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1 |  INTRODUCTION

Biomass energy is increasing worldwide as a strategy to re-
duce greenhouse gas emissions, mitigating climate change 

(IPCC, 2019). In Brazil, which has major sugarcane-based 
ethanol production, an area of 8.5 million ha is devoted to 
sugarcane production, with 630 million tons of cane harvested 
annually (2018/19 season; CONAB, 2019). This yields more 
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Abstract
Global demand for bioenergy increases interest in biomass-derived fuels, as etha-
nol from sugarcane straw. However, straw is the main carbon source to soil and 
its removal reduces C input, affecting active fractions (dissolved organic carbon, 
DOC) and C storage. To quantify the effects of straw removal on DOC and C stocks, 
we built lysimeter system using soil (Rhodic Kandiudox) from sugarcane field. We 
evaluated four soil depths (1, 20, 50 and 100 cm) and four straw removal rates: no 
removal NR, medium MR, high HR and total TR, leaving 12, 6, 3 and 0 Mg/ha on the 
soil surface, respectively. After rainfall, drainage water was collected and analysed 
for DOC content. Soil C stocks were determined after the 17-month. Total DOC 
released at 1-cm depth amounted to 606, 500, 441 and 157 kg/ha in NR, MR, HR 
and TR, respectively. Net-DOC suggests straw as the main source of DOC. Most 
of DOC in NR (50%) was retained within the 1–20 cm layer, resulting in higher C 
stock (10 Mg/ha) in the topsoil. In HR and MR, DOC retention was higher within 
20–50 cm, suggesting differences in DOC composition. DOC in TR was 40% higher 
at 20 cm than at 1 cm, indicating C losses from topsoil. Low concentrations of DOC 
were found at 100-cm depth, but representing 30% in TR. Straw removal for bio-
energy production is sustainable, but we should leave at least 3 Mg/ha of straw to 
ensure DOC production and soil C storage, taking account the DOC contribution to 
key soil functions.
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than 30 billion litres of bioethanol (30% of global supply) 
and more 20 TWh of bioelectricity by co-generation (10% of 
national demand) (UNICA, 2019).

The sugarcane crop produces large amounts of cellu-
losic biomass comprising leaves and tops (10–20 Mg/ha dry 
matter) (Leal et al., 2013), which are left in the field (crop 
residues/straw) after cane harvest. Cellulosic materials are 
considered promising feedstock for increasing the supply 
of low-intensity carbon (C) biofuel (e.g. second-generation 
ethanol, E2G), with great potential to replace fossil-derived 
fuels (Ojeda et al., 2011). Therefore, interest in using straw 
for bioenergy purposes has increased substantially in recent 
years (Menandro et al., 2017).

However, straw is the main C input to sugarcane fields 
(Carvalho et al., 2013) and thus has a critical function in sus-
taining soil health (Cherubin et al., 2018; Lisboa et al., 2019). 
Therefore, depending on the intensity, straw removal can 
pose a potential threat to the sustainability of sugarcane pro-
duction (Blanco-Canqui & Lal, 2009; Carvalho et al., 2017; 
Cherubin et al., 2018).

Crop residues are a potential resource for improving soil 
C sequestration (Villamil et al., 2015). Total soil organic 
carbon (SOC) is relatively unaffected by soil management 
practices in the short term (Haynes, 2000), but labile organic 
C fractions are known to be rapid indicators of changes in 
SOC pools affected by management practices (Blanco-Moure 
et al., 2016). Dissolved organic carbon (DOC) is one of the 
most mobile and bioavailable soil organic C compounds 
(Marschner & Kalbitz,  2003). It is important for nutrient 
cycling and distribution (Veum et  al.,  2009), as an energy 
source for microbial activity (De Troyer et al., 2011), and in 
organic-metallic complexation (Franchini et al., 2003). In ad-
dition, DOC is a substantial component of the net C balance 
of ecosystems (Kindler et al., 2011).

