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A B S T R A C T   

Invasive alien plants are considered a major driver of global biodiversity loss. Therefore, there is a huge demand 
of spatial and temporal data on their distribution for investigating possible drivers of species invasions and for 
predictions of future distributions. We use Google Street View imagery (GSV) as a new source of spatial and 
temporal data. GSV provides millions of panoramic views along road networks worldwide allowing for the 
identification of many plant species, including invasive ones. Thus, GSV has a great potential to support 
ecological research in documenting species distribution, but reliable validation of its precision and accuracy is 
lacking. Here, we describe and evaluate an approach using GSV to visually track the spread of invasive alien 
plants, the North American goldenrods (Solidago canadensis and S. gigantea) occurring abundantly along road 
network in Poland (Central Europe). We determined presence/absence of the species along 160 randomly 
selected transects of a length of 500 m by visual inspection of GSV images and compared it with field surveys at 
the same transects. We show that the occurrence of goldenrods in GSV is a reliable predictor of their occurrence 
in the wild. Sampling parameters, like road width, season when GSV pictures were taken and number of months 
elapsed since taking the GSV pictures, did not change the correlation between outputs of the two methods (GSV 
and field sampling). Furthermore, both the occurrence of goldenrods observed in the field and their occurrence in 
GSV have similar relations to habitat characteristics investigated (the same direction of relationship and similar 
effect size). We suggest Google Street View images may be an additional tool to be used in the detection and 
tracking of the spread of invasive alien plants along roadsides. The approach may be useful in assessing temporal 
changes in roadside vegetation and managing problematic plant species across large spatial scales and may 
contribute to the further development of more efficient sampling methods in ecological studies.   

1. Introduction 

Global civilization changes taking place over the last centuries have 
brought an intensive development of international trade, transport and 
tourism (Mascie-Taylor and Krzyżanowska, 2017). These changes have 
not only resulted in an increased human mobility, but also enabled 
unintentional or intentional introductions of many plant species outside 
their natural ranges (Lenda et al., 2014; Lockwood et al., 2005). Once 
established, some of these alien plants have become invasive posing 
serious ecological problems to the native fauna and flora (Vitousek et al., 
1997). Invasions of many species of alien plants have been identified as a 
major and growing driver of global biodiversity loss. They may inflict 
significant damages to native ecosystems through excessive use of re-
sources, disruption of ecological processes and habitat modification 
(Richardson et al., 2000) thus, negatively affecting richness, diversity 

and composition of native communities (Hejda et al., 2009), leading to 
the extinction of vulnerable indigenous species and homogenization of 
plant communities (Schwartz et al., 2006; Wilcove et al., 1998). More-
over, some species of invasive alien plants also may have an adverse 
impact on economy (e.g. by substantial production losses in agriculture 
or forestry) and human health (e.g. by causing allergies, including 
dermatitis, or accumulation and transferring toxins to human food; Neill 
and Arim, 2011; Pyšek and Richardson, 2010). It has been estimated that 
annual economic damages caused by invasive alien species in European 
Union are as high as 12 billion EUR and these costs are expected to rise 
(Shine et al., 2010). Therefore, a considerable legislative effort is 
currently being implemented to minimize the spread and negative 
impact of invasive plants on economy and environment (e.g. EU Regu-
lation on Invasive Alien Species). Furthermore, numerous conservation 
initiatives are being taken to tackle threats from invasive alien plants to 
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biodiversity (e.g. projects co-funded by LIFE – the EU financial instru-
ment supporting nature conservation). 

