygenicity, a “large” number of genes with “small” effects is expected to control BW. To 
detect such effects, a large sample size is required in genome-wide association studies (GWAS). Our objective was to 
conduct a GWAS for BW measured at 35 days of age with a large sample size.

Methods: The GWAS included 137,343 broilers spanning 15 pedigree generations and 392,295 imputed single 
nucleotide polymorphisms (SNPs). A false discovery rate of 1% was adopted to account for multiple testing when 
declaring significant SNPs. A Bayesian ridge regression model was implemented, using AlphaBayes, to estimate the 
contribution to the total genetic variance of each region harbouring significant SNPs (1 Mb up/downstream) and the 
combined regions harbouring non-significant SNPs.

Results: GWAS revealed 25 genomic regions harbouring 96 significant SNPs on 13 Gallus gallus autosomes (GGA1 to 
4, 8, 10 to 15, 19 and 27), with the strongest associations on GGA4 at 65.67–66.31 Mb (Galgal4 assembly). The associa-
tion of these regions points to several strong candidate genes including: (i) growth factors (GGA1, 4, 8, 13 and 14); 
(ii) leptin receptor overlapping transcript (LEPROT)/leptin receptor (LEPR) locus (GGA8), and the STAT3/STAT5B locus 
(GGA27), in connection with the JAK/STAT signalling pathway; (iii) T-box gene (TBX3/TBX5) on GGA15 and CHST11 
(GGA1), which are both related to heart/skeleton development); and (iv) PLAG1 (GGA2). Combined together, these 25 
genomic regions explained ~ 30% of the total genetic variance. The region harbouring significant SNPs that explained 
the largest portion of the total genetic variance (4.37%) was on GGA4 (~ 65.67–66.31 Mb).

Conclusions: To the best of our knowledge, this is the largest GWAS that has been conducted for BW in chicken to 
date. In spite of the identified regions, which showed a strong association with BW, the high proportion of genetic 
variance attributed to regions harbouring non-significant SNPs supports the hypothesis that the genetic architecture 
of BW35 is polygenic and complex. Our results also suggest that a large sample size will be required for future GWAS 
of BW35.
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Background
Poultry meat represents a major component of human 
nutrition [1]. At the beginning of 2020, the production 
and consumption of poultry meat surpassed those of 
pork and it is expected that in the next decade, poultry 
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meat will account for nearly half of the additional pro-
duced meat [1, 2]. Body weight (BW) is one of the most 
economically important traits in the broiler industry. 
Traditional broiler breeding programs have achieved 
an increase in meat production efficiency of ~ 3.3% per 
year and selection on body weight has contributed to 
this result [3]. However, in spite of the importance of this 
trait, relatively little is known about the genetic variants 
that underlie the variance observed in body weight.

Knowledge of the genetic variants that underlie the 
variance observed in traits can amplify the breeding 
efficiency. For example, accuracy of genomic predic-
tion can be increased by using markers that are strongly 
linked to the causative loci in genomic prediction mod-
els. Furthermore, information on the genetic architec-
ture that underlies growth in meat type poultry will help 
to unravel the genes and pathways that are involved and 
enhance our understanding on such complex develop-
mental processes.

Quantitative trait loci (QTL) mapping and genome-
wide association studies (GWAS) have been used to 
improve BW in chicken [4–9]. However, although sig-
nificant associations have been detected, their practical 
value to breeding programs is limited. Typically, the asso-
ciations were not finely mapped and encompassed broad 
chromosome regions. Furthermore, the populations used 
were often  F2 or advanced inter-crosses between lines 
of chicken that have been selected for egg laying, which 
are relatively slow growing, and fast growing broiler lines 
[4, 10, 11]. Relatively few publications on GWAS of body 
weight are available for commercially relevant lines [9, 
12, 13].

Moreover, a large part of the genetic variance might 
be due to rare variants, or variants that are highly cor-
related/linked with other variants [14]. If this is the case, 
then a GWAS with a large sample size is required to 
detect those variants [15–18]. There is theoretical [19] 
and empirical evidence [16, 20, 21] that the power of 
GWAS increases as the size of the dataset increases. For 
example, a series of studies with datasets of increasing 
size for human height discovered 180 significant associa-
tions with a dataset of 183,727 individuals [15], 697 sig-
nificant associations with a dataset of 253,288 individuals 
[16], and recently, another 83 new significant associations 
not previously detected were identified with a dataset of 
711,428 individuals [21]. Analogous results are reported 
for studies on type 2 diabetes [22] and Crohn’s disease 
[20] in humans. If BW is a complex polygenic trait [23, 
24], a large number of small-effect variants might regu-
late its expression. Hence, a large GWAS (in terms of 
sample size and number of markers analysed) is required 
to discover such variants.

The routine use of genomic selection in broiler breed-
ing makes large GWAS possible. As part of the routine 
implementation of genomic selection over the past dec-
ade, Aviagen has accumulated both single nucleotide pol-
ymorphisms (SNP) array genotype and phenotype data 
for BW on 157,674 individuals from one of its lines.

Our objective was to conduct a GWAS, with a large 
sample size, for BW measured at 35 days of age (BW35) 
in broilers, which is a typical age at which broilers are 
slaughtered for meat production. After editing routinely 
collected data from a commercial broiler line, we ana-
lysed a dataset consisting of 137,343 broilers with pheno-
types and 595,299 imputed SNPs.