Plant residues and soil organic matter (SOM) miner-
alization are the main DOC sources in the soil (Fröberg 
et al., 2003; Michalzik et al., 2003; Zsolnay, 1996). The DOC 
production rate varies depending on the quantity and quality 
of plant (crop) residues (Kalbitz et al., 2000), soil type, cli-
mate (Kalbitz & Knappe, 1997), and land use and manage-
ment (Gregorich et al., 2000; Leinweber et al., 2008; Sousa 
Junior et al., 2018). As its major sources are more concen-
trated in the topsoil, the DOC concentration is greater at the 
soil surface and decreases with depth in the soil (Gregorich 
et al., 2000; Hassan et al., 2016; McDowell & Likens, 1988). 
DOC adsorption to soil minerals, such as clays and iron (Fe) 
and aluminium (Al) oxides, is also higher at the soil surface 
(Kaiser et al., 1996; Kalbitz et al., 2000). Nevertheless, due to 
its mobility, DOC plays an important role in C redistribution 
within the soil profile and is the main C source to deeper soil 
layers (Fröberg et al., 2007; Kalbitz & Kaiser, 2008; Sparling 
et al., 2016). It can also be leached beyond rooting depth and 
transferred to aquatic systems (Sparling et al., 2016).

Brazil has great potential to expand its energy matrix from 
biomass, mainly using sugarcane straw. However, the impacts 
of straw removal on the DOC fraction are still not well-ex-
plored (Sousa Junior et al., 2018), leaving unanswered ques-
tions relating to DOC production, retention, and losses, 
and changes in soil C storage in sugarcane fields (Gmach 
et al., 2020). The hypothesis tested in the present study was 
that sugarcane straw is the main source of DOC release in the 
soil and therefore, by removing high rates of sugarcane straw 
from the soil surface reduces production of DOC and conse-
quently its percolation within the soil profile, consequently 
reducing soil C storage. To test this hypothesis, we con-
structed free-draining soil lysimeters and established them at 
a field site in São Paulo state, Brazil, to evaluate changes in 
DOC production, retention, and losses, and changes in soil 
C storage due to straw removal over two sugarcane harvests.

2 |  MATERIAL AND METHODS

2.1 | Experimental set-up and 
environmental conditions

A set of free-draining lysimeters (soil columns) were built 
using a PVC tubes with 5-mm walls, diameter 20  cm and 
length 1, 20, 50, and 100 cm of soil. The 1-cm soil column 
was used to allow interaction between straw and soil micro-
organisms, in order to quantify DOC production from sugar-
cane straw. At the field site, the lysimeters were placed with 
their upper edges 1.5 m above ground level and suspended 
from a steel frame. Perforated stainless-steel plates of 2-mm 
thickness and 125-µm mesh were fitted to the bottom of the 
lysimeters, to prevent soil losses. A funnel was attached be-
neath, with a rubber ring to ensure a tight fit, and connected 
to a glass bottle by a hose to collect drainage water (for full 
details see Figure S1, and Gmach et al., 2019).

The lysimeters were filled with soil from a commercial 
sugarcane field. This soil is classified as a Rhodic Kandiudox 
(Soil Survey Staff, 2014), with a sandy clay loam texture (600, 
70 and 330 g/kg of sand, silt and clay, respectively). It rep-
resents a predominant soil type used for sugarcane cultivation 
in the study region (Demattê & Demattê, 2009). Oxisols and 
Ultisols dominate in central-southern Brazil (IBGE, 2018), 
which hosts 90% of national sugarcane production (CONAB, 
2019). The soil chemical characterization for the 0–30  cm 
layer was: cation exchange capacity 6.5 cmolc/kg, pHwater 5.0, 
base saturation 53%, 19.2, 5.5 and 5.9 mmolc/dm3 calcium 
(Ca), magnesium (Mg) and potassium (K), respectively, and 
25.4 mg/dm3 phosphorus (P) (Satiro et al., 2018). Soil bulk 
density was 1.32, 1.37 and 1.38 Mg/m3 and soil C stock was 
16.4, 14.8 and 13.2 Mg/ha in the 0–10, 10–20 and 20–30 cm 
layers, respectively. The soil had a high Fe and Al oxide con-
tent (details in Table S1 (SI)).
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The soil columns were assembled by a destructive 
method, by repacking layers with a rubber mallet applied 
to the wall of the tubes to try to replicate the field soil bulk 
density in- every 10 cm layer from 0–10 cm to 90–100 cm. 
We tried to reconstitute soil within the lysimeter with the 
original soil layers, keeping the original biota. After con-
struction, the lysimeters were exposed to natural rainfall 
events for two weeks (~220 mm) to stabilize the soil and 
minimize potential soil shrinkage before adding the straw 
treatments.