Given the growing problem of invasive alien plants, there is an 
increasing demand of spatial data on invasive species for the purpose of 
monitoring and identifying drivers of species invasions. Such detailed 
spatial information are usually constrained to small scale inventories 
due to laborious and time-consuming surveys (but see atlas projects such 
as the Atlas Florae Europaeae; Jalas and Suominen, 1972–1996). Several 
studies used aerial photography and satellite remote sensing techniques 
to track alien plants (e.g. Müllerová et al., 2013) but usefulness of these 
methods is often limited because of the considerable financial costs of 
gathering high resolution images. However, recently, with the intro-
duction of Google Street View (GSV) imagery, featured in Google Maps 
and Google Earth, a new source of georeferenced, open-access data has 
become available (Anguelov et al., 2010). GSV technology provides 
millions of vertical, panoramic views (i.e. photographic pictures) along 
the road network worldwide covering both urban and rural areas. It 
includes high quality images of the surroundings which allows for the 
identification of many plant species and habitats (see Hardion et al., 
2016), as well as other structural or social features of neighborhood, 
such as buildings, sidewalks, road signs, aesthetics/disorder (e.g. graf-
fiti) and pedestrian activity. Therefore, using GSV for virtual streetscape 
audits is an increasingly popular method of characterizing environment 
in the vicinity of roads for the purpose of urban planning or human 
health research (e.g. Li et al., 2015; Rundle et al., 2011; Steinmetz-Wood 
et al., 2019). GSV has also the potential to greatly support ecological 
studies in documenting species distribution. However, the possibility of 
its application in this field have been poorly evaluated so far. To date 
only few studies worldwide have used this source of data for identifying 
vulture habitats (Olea and Mateo-Tomás, 2013), monitoring the preva-
lence of the pine moth (Rousselet et al., 2013), and determining plant 
distribution: Russian olive (Collette and Pither, 2015), giant cane 
(Hardion et al., 2016), Persian hogweed (Meier et al., 2017), pampas 
grass (Pardo-Primoy and Fagúndez, 2019) and eucalypt (Queirós et al., 
2020). Rousselet et al. (2013) and Deus et al. (2016) tested GSV as an 
alternative method to car surveys. However, reliable evaluation of 
precision and accuracy of GSV data needs to be investigated by com-
parisons to data collected in the field, but at present such validations are 
lacking. 

Several studies have shown that one of the main corridors allowing 
invasive species to spread throughout different regions and environ-
ments are roadsides (e.g. Christen and Matlack, 2009; Pauchard and 
Alaback, 2004). Roadsides are linear habitats that dissect landscape 
interior and generate disturbances related with traffic (light, noise, 
pollution with oil and salt) and management activities (e.g. regular 
mowing of roadside vegetation), and thus can mediate biological pro-
cesses including dispersal through vehicle tires or air flow (Forman, 
2003; Rew et al., 2018; Speziale et al., 2018). Presence of these dispersal 
vectors and linear character of the road network that connects isolated 
populations make roadsides crucial objects facilitating expansion of 
invasive alien plants (Gelbard and Belnap, 2003; Ibisch et al., 2016). 
Thus, GSV imagery is a promising source of data covering dispersal 
pathways of many plant species and as such should cover highly relevant 
data to detect expanding populations of invasive species. 

In this study we describe and evaluate a novel approach using GSV 
images to perform a large-scale inventory of two problematic plant 
species considered invasive in Eurasia: Canadian goldenrod (Solidago 
canadensis) and giant goldenrod (S. gigantea). These are highly 
competitive perennial herbs originated from North America which have 
spread across Europe and Asia as a result of intentional introduction for 
ornamental purposes. They have become one of the most successful 
invasive species in this region (Weber, 2001) due to their capacity for 
vigorous growth, rapid propagation by rhizomes, producing large 
number of small seeds spread by wind for long distances and because of 
an exertion of allelopathic effects on other plants. Consequently, the two 
goldenrod species may form dense stands outcompeting the native 

plants (Lenda et al., 2019) and may have a negative impact on native 
pollinators (Fenesi et al., 2015; Moroń et al., 2009), ants (Kajzer-Bonk 
et al., 2016; Lenda et al., 2013) and birds (Skórka et al., 2010). In their 
alien range invasive goldenrods are especially abundant in disturbed 
ruderal environments such as roadsides, riverbanks as well as in agri-
cultural fields, mostly abandoned fields or meadows (Kabuce and 
Priede, 2010; Weber, 2017). 

Here, we aim to validate the use of GSV by comparing data collected 
by virtual transect sampling using visual inspection of the vegetation on 
GSV images with corresponding transect data sampled in the field. We 
predict that these two datasets are positively correlated, and thus hy-
pothesize that a GSV-based method properly identifies occurrences of 
the studied species along roads. As we expect that the reliability of GSV 
approach may be dependent on spatial scale, we used data on presence/ 
absence of invasive goldenrods collected along: (1) c. 500 m-long tran-
sects and (2) c. 20 m-long sections of these transects. Moreover, we 
collected data on sampling parameters, such as time elapsed between 
the field survey and taking the GSV picture, width of the road and 
presence of road verge mowing, as we hypothesize that the degree of 
similarity between the two methods may be dependent on these vari-
ables (e.g. we expect that the larger the time lag between field survey 
and date of taking GSV picture, the higher dissimilarity and worse 
prediction of the goldenrod occurrence). Finally, we tested the useful-
ness of GSV data in addressing ecological questions. For this purpose, we 
compared whether GSV data and field survey data produced similar 
relationships to relevant environmental variables, in this case propor-
tion of uncultivated areas (mainly abandoned fields and grasslands). We 
chose this variable because previous research found that uncultivated 
land is a main habitat of the goldenrods and may be their invasion pool 
(Lenda et al., 2019; Skórka et al., 2007). Thus, we expect positive as-
sociation between the goldenrod occurrence and cover of uncultivated 
land in the vicinity of transects, and that this association (the effect size) 
is similar between the two methods. 

