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The high energetic demands associated with the vertebrate brain are proposed to result in a trade-off between the pace of life-

history and relative brain size. However, because both life-history and brain size also have a strong relationship with body size,

any associations between the pace of life-history and relative brain size may be confounded by coevolution with body size. Studies

on systems where contrasts in the pace of life-history occur without concordant contrasts in body size could therefore add to our

understanding of the potential coevolution between relative brain size and life-history. Using one such system – 21 species of killi-

fish – we employed a common garden design across two ontogenetic stages to investigate the association between relative brain

size and the pace of life-history. Contrary to predictions, we found that relative brain size was larger in adult fast-living killifishes,

compared to slow-living species. Although we found no differences in relative brain size between juvenile killifishes. Our results

suggest that fast- and slow-living killifishes do not exhibit the predicted trade-off between brain size and life-history. Instead,

fast and slow-living killifishes could differ in the ontogenetic timing of somatic versus neural growth or inhabit environments that

differ considerably in cognitive demands.
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Variation in brain size across species is largely driven by the cog-

nitive benefits and the energetic costs of developing and main-

taining a large brain (benefits: Lefebvre et al. 1997, Lefebvre

et al. 2004; McDaniel 2005; Sol et al. 2008; Maklakov et al. 2011;

Kotrschal et al. 2013, Kotrschal et al. 2015a, Kotrschal et al.

†Equal author contributions
+Equal author contributions

2015b; MacLean et al. 2014; Benson-Amram et al. 2016; Held-

stab et al. 2016, and costs: Wang et al. 2012; Kotrschal et al. 2013;

Gonzalez-Voyer et al. 2016). The brain typically consumes more

energy per unit weight than other somatic tissues (Mink et al.

1981; Aiello and Wheeler 1995) and is consequently restricted in

size by a species’ energy budget. An increase in brain size there-

fore requires an increase in energy input or an adjustment away
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from the energy allocated to other traits, such as development and

reproduction (Expensive brain hypothesis: Isler and van Schaik

2009a). For example, across vertebrates, a larger brain is associ-

ated with greater maternal investment, larger neonates, reduced

clutch or litter sizes, prolonged parental care, delayed maturity,

and a later age of first reproduction (Martin 1996; Deaner et al.

2003; Iwaniuk and Nelson 2003; Kotrschal et al. 2013; Barton

and Capellini 2011; Gonzalez-Voyer et al. 2016; Jiménez-Ortega

et al. 2020).

Several studies have found that brain size, body size, and

life-history often coevolve (e.g., in mammals: Barrickman et al.

2008; Isler and van Schaik 2009b; González-Lagos et al. 2010;

Barton and Capellini 2011; Gonzalez-Voyer et al. 2016; fish:

Kotrschal et al. 2013; amphibians: Liao et al. 2016; Yu et al.

2018, and birds: Sol et al. 2016; Jiménez-Ortega et al. 2020, but

see Isler and van Schaik 2006). To investigate the relationship

between relative brain size and life-history, most studies account

for body size effects by including body size as a covariate in

multiple regression analyses (e.g., Isler and van Schaik 2009b;

González-Lagos et al. 2010). In this context, estimates of relative

brain size are calculated on a scale – relative to body size –

as deviations from the allometric relationship estimated across

species. These deviations from the allometric relationship will

however be affected by evolutionary changes in both brain

size and body size (Smaers et al. 2012; Rogell et al. 2020). As

body size often displays higher evolutionary rates than brain

size (Gonzalez-Voyer et al. 2009b; Smaers et al. 2012; also see

Tsuboi et al. 2018) any condition that imposes selection on body

size may also result in correlated responses with the brain that

are lower than would be expected from an evolutionary allometry

perspective (e.g., evolutionary lags, Riska 1991; Smaers et al.

2012). This is potentially problematic due to the coevolution be-

tween life-history and body size (Deaner et al. 2003; Speakman

2005), where changes in relative brain size could be driven by

adaptive changes in body size, rather than the trade-off between

brain size and life-history (Smaers et al. 2012; Rogell et al. 2020).

One approach is to assess the relationship between brain size

and life-history in systems where body size and life-history are

to a major extent biologically independent (Rogell et al. 2020).

Specifically, by performing standard tests (e.g., multiple regres-

sion) on carefully chosen study systems, where changes in mean

body size among life-history strategies are less likely to confound

associations between life-history and relative brain size.