Methods
Data
In total, we used 157,674 broilers spread across 15 gen-
erations of a pedigree for which BW35 and SNP array 
genotype data were collected as part of the routine com-
mercial broiler breeding program (Aviagen Ltd, New-
bridge, UK). The line used in this study was a female 
line (maternal side). The birds were genotyped with SNP 
arrays of different densities: 600  k SNPs for 1690 birds, 
50  k SNPs for 59,773 birds, 42  k SNPs for 1507 birds, 
3 k SNPs for 72,221 birds and 384 SNPs for 2152 birds. 
The development of these arrays is described in detail 
in [25]. Of these 632,439 SNPs, 52,408 are proprietary 
to Aviagen. We included all the SNPs in the analysis but 
do not show the base pair positions of the proprietary 
significant SNPs in our results, which represent 18 of 
the 96 significant SNPs). To unify the data from the dif-
ferent arrays and reach the highest density of 600 k, we 
imputed the genotypes of all broilers’ to the 600 k Affy-
metrix Axiom chip with the AlphaImpute software v1.9 
[26, 27]. Broilers with more than 10% missing SNP gen-
otypes were excluded from the analysis. Quality control 
of the SNPs was carried out using the PLINK v1.07 soft-
ware [28]; SNPs with a call rate higher than 0.95 and a 
minor allele frequency higher than 0.01, that showed no 
extreme deviation from the Hardy–Weinberg propor-
tions (P < 0.000001), and that were located on the Gallus 
gallus (GGA) autosomes 1 to 28 (except GGA16) were 
retained. After quality control, 137,343 birds and 392,255 
SNPs remained for the analysis. The Galgal4 assembly in 
the Ensembl Genome Browser (version 85) was used to 
map the SNP positions on the genome (www. ensem bl. 
org).

Statistical analysis
Pedigree genetic analysis
Variance component and heritability estimates were 
based on a pedigree-based model using ASReml.v3 [29]:

http://www.ensembl.org
http://www.ensembl.org
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where y is a vector of BW35 records; b is a vector of 
fixed non-genetic effects (sex, mating group (the aver-
age genetic level of the parents) with 325 levels, the pen 
effects and hatch week with 381 levels); a is a vector of 
random additive genetic effects; e is a vector of random 
residuals; X and Z are design matrices linking phenotypes 
to effects. The model assumptions were a ∼ N (0,Aσ

2
a) 

and e ∼ N (0, Iσ2e) , where A is the pedigree relation-
ship matrix, I is an identity matrix and σ2a and σ2e are the 
additive genetic and residual variances, respectively. 
Heritability was estimated as the ratio of σ2a to the total 
phenotypic variance ( σ2a + σ

2
e).

Genome‑wide association study
The GWAS was conducted by single SNP regression 
while simultaneously correcting for the background poly-
genic effect using the GEMMA software [30]:

where y is a vector of BW35 records pre-corrected for 
the non-genetic effects of sex, mating group, pen, and 
hatch; μ is intercept, w is a column vector of genotypes 
for the SNP of interest with the corresponding allele 
substitution effect b ; g is a vector of random additive 
genomic (polygenic) effects; and e is a vector of random 
residuals. The model assumptions were g ∼ N (0,Gσ2g) 
and e ∼ N (0, Iσ2e) , where G is the genomic relationship 
matrix calculated following the first method of VanRaden 
[31] and σ2g and σ2e are, respectively, the additive genomic 
and residual variances. Matrix G was constructed and 
eigen decomposed using an in-house Python script. The 
eigenvalues and eigenvectors were subsequently used 
in GEMMA via flag -d and -u, respectively. A false dis-
covery rate (FDR; Benjamini and Hochberg) of 1% was 
adopted to account for multiple testing when declaring 
significant SNPs [32]. Manhattan and quantile–quantile 
(Q–Q) plots of the GWAS results were drawn in R [33] 
with the qqman package [34]. Annotation of all the sig-
nificant SNPs was performed with the variant effect pre-
dictor (https:// www. ensem bl. org/ Tools/ VEP) program 
using the Ensembl database and the Galgal4 assembly. 
Moreover, genes located 1  Mb up/downstream of the 
top SNP in each genomic region that contained signifi-
cant SNPs were annotated using the BioMart tool of the 
Ensembl database and the Galgal4 assembly (http:// www. 
ensem bl. org/ bioma rt/ martv iew/).

Genetic variance partitioning by genomic region
Based on the GWAS results, the genome was parti-
tioned into different regions that harboured signifi-
cant and non-significant SNPs. Regions that contained 

(1)y = Xb+ Za + e,

(2)y = 1µ+ wb+ g + e,

significant SNPs were defined by considering the region 
1  Mb upstream and 1  Mb downstream from the SNP 
with the highest p-value in each region. Due to closely 
located GWAS signals on GGA13 (13a and 13b) and 
GGA14 (14a and 14b), the two regions on each of 
these chromosomes were merged. To reduce the com-
putational cost, we used all the significant SNPs from 
the 600 k Affymetrix Axiom chip and among the non-
significant SNPs only those that overlap between the 
50  k and 600  k Affymetrix Axiom chips. To estimate 
the variance explained by each region, a Bayesian ridge 
regression model was implemented using AlphaBayes 
[35] and the same inputs as for the GWAS, but analys-
ing all the SNPs simultaneously. Posterior samples for 
SNP effects for each region were obtained from 50,000 
Markov-chain Monte Carlo (MCMC) iterations with 
a burn-in period of 10,000 iterations. For each region 
and each iteration, breeding values were calculated 
from SNP effects and SNP genotypes, the variance 
of these regional breeding values was calculated and 
divided by the variance of the breeding values for the 
whole genome to estimate the proportion of the (addi-
tive) genetic variance explained per genomic region, 
accounting for linkage-disequilibrium within and 
between regions [36].

Results
Descriptive statistics and pedigree genetic parameters
The summary statistics and variance components of the 
raw data are presented in Fig. 1. The average BW35 in 
the full dataset was 1840  g, and ranged from 1080 to 
2740  g, while the estimated pedigree heritability was 
0.44 (0.01).