2. Materials and methods 

2.1. Study area and transect selection 

The study was conducted in agricultural areas of Polish lowlands 
where the two goldenrod species are widespread and still expand 
(Tokarska-Guzik et al., 2012). In this area we randomly selected 40 
districts (average size: 1,030 km2) and chose all the 160 non-urban 
communes located within their boundaries. In each commune we 
randomly selected a point placed along road network (Fig. 1) using GIS 
tools and Open Street Map vector data in ArcGIS 10.4 software. The 
selected point was used to locate the beginning of a transect of about 
500-m length. Each transect was subsequently divided into sections (see 
the following sub-chapter for details). If the transect was not covered by 
Google Street View imagery available in Google Maps web mapping 
service (as found on 10.05.2017) or intersected patches of forests, water 
bodies or urban areas (delineated basing on CORINE Land Cover data-
base), it was rejected and the next randomly selected transect was used 
instead. The transect was also replaced by another one when it run along 
an unpaved road or was fenced with acoustic barriers. In total we 
selected 160 transects (Fig. 1) located along roads of different types in 
variable agricultural landscapes (both heterogeneous with a mosaic of 
small extensively managed fields, semi-natural and natural open habi-
tats, forest patches and wastelands, and homogenous ones, i.e. with 
large fields intensively managed for crop production or large intensively 
grazed pastures). The spatial data processing was made with the use of 
ArcGIS 10.4 software. 

2.2. Goldenrod survey using Google Street View 

The selected 160 transects were remotely surveyed in Google Maps 
application with the use of GSV images taken between 2011 and 2014. 
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The vegetation was visually analyzed by virtual driving along the 
transects. As the GSV dataset consists of 360-degree images distributed 
unevenly along the Google vehicle’s route, to keep the sampling effort 
equal among transects we considered two subsequent pictures located at 
a given transect line as a single transect section. The length of transect 
sections ranged between 10 and 61 m (at different roads images were 
taken at different distance intervals) with an average of 22 m and the 
mean number of sections per transect of 500 m length was 23 (range: 
19–31). Using visual identification, for each transect section we manu-
ally determined the occurrence (i.e. presence/absence) of the two 
invasive goldenrods within 30 m (distance visually estimated) on each 
side of the road. Then, we used these data to obtain the occurrence of 
goldenrods at the transect level. As the surveyed species are superficially 
similar and often co-occur, we considered them together in the study 
(hereafter termed “goldenrods”). They were easily distinguished from 
other species by their characteristic shape, size and contrasting color of 
flowers (i.e. up to 2 m-tall aboveground shoots with numerous alternate 
single leaves on the stem, yellow inflorescences forming pyramidal 
panicles, often growing in clumps or dense stands). We also noted the 
date at which GSV pictures were taken and the coordinates of the picture 
using the ‘googleway’ (Cooley, 2018) and ‘httr’ (Wickham, 2018) 
packages in R (R Core Team, 2018). Since road managers in Poland are 

obligated to maintain the roadside vegetation in a way that improves 
safety of road users, the road verges are mown ensuring proper visibility 
along the roadway. The vegetation is often cut twice a season (in June 
and August). However, the mowing frequency and time may vary 
depending on local conditions, type of road and its localization (urban 
vs. rural areas). Therefore, during the virtual data collection we also 
assessed the presence of road verge mowing (yes or no) within 30 m of 
each transect section on both sides of the road. The 30 m zone of the 
transect section line for a given side of the road was considered mowed if 
the visual inspection of the GSV picture indicated that the vegetation 
covering more than 50% of this area had been previously cut and was 
not yet fully re-grown in height. 