The lysimeter system was set up in an open field in the 
municipality of Piracicaba, São Paulo State (22°43′31″S, 
47°38′57″W, 547 m alt.) far from possible interferences with 
rainwater input. The experiment was run for 17 months, com-
prising two summer periods (i.e. two sugarcane harvests). 
The first sampling period ran from January to November 
2016 and the second from November 2016 to May 2017. The 
climate in the region is classified as subtropical, with dry 
winters and hot summers (Cwa in the Köppen classification; 
Alvares et al., 2013). Mean annual rainfall is 1,300 mm, and 
mean air temperature is 23°C, with temperatures above 35°C 
in summer and no lower than 10°C in winter.

2.2 | Experimental design and treatments

The experiment had a completely randomized design, with 
four treatments and four replicates. The four treatments sim-
ulated different straw removal rates: (a) no removal (NR), 
12 Mg/ha of dry matter (DM) left on soil surface; (b) me-
dium removal (MR), 6 Mg/ha DM left on soil surface; (c) 
high removal (HR), 3 Mg/ha DM left on soil surface; and (d) 
total removal (TR), no straw left on soil surface (bare soil). 
Chopped sugarcane (cultivar SP80-3280) straw from me-
chanical harvesting was collected from a commercial field, 
and samples were brought to the laboratory to determine the 
water content. The straw was composed of approximately 
40% top and green leaves and 60% bottom and dry leaves in a 
heterogeneous shredded mixture, with pieces ranging in size 
from 1 to 20 cm (Vasconcelos et al., 2018). The straw was 
weighed, placed on the open top of the lysimeter tubes in con-
tact with the total surface and held in place with a metal grid. 
The first straw addition was in January 2016 (first sampling 
period). The lysimeters were kept free of plants throughout 
the experiment, to evaluate the individual effects of straw on 
soil organic C.

In November 2016, the remaining straw on the top of the 
lysimeters was weighed and small samples were taken for de-
termination of dry matter (DM) losses. The straw was then 
returned to the soil, and a new portion of chopped straw mass, 
in an amount based on the treatment selected, was placed on 
top, simulating the second harvest (second sampling period). 
At the end of the second period (end of May 2017), the total 

amount of straw remaining on the soil surface was manually 
collected, as described by Pimentel et al. (2019). The straw 
was weighed and dried to quantify DM losses. The DM re-
sults were corrected for ash content, to exclude contamination 
by soil. Straw ash content was determined for each treatment 
by calcining 1 g of straw DM in a muffle furnace at 550°C for 
2 hr (Varanda et al., 2019; Vasconcelos et al., 2018).

2.3 | Sample collection and analyses

Throughout the experimental period, after all rainfall events 
the drainage water from each lysimeter was collected and 
quantified using a graduated cylinder. Depending on rain-
fall intensity, water collection lasted for up to four days. The 
drainage water was passed through a 0.45-µm cellulose ni-
trate membrane filter and analysed for DOC using an auto-
matic analyser Shimadzu© TOC-VCPN® (Kyoto, Japan). The 
DOC flux was calculated by multiplying the DOC concen-
tration by the volume of drainage water collected (Sparling 
et al., 2016). The DOC retention between layers was calcu-
lated as the difference in DOC flux between soil columns of 
different lengths, for example, DOC retention in the 1–20 cm 
layer was calculated as DOC flux at 1-cm depth minus DOC 
flux at 20-cm depth).

At the end of the 17-month experimental period, the 
100  cm soil column was sampled at different depths (0–5, 
5–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 
80–90 and 90–100 cm). In each layer, undisturbed soil sam-
ples were collected using a volumetric ring (~100 cm−3) and 
oven-dried for 48 hr. Bulk density was calculated by dividing 
the mass of dry soil by the ring volume. Sub-samples of soil 
(~10 g, four replicates) were ground to fine powder, and or-
ganic C content was determined by dry combustion using a 
TrusPec® analyser (LECO©, St. Joseph, USA). Soil C stock 
(Mg/ha) was calculated as:

where C is the carbon concentration (%), BD is soil bulk density 
(Mg/m3), and D is the depth of the soil layer (m).

