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A B S T R A C T   

Widespread increases in organic matter (OM) content of surface waters, as measured by color and organic carbon 
(OC), are a major issue for aquatic ecosystems. Long-term monitoring programs revealed the issue of “browni-
fication”, with climate change, land cover changes and recovery from acidification all suspected to be major 
drivers or contributing factors. While many studies have focused on the impact and drivers, fewer have followed 
up on whether brownification is continuing. As time-series of OM data lengthen, conventional data-analysis 
approaches miss important information on when changes occur. To better identify temporal OM patterns dur-
ing three decades (1990–2020) of systematic monitoring, we used generalized additive models to analyze 164 
time-series from watercourses located across Sweden. Increases in OC that were widespread during 1990–2010 
ceased a decade ago, and most color increases ceased 20 years ago. These findings highlight the need to reassess 
the understanding of brownification’s spatial and temporal extent, as well as the tools used to analyze length-
ening time series.   

1. Introduction 

In early 2000, trends of increasing organic matter (OM), measured as 
organic carbon (OC) concentrations and/or water color, were reported 
in monitoring records from many European and North American surface 
waters (de Wit et al., 2007; Driscoll et al., 2003; Evans et al., 2005; 
Monteith et al., 2007; Roulet and Moore, 2006; Worrall et al., 2003; 
Worrall et al., 2004). The starting points for these increases varied from 
the 1960 s (Worrall et al., 2003; Worrall et al., 2004) to 1980 s/1990 s 
(Driscoll et al., 2003; Evans et al., 2006; Evans et al., 2005; Monteith 
et al., 2007). Since then, there have been predictions that this OM in-
crease, often referred to as brownification, will continue (de Wit et al., 
2016; Kritzberg, 2017; Škerlep et al., 2020; Weyhenmeyer et al., 2012). 
Numerous studies have pointed out the serious ecological and water 
quality implications of this brownification, such as changes in aquatic 
food web structures, nutrient availability, pH and metal speciation as 
well as thermal stratification (Creed et al., 2018; Karlsson et al., 2009; 
Nova et al., 2019). Elevated OM concentrations can also have negative 
effects on drinking water treatment (Bieroza et al., 2009; Krasner et al., 

1989; Rook, 1974), mobilize pollutants (Bishop et al., 2020; Creed et al., 
2018; Laudon et al., 2021) and increase aquatic emissions of greenhouse 
gases (Lapierre et al., 2013). 

Studies investigating the causes of increasing OM concentrations 
have identified a number of drivers. Declines in acid deposition after it 
peaked in the 1980 s have been a common explanation (Evans et al., 
2005; Lawrence and Roy, 2021; Monteith et al., 2007; Redden et al., 
2021; SanClements et al., 2012). Other studies suggested that additional 
factors related to climate change, land use and biomass increases also 
contributed to brownification of many surface waters (de Wit et al., 
2016; Erlandsson et al., 2008; Finstad et al., 2016; Kritzberg, 2017; 
Meyer-Jacob et al., 2019; Škerlep et al., 2020; Weyhenmeyer et al., 
2012; Weyhenmeyer and Karlsson, 2009). If recovery from acidification 
is the main driver for the observed trends in OM that would imply that 
the increasing trends would end as acidification recovery culminates. 
Other drivers will be continuing (such as changing climate), or at least 
have no clearly demarcated endpoint (such as biomass increases or land 
use) (Bragée et al., 2015). 

Many of the initial publications using OC as a proxy for surface water 
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OM were based on a decade, or at most two decades of direct observa-
tions. Longer-term studies relied on other proxies such as water color (e. 
g. Kritzberg, 2017), or paleo-ecological studies (e.g. Bragée et al. 2015, 
Meyer-Jacob et al. 2019). Surface water monitoring programs have been 
continuing so now three decades of systematic OC concentration and 
quality measures (e.g. various absorbance metrics) are becoming 
available. Hitherto, though, few studies have followed up on whether 
areas where geographically widespread brownification has previously 
been reported are continuing to “brownify”. Those few follow-ups, from 
Finland (Lepistö et al., 2021; Räike et al., 2016), northeastern US 
(Lapierre et al., 2021) and Nova Scotia (Redden et al., 2021), have found 
continued browning in a majority of the sites studied. 