2.3. Goldenrod survey in the field 

To validate the GSV method we performed field sampling along the 
same set of 160 transects (separately for each transect section) previ-
ously used for remote data collection (GPS receiver was used to localize 
GSV sections in the field so potential mismatch should not exceed 5 m). 
The fieldwork was conducted during the vegetation season of 2017. 
Each transect was visited once, between July and September (i.e. the 
peak period of flowering). The observer walked along the road at a 

Fig. 1. Distribution of 160 transects surveyed for goldenrods in Poland and the goldenrod abundance index, i.e. share of transect sections (each about 20 m, c. 25 
sections/transect) invaded by the goldenrods. 
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constant pace of about 2 km per hour and noted the presence/absence of 
the goldenrods and whether mowing was applied within 30 m on both 
sides of the road for each transect section. The vegetation was classified 
as mowed using the same approach as in the GSV method. Analogous to 
the GSV method, the data on goldenrod occurrence along transect sec-
tions were subsequently used to determine the species occurrence at the 
scale of transects. 

2.4. Transect characteristics 

For each section of the transect we noted three characteristics. First, 
we calculated the share of uncultivated open area (i.e. abandoned arable 
land and grasslands) within 30 m on each side of the transect section 
using GIS tools based on analysis of freely available historical satellite 
imagery obtained from Google Earth. It was calculated both for the time 
when the GSV pictures were taken and for the time when the fieldwork 
was conducted. Second, based on the satellite images, we determined 
the width of the road as an average of three measurements taken in the 
start, middle and end point of the transect line (as it was not constant, 
however in all cases the difference between the three measurements was 
not larger than 1 m). Third, we calculated the length of the transect 
sections and the number of transect sections per transects using 
geographic coordinates of the GSV images. All the calculations were 
computed in ArcGIS 10.4 software. 

2.5. Statistical analyses 

To evaluate an approach using GSV for detection of invasive alien 
plants along roads we used generalized additive models (GAM), gener-
alized linear mixed models (GLMM) and general linear models (GLM) 
implemented in ‘mgcv’ and ‘lme4′ packages (Bates et al., 2015; Wood, 
2017) in R (R Core Team, 2018). We performed three types of analyses. 

First, we tested whether GSV data predicts presence/absence of 
goldenrods in the field. For this purpose we performed GLMs with 
binomial error distribution and logit link in which the occurrence of 
goldenrods based on the field survey was a response variable (1/0) while 
the occurrence of goldenrods observed in GSV (termed “GSVSol”, see 

Table 1 for list of variables) was an explanatory variable (1/0). As the 
accuracy of GSV method may depend on the spatial resolution of sam-
pling units we fitted two models: using transect sections (GLM1ALL) and 
transects (GLM2ALL) as single data records. In all cases each side of the 
transect or transect section was treated independently, thus 160 tran-
sects resulted in 320 data records for the transect scale and 7426 for the 
transect section scale analyses. Moreover, as grass cutting on road verges 
may weaken the correlation between results of field survey and GSV, we 
repeated the two models only for transect sections without evidence of 
mowing both in GSV and field data (GLM1UNMOWED, GLM2UNMOWED, 
respectively). Additionally, in GLM2ALL and GLM2UNMOWED the number 
of transect sections per transect was used as a covariate (NSections; 
continuous variable). 

We evaluated the performance of our four above GLM models by 
using “leave-one-out” cross validation approach (LOOCV). For each 
dataset we first selected all sampling units where the goldenrods were 
recorded in the field and the same number of random sampling units 
where they were absent, to keep presence to absence ratio equal (this is 
necessary to keep expected classification error as 50%). Among the 
selected data subsets a single observation n was excluded and used for 
validation, while remaining observations were used for model fit. Basing 
on this model, a prediction was made for the excluded observation n. 
The procedure was repeated for all data records in a given data subset. 
The ratio of number of correct predictions to the total number of pre-
dictions is an approximately unbiased estimate for the model classifi-
cation accuracy (James et al., 2013). Moreover, we calculated two other 
model performance measures: sensitivity (proportion of sites correctly 
classified by the model as occupied by goldenrods) and specificity 
(proportion of sites correctly classified by the model as unoccupied by 
goldenrods). The described process (starting from the random selection 
of goldenrod-free sampling units) was replicated 10 times to include 
different sets of random sampling units in the validation and results of 
10 replications were averaged. 