Fig. 1 Descriptive statistics, additive genetic variance ( σ 2
a  ), and 

heritability ( h2 ) estimates from the pedigree model

https://www.ensembl.org/Tools/VEP
http://www.ensembl.org/biomart/martview/
http://www.ensembl.org/biomart/martview/
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Genome‑wide associations
A summary of the results of the GWAS is in Table 1 and 
Figs. 2, 3 and 4. In total, 96 SNPs were significant at 1% 
FDR and distributed across 25 genomic regions on 13 
chromosomes (GGA1 to 4, 8, 10 to 15, 19, and 27). Of 
these, 45 SNPs showed a very high significance and were 
located on GGA4 at ~ 65.86  Mb (Figs.  2 and 3). Details 
on these 96 significant SNPs including their chromo-
some and base pair location, their minor allele frequency 
and their effects and variances are in Additional file  1: 
Table S1. Of these 96 significant SNPs, 18 are proprietary 
to Aviagen and thus their base pair location is not shown 
in Additional file 1: Table S1.

On GGA1, four regions harboured significant SNPs, 
denoted 1a to 1d, at positions ~ 54.68 (1a), ~ 134.49 
(1b), ~ 184.46 (1c) and ~ 193.81  Mb (1d). On GGA2, 
two regions harboured significant SNPs, denoted 2a 
and 2b, at ~ 103.15 (2a), ~ 111.28 Mb (2b) (Fig. 4). On 

GGA4, the most significantly associated SNP was 
located at ~ 65.86  Mb ( P = 6.47× 10−42 ). The large 
region between ~ 65.67 and ~ 66.31  Mb (4e) con-
tained 45 significant SNPs. Four more regions were 
significant on GGA4, at ~ 44.84 (4a), ~ 49.80 (4b), 
~ 52.73 (4c) and ~ 59.55–63.00  Mb (4d) (Fig.  3). On 
GGA8, three significant SNPs were detected at ~ 23.00 
(8a), ~ 27.23 (8b) and ~ 28.20  Mb (8c). At the tail of 
GGA13, two neighbouring regions were detected at 
~ 16.33–16.48  Mb (13a) and ~ 16.71–16.87  Mb (13b). 
On GGA14, two closely located regions contained 
nine significant SNPs at ~ 13.14–13.94  Mb (14a) and 
~ 14.50–15.06  Mb (14b). On GGA15, two SNPs were 
detected at ~ 11.61 (15a) and ~ 12.34  Mb (15b). On 
GGA27, three SNPs were significant at ~ 4.11–4.96 Mb. 
Moreover, five chromosomes had only one signifi-
cant SNP: GGA3 (~ 17.00  Mb), GGA10 (~ 1.87  Mb), 
GGA11 (~ 16.45 Mb), GGA12 (~ 1.84 Mb) and GGA19 
(~ 8.62 Mb) (Fig. 4).

Table 1 Summary of the genome-wide associations

a The top SNP in the region 4e was a proprietary SNP of Aviagen and therefore its base pair position is excluded

GGA = Gallus gallus chromosome; Number of SNPs = number of SNPs significantly associated to the trait; Interval = the chromosome region spanned by the 
significant SNPs (in base pairs); P-value (range) = the P-value of the highest significant SNP and the range of the P-values when multiple SNPs were significant; 
P-valueFDR (range) = false discovery rate P-value; Top SNP location (bp) = position of the most significant SNP on the chromosome; Effect (SE) = the allele substitution 
effect of the top SNP with the standard error in parenthesis; Top SNP MAF = minor allele frequency of the top SNP

GGA Number 
of SNPs

Interval (Mb) P‑value (range) P‑valueFDR (range) Top SNP location (bp) Top SNP effect (SE) Top SNP MAF

1a 2 54.68–54.76 4.90 ×  10–8 3.49 ×  10–4 54,681,614 − 0.64 (0.12) 0.18

1b 1 / 4.14 ×  10–7 3.06 ×  10–4 134,493,403 − 0.87 (0.16) 0.11

1c 1 / 1.42 ×  10–6 6.18 ×  10–3 184,458,596 0.76 (0.16) 0.11

1d 1 / 8.09 ×  10–7 3.73 ×  10–3 193,808,533 − 0.44 (0.09) 0.36

2a 1 / 1.31 ×  10–8 1.12 ×  10–4 103,154,441 0.44 (0.08) 0.41

2b 2 110.94–11.28 (7.40 ×  10–7–6.17 ×  10–7) (3.51 ×  10–3–3.06 ×  10–3) 111,281,574 0.57 (0.11) 0.49

3 1 / 2.39 ×  10–6 9.78 ×  10–3 16,964,703 − 0.71 (0.15) 0.16

4a 1 / 4.96 ×  10–7 2.56 ×  10–3 44,839,695 0.67 (0.11) 0.34

4b 1 / 7.24 ×  10–7 3.51 ×  10–3 49,798,002 − 0.64 (0.13) 0.49

4c 1 / 7.41 ×  10–9 6.92 ×  10–5 52,734,745 − 0.67 (0.12) 0.31

4d 7 59.55–3.00 (2.12 ×  10–6–1.51 ×  10–11) (8.94 ×  10–2–3.11 ×  10–7) 62,900,071 0.89 (0.13) 0.08

4e 45 65.67–66.31 (2.23 ×  10–6–6.47 ×  10–42) (9.21 ×  10–3–2.54 ×  10–36) aProprietary 1.52 (0.11) 0.33

8a 1 / 6.09 ×  10–9 5.97 ×  10–5 22,999,302 − 1.05 (0.18) 0.08

8b 1 / 2.64 ×  10–14 1.15 ×  10–9 27,225,215 0.80 (0.11) 0.16

8c 1 / 9.16 ×  10–11 1.38 ×  10–6 28,197,569 − 1.35 (0.21) 0.22

10 1 / 8.37 ×  10–7 3.98 ×  10–3 1,870,252 − 0.42 (0.09) 0.39

11 1 / 1.06 ×  10–8 9.20 ×  10–5 16,452,035 0.41 (0.07) 0.43

12 1 / 1.28 ×  10–7 7.48 ×  10–4 1,843,370 0.52 (0.10) 0.32

13a 6 16.31–16.48 (1.37 ×  10–6–4.22 ×  10–10) (6.03 ×  10–3–5.17 ×  10–6) 16,333,496 1.00 (0.16) 0.19