As data records lengthen, the challenge of analyzing the records is 
also increasing. A commonly used statistical method to test for temporal 
trends in environmental data are non-parametric Mann-Kendall tests, 
since these tests are robust, can easily handle outliers and only require 
trends to be monotonic but not linear. Such Mann-Kendall tests were 
also used in many of the above-cited research papers to determine if OM 
trends were present during pre-defined time periods (Meyer-Jacob et al., 
2019; Räike et al., 2016; Worrall et al., 2020). This is, however, an 
approach that does not retain any information about the exact shape of 
the trend and its results can be dependent on the time periods chosen for 
analysis. To improve the evaluation, refined statistical methods, using 
smoothing methods, like generalized additive mixed models (GAMM) 
(Hastie and Tibshirani, 1986; Wood, 2017) have been increasingly used 
to model temporal trends for long time series. These do not require a 
priori assumptions about the shape of the trends and allow for evalua-
tion of when changes have occurred during the study period. 

The aim of this study was to determine whether the brownification 
previously observed is continuing by evaluating three decades of OM 
data from 164 watercourses across Sweden using GAMM. The catch-
ments, all with minimal influence from urban or point-source pollution, 
covered a latitudinal extent of 1600 km. A range of land cover, historic 
acid deposition levels, and climatic zones from temperate to boreal and 
arctic, made these data well suited to assessing how extensive browni-
fication remains in space and time. 

2. Methods 

2.1. Data selection 

This study included water chemistry data from 164 watercourses 
within the Swedish national monitoring program (Miljödata-MVM, 
2021; Fölster et al., 2014). The sampling locations extended across 13◦

of latitude (55 ◦ 27′ to 68 ◦ 21′). Catchment sizes ranged from 11 km2 

(10th percentile) to 11,532 km2 (90th percentile), with a median size of 
214 km2 (Table S1). The mean annual precipitation for each site ranged 
from 450 mm in the north-east to 1235 mm in the south-west of Sweden. 
Mean annual temperature ranged from -1.9 ◦C in the north to 8.9 ◦C in 
the south of Sweden. The watercourses were sampled for up to 31 years, 
between January 1990 and December 2020, for total organic carbon 
(TOC) and absorbance at a wave-length of 420 nm, hereafter referred to 
as colored dissolved organic matter (CDOM). Of these watercourses, 65 
(TOC) and 101 (CDOM) were sampled in 1990 and 156 (TOC and 
CDOM) in 2020, with 27 (TOC) and 28 (CDOM) years being the average 
consecutive duration of each time series. The sampling frequency was 
monthly for a majority of sites (n = 117), up to twice a month in some 
sites (n = 37) and down to bi-monthly in a smaller set of sites (n = 10). 

All the chemical analyses were carried out at the Department of 
Aquatic Sciences and Assessment at the Swedish University of Agricul-
tural Sciences (https://www.slu.se/en/departments/aquatic-sciences 
-assessment/). The field and laboratory methodologies are standard-
ized and well documented. The fact that the same laboratory has 
analyzed the samples over the entire period (1990–2020) has led to a 
high level of consistency. In the current study TOC concentration and 
CDOM data were evaluated. The laboratory is certified (SWEDAC) for 

analyses of TOC and CDOM. The TOC was measured by combustion 
methods following standard methods (SS-EN 1484). The absorbance at 
420 nm was measured on filtered water with spectrophotometric 
methods (SS-EN ISO 7887–2012). Organic carbon was measured as TOC 
which contains > 90% DOC (Humborg et al., 2010). So while the organic 
carbon concentrations reported are TOC, these can be considered 
equivalent to DOC. The ratio between CDOM and TOC, the specific 
visible spectrum (VIS) absorbance (sVISa), was calculated as a measure 
of OM quality, with a high sVISa indicating more colored OM. 

2.2. Statistical analyses 

Analysis of station-wise trends was conducted using generalized 
additive mixed models (GAMM) (Hastie and Tibshirani, 1986; Wood, 
2017). This approach allows the modeling of environmental timeseries 
without prior definition of the shape of the trend curve. The time trend 
in TOC, CDOM and sVISa, were analyzed using a thin plate spline, while 
the seasonal component was modeled by a cyclic cubic regression spline 
with an annual period. As observations must be assumed to be depen-
dent in time, the error term includes a continuous autoregressive process 
of lag 1 (AR(1)). 

First derivatives of the smoothed trend and the corresponding con-
fidence bands were used to determine if a trend was significant at any 
given time point (Monteith et al., 2014; Simpson, 2018). The obtained 
information was summarized and visualized according to the sugges-
tions in von Brömssen et al. (2021). 