Second, we aimed to determine factors that influence the correct 
classification of a transect or transect section as occupied or unoccupied 
by goldenrods based on GSV pictures (i.e. drivers of similarities and 
dissimilarities between outputs of GSV method and field survey). As 
mowing will affect these results for obvious reasons, we included in the 
analysis only the sections that were not mowed both in GSV and field 
data. To account for spatial autocorrelation in observations we fitted 
two binomial GAMs: for the transect section scale (GAM1) and the scale 
of transect (GAM2; note that transect length now varied among transects 
because of the removal of mowed sections). In both models the agree-
ment between data on goldenrod occurrence obtained using the two 
methods was used as a response variable (1 – agreement, 0 – disagree-
ment). The outputs of GSV method and field survey within a given 
sampling unit were considered as agreement if both methods detected 
the presence or both reviled the absence of goldenrods. The other cases 
were referred to as disagreement. In GAM1 one fixed categorical vari-
able (GSVSeason) and three continuous variables (Length, WdthRoad, 
MonthSinceGSV) were explanatory variables. To account for spatial 
autocorrelation among adjacent transect sections, the transect section 
number (TransectSectionNo) was fitted with a spline with number of 
degrees of freedom set to 4. Moreover, the transect identity (TransectID) 
was introduced as a random factor. An analogous model using the same 
set of predictors was performed for the scale of transects (GAM2; with 
NSections instead of Length; see Table 1 for description). 

Third, we compared estimates of the effect of uncultivated land for 
the goldenrod occurrence using datasets obtained with GSV and field 
survey (in both cases mowed sections were included) to test the use-
fulness of GSV method for predicting occurrence by environmental 
variables in the surrounding landscape. We computed two generalized 
linear mixed models (GLMM1GSV, GLMM1FIELD) for the scale of transect 
sections and two generalized linear models (GLM3GSV, GLM3FIELD) for 
the scale of transects. In all four models we used binomial error distri-
bution with logit link function, goldenrod occurrence as a response 

Table 1 
Description of explanatory variables used in the models.  

# Variable Description Model 

1 GSVSol Categorical. Presence (yes/no) 
of goldenrods detected by GSV 
method. 

GLM1ALL, 
GLM1UNMOWED, 
GLM2ALL, 
GLM2UNMOWED 

2 NSections Continuous. Number of 
transect sections established 
along a given transect 

GLM2ALL, 
GLM2UNMOWED, GAM2 

3 GSVSeason Categorical. Season of the year 
when the GSV pictures were 
taken: spring (May-June), 
summer (July-August), fall 
(September-October). 

GAM1, GAM2 

4 Length Continuous. Length of the 
transect section in meters. 

GAM1 

5 WdthRoad Continuous. Average width of 
the road in meters, computed 
using three measurements 
taken in the starting, middle 
and ending point of the 
transect line based on the 
satellite images. 

GAM1, GAM2 

6 MonthSinceGSV Continuous. Number of months 
elapsing the GSV pictures and 
the field survey. 

GAM1, GAM2 

7 Uncultivated Continuous. Share of 
uncultivated open area 
(abandoned arable land and 
grasslands) in the area of a 
given sampling unit. 

GLMM1GSV, 
GLMM1FIELD, GLM3GSV, 
GLM3FIELD  
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variable (1 – present, 0 – absent) and share of uncultivated land in the 
area of a given sampling unit (Uncultivated; continuous) as an explan-
atory variable. Moreover, in GLMM1GSV and GLMM1FIELD the transect ID 
was included as a random factor. As a result, we were able to compare 
parameter estimates of the uncultivated land effect between models 
using different sources of goldenrod occurrence. 

3. Results 

3.1. Goldenrod occurrence based on Google Street View and field data 

At the transect sections scale, the field survey revealed goldenrods in 
1081 out of 7426 sections (i.e. 14.5%, Table 2) and within 738 out of 
3486 sections without mowing (21.2%; i.e. including only the sections 
that were not mowed both in the field and GSV). Figures based on 
Google Street View were lower and equaled to 8.6% sections occupied 
by goldenrods (12.3% without mowing). At the transect level, we 
observed goldenrods in 47.5% of the transects surveyed in the field 
(17.8% without mowing, i.e. including only the unmowed sections both 
in GSV and field data) while the corresponding figures for GSV data were 
35% and 11.3% respectively (Table 2). 