Here, we test for an association between the pace of life-

history and relative brain size across 21 species of killifish

(Aplocheiloidei). Killifishes display strong divergence in life-

history strategy (Eckerström-Liedholm et al. 2017, Eckerström-

Liedholm et al. 2019; Sowersby et al. preprint), but importantly,

statistically non-significant divergence in mean body size be-

tween the different life-history strategies (Eckerström-Liedholm

et al. 2017; Sowersby et al. preprint). Killifishes have undergone

at least seven independent evolutionary transitions toward living

in ephemeral habitats, where an ability to produce eggs capable

of entering an extended embryonic diapause stage allows popu-

lations to persist during habitat desiccation (Furness et al. 2015;

Furness 2016, Gonzalez-Voyer et al. in prep.). These annual

killifishes have also evolved several fast-paced life-history traits

necessary for living in time-limited ephemeral habitats, including

on average 1.3 times faster growth rate, shorter development

periods, and seven times higher reproductive rate (Eckerström-

Liedholm et al. 2017; Sowersby et al. preprint). This is in

comparison to non-annual killifish species, which often live in

more permanent habitats and typically lack an embryonic dia-

pause stage capable of surviving extended dry periods (Furness

et al. 2015; Sowersby et al. preprint). Annual species also have

short lifespans, including the species with the shortest recorded

vertebrate lifespan: Nothobranchius furzeri (Genade et al. 2005;

Blažek et al. 2013; Berois et al. 2015). One hypothesized benefit

of inhabiting these harsh and time-limited ephemeral environ-

ments is that they are considered to be relatively inaccessible to

many aquatic predators (Werner and McPeek 1994; Fraser et al.

1995) and attract fewer piscivorous birds, compared to more

permanent habitats (Mamboleo et al. 2012).

There are now several studies demonstrating that fish can

perform a broad range of cognitive tasks once considered limited

to only mammals and birds, including learning (Beukema 1970;

Brown and Laland 2003; Bshary and Grutter 2005; Kotrschal

et al. 2013), cooperation (Bshary et al. 2006; Vail et al. 2014),

tool use (Pasko 2010; Brown 2012), long-term memory retention

(Brown 2001; Triki and Bshary 2020) and at least one species

has demonstrated an ability to pass the mirror-mark test, which

is considered a hallmark of advanced cognition across animal

taxa (Kohda et al. 2019). Like other vertebrates, there is a clear

link between having a large brain and greater cognitive ability in

fish (Kotrschal et al. 2013; van der Bijl et al. 2015; Corral-López

et al. 2017). Moreover, brain size and development in fish can

also respond quickly to variation in the environment, such as

predation risk (Kotrschal et al. 2015a, Kotrschal et al. 2017;

Dunlap et al. 2019). Combined, these examples demonstrate

that fish, like other vertebrates, can benefit from the behavioral

flexibility associated with larger brain size.

In congruence with previous studies, we predicted a neg-

ative relationship between the pace of life-history and relative

brain size in killifishes (Barrickman et al. 2008; González-Lagos

et al. 2010; Yu et al. 2018). Specifically, we predicted that annual

species would have relatively smaller brains and prioritize energy

allocation toward growth and reproduction (see Kuzawa et al.

2014). Furthermore, we speculate that annual species could

be subject to relaxed selection on cognitive performance and

consequently brain size, due to the aforementioned lower risk of
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predation (Werner and McPeek 1994; Fraser 1995; Mamboleo

et al. 2012) compared to non-annual killifishes inhabiting more

permanent habitats. There are differences in body size between

species of killifish, however importantly, there is no statistically

significant difference in mean body size between annual and non-

annual life-history groups (henceforth “fast” and “slow,” respec-

tively; Eckerström-Liedholm et al. 2017). The killifish system

appears to offer a seemingly ideal size-standardized system for

investigating links between life-history and brain size evolution.