13b 5 16.71–16.87 (2.17 ×  10–6–2.11 ×  10–10) (8.99 ×  10–3–2.85 ×  10–6) 16,706,244 0.79 (0.12) 0.46

14a 4 13.14–13.94 (2.23 ×  10–7–2.40 ×  10–8) (1.23 ×  10–3–1.96 ×  10–4) 13,208,763 − 0.33 (0.06) 0.50

14b 5 14.50–15.06 (9.20 ×  10–9–6.34 ×  10–13) (8.39 ×  10–5–1.66 ×  10–8) 14,496,748 − 0.53 (0.07) 0.30

15 2 11.61–12.34 (7.43 ×  10–7–2.39 ×  10–9) (3.51 ×  10–3–2.67 ×  10–5) 12,338,040 0.32 (0.06) 0.26

19 1 / 6.64 ×  10–9 6.35 ×  10–5 8,618,001 − 0.83 (0.14) 0.25

27 3 4.11–4.96 (1.65 ×  10–6–2.97 ×  10–9) (7.10 ×  10–3–3.15 ×  10–5) 4,955,965 0.40 (0.07) 0.31
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Partitioning of the genetic variance by genomic region
The proportion of the genetic variance over the total 
genetic variance for each genomic region that harboured 
significant SNPs is in Table 2. Combined together, the 25 
genomic regions that harboured the 96 significant SNPs 
explained ~ 30% of the total genetic variance. Region 

4e (GGA4 at ~ 65.67–66.31  Mb) that contained 45 sig-
nificant SNPs explained the highest portion of the total 
genetic variance (4.37%). Regions with significant SNPs 
that explained the next largest amount of the total genetic 
variance were on GGA13 and GGA14, which each 
explained ~ 2.5%. All the other regions with significant 

Fig. 2 Manhattan plot of P-values for the genome-wide association study. A 1% false discovery rate was adopted to declare significance

Fig. 3 Manhattan plots of P-values for the genome-wide association study on Gallus gallus autosome 4. A 1% false discovery rate was adopted to 
declare significance
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SNPs each explained less than 2% of the total genetic var-
iance. GGA4 explained more of the total genetic variance 
than any other chromosome. Taken together, the regions 
that harboured significant SNPs on GGA4 explained 
~ 8.6% of the total genetic variance.

Discussion
Previous studies have shown that the genomic architec-
ture of BW is age- and population-dependent [8, 9, 37]. 
We focused on BW measured at 35  days of age, which 
is a typical age at which commercial broilers are slaugh-
tered. In total, we found 96 significant SNPs with a 1% 
FDR that were located in 25 genomic regions across 13 

chromosomes and explained ~ 30% of the genetic vari-
ance. We identified several candidate genes that might 
affect BW35 in broilers, and encode e.g. growth factors 
and the leptin receptor, and are involved in the JAK/
STAT signalling pathway (Table 3). Furthermore, inspec-
tion of the Q–Q plot (Fig. 2) provided additional evidence 
of true associations, with an extreme departure observed 
at the tail of the  distribution. We have divided the Dis-
cussion section into seven sub-sections: (i) summary of 
the QTL already known for BW35, (ii) growth factors, 
(iii) the leptin receptor overlapping transcript (LEP-
ROT)/leptin receptor (LEPR) locus, (iv) the JAK/STAT 
signalling pathway, (v) the T-box genes (TBX3/TBX5), 

Fig. 4 Manhattan plots of P-values for the genome-wide association studies on Gallus gallus autosomes (GGA) 1 to 3, 8, 10 to 15, 19 and 27. A 1% 
false discovery rate was adopted to declare significance
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(vi) other candidate genes for BW35, and (vii) implica-
tions for breeding programs.

Summary of the QTL already known for BW35
A search on the animal QTL database (QTLdb; http:// 
www. anima lgeno me. org/ QTLdb) revealed a number of 
QTL for BW35 on GGA1 to 5, 7, 10–11, 15, 18, 20 and 
27 (https:// www. anima lgeno me. org/ cgi- bin/ QTLdb/ GG/ 
trait map? trait_ ID= 2151). In particular, there is strong 
evidence in the literature for QTL associated with BW35 
on GGA1 to 4.

Previous studies on  F2 crosses between broiler and 
layer lines have identified QTL that are associated with 
a variety of carcass characteristics, such as BW measured 
at day 35, 41 and 63 [6, 7], and carcass and breast muscle 
yield [38, 39]. Nevertheless, such QTL studies detected 
only large chromosomal regions. The most significant 
chromosomal regions were mainly located on GGA1 to 4, 
but also GGA7 to 9, and GGA13, and on the Z chromo-
some [4, 5, 39].

Several GWAS have been conducted in broilers for a 
variety of carcass and growth traits, using commercial 
lines [9, 13], birds from experimental stations [7, 37, 40], 
or field data [41], and a variety of SNP array densities 
that ranged from ~ 44,000 [7–9] to 470,486 [41]. In spite 
of this, previous GWAS that scanned the entire genome, 
were still limited in terms of statistical power because the 
size of the samples was usually only a few hundreds of 
birds.