For each of the four datasets considered (i.e. transect sections and 
transects, with and without mowing), the occurrence of goldenrods 
based on field survey was significantly positively correlated with the 
GSV occurrence (Table 3). The models using goldenrod occurrence 
based on GSV method correctly classified 72–85% of sites surveyed in 
the field (as found by cross-validation, Table 3). All the models better 
predicted actual presences (ca. 94–97% of observed presences were 
classified correctly) than absences (ca. 64–78% of observed absences 
were classified correctly; Table 3). 

3.2. Factors explaining similarities between Google Street View and field 
data 

Similarity of information on goldenrod occurrence derived from the 
two compared methods (GSV and field survey) was hardly explained by 
the sampling characteristics. The season of the year when the GSV pic-
tures were captured, width of the road and number of months elapsed 
since taking the GSV pictures did not affect the similarity between 
outputs of two sampling methods, both at the scale of transect section 
and transect (Table 4). Of considered explanatory variables, only the 
length of a transect section was negatively correlated with the proba-
bility of correct classification using GSV: the longer the transect section, 
the less similar are results of GSV method and field survey (Table 4). 
However, we did not find such association for the number of sections (i. 
e. reflecting average section length) at the scale of transects (Table 4). 

3.3. Comparison of models using Google Street View and field data 

The share of uncultivated land in the vicinity of transect section was 
a significant positive predictor of goldenrod occurrence as found in the 

field (GLMM1FIELD, Uncultivated effect: estimate = 0.70 (SE = 0.05), p 
< 0.001) and GSV (GLMM1GSV, Uncultivated effect: estimate = 0.70 (SE 
= 0.04), p < 0.001). Similarly, the share of uncultivated areas positively 
predicted goldenrod occurrence in the transect scale for both field-based 
data and GSV data (GLM3FIELD, Uncultivated effect: estimate = 0.96 (SE 
= 0.16), p < 0.001, GLM3GSV, Uncultivated effect: estimate = 1.18 (SE 
= 0.21), p < 0.001, respectively; Fig. 2). 

4. Discussion 

We show that Google Street View can be used as an additional tool 
for surveying plant species at road verges and their immediate sur-
roundings. As many invasive alien plants are occurring and dispersing 
along roadsides, GSV can be an important, effective tool for the future 
tracking of the spread of these species. More specifically, we showed that 
occurrence of goldenrods detected using GSV predicted their occurrence 
as observed in the field 3–5 years after GSV images were taken and this 
was true for both spatial scales considered (i.e. transects and transect 
sections). The GSV method performed especially well in predicting 
actual goldenrod presences. Sampling parameters, like presence of road 
verge mowing, road width, season when GSV pictures were taken and 
number of months elapsed since taking the GSV pictures, did not change 
the correlation between the two methods (except for transect section 
length suggesting a negative effect, most likely due to the difference in 
sampling effort between the two methods at longer sections). Finally, 
models based on GSV or field survey data produced very similar 

Table 2 
Contingency table showing number of sampling units with and without gold-
enrod presence records based on GSV and field data in two spatial scales 
(transect sections and transects) and for two datasets (including all sections and 
only the sections that were not mowed both in the field and GSV).   

All sections Unmowed sections 

Field presence Field absence Field presence Field absence  

Scale: transect section 
GSV presence 497 144 381 70 
GSV absence 584 6201 357 2678  

Scale: transect 
GSV presence 110 4 21 5 
GSV absence 42 164 20 184  

Table 3 
Summary of GLMs (parameter estimates followed by SE in parentheses) 
explaining the occurrence of goldenrods in the field survey in relation to gold-
enrod occurrence based on GSV images (GSVSol) along roads. Separate models 
were fitted for transect sections and transects as well as for full dataset and a 
subset of data without mowing. Significant effects are marked in bold. Signifi-
cance levels (p-values) are indicated by asterisks, and are explained below the 
table. Performance of the models based on cross-validation (LOOCV) is given at 
the bottom.  

Scale: transect section transect 
Predictors GLM1ALL GLM1UNMOWED GLM2ALL GLM2UNMOWED 

n = 7426 n = 3486 n = 320 n = 230 

Intercept ¡2.36 
(0.04)*** 

¡2.02 (0.06) 
*** 

− 1.59 
(1.40) 

¡2.10 (0.34) 
*** 

GSVSol: yes 3.60 
(0.10)*** 

3.71 (0.14)*** 4.68 
(0.54)*** 

3.70 (0.56)*** 

NSections not 
included 

not included 0.01 
(0.06) 

− 0.02 (0.04) 

LOOCVACCURACY 71.8% 74.4% 85.1% 74.0% 
LOOCVSENSITIVITY 95.1% 94.8% 96.9% 94.4% 
LOOCVSPECIFICITY 64.4% 66.8% 78.0% 66.5% 

Statistical significance: *** < 0.001. 