Similar to other fishes, killifishes likely display contin-

uous, albeit attenuating growth of both the body and brain

(Brandstätter and Kotrschal 1990). Differences in brain size may

therefore evolve either as constitutive changes that are stable

over ontogenetic stages (Kotrschal et al. 2013) or by changes to

the ontogenetic brain size allometry, which would make differ-

ences in brain size across groups more apparent at certain body

sizes (Dunlap et al. 2019). These mechanisms are not mutually

exclusive and both represent significant implications for our

study system. First, constitutive changes that are expressed early

in ontogeny are likely to be dependent on maternal investment

strategies (Gonzalez-Voyer et al. 2009a; Räsänen and Kruuk

2007; Kotrschal et al. 2013). Fast and slow-living killifishes have

similar mean egg sizes but fast-living species have higher repro-

ductive rates and the evolution of egg size is more constrained in

this group (Eckerström-Liedholm et al. 2017), potentially mod-

ulating qualitative investment into offspring (Räsänen and Kruuk

2007). Second, fast and slow-living killifishes have similar mean

adult body sizes, but differ on average in juvenile growth rates

(Eckerström-Liedholm et al. 2017; Sowersby et al. preprint).

Hence, any evolutionary changes in the energetic allocation

between somatic versus neural tissues could yield substantial

differences in relative brain size across groups. For example,

populations of the slow-living killifish Anablepsoides hartii that

inhabit high predation risk environments are both faster growing

(Gilliam et al. 1993; Fraser et al. 1999) and reproduce at a higher

rate (Walsh and Reznick 2009) compared to populations in low

predation risk environments. Interestingly, high predation risk

populations also have a steeper brain size allometry compared

to low predation populations, meaning that for a given increase

in body size, brain size increases faster in high predation risk

populations (Dunlap et al. 2019). As a result, in our study we

compared relative brain sizes between the life-history strategies

at two key ontogenetic stages that differ in the relative impor-

tance of growth (juveniles) and reproduction (adults). Due to

similar patterns of maternal investment, we predicted that relative

brain size will be more similar in fast and slow-living species

when they are juveniles, compared to when adults.

To explore the evolutionary relationship between life-history

and brain morphology, we also investigated whether different

life-history strategies impose selection on certain brain regions.

The vertebrate brain consists of several distinct subregions that

govern different bodily and cognitive functions (Nieuwenhuys

et al. 2014) where the relative size of distinct brain regions likely

indicates a species’ proficiency in the corresponding functional

domains (Gonzalez-Voyer et al. 2009b; Iwaniuk and Hurd 2005;

Striedter 2005). Theoretical predictions regarding a relationship

between the pace of life-history and the size of specific brain

regions are less clear than for the whole brain; thus, our inves-

tigation into relative sub-region sizes is largely exploratory and

aimed at generating specific hypotheses for the study system.

By testing relative changes in the size of brain regions across

fast and slow-living species, we can also assess whether the

brain develops mainly in a concerted or a mosaic pattern (see,

e.g., Gonzalez-Voyer et al. 2009b, Finlay and Darlington 1995,

Barton and Harvey 2000). Across taxa, there is often a shift in

behavior from a focus on foraging to fuel growth to foraging

to fuel reproductive effort (in addition to survival), during the

transition from juvenile to adult life-stages. The higher rates of

both growth and reproduction observed in fast-living killifish

could be reasonably expected to result in changes in the relative

size of brain regions across ontogeny, in accordance with a shift

in the relative importance of different life-history traits (e.g.

growth and reproduction).

Methods
STUDY SYSTEM

During 2017–2018, we reared individuals from 21 species of kil-

lifish (Aplocheiloidei) from the egg stage to either non-sexually

mature juveniles (in their linear growth phase, Sowersby et al.

preprint) or sexually mature adults (adults: Nspp = 17, Nind = 234;

juveniles: Nspp. = 18, Nind = 110; see Supplementary Information

for a description of fish maintenance, and Table 1 and Tables S1

to S7 for details on sample sizes, body size and age at sampling,

and population origin). As environmental factors can induce

plastic responses in brain size in fishes (Gonda et al. 2011), we

kept all individuals in an environmentally standardized, common

garden setting. The species included in the study were purposely

selected to represent the five major evolutionary transitions

between fast-living (annual) and slow-living (non-annual) life-

history strategies (see Table 1; Table S1 and S2), characterized by

the presence or absence of eggs capable of entering embryonic

diapause (as per Furness et al. 2015). Previous studies have

confirmed that fast-living species exhibit faster life-history traits,

compared to slow-living species (reproduction: Eckerström-

Liedholm et al. 2017, development and growth: Sowersby et al.

preprint), and that these traits are strongly correlated across

species (the dominant eigenvector of a principal component anal-

ysis explain 75.4% of the total variation; Eckerström-Liedholm
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Table 1. Sample sizes for juveniles and adults. The total number

of individuals was 344.