Growth factor pathways
Growth factors, such as the transforming growth factor-β 
(TGF-β) and the insulin-like growth factor-1 (IGF1) are 
known to be key regulators of several traits related to 
body composition, growth, and development in chicken 
[42, 43]. Our analysis detected seven regions that include 
genes coding for growth factors, i.e. regions 1a and 1b, 
4a, 4c, 4d, 13b, 14a (Table 3). More precisely, the thiore-
doxin reductase 1 gene (TXNRD1; at ~ 54.74–54.77 Mb) 
is located in region 1a. The second most significant 
SNP detected in this region is located within TXNRD1 
(54,756,840  bp). Although TXNRD1 is not considered 
as a growth factor, studies on salivary adenoid cystic 
carcinoma [44] have found a synergistic action between 
TXNRD1 and TGF-β. The insulin like growth factor 1 
(IGF1; at ~ 55.43–55.48  Mb) gene is located within a 
1-Mb region from TXNRD1. IGF1 has a major role in 
the body size of dogs [45, 46], with a single allele caus-
ing a small size. It also affects body size in mice [47] and 
height in humans [48, 49]. In broilers, increased IGF1 
levels have been related with increased BW [43], growth 
of muscle [50], and IGF1 levels have been shown to dif-
fer between lines that are divergently selected for growth 
[51]. In a recent GWAS on a F2 chicken population, 
TXNRD1 and IGF1 have been associated with BW35 and 
BW41, respectively [52]. Moreover, the IGFBP4 (insulin 
like growth factor binding protein 4) gene has been iden-
tified as a candidate gene for broiler BW in a study that 
analysed a subset of the population used in our work [13]. 
This gene is in close proximity (~ 0.5 Mb) to the signal we 
detected on GGA27. Another insulin-like growth factor 
modulating protein, namely that encoded by the IGFALS 
(insulin-like growth factor binding protein, acid labile 
subunit; ~ 13.2  Mb) gene, is located ~ 8  kb downstream 
of the region 14a. In addition, on GGA1, near the region 
1b (~ 134.49  Mb), we identified the TGFBRAP1 (trans-
forming growth factor beta receptor associated protein 1; 
~ 134.45–134.48 Mb) gene.

On GGA4, the region 4a (~ 44.84  Mb) contains two 
genes with growth factor activity: FGF5 (fibroblast 
growth factor 5; ~ 44.74  Mb) and BMP3 (bone morpho-
genetic protein 3; ~ 44.86  Mb). The FGF20 gene, which 
is a key regulator of skin development in chicken [53], 

Table 2 Genetic variance explained by genome regions

GGA = Gallus gallus chromosome;  VA: additive genetic variance by genomic 
region;  VA, %: proportion of additive genetic variance explained by the genomic 
region; the parentheses denote the 95% high posterior density interval; non-
significant SNPs were extracted from the 50 k Affymetrix Axiom chip; the two 
nearby located significant regions on GGA13 (13a and 13b) and GGA14 (14a and 
14b) were merged on each chromosome

GGA VA VA, %

1a 0.610(0.30; 1.10) 0.598(0.38; 0.66)

1b 0.402(0.16; 1.11) 0.395(0.20; 1.40)

1c 0.669(0.16; 3.39) 0.656(0.20; 4.27)

1d 1.395(0.28; 5.64) 1.368(0.36; 7.10)

2a 0.785(0.37; 2.70) 0.770(0.47; 3.40)

2b 0.841(0.51; 1.26) 0.824(0.64; 1.58)

3 0.973(0.16; 5.55) 0.954(0.21; 6.99)

4a 0.902(0.36; 2.13) 0.884(0.46; 2.68)

4b 1.674(0.46; 6.91) 1.642(0.59; 8.70)

4c 1.434(0.29; 6.55) 1.406(0.37; 8.25)

4d 0.283(0.12; 0.70) 0.278(0.15; 0.88)

4e 4.454(2.96; 8.46) 4.368(3.73; 10.65)

8a 0.865(0.51; 1.47) 0.849(0.64; 1.85)

8b 1.319(0.73; 2.17) 1.293(0.92; 2.73)

8c 0.911(0.38; 1.94) 0.893(0.48; 2.44)

10 1.299(0.98; 1.77) 1.274(1.23; 2.23)

11 1.473(0.87; 2.60) 1.444(1.09; 3.27)

12 1.315(0.96; 1.74) 1.289(1.21; 2.20)

13 2.588(1.81; 3.87) 2.538(2.27; 4.87)

14 2.513(1.36; 4.72) 2.465(1.71; 5.95)

15 0.937(0.54; 1.76) 0.919(0.68; 2.21)

19 1.579(1.02; 2.53) 1.549(1.28; 3.19)

27 1.143(0.54; 2.56) 1.121(0.68; 3.22)

Non-significant 71.603(63.59; 95.44) 70.222(80.06; 120.15)

http://www.animalgenome.org/QTLdb
http://www.animalgenome.org/QTLdb
https://www.animalgenome.org/cgi-bin/QTLdb/GG/traitmap?trait_ID=2151
https://www.animalgenome.org/cgi-bin/QTLdb/GG/traitmap?trait_ID=2151
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is also located on the same chromosome (region 4d; 
~ 62.87 Mb), and the FGF2 gene at ~ 53.00 Mb is close to 
the 4c region (~ 52.73  Mb). We detected another com-
ponent of the growth factor pathway on GGA8, with the 
SNP in region 8a being located within the intronic region 
of the EPS15 (epidermal growth factor receptor pathway 
substrate 15; ~ 22.96–23.0  Mb) gene. The region 13b is 
located between NDF1P1 (Nedd4 family interacting pro-
tein 1; ~ 16.65–16.66  Mb) and another growth factor, 
FGF1 (fibroblast growth factor 1; ~ 16.72–16.73 Mb).

The leptin receptor overlapping transcript (LEPROT) 
and leptin receptor (LEPR)
Leptin (LEP) is a well-known hormone that is strongly 
related to appetite, through regulation of the brain sati-
ety centres [54]. Its effect on reducing weight results 
from its interaction with another protein, the leptin 
receptor (LEPR) [55–57]. Several studies have investi-
gated the association of the LEP and LEPR genes with 

obesity [58, 59], feed intake [60, 61], growth and fat 
traits [62, 63], and their cardio-metabolic implications 
[64, 65] in a variety of species. However, the results 
are controversial, especially in the chicken literature 
which currently reports evidence against the leptin 
system being involved in body weight control in birds 
[59, 66–68]. In our GWAS, a significant association in 
region 8b was located within the 3ʹ untranslated region 
of the LEPROT (leptin receptor overlapping transcript; 
~ 27.22–27.23  Mb) gene. Moreover, the leptin recep-
tor (LEPR; ~ 27.24–27.27  Mb) and the JAK1 (Janus 
kinase 1; ~ 27.10–27.13 Mb) genes are located near this 
genomic region. It should be noted that LEPROT is not 
in any way homologous to the leptin receptor gene, but 
its expression has been associated with muscle devel-
opment in turkey [69] and it is thought to regulate the 
expression of cytokine receptor, growth hormone recep-
tor (GHR) and LEPR genes.