Table 4 
Summary of GAMs (parameter estimates followed by SE in parentheses) 
explaining similarity between outputs of GSV method and field sampling at the 
scale of transect sections and transects in relation to sampling parameters. Sig-
nificant effects are marked in bold. Significance levels (p-values) are indicated 
by asterisks, and are explained below the table.  

Scale: transect section transect 

Predictors GAM1 GAM2 
n = 3486 n = 230 

Intercept − 0.10 (3.24) 7.09 (5.63) 
GSVSeason: fall 0.22 (0.84) − 1.28 (1.27) 
GSVSeason: spring − 1.20 (1.19) − 2.10 (1.46) 
Length ¡0.31 (0.08)*** not included 
NSections not included − 0.01 (0.07) 
WdthRoad − 0.32 (0.36) − 0.33 (0.49) 
MonthSinceGSV 0.06 (0.06) − 0.04 (0.10) 

Statistical significance: *** < 0.001. 
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estimates in the importance of the uncultivated land for the occurrence 
of goldenrods. Although these results are suggesting that GSV data ap-
pears to perform well in detecting and studying roadside vegetation, it 
may also have some limitations as discussed below. 

GSV seems to be an effective tool for detecting species occurring in 
large numbers, being tall, having distinct shape or contrasting color. 
That is, species that are easily visually detected and easy to recognize at 
distance. For example, while browsing GSV for goldenrods, we noticed 
also the presence of several other invasive plant species: hogweeds 
(Heracleum mantegazzianum and H. sosnowskyi), knotweeds (Reynoutria 
japonica, R. sachalinensis, R. × bohemica), wild cucumber Echinocystis 
lobata, garden lupin Lupinus polyphyllus, box elder Acer negundo, black 
locust Robinia pseudoacacia, staghorn sumac Rhus typhina and black 
cherry Prunus serotina. However, as GSV was not intentionally designed 
for collecting plant data, some geometric distortions in the images could 
potentially affect both species detectability and mapping accuracy. 
Thus, smaller invasive species or species difficult to distinguish, like 
small-flower touch-me-not Impatiens parviflora or common beggar-ticks 
Bidens frondosa, commonly occurring along roadsides (Tokarska-Guzik 
et al., 2012), may be overlooked in GSV images. 

Several factors may potentially weaken the observed high correla-
tion between GSV and field data. First, some challenges may be linked to 
the frequency of GSV updates. The images used in our study were taken 
at different times (from morning hours until evening), months (from 
May to October), and years (2011 to 2014). Nevertheless, we did not 
find any effect of season on the probability of correct presence/absence 
detection of goldenrods, most likely because the studied species are 
relatively easily distinguishable all year round. However, in case of 
other species seasonal changes in vegetation growth will be more 
important. Furthermore, the differences between GSV and field data can 
also be driven by colonization and extinction events in the period be-
tween capturing GSV images and field survey, especially if the period 
extends to several years. Comparison of data from GSV and field survey 
(conducted 3–5 years after capturing GSV images) suggests an increase 
in goldenrod occurrence (see Table 2). However, with such an 
assumption one should expect a negative relationship between time 
elapsed since the GSV picture was taken and similarity between 
methods, which was not confirmed in our models (see Table 4). 

Second, the probability of visual plant detection may be reduced by 
road verge mowing, and thus may substantially limit usefulness of GSV 
as a source of data. However, given there is some variation in the 
practice of road verge mowing, when using GSV one may also identify 
where mowing occurs and thus where the risk of establishment of 
invasive species is lower. Furthermore, mowing also reduces detection 

of plants during field surveys, so this limitation is not exclusive for GSV 
method. Fortunately, it is relatively easy to detect recent mowing and 
account observed species occurrences for the mowing effect. 