Species Juveniles Adults

Fast-paced (annual species)
Austrolebias nigripinnis - 5
Callopanchax toddi 5 20
Fundulopanchax filamentosus 10 16
Gnatholebias zonatus - 6
Millerichthys robustus 10 -
Nematolebias whitei 6 20
Nothobranchius guentheri 7 18
Nothobranchius kadleci 8 6
Notholebias minimus 5 4
Ophtalmolebias constanciae 6 -
Rachovia sp. (Monteria) 3 -
Total 60 95
Slow-paced (non-annual species)
Aphyosemion striatum 5 14
Aphyosemion splendopleure 6 19
Cynodonichthys chucunaque - 18
Cynodonichthys fuscolineatus 5 7
Epiplatys roloffi 6 16
Fundulopanchax cinnamomeus 6 16
Fundulopanchax scheeli 5 21
Kryptolebias marmoratus 4 -
Pachypanchax playfairii 8 14
Scriptaphyosemion cauveti 5 14
Total 50 139

et al. 2019). After hatching, a subset of individuals was reared in

0.75-L plastic boxes (although some individuals were then moved

to 13-L tanks in species that grew quickly), and was weighed

and dissected as juveniles (at ∼1 cm total body length) before

they had reached sexual maturity (mean wet mass: 0.10 g; range:

0.015 to 0.34, no gonad tissue was observed during dissection).

The remainder of the individuals were reared identically but were

transferred to 13-L tanks 10 to 14 days after hatching. Each tank

contained a mixed-sexed group of conspecifics of up to eight

individuals, because some species produced more hatchlings, the

number of groups and sample sizes are therefore not equal across

species. Upon reaching sexual maturity, these individuals were

weighed and then dissected (i.e. after sexual maturity, but prior to

showing signs of senescence). Sexual maturity was determined

by the presence of species-specific male coloration. All individ-

uals, juveniles and adults, were euthanized with a lethal dose of

benzocaine solution, with experimental procedures approved by

the Ethical Committee in Stockholm, Sweden (license N132/15).

BRAIN AND BODY SIZE MEASUREMENTS

Individuals were euthanized, blotted with a paper towel, and their

wet mass was recorded (precision: 1 mg; XS105, Mettler-Toledo

GmbH, Giessen, Germany). Brains were fixed inside the head for

5–7 days in 4% phosphate-buffered formaldehyde, after which

they were transferred to a phosphate-buffered saline solution and

stored until dissection. Brains were dissected and photographed

using a stereo microscope with a built-in 3 Mpixel digital camera

(Leica EZ 4HD; Leica Application Suite EZ 3.4; Leica Microsys-

tems GmbH, Wetzlar, Germany). Nerves were cut to ca. 0.3 mm

length, the spinal cord was cut posterior to medulla oblongata,

and fatty tissue, meninx, and blood vessels were removed to the

extent possible. Brains were then photographed dorsally, ven-

trally, and laterally (left and right). Photographs were calibrated

using a reference photo of a digital caliper (Absolute, Mitutoyo,

Takatsu-ku Kawasaki, Japan) set at 6.00 mm, and measurements

were taken using ImageJ 1.49 (Schneider et al. 2012). Length (L),

width (W), and height (H) of olfactory bulbs, telencephalon, optic

tectum, cerebellum, medulla oblongata, and hypothalamus were

recorded and used to calculate volumes (V) for each sub-region,

using the idealized ellipsoid model (Huber et al. 1997):

V = (L · W · H ) π /6

For olfactory bulbs, telencephalon, optic tectum, and hy-

pothalamus, the measurements of the two lobes were taken

separately and thereafter added together; while the cerebellum

and medulla oblongata were treated as single-lobed structures.

The total brain volume was calculated by summing all sub-region

volume estimates. Adult brains were blotted and weighed after

photography (precision: 0.01 mg; MT5, Mettler-Toledo GmbH,

Giessen, Germany). Correlation between brain mass and calcu-

lated total brain volume was high (r = 0.93, N = 234), but due to

the adhesive nature of some brains, which led to slight damage

and loss of tissue, we proceeded to analyze brain volume rather

than mass. Juvenile brains were not weighed.