Table 3 List of genes associated with the significant SNPs

GGA = Gallus gallus autosome chromosome; Location = the chromosome region spanned by the significant SNPs (in base pairs); Gene name = names of associated 
genes; IN = intron variant; SYN = synonymous variant; DS = downstream gene variant; US = upstream gene variant; 3US = 3ʹ untranslated region; MS = missense 
variant; CL = closest gene (in the case of absence of genes within 5 kb from the top SNP); 1 Mb = important genes located within a 1-Mb range from the top SNP, as 
determined by the literature

GGA Location (Mb) Gene name

1a 54.68–54.76 CHST11IN, TXNRD1IN, IGF11Mb

1b 134,493,403 C2orf493UR, FHL2DS, TGFBRAP11Mb

1c 184,458,596 MTMR2IN

1d 193,808,533 STIM1IN, DGAT21Mb

2a 103,154,441 IMPACT CL, HRH4CL

2b 110.94–111.28 PLAG1SYN, IMPAD1DS

3 16,964,703 FBXO28SYN

4a 44,839,695 FGF51Mb, BMP31Mb

4b 49,798,002 SLC4A4DS, GC1Mb

4c 52,734,745 SPATA51Mb, ADAD11Mb, TRPC31Mb

4d 59.55–63.00 METAP1IN, PPP3CAIN, ASAH13UR, FGF201Mb

4e 65.67–66.31 SPATA18DS, SGCBDS, DCUN1D4IN, CWH43IN, OCIAD1IN, SLAIN2IN, 
TECIN, NFXL1IN, CORININ

8a 22,999,302 EPS15IN

8b 27,225,215 LEPROT3UR, JAK11Mb, LEPR1Mb

8c 28,197,569 NEGR1CL

10 1,870,252 PPCDCIN

11 16,452,035 CRISPLD2CL, HNF4betaCL

12 1,843,370 MAPKAPK3IN

13a 16.31–16.48 KIF3AUS, SEPT8IN, CCNI2IN, AFF4IN

13b 16.71–16.87 ARHGAP26IN, NR3C1IN, NDF1P11Mb, FGF11Mb,

14a 13.14–13.94 STUB1US, RHBDL1IN, JMJD8DS, SPSB3IN, NUBP2US, HN1LDS, IGFALS1Mb

14b 14.50–15.06 PDIA2IN, C16orf62IN, DNAH3IN, ZP2MS

15 11.61–12.34 MED13LIN, TBX5IN

19 8,618,001 SYNRGIN, TBX21Mb, HNF1B1Mb

27 4.11–4.96 RPL19US, CACNB1US, DNAJC7IN, ATP6V0A1IN, STAT31Mb, STATB51Mb
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The JAK/STAT signalling pathway
Although leptin activation of the JAK/STAT pathway 
in birds may not be important, as it is in other animals 
[70], this JAK/STAT pathway has a role in the mediation 
of many cytokine signals, such as those through GHR, 
and therefore for the growth of poultry. The JAK/STAT 
pathway is related to the generation of spermatogo-
nial stem cells in chicken [71]. The association signal on 
GGA27 at ~ 4.96 Mb) (a gene dense region) was located 
near the STAT3 (signal transducer and activator of tran-
scription 3; ~ 4.90–4.91 Mb) gene, and more precisely is 
within an intron of the ATP6V0A1 (ATPase, H+ trans-
porting, lysosomal V0 subunit a1; ~ 4.93–4.96  Mb) gene 
(Table  3). The association between the STAT3/STAT5B 
locus and BW in chicken confirms the findings of [13]. 
We also detected several other genes related to reproduc-
tion. The association signal in region 4c (~ 52.73 Mb) is 
located near the spermatogenesis associated 5 (SPATA5; 
~ 52.76–52.98 Mb) gene. The ADAD1 (adenosine deami-
nase domain containing 1; ~ 53.3 Mb) and TRPC3 (short 
transient receptor potential channel 3; ~ 53.15 Mb) genes 
are located in the same region, and are involved in sper-
matid development and single fertilization. Interestingly, 
another spermatogenesis linked gene, SPATA18 (~ 65.75–
65.77 Mb), is located on GGA4 in the region with signifi-
cant associations in our study (4e; ~ 65.67–66.31  Mb), 
that harbors two significant SNPs (at ~ 65.75 Mb) down-
stream of the gene (Table 3).

Apart from the effect of LEPR on the JAK/STAT path-
way, Hou and Luo [64] have suggested a relationship 
between the leptin, JAK/STAT and mitogen-activated 
protein kinases (MAPK) signal pathways with an effect 
on cardiovascular diseases. Interestingly, the associa-
tion on GGA12 was within an intron of the MAPKAPK3 
(mitogen-activated protein kinase-activated protein 
kinase 3; ~ 1.84–1.88 Mb) gene. The results of an experi-
mental study in pigs that compared the expression level 
of MAPKAPK3 in mini and large-type Diannan small-ear 
pigs, indicated that MAPKAPK3 might have an impor-
tant role in growth and development [72]. Interestingly, 
Tarsani et al. [13] suggested LEMD2 (LEM domain con-
taining 2), located on GGA26, as a strong candidate gene 
for BW and it is considered to have an important role 
during embryonic development in mice by regulating the 
MAPK signalling pathway [73].