3. Results and discussion 

3.1. Temporal trends in organic carbon concentrations 

The observed trends in TOC concentrations and CDOM over the last 
three decades were neither linear, nor monotonic across the data set of 
Swedish watercourses. The GAMM-based trend analyses indicated that a 
majority of the sites increased significantly in TOC concentration for 
some parts of the period 1990–2010 (Fig. S1). There was also a clear 
pattern of stronger increases in TOC during two specific time periods of 
3–5 years each, centered around 1996 and 2007 (Fig. 1, Fig. S1). During 
the latter peak (2005–2008), up to 50% of the watercourses had 
increasing trends in TOC. While the trends were not uniform over the 
period 1990–2010 (Fig. S1), the GAMM analyses detected a breakpoint 
at about 2010. After 2010, increasing trends of TOC were detected in less 
than 20% of the watercourses (Fig. 1). This means that while TOC 
concentrations increased in many areas between 1990 and 2010, the 
TOC concentrations have been more stable during the past decade 
(Fig. 3). The cessation of increases in CDOM is just as abrupt, but came 
even earlier. The trends in CDOM followed that of TOC quite well up to 
2000, but then flattened when less than 20% of the sites had increasing 
CDOM trends (Fig. 1). The share of sites with increasing CDOM trends 
have gradually decreased since 2000. After 2010, less than 10% of the 
sites had increasing trends, and approximately the same amount of sites 
had decreasing trends for a shorter period of time (around 2008–2017). 
Thus, brownification either has ceased across much of the country, or 
has at least been put “on hold”. 

Temporal patterns in TOC concentrations from eight example sites 
(Fig. 2) illustrated the trend characteristics for a majority of all sites. 
TOC increases were present during distinct time periods or during the 
whole period up to 2010, and then flatten out (Fig. 2c–e) or declined 
(Fig. 2a). Most of the sites that still show an increase in TOC after 2010 
were identified by the GAMM analyses as linear trends (see for example 
Fig. 2b). This means that for these sites there has been a general increase 
in TOC over the whole time period and not specifically during the period 
after 2010. 

Appropriate statistical methods need to be used when such complex 
time trends are described. While the analysis using GAMM allowed us to 
describe how TOC trends changed during different periods, more 
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commonly used methods, such as the Mann-Kendall test, summarize 
trends over the entire available time period. Applied to our data, such an 
approach would have shown that most of the TOC series, and a large 
proportion of CDOM series, have had an upward trend (119 for TOC and 
70 for CDOM out of the total of 164 series). Such an analysis would 
correctly identify the watercourses where TOC or CDOM had increased, 
but fail to identify when the increases occurred. As a consequence, such 
results might lead to the misconception that brownification was still 
ongoing. 

3.2. Temporal trends in organic carbon quality 

The fact that the trends of TOC and CDOM differed indicated a shift 
in OM quality over time. The characteristics of OM, as indicated by 
CDOM normalized by TOC (sVISa), is a tantalizing clue that may also 
provide some insight into the factors changing surface water carbon. 
From 1990 to 2000, there were more sites with increasing sVISa than 
sites with decreasing trends (Fig. 1). But since 2000, sVISa has decreased 
in around 10–30% of the sites, with almost no sites showing increasing 
trends. A shift in surface water OM quality over time has been detected 
in earlier studies of UK catchments influenced by urban areas (Worrall 
and Burt, 2010). However, those temporal patterns differed from the 
patterns found in the catchments of the present study where urban areas 
had very limited influence, if any. A decoupling of DOC and color was 
also identified in lakes of northeastern US (Lapierre et al., 2021) and 
Norway (Hongve et al., 2004). This could indicate different drivers for 
the colored fraction of OM. The OM quality results also demonstrate that 
trends of brownification are not straightforward, and depend on 
whether it is color or OC that is considered. 

3.3. Potential drivers for OM trends 

Multiple drivers may have contributed to the rising TOC concen-
trations prior to 2010 when such trends were more widespread. Hence, 
it is challenging to distinguish the relative importance of causes for the 
TOC trends, or lack thereof, observed during the past decade. A sys-
tematic investigation of the available evidence to answer this, such as 
the full range of chemical constituents besides TOC, as well as changes in 
catchment land use and biomass, soils and climate patterns were outside 
the scope of this paper that aims to assess the duration and extent of 

brownification in Sweden. Nonetheless, the spatial and temporal pat-
terns of TOC concentrations across three decades can be used to spec-
ulate on the potential drivers. 