PHYLOGENY

To control for phylogenetic non-independence, a phylogenetic

effect was added to all analyses (Freckleton et al. 2002). For

this purpose, we used a previously published time-calibrated

phylogeny (Furness et al. 2015), with an additional four species

inserted into said phylogeny (see Fig. 1). These additional species

were inserted into the phylogeny based on taxonomic information

and other published phylogenies. Specifically: Ophthalmolebias

constanciae was placed within the main Simpsonichthys clade

(Pohl et al. 2015), Nothobranchius kadleci alongside its sister

species N. furzeri (Dorn et al. 2014), Scriptaphyosemion cau-

veti and Rachovia aff. brevis (“Monteria” population)” in their

respective genera, and Millerichthys robustus was placed as a

sister species of Rivulus cylindraceus (Gonzalez-Voyer et al. in

prep). After these species were added, the tree was then pruned,

leaving the overall structure of the tree unchanged. Therefore,
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Figure 1. Phylogeny including all species for which we had samples (including species added based on previously published trees) with

bar charts showing mean relative brain sizes (residuals from a phylogenetic linear model of log-transformed brain and body size). Blue

colors refer to non-annual species, light blue for juveniles, dark blue for adults, while red colors refer to annual species, orange for

juveniles, red for adults.

the position of the additional species reflects the phylogenetic

relationships that would be recovered from a tree with complete

species sampling.

STATISTICAL ANALYSES

Relative brain-/sub-region size
To test for differences in relative brain- and sub-region size be-

tween the two life-history strategies, we fit models with absolute

brain volume (mm3; log10-transformed) as a response variable,

and the explanatory variables: log10-transformed body mass

(mean centered based on species means), life-history strategy

(“fast” and “slow”), the interaction between body mass and

life-history strategy, and sex (“female” and “male”). In addition,

species identity and phylogenetic distance were added as random

effects (Felsenstein 1985; Gelman and Hill 2007). Since the

adult allometric slopes, between brain and body size, differed

for different species (�DIC = 25.7 for adults, �DIC = 1.5

for juveniles, random slopes < equal slopes), we chose to use

random slope models. Adult and juvenile brain volumes were

analyzed separately, but the models were identically applied,

except for excluding sex as an explanatory factor in the juvenile

analysis. In both adults and juveniles, we analyzed differences in

intercepts and slopes of evolutionary static allometric slopes. As

we only had one sampling point per individual, we did not obtain

any estimates of ontogenetic slopes. In order to confirm that body

size did not differ across the fast- and slow-living killifishes,

we tested the effect of life-history strategy and sex (only for

the adult model) on log10-transformed body mass, with species
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identity and phylogenetic relationship as random effects. Further,

in the analysis above we used the classification of “annual” and

“non-annual” as a proxy for fast and slow-living species. To vali-

date our use of this proxy, we repeated the analysis (as described

above), using the scores along the dominant eigenvector from a

principal component analysis on growth rate, development time,

and reproductive rate (see Eckerström-Liedholm et al. 2019;

Sowersby et al. preprint). These scores represent indirect mea-

sures of the pace-of-life and were available for all but two species.

To analyze the relative volume of specific subregions of

the brain (i.e., log10-transformed volumes of the olfactory bulbs,

telencephalon, optic tectum, cerebellum, medulla oblongata, and

hypothalamus), we fitted one model per sub-region. Each model

contained the following explanatory variables: log10-transformed

brain volume (mean centered based on species means), life-

history strategy (“fast” or “slow”), and their interaction. Species

identity and the phylogeny were added as random effects.

All models were analyzed using the MCMCglmm package

Hadfield 2010 in R (R Core Team 2017). Fixed effects were

fitted with flat priors, while random effects were fitted with

parameter-expanded locally non-informative priors (Murphy

2007). The parameter sampling was run for 2.01M iterations

(burn-in: 10,000; thinning-interval: 2000; posterior samples:

1000). Autocorrelations between parameter estimates were

within the interval of −0.1 and 0.1 for all analyses. For all

analyses, the assumption of normally distributed residuals was

assessed using visual examination. In the results, statistics from

the Bayesian models are presented with parameter estimates (β)

followed by their 95% credibility intervals (lower bound; upper

bound), and Bayesian P-values (PMCMC).

Growth rate and brain size
We examined relative brain size under stages and conditions

where energetic investment into life-history traits were realized;

i.e. the subject fish were growing juveniles in isolation and

reproducing (i.e. sexually mature) adults in mixed-sex groups.