2.4 | Data analysis

Analysis of variance (ANOVA) was performed to test the 
effects of straw removal rates on DOC flux and soil C stock. 
When a significant effect (F-test; p <  .05) was revealed by 
ANOVA, the average values were compared using Tukey's 
test (p < .05). Pearson correlation was also calculated to test 
for correlations between DOC concentrations and straw-C 
loss. All statistical analyses were performed using the “R” 
Foundation for Statistical Computing v.3.6.1 software.

(1)C stock=C×BD×D
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3 |  RESULTS

3.1 | Precipitation and soil drained water

During the entire 17-month experimental period, 149 days with 
precipitation were recorded and produced a total of 2,127 mm, 

of which 1,005  mm fell during the first sampling period 
(January–November 2016) and 1,122  mm during the second 
sampling period (mid-November 2016 to May 2017). Both 
summer seasons (December–March) were quite rainy, with 
several days of intense rainfall (Figure  1i). In the dry period 
(May–September), few rainfall events occurred, although in 

F I G U R E  1  Daily precipitation (i; mm) and daily DOC concentration (mg/L) in the drainage water throughout the 17 months (January 2016 to May 
2017), with two straw addition indicated by vertical dashed lines, under different sugarcane straw removal rates from the soil surface, in four different soil 
depths, in which (a) DOC concentration at 1-cm depth; (b) DOC concentration at 20-cm; (c) DOC concentration at 50-cm; and (d) DOC concentration at 
100-cm depth. TR, total removal (0 Mg/ha left on soil surface); HR, high removal (3 Mg/ha); MR, medium removal (6 Mg/ha); NR, no removal (12 Mg/ha)
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June 2016 an unusually heavy rain event (in total 162  mm) 
occurred over one week. The total amount of water draining 
from the lysimeters over the experimental period was greater 
from the soils with more straw left in place, disregarding the 
1-cm soil layer (Table S2).

3.2 | DOC release from topsoil and straw

Higher DOC concentrations were found in drainage water 
from 1-cm depth (Figure 1a) than in water from deeper soil 
layers (i.e. 20, 50 or 100 cm), except in treatment TR. After 
more intense rainfall events, the DOC concentrations in 
drainage water were reduced, except after heavy rain follow-
ing dry periods, resulting in elevated soil C concentrations 
(see June 2016, March 2017; Figure 1).

In TR, DOC flux in drainage water collected at 1-cm depth 
was only 25%–35% of that observed in treatments with straw 
(HR, MR and NR; Table  1). Overall, DOC flux was higher 
with reduced straw removal rate. However, the DOC increment 
did not follow a linear relationship with straw amount left on 
the soil surface, since the accumulated net-DOC straw-derived 
flux for the MR and HR treatments was 23 and 36% lower, re-
spectively, than for the NR treatment (p < .05) (Table 1).

3.3 | DOC translocation and retention

DOC concentration in drainage water decreased with increas-
ing soil depth (p < .05) (Figures 1 and 2). The exception was 
TR, in which DOC concentration and DOC flux were higher 
from the 20-cm depth than the 1 cm (Figure 2; Table 1). At 
20-cm depth, the differences in DOC concentration between 

treatments became less distinct. In water draining from this 
soil layer, the DOC concentration was higher for MR and HR 
during several rain events (Figure 1b), and overall (Figure 2; 
Table 1). DOC retention in the 1–20 cm soil layer was greater 
with decreasing straw removal rate (Table 1), corresponding 
to ~ 50% of total DOC released to the topsoil in NR.

For the 50  cm soil depth, DOC concentration declined 
(Figures 1c and 2), and the differences between treatments 
became less detectable. The associated DOC retention caused 
similar cumulative DOC fluxes for all treatments with straw 
addition, differing only for TR (p < .05) (Table 1). For the 
treatments with straw addition, DOC retention in the 1–50 cm 
soil layer was 518, 418 and 362 kg/ha in NR, MR and HR, 
respectively, corresponding to ~84% of total DOC released 
from the top 1-cm depth. In TR, the 20–50 cm layer retained 
70% of DOC released from the 20-cm depth.