The fact that brownification has been put on hold since 2010 in most 
areas of Sweden, could imply that acidification recovery has been one of 
the major factors driving the trends in TOC after 1990. It could also be 
that certain climate factors (such as seasonal variation in precipitation 
and temperature) may be driving trends that are less monotonic in time 
and space than recovery from acid deposition (Clark et al., 2010). 
Increasing biomass and/or land cover changes is a persistent factor that 
could drive brownification in the more limited areas where increases in 
TOC continued after 2010. Indeed, many of the sites that have continued 
to brownify are located in the south of Sweden where poor agricultural 
land was converted to coniferous forest a little over a century ago 
(Lindbladh et al., 2014), while coniferous forests have been widespread 
in other parts of the country for many centuries. The increase in conifer 
forests, specifically spruce, has been suggested as one driver for recent (i. 
e. post 1900) brownification (Kritzberg, 2017; Škerlep et al., 2020) in 
southern Sweden. The appearance and loss of spruce in the landscape 
has also been linked to browning and debrowning of Swedish lakes in 
earlier millenia (Meyer-Jacob et al., 2015). Southern Sweden is however 
also one of the areas in Sweden that received the most acid deposition 
and may therefore be taking longer to recover from acidification. 
Another region where TOC has increased after 2010 is the north-east 
coast of Sweden. This coastal zone is distinguished from the rest of the 
country as an area where isostatic rebound after the last glaciation 
continues to raise the land out of the Baltic Sea (Tuittila et al., 2013). 
The relatively flat topography of the new land emerging from the ocean 
has created shallow peatlands that sustain high amounts of OM in sur-
face waters (Ivarsson and Jansson, 1994). 

4. Conclusion 

The key finding of our study is that significant increases in TOC 
concentrations have been absent for a decade over much of a region 
previously identified as undergoing a strong and persistent brownifica-
tion. While this is just one of several geographical regions where 
widespread OM increases were earlier identified, it challenges the 
impression that these increases are still ongoing. It also calls into 
question predictions that ongoing pressures such as climate warming or 

Fig. 1. The proportion of watercourses showing a significant increasing, decreasing or no trend in total organic carbon (TOC) concentration (left), colored dissolved 
organic matter(CDOM) (center), and specific VIS absorbency (sVISa) (right) during the period 1990–2020. Trends were analyzed by generalized additive models 
(GAMM). The dashed lines show the proportion of the total number of stations with data for that time point. 
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Fig. 2. Examples of time series and trend curves for TOC concentration data between 1990 and 2020 from six of the watercourses included in this study, (a) Emån 
(site #226), (b) Gide älv (site #301), (c) Rickleån (site #456), (d) Örekilsälven (site #478), (e) Skivarpsån (site #566), and (f) Dalälven (site #326). The smooth 
curve is produced by a generalized additive mixed model (GAMM). Reddish-orange color indicates periods with increasing trends, blue indicates periods with 
decreasing trends, and yellow indicates no significant trend. 
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increasing atmospheric CO2 are driving widespread brownification. The 
lengthening of observational records, together with the geographical 
variation in the duration and direction of trends across Sweden provide 
new opportunities to test hypotheses about factors controlling browni-
fication. Above all, this study is a reminder of the need to continue with 
monitoring and to use appropriate statistical methodology to reconsider 
earlier findings, especially when those findings are the basis for steering 
far-reaching management initiatives. 
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Osterwalder, S., Schuster, P.F., Webster, J., Zhu, W., 2020. Recent advances in 
understanding and measurement of mercury in the environment: terrestrial Hg 
cycling. Sci. Total Environ. 721, 137647. 

Bragée, P., Mazier, F., Nielsen, A.B., Rosén, P., Fredh, D., Broström, A., Granéli, W., 
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Vesely, J., 2007. Dissolved organic carbon trends resulting from changes in 
atmospheric deposition chemistry. Nature 450 (7169), 537–541. 

Nova, C.C., Bozelli, R.L., Spitzy, A., Müller-Navarra, D., 2019. Living in a browning 
environment: effects on daphnia’s growth and fatty acid pattern. Limnol. Oceanogr. 
64 (1), 18–31. 
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