However, rearing density has previously been found to suppress

growth rates in fish, both in the laboratory (Ribas et al. 2017) and

in the wild (Lorenzen and Enberg 2002; Vrtílek et al. 2019) and

if body size has a stronger plastic response than brain size, this

could potentially affect relative brain size. As the fast- and slow-

living species differ in terms of growth (Sowersby et al. preprint),

it is plausible that plastic effects (suppression of growth) will

be stronger in those species with faster growth rates (Auld et al.

2010). Hence, consistent differences in relative brain size among

the fast-living and the slow-living groups could arise due to plas-

tic effects of growth changes, rather than differential energetic

budgets. To explore these options, we analyzed the relationship

between brain size and growth rate (species means, cm/day; Sow-

ersby et al. preprint) using total brain volume as a response vari-

Figure 2. Allometric slopes of log10-transformed total brain vol-

ume (mm3) (sum of all subregions) to log10-transformed body

weight (g) for adult killifish. Each data point represents an indi-

vidual, and each line represents an allometric slope for a species

calculated using separate regression models. The two life-history

strategies are represented by blue (slow) and red (fast) colors, and

the two sexes are represented by circles (females) and triangles

(males).

able in a phylogenetic generalized least squares (PGLS) model

with body mass and growth rate used as predictor variables,

using a pruned version of the phylogenetic tree described above,

with maximum likelihood estimation of λ (the strength of the

phylogenetic signal; Freckleton et al. 2002). The model was fitted

with the function pgls in the package caper (Orme 2018) in R.

Results
RELATIVE BRAIN SIZE

Contrary to our predictions, adult slow-living killifishes had

smaller relative brain volumes than fast-living species [βlife-history:

−0.0846 (−0.166; −0.0338), PMCMC = 0.014; Figure 2; Ta-

ble S8]. However, we found no difference between slow- and

fast-living species at the juvenile stage [βlife-history: 0.00368

(−0.0916; 0.114), PMCMC = 0.900; Figure 3; Table S9]. At

the adult stage, males tended to have larger relative brain sizes

than females, although this difference was not significant [βsex:

0.011 (−0.00192; 0.0254), PMCMC = 0.0820]. The evolutionary

brain-body size allometries among species were hypoallometric

(i.e. proportional brain size decreases with increasing body size)

[fast-living species, adults – βslope: 0.461 (0.329, 0.563); slow-

living species adults – βslope: 0.446 (0.327, 0.552); fast-living

species, juveniles – βslope: 0.637 (0.426; 0.812); slow-living

species, juveniles – βslope: 0.514 (0.297; 0.752)]. We found no

support for a difference in the allometric slopes between the fast-

living and the slow-living species [adults – βinteraction: −0.00693

(−0.176; 0.155), PMCMC = 0.846; juveniles – βinteraction: −0.139

(−0.382; 0.213), PMCMC = 0.496]. When we analyzed
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Figure 3. Allometric slopes of log10-transformed total brain vol-

ume (mm3) (sum of all subregions) to log10-transformed body

weight (g) for juvenile killifish. Each data point represents an in-

dividual, and each line represents an allometric slope for a species

calculated using separate regression models. The two life-history

strategies are represented by blue (slow) and red (fast) colors.

life- history as a continuous variable, rather than a dichotomous

classification, we found similar results in terms of directionality

and significance. As we did not have continuous scores for two

of the included species, we only present this analysis in the

supplementary material (Tables S8 and S9).

RELATIVE SIZE OF BRAIN SUB-REGIONS

In adults, we found no significant main effect of life-history

on the size of different brain subregions (all PMCMC > 0.11;

see Table S10–S15). However, the allometric slopes of hy-

pothalamus and optic tectum to total brain volume differed

significantly between the fast- slow-living species, being steeper

for hypothalamus [βinteraction: 0.128 (0.00427; 0.239), PMCMC =
0.038] and shallower for optic tectum [βinteraction: −0.1 (−0.147;

−0.054), PMCMC < 0.001], in slow-living species. In juveniles we

found significant effects of life-history strategy, where species

with slow life-histories had smaller olfactory bulbs [βlife-history:

−0.0655 (−0.15; −0.00878), PMCMC = 0.038], hypothalami

[βlife-history: −0.0403 (−0.0867; −0.00324), PMCMC = 0.030],

and cerebella [βlife-history: −0.0653 (−0.109; −0.00744), PMCMC

= 0.024]; summaries for all sub-regions are found in Table

S16–S21. Furthermore, we found significant interactions be-

tween life-history strategy and total brain volume on sub-region

volume for juveniles, where the slope was shallower in slow-

living species for the olfactory bulb [βinteraction: −0.319 (−0.513;

−0.0815), PMCMC = 0.014] but steeper for the cerebellum size

[βinteraction: 0.288 (0.101; 0.448), PMCMC < 0.001].