The total DOC fluxes at 100-cm depth were slightly smaller 
than at 50-cm depth, indicating small additional DOC retention 
in the 50–100  cm soil layer (Table  1), with a contribution of 
less than 3% for all treatments. Total DOC retention between 1 
and 100 cm was ~ 85% for the treatments with straw addition. 
Consequently, less than 15% of total DOC was transported below 
100-cm depth in the treatments with straw addition, while the 
corresponding value was 30% in TR. However, the difference in 
DOC leaching between the soil receiving no straw and that with 
the highest straw application was less than 12 kg C ha−1.

3.4 | DOC release from straw and soil 
C storage

Straw-C loss by decomposition after the first straw addition 
differed between the treatments, being higher with decreasing 

T A B L E  1  Total dissolved organic carbon (DOC) fluxes (kg/ha) and DOC retention (kg/ha) evaluated throughout the soil profile in soil 
columns at 1-, 20-, 50- and 100-cm depth of different sugarcane straw removal rates from the soil surface after 17 months and two straw addition. 
Tukey's test and standard deviation were performed to compare treatment means within each soil depth

Soil depth (cm)

Total removal High removal Medium removal No removal

Total DOC release in 17 monthsb , kg/ha (net-DOC straw-derived, kg/ha)c 

1 157 ± 5.3 ca 441 ± 41 b (284) 500 ± 21 b (343) 606 ± 35 a 
(449)

20 221 ± 22 c 314 ± 31 ab (93) 351 ± 21 a (130) 294 ± 29 b (73)

50 67 ± 1.4 b 80 ± 1.2 a (13) 81 ± 7.4 a (14) 88 ± 2.6 a (21)

100 65 ± 5.3 b 73 ± 2.7 ab (8) 70 ± 3.1 ab (5) 77 ± 4.9 a (12)

DOC retention in 17 months, kg/ha

1–20 −64 127 149 312

20–50 154 235 269 206

50–100 2 7 11 11

1–100 92 368 429 529
aMean values followed by the same letter within soil depth did not differ according to Tukey's test (p < .05). 
b17 months of experiment encompassed two straw deposition/or removal (one in time 0 and the second after 11 months). 
cNet-DOC straw-derived: DOC flux from soil with straw addition—DOC flux from bare soil (TR).  
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straw removal rate (Table 2). After the second straw addi-
tion, the rates of straw-C loss were similar for all treatments. 
The DOC release at 1-cm depth showed a strong positive 

correlation with straw-C loss at the soil surface (r = 0.904; 
p < .05).

Calculation of the relationship between net-DOC straw-de-
rived release at 1-cm depth (Table 1) and total C loss by straw 
decomposition (i.e. net-DOC straw-derived/total straw-C lost 
by decomposition) showed that 16, 9 and 6% of all C lost 
became DOC in HR, MR and NR, respectively (Table  2). 
Proportionally, the greater the straw amount left on the soil 
surface, the less straw-C was recovered as DOC fraction.

At the end of the experimental period, soil C stocks dis-
played significant differences for the 0–5 cm layer (p < .05), 
with the lowest C stock found in bare soil (TR). In the 0–10 cm 
layer, the soil C stock was 18.4, 17.7, 17.5 and 16.6 Mg/ha in 
NR, MR, HR and TR, respectively. The initial soil C stock in 
this layer was 16.4 Mg/ha, so there was an increase (p < .05) 
in C stocks in all treatments except TR, with NR presenting 
the highest C stock after two seasons of straw addition, fol-
lowed by MR and HR. Soil C stocks in deeper layers did not 
change due to straw management. The DOC retention within 
the 1–20  cm soil layer represented 11% of the C stock in-
crease in NR (312 kg/ha of retained DOC to 2,700 kg/ha in 
increased C stock), which was not sufficient to cause detect-
able changes in deeper layers.