T‑box genes (TBX5 and TBX3)
Several studies have implicated the effect of the T-box 
genes (TBX4 and TBX5) in the development of the 
chicken limb, heart and embryo [74–77]. The significant 
SNP on GGA15 was included in the intron of TBX5 (T-
box 5; ~ 12.31–12.35 Mb). The TBX3 gene is adjacent to 
TBX5. TBX4 is located on GGA19 at ~ 7.59–7.61  Mb 

but the region that we detected on this chromosome is 
located further down at ~ 6.62  Mb, in the intron of the 
SYNRG (synergin, gamma) gene. In the same region 
on GGA19 (within 1  Mb) are found the TBX2 (~ 7.63–
7.64  Mb) and HNF1B (HNF1 homeobox B; ~ 8.64–
8.66  Mb) genes. Interestingly, Tarsani and colleagues 
[13] have recently reported several candidate genes for 
BW35 in broilers, among which the TBX21 gene and 
several members of the homeobox family (HOXB1-9 and 
HOXB13), and Moreira et al. [52] have shown an associa-
tion of HOXB2,4,7,9 and HOXB13 with BW35 in an F2 
cross. However, it should be noted that all these genes 
are located on GGA27 at more than one Mb from our 
top SNP on that chromosome. In our analysis, another 
limb morphogenesis gene was detected in region 1a, with 
the SNP at 54,681,614  bp being within an intron of the 
CHST11 (carbohydrate (chondroitin 4) sulfotransferase 
11; ~ 54.54–54.74  Mb) gene (Table  3), which has been 
suggested to be involved in the elongation of limb buds 
and bone formation [78]. CHST11 has also been recently 
reported as a candidate gene for BW35 [52].

The zinc finger protein PLAG1
PLAG1, together with the LCORL-NCAPG locus, has 
been associated with body weight and height in a vari-
ety of species (human, cattle, horses, pigs and dogs) 
[79]. In cattle, a QTL for growth and development is 
located on bovine chromosome 14 (at ~ 25  Mb) and a 
cluster of four genes on the same chromosome, namely, 
PLAG1, LYN (v-yes-1 Yamaguchi sarcoma viral related 
oncogene homolog), RPS20 (ribosomal protein S20), and 
CHCHD7 (coiled-coil-helix-coiled-coil-helix domain 
containing 7) [80–84], is thought to be involved in this 
trait. Recently, a mutation in PLAG1 has been reported 
to have a major contribution to stature in modern cattle 
[85]. More importantly, PLAG1 is also known to affect 
body weight and milk characteristics [86] and to regulate 
several growth factors, such as IGF2 [87, 88]. The large 
region 2b contains the PLAG1, LYN, and RPS20 genes. 
Our top SNP on GGA2 was located 3.5 kb downstream 
of the IMPAD1 (inositol monophosphatase domain con-
taining 1) gene, but the second most significant SNP in 
the region was a synonymous variant in PLAG1 (Table 3). 
Altogether, these findings mark PLAG1 as a very good 
candidate for BW35 in broilers.

Other candidate genes for BW35
On GGA4 (peak at ~ 65.86 Mb)
In line with previous studies [8, 89, 90], we found that 
GGA4 contains genes that play a role in body weight 
in chicken. Among these, the CCKAR (cholecystokinin 
A receptor) gene is located at ~ 72.8  Mb on GGA4. 
Decreased expression of this gene is associated with 
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increased BW and growth in chicken and it has been 
suggested that modern chicken breeds might have been 
selected during the early domestication process for the 
high-growth haplotype [91]. Other studies have reported 
the LCORL-NCAPG locus, at ~ 74.0  Mb [12, 89], which 
explains part of the variance in stature in many species 
[92–96] and is associated with carcass traits in beef cat-
tle [97]. However, the region identified in our study is 
located at ~ 65.86 Mb, which is quite far away (~ 7 Mb) 
from CCKAR and even further away from the LCORL-
NCAPG locus. Whereas a long-range enhancer might 
be involved, a more conservative hypothesis indicates 
another gene. The top SNP in the region 4e detected 
here was ~ 400  bp upstream of the CWH43 (cell wall 
biogenesis 43 C-terminal homolog) gene, which encodes 
the PGAP2-interacting protein. This SNP also had the 
highest positive effect, indicating an effect that increases 
BW35 (see Additional file 1: Table S1). Eight other SNPs 
in this region 4e are located in CWH43, among which 
four are in introns and two are synonymous variants. 
Forty-one SNPs in this region 4e were mapped to eight 
additional genes, some of these being located in their 
introns (Table  3), namely: SPATA18, SGCB (sarcoglycan 
beta), DCUN1D4 (DCN1, defective in cullin neddyla-
tion 1, domain containing 4), OCIAD1 (OCIA domain 
containing 1), SLAIN2 (SLAIN motif family member 2), 
TEC (tec protein tyrosine kinase), NFXL1 (nuclear tran-
scription factor, X-box binding like 1), and CORIN (corin, 
serine peptidase). In the same region, five more genes are 
present, namely FRYL (FRY like transcription coactiva-
tor), SLC10A4 (solute carrier family 10 member 4), TXK 
(tyrosine kinase), NIPAL1 (NIPA like domain containing 
1) and CNGA1 (cyclic nucleotide gated channel alpha 1). 
Among all these genes, SLAIN2 was recently reported as 
a strong candidate gene regulating BW in broilers [13]. 
Moreover, several members of the general solute carrier 
gene family have been associated with BW35 and BW41 
[52].

Concerning the second region 4b on GGA4, we iden-
tified the group-specific component (GC) gene, which 
is located ~ 19 kb from the region (Table 3). GC (a vita-
min D-binding protein) belongs to the general albumin 
family, involved in vitamin transportation, and vitamin 
D, lipids and lipoproteins metabolism and is expressed 
in all vertebrates [98]. In humans, it is one of the major 
determinants of the status in vitamin D, as assessed by 
measuring the circulating concentrations of 25 hydroxy-
vitamin D (25(OH)D) [99]. The role of vitamin D in the 
maintenance of skeletal health has been known for over 
a century but there is now growing evidence that vita-
min D plays an important role also in the health of non-
skeletal tissues. The linkage between GC and BW35 is 
consistent with recent studies that found that 25(OH)

D supplementation increases breast meat yield in broil-
ers [100]. This observation highlights the importance of 
understanding how key vitamin D metabolism pathways 
regulate physiological processes relevant to production in 
farm animals. In dairy cattle, the same gene was recently 
associated with complex traits such as mastitis and milk 
traits [101, 102].