Finally, as highlighted in previous research (Rousselet et al., 2013), 
the image availability may be a crucial limitation for GSV-based sam-
pling. GSV was primarily introduced in 2007 and covered major cities of 
North America. Since then it has been developed to include urban, 
suburban and rural areas from all around the world. Until now it has 
collected 170 billion Street View images captured along more than 16 
million kilometers of roads across more than 220 countries and terri-
tories (Google, 2020). The GSV coverage is being successively enhanced, 
however there are still many places where GSV data is unavailable or its 
availability is limited (e.g. Africa, Central America, Middle East). Also, 
small gravel roads are excluded although they may be important habi-
tats for many invasive plant species. Thus, the GSV method should be 
applied with caution as it may be biased by omission of some important 
areas. 

Nevertheless, the great advantage of GSV method is that it appears to 
be more time- and cost effective and has much lower carbon footprint 
than collecting data in a traditional manner. Field sampling of vegeta-
tion usually is highly laborious (Hill et al., 2005). Given the large spatial 
scale of our survey, it required significant amounts of travel time. Hence, 
we managed to visit in the field on average six transects per day, while 
using GSV we were able to virtually sample the same area within an 
hour. We estimated that during the fieldwork an observer travelled by 
car a distance of about 7 700 km generating costs equaling 2 000 EUR 
and releasing 1.29 tons of carbon dioxide to the atmosphere. Sampling 
with GSV costed about 120 EUR and the estimated emission of carbon 
dioxide during virtual driving along transects was about 0.14 tons (see 
Appendix A for detailed calculations). Another future benefit of GSV 
data is that new GSV pictures are planned to be taken every several 
years, thus opening up for investigations of distributional shifts in plant 
species associated with climate and environmental change. 

5. Conclusions 

Being aware of the limitations discussed above, we conclude that 
Google Street View imagery, publicly available for substantial propor-
tion of roads worldwide, is a valuable source of data on species distri-
bution patterns. As the GSV-based method allows for considerable 
sampling effort reduction, it provides an opportunity to investigate some 
ecological phenomena (e.g. plant invasions) across large spatial scales 
with relatively low costs. Moreover, since the library of GSV images is 
permanently being updated, the tool has the potential to be used for 

Fig. 2. Effect of share of uncultivated land on the occurrence of goldenrods (log odds with 95% CIs) from models using field survey and GSV image analysis in the 
scale of transect sections and transects. 
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assessing temporal changes in roadside vegetation. We emphasize that 
utilization of GSV data for studying roadside environments (e.g. deter-
mining species distribution) should be further developed to include 
machine learning techniques for a fast identification of species and their 
occurrences. This would enable automatic detection of some objects (e. 
g. plant species) to open up for large scale analyses on the spread of 
invasive plant species across whole continents in order to identify new 
ways of how to manage these species in the future. 
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Hejda, M., Pyšek, P., Jarošík, V., 2009. Impact of invasive plants on the species richness, 
diversity and composition of invaded communities. J. Ecol. 97, 393–403. https:// 
doi.org/10.1111/j.1365-2745.2009.01480.x. 

Hill, D., Fasham, M., Tucker, G., Shewry, M., Shaw, P. (Eds.), 2005. Handbook of 
Biodiversity Methods: Survey, Evaluation and Monitoring, Handbook of Biodiversity 
Methods. Cambridge University Press. https://doi.org/10.1017/ 
cbo9780511542084. 

Ibisch, P.L., Hoffmann, M.T., Kreft, S., Pe’Er, G., Kati, V., Biber-Freudenberger, L., 
DellaSala, D.A., Vale, M.M., Hobson, P.R., Selva, N., 2016. A global map of roadless 
areas and their conservation status. Science. 354, 1423–1427. https://doi.org/ 
10.1126/science.aaf7166. 

Jalas, J., Suominen, J. (Eds.), 1972-1996. Atlas Florae Europaeae. The Committee for 
Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki. 

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to statistical 
learning with applications in R. Springer, New York. https://doi.org/https://doi. 
org/10.1007/978-1-4614-7138-7. 

Kabuce, N., Priede, N., 2010. NOBANIS – Invasive Alien Species Fact Sheet – Solidago 
canadensis. – From: Online Database of the European Network on Invasive Alien 
Species - NOBANIS. https://www.nobanis.org (accessed 1.22.20). 

Kajzer-Bonk, J., Szpiłyk, D., Woyciechowski, M., 2016. Invasive goldenrods affect 
abundance and diversity of grassland ant communities (Hymenoptera: Formicidae). 
J. Insect Conserv. 20, 99–105. https://doi.org/10.1007/s10841-016-9843-4. 
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Hołdyński, C., 2012. Rośliny obcego pochodzenia w Polsce ze szczególnym 
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