4 |  DISCUSSION

4.1 | DOC release from soil and straw

The total DOC flux released at 1-cm depth in NR in the first 
sampling period was 350 kg/ha, whereas at 20-cm depth was 
180 kg/ha. These values are in agreement with DOC fluxes 
in similar environments reported by Neff and Asner (2001), 
showing the reliability of the results. Leaving straw on the 
soil surface favours soil water storage and water drainage to 
deeper layers (Gmach et al., 2019), as well as microbial abun-
dance and activity (Moraes et al., 2019), positively affecting 
straw decomposition processes and, consequently, release of 
C as DOC to the soil (Leinweber et al., 2008). In the present 
study, having greater amounts of straw on the surface (NR) 
favoured water percolation throughout the soil profile. It is 
likely associated with a greater soil structure due to C input, 
which results in larger water storage (Gmach et  al.,  2019), 
better aggregation, and lower soil compaction (Castioni 

F I G U R E  2  Distribution of average dissolved organic carbon 
(DOC) concentration (mg/L) in drainage water along the soil profile 
during 17 months (January 2016 to May 2017) and two straw addition, 
in different sugarcane straw removal rates from the soil surface. The 
extents of the box indicate 25th and 75th percentiles, and the lines 
inside the box represent the 50th percentile. Whiskers represent the 
10th and 90th percentiles and outliers are given as open symbols. TR: 
total removal (0 Mg/ha left on soil surface); HR, high removal (3 Mg/
ha); MR, medium removal (6 Mg/ha); NR, no removal (12 Mg/ha)
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et  al.,  2019). While high removal rate (HR) reduced water 
percolation, and bare soil (TR) had lower soil moisture con-
tent (i.e. high evaporation; data not shown) and lower water 
percolation through the soil profile than soil with straw on the 
surface (Table S2), as also found by Awe et al. (2015).

Soil DOC is produced by different sources, such as de-
composing fresh litter, root exudation or stable SOM decom-
position (Hagedorn et  al.,  2004; Kalbitz et  al.,  2000; Neff 
& Asner, 2001). However, the relative contribution of these 
different sources is unknown. I this study, DOC concentra-
tion at 1-cm depth in the bare soil confirmed SOM as a DOC 
source (Fröberg et al., 2003; Zsolnay, 1996). However, it is 
important to highlight that DOC was responsive to straw 
management (Figure  1, Table  1), corroborating previous 
findings (e.g. Van Gaelen et al., 2014; Gregorich et al., 2000; 
Leinweber et al., 2008; Sousa Junior et al., 2018). The rate 
of DOC release to soil was reduced when the input of fresh 
organic material was reduced (i.e. high straw removal rates), 
suggesting that most of the DOC produced was derived 
from straw (see net-DOC straw-derived, Table 1; Michalzik 
et al., 2003). Thus, the large amount in DOC production from 
straw retention supports the recommendation on keeping a 
superficial soil cover (Thayalakumaran et al., 2015).

In general, higher DOC concentrations were found in 
drainage water during annual dry periods, after rain events 
occurring after droughts, than in periods with frequent rain-
fall (Figure 1). This was probably the result of dissolution of 
degradation products and microbial necromass accumulated 
over the dry period (Kalbitz et al., 2000). Furthermore, low 
soil water content (in additional to lower percolate flux) and 
long-time contact (straw-soil) may lead to higher DOC con-
centrations (McDowell & Wood, 1984). In contrast, during 
more frequent rainfall periods, a larger volume of water perco-
lates through the soil profile, diluting the DOC concentration 
in drainage water. Although the total DOC fluxes were higher 
in rainy periods, the larger volume of percolating water and 
fast water movement probably decreased DOC sorption and 
microbial processing, resulting in higher transfer of straw-de-
rived DOC into deeper soil layers (Kaiser & Kalbitz, 2012).