On GGA1 to 3
Although the important role of GGA1 was previously 
reported in the literature, we detected only weak associa-
tions in our study, significant at 1% FDR. The top SNP in 
region 1b (~ 134.49) was located within the 3ʹ untrans-
lated region of the C2orf49 gene (~ 134.48–134.50  Mb), 
which is near the region containing the C2orf40 gene. 
The SNP in region 1c was located within the MTMR2 
(myotubularin related protein 2; ~ 184.42–184.48  Mb) 
gene. In region 1d, several genes are mapped. The sig-
nificant SNP located in region 1c was in an intron of the 
STIM1 gene (stromal interaction molecule 1; ~ 193.79–
193.83  Mb), which is close to DGAT2 (diacylglycerol 
O-acyltransferase homolog 2; ~ 193.95–193.97  Mb), a 
gene that is related to fatty acid metabolism and associ-
ated with changes in carcass and meat quality character-
istics in domestic pigeons [103].

On GGA2 two significant regions were detected, 
namely at 103.15 and 111.28  Mb. The closest genes in 
region 2a were IMPACT  (impact RWD domain pro-
tein; ~ 103.03–103.05) and HRH4 (histamine receptor 
H4; ~ 103.07) genes. On GGA3, the significant SNP was 
located within the FBX028 (F-box protein 28; ~ 16.95–
16.97 Mb) gene.

On chromosomes other than GGA1, 2, 3 and 4
We detected significant associations on nine other chro-
mosomes (GGA8, 10, 11, 12, 13, 14, 15, 19 and 27). The 
association on GGA10 points to the PPCDC (phospho-
pantothenoylcysteine decarboxylase; ~ 1.86–1.88  Mb) 
gene, which is involved in the biosynthesis of coenzyme 
A. Coenzyme A is essential for energy production of the 
body. The association on GGA11 was located between 
the CRISPLD2 (cysteine-rich secretory protein LCCL 
domain containing 2; ~ 16.37–16.40 Mb) and HNF4beta 
(hepatic nuclear factor 4beta; ~ 16.46–14.47  Mb) genes. 
On GGA13, two regions were identified and because of 
the “two-peak” pattern in the Manhattan plot (Fig.  3), 
they were considered as two different regions. The top 
SNP in region 13a is within the SEPT8 gene (septin 8; 
~ 16.31–16.40  Mb). On GGA14, in region 14b the sig-
nificant SNP was located within the PDIA2 gene (protein 
disulfide-isomerase A2-like; ~ 14.49–14.52  Mb). Finally, 
of particular interest are the signals on GGA27, on which 
apart from the STAT3/STATB5 locus, we detected the 
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CACNB1 (~ 4.11  Mb; calcium channel, voltage-depend-
ent, beta 1 subunit) gene, which has been reported as a 
strong candidate for BW35 in broilers [13] and for which 
skeletal muscle-specific isoforms are reported in humans 
[104].

Implications for breeding programs
Combined together, the 25 genomic regions that contain 
96 significant SNPs explained ~ 30% of the total genetic 
variance. This implies that the genetic architecture of 
BW35 is polygenic and complex, and therefore genomic 
prediction (using all available genomic data), rather than 
targeting specific genes via marker-assisted selection, will 
be more effective to improve BW35 in broilers. However, 
the region that contains significant SNPs and explains the 
largest proportion of the total genetic variance, is region 
4e (~ 65.67–66.31 Mb), which explains 4.368% of the total 
genetic variance, and taken together the regions with 
significant SNPs on chromosome GGA4 explain ~ 8.6% 
(Table 2), which suggests that genomic prediction models 
that upweight regions of the genome known to harbour 
significant SNPs [105] may be effective. Moreover, infor-
mation about the relevant genes identified in this paper 
could be included in the design of future SNP arrays.

Conclusions
To the best of our knowledge, this is the largest GWAS 
that has been conducted for BW in chicken to date. Our 
analysis revealed 25 genomic regions that harbour 96 
significant SNPs on 13 Gallus gallus autosomes, which 
combined together explain ~ 30% of the total genetic 
variance. Although the region on GGA4 at ~ 65.67–
66.31 Mb explains 4.37% of the total genetic variance, the 
high proportion of genetic variance attributed to regions 
that harbour non-significant SNPs supports the hypoth-
esis that the genetic architecture of BW35 is polygenic 
and complex. The significant SNPs and associated genes 
identified here could be used in future experimental 
designs targeting specific genes and biological pathways, 
and in the design of future SNP arrays as well as in statis-
tical models of genomic prediction using prior biological 
knowledge of genome regions known to affect the traits 
of interest. Our results also illustrate the importance of a 
large sample size for future GWAS of BW35.
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Additional file 1: Table S1. List of all significant SNPs sorted by 
 significance1. SNP = name of the single nucleotide polymorphism; 
GGA = Gallus gallus chromosome; location (bp) = position of the SNP on 
the chromosome in base pairs on the Galgal4 assembly; MAF = minor 

allele frequency; EFF = allele substitution effect; SE = standard error of the 
effect; P-value = P-values from the single SNP regression while simultane-
ously correcting for the background polygenic effect; P-valueFDR = false 
discovery rate P-value; LOG = the −log10 of the P-value;  VSNP = variance 
due to the SNP (calculated as  2pqb2, where p is the frequency of major 
allele, q = 1 − p is the frequency of the minor allele and b is the allele 
substitution effect);  VA = additive genetic variance;  VP = phenotypic 
variance;  VAsnp (%) = percentage of additive genetic variance explained 
by each SNP;  VPsnp (%) = percentage of phenotypic variance explained by 
each SNP. 1Of the 96 significant SNPs 18 are proprietary to Aviagen and 
therefore their base pair location has been excluded.
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