4.2 | DOC translocation and retention 
within the soil profile

The DOC content in the soil profile is a result of continuous 
sorption combined with microbial process and desorption. 
Part of the DOC released from straw on the soil surface is 
transported to deeper layers through water percolation, as a 
stabilized C source for deep soil layers (Fröberg et al., 2007). 
But DOC from fresh plant residues is largely retained in 
surface layers (Fröberg et al., 2007). The reduction in DOC 
down the soil profile is mainly attributable to C adsorp-
tion to soil minerals, such as clays and Fe and Al oxides T
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(Fujii et  al.,  2013; Kaiser & Guggenberger,  2000; Kaiser 
et  al.,  1996), common in this soil due to weathering pro-
cesses. In only 15 min, 60%–90% of DOC percolating to the 
subsoil may be retained by sorption (Kaiser & Zech, 1998). 
Thus, the DOC fluxes are larger in the topsoil and decline 
with depth (Gregorich et al., 2000; Hassan et al., 2016), as 
also found in this study (Table 1).

The differences on DOC retention between soil layers can 
be also explained by the DOC composition. Studies about 
DOC composition were mainly conducted in aqueous sys-
tems, and only a few studies were aimed at investigating DOC 
composition in soil, especially under field conditions (Dong 
et al., 2019; Gmach et al., 2020). In some preliminary results, 
we found different specific ultraviolet absorbance (SUVA, 
l/g  cm−1) between treatments (Table  S3), in which higher 
values suggesting presence of more recalcitrant materials 
while low values are associated with more labile materials. 
The SUVA value in NR at 1-cm depth tending to be high 
in the beginning but low at the end of both sampling peri-
ods, while that in TR was high throughout. At 20-cm depth, 
SUVA in TR again tended to be high, while NR showed low 
values. This suggests that TR had more recalcitrant material, 
likely originating from stable SOM, whereas in NR it was 
less recalcitrant, deriving from fresh organic material (Chin 
et al., 1994). Thus, the DOC produced from different straw 
amounts seemingly indicated changes in composition due to 
difference in sources coming from SOM.

Bare soil (TR) showed an increase in DOC flux at 20-cm 
depth, compared with the topsoil (Table 1), indicating C loss 
from the top SOM to deeper soil layers. The main DOC re-
tention occurred within the first 50 cm of soil for all treat-
ments and represented approximately 84% of total DOC in 

the treatments with straw, while between 50- and 100-cm 
depth, DOC retention was less than 2% of the total retained. 
Here, DOC leaching below 100-cm depth showed little dif-
ference between NR and TR (<12 kg/ha), as found by Janeau 
et al. (2014). Leaching of DOC below 100 cm was not pro-
portionally to the straw rates, representing 13%–16% of total 
DOC released in the soils with straw, while it represented 30% 
in bare soil (TR). Lower C losses were found in soil tillage 
system keeping all the residues on the surface (Chowaniak 
et al., 2020). These results reaffirm that DOC derived from 
SOM differs in reactivity and sorption characteristics.

4.3 | Effects on soil carbon storage and soil 
functioning

Climate regulation through C sequestration in the soil is one 
of principal ecosystem service that people obtain from the 
soil (Adhikari & Hartemink, 2016). Moreover, soil C seques-
tration is associated with other key soil-related ecosystem 
services, such as food production, water regulation, erosion 
control, nutrient cycling and water purification (Lal,  2004; 
Wiesmeier et  al.,  2019). The DOC fraction is a potential 
source of stabilized C occurring in subsoil by C redistribu-
tion to deep layers (Froberg et al., 2007), leading to SOC ac-
cumulation and making an important way to sequester C and 
decrease C loss in the CO2 form (Lal, 2004; Smith, 2004).

We observed changes on soil C stocks in this study in the 
upper soil layer (Table  3). The strong correlation between 
DOC release and straw-C losses indicates that larger decom-
position rates caused greater DOC production. Since straw 
decomposition rate increases with increasing straw amount 

Depth
cm

Soil C stock (Mg/ha)

Total removal High removal
Medium 
removal

No 
removal

0–5 8.6 ± 0.03 b* 9.2 ± 0.42 ab 9.3 ± 0.39 ab 9.9 ± 0.48 
a

5–10 8.0 ± 0.11ns 8.2 ± 0.24 8.3 ± 0.46 8.4 ± 0.04

10–20 14.7 ± 0.67ns 14.9 ± 0.68 15.6 ± 0.42 15.6 ± 0.59

20–30 12.2 ± 0.52ns 12.3 ± 0.97 12.5 ± 1.04 13.3 ± 0.69

30–40 10.3 ± 0.85ns 10.3 ± 0.62 10.3 ± 0.72 10.6 ± 0.72

40–50 9.5 ± 0.14ns 9.5 ± 0.14 9.2 ± 0.42 8.9 ± 0.84

50–60 8.7 ± 0.41ns 8.8 ± 0.26 8.9 ± 0.13 8.3 ± 0.40

60–70 8.5 ± 0.04ns 8.2 ± 0.37 8.3 ± 0.15 8.2 ± 0.17

70–80 8.2 ± 0.38ns 8.0 ± 0.25 7.9 ± 0.15 8.3 ± 0.33

80–90 8.2 ± 0.23ns 8.2 ± 0.39 8.3 ± 0.23 8.5 ± 0.53

90–100 8.1 ± 0.31ns 8.7 ± 0.85 8.2 ± 0.37 8.2 ± 0.38

*Mean values followed by the same letter within each soil depth did not differ according to Tukey's test 
(p < .05). 

T A B L E  3  Soil carbon stocks (Mg/
ha) at each layer of the 100-cm soil column 
of different sugarcane straw removal rates 
from the soil surface after 17 months and 
two straw addition
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left on the soil (Varanda et al., 2019), straw removal translates 
directly into less DOC production. The highest soil C stock 
was found in NR, corroborating the finding of large DOC 
release and retention in the topsoil. Moreover, there was an 
increase in C stock from beginning to the end of the study 
period in the first 10-cm depth in the soils with straw addi-
tion (highest in NR, followed by MR and HR), while for TR 
the C stock remained unchanged. DOC retention was strong 
in the topsoil, contributing 11% of the C stock increase in 
NR (312 kg/ha of retained DOC to 2,700 kg/ha in increased 
C stock). On the other hand, based on the evidence of DOC 
translocation and leaching in TR, and no C input in the soil, 
it can be assumed that C stocks would decline even in deeper 

layers under longer-term indiscriminate straw removal.
Even in small amounts, DOC helps to sustain several eco-

system services in the soil. DOC is the main C source for 
utilization by soil microorganisms (Chantigny, 2003; Kalbitz 
et  al.,  2000). Soil microbial activity is positively related to 
DOC content (Li et al., 2019), and there is a specific link be-
tween DOC chemodiversity and bacteria community. Organic 
carbon inputs via crop residues build soil C and increase the 
resilience, besides mediate the functional state of soil bacte-
rial communities. Significant alterations in the abundance of 
bacteria, archaea and fungi are associated with straw removal 
(Moraes et al., 2019) altering decomposition processes.

The increase in microbial activity and increase in SOC 
mobility can be determined by soil pH (Curtin et al., 2016; 
Tipping & Hurley,  1988), which is positively correlated 
with DOC content (Li et al., 2019). DOC mobilization can 
increase at high pH due to the reduced adsorption capacity 
of soils (Tipping & Woof, 1990). It is in agreement with our 
results, in which the soil has low pH and had high DOC ad-
sorption. Our results support the thinking that DOC has an 
important role to C percolation to deeper soil, C retention 
and C storage, favouring microorganism activity and acting 
in very important process in the soil.

5 |  CONCLUSIONS

Straw removal management negatively affects the 
concentration of DOC in the soil. These effects are more 
relevant for surface soil layers, where straw removal reduces 
DOC concentration and total soil C stock, even in the short 
term. Bare soil loses C from topsoil to deeper soil layers. The 
amount of straw little affects DOC leaching below 100-cm 
depth, suggesting that straw-derived DOC predominantly 
remains in this top 100 cm layer.

Our data showed that sugarcane straw removal might be 
a sustainable management, and however, at least 3 Mg/ha of 
straw should be kept on the soil surface to sustain DOC con-
centration and soil C stocks in these soil/climate conditions. 

In this study, dissolved organic C represents a small fraction 
(11%) of total soil C stock increase, but it is well known that 
DOC contributes to key soil functions (e.g. C storage and CO2 
mitigation, microbial activity and maintenance, nutrient cy-
cling and retention, pesticide inactivation) and should be taken 
into account for more sustainable straw management in Brazil.
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