BODY SIZE

Although body size varied among killifish species, we did not

detect any significant differences in mean body size between

Figure 4. Residuals from PGLS model of species-average log10-

transformed total brain volume (mm3) (sum of all sub-regions) to

species-average log10-transformed body weight (g) of adult killi-

fish is presented on the y-axis. The species-average slope of the

growth curve (cm/day) for juvenile killifish is presented on the x-

axis. Each point represents a species. The two life-history strate-

gies are represented by blue (slow) and red (fast) colors.

the fast- and slow-living species in either adults [βlife- history:

0.139 (−0.126; 0.388), PMCMC = 0.254; Figure 2, Table S22] or

juveniles [βlife-history: 0.0281 (−0.24; 0.307), PMCMC = 0.692;

Table S23]. Overall, males were larger than females [βsex: 0.171

(0.111; 0.262), PMCMC < 0.001].

GROWTH RATE AND BRAIN SIZE

In a subsample of 17 species (see Table S24), we found a non-

significant trend (β = 3.73 ± 1.84 SE, t = 2.03, df = 14, P =
0.061, R2 = 0.781, λ = <0.01) toward juvenile somatic growth

affecting relative brain volume in adults (Fig. 4). We note that

the significance of this trend could change with increased power.

Discussion
In contrast to our predictions, we found that killifish species

with a faster pace of life-history had a larger relative brain.

However, this pattern was only observed in adults and we found

no relationship between life-history strategy and relative brain

size in juveniles. Importantly, killifishes present contrasting life-

history strategies but no significant difference in mean body size

between fast and slow-living species. Our results therefore raise

important questions about the generality of the well-supported

trade-off between the pace of life-history and brain size. Below,

we offer several adaptive and non-adaptive possible explanations

for the patterns we observed.

Similar to other fishes, killifishes display continuous, albeit

attenuating growth of both the body and brain. A previous study

on a slow-living species of killifish found that individuals from

low or high predation populations differed in their brain-body
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size allometry, with high predation populations having a steeper

brain allometry (Dunlap et al. 2019). As a consequence, the

observable effects of predation risk on relative brain size in this

species are greater in smaller-sized individuals while negligible

in larger fish. Across fishes, ranges in body size within a popu-

lation are likely to be age-structured, and hence, any difference

in brain size ontogenetic allometry has the potential to drive

divergences in adult relative brain sizes (Dunlap et al. 2019).

In contrast to slow-living species, fast-living killifishes have

similar mean egg sizes between species (Eckerström-Liedholm

et al. 2017), which suggests they have similar levels of maternal

investment. In combination with our main result that significant

differences in relative brain size between life-history strategies

only occur in adults, the similar mean egg sizes among fast-living

species leads us to speculate that these differences derive from

different slopes of ontogenetic allometry (not measured in this

study). Therefore, despite having significantly faster rates of

growth, fast-living species appear to still allocate substantial

amounts of energy to neural development.

Why do fast-living species have larger brains? Underlying

one adaptive explanation is the prediction that the evolution of

brain size involves a trade-off between the cognitive benefits and

the energetic costs (Deaner et al. 2003; Kotrschal et al. 2013).

For example, if fast-living species inhabit environments that

impose greater demands on cognitive function, a larger brain

could be adaptive provided they have the required energy budget.

Initially, we predicted that fast-living species would experience

lower demands on cognitive performance, mainly because their

temporary habitats are likely to have fewer aquatic predators

(Werner and McPeek 1994; Fraser et al. 1995). However, while

we acknowledge assumptions based on habitat differences are

speculative, previous studies have found that temporary or vari-

able environments can impose higher cognitive demands and thus

favor larger brain sizes, compared to more stable environments

(van Woerden et al. 2012; Sayol et al. 2016). For instance, within

and between species, gobies (Gobiidae) inhabiting intertidal rock

pools have higher spatial cognition and larger juvenile brain

sizes, compared to gobies from less spatially complex sandy

bottoms (Brown and White 2014; White and Brown 2014, 2015).

Similarly, pumpkinseed sunfish (Lepomis gibbosus) living in

more complex shoreline habitats have larger brains (∼8.3%) than

conspecifics living in relatively simpler open water habitat (Ax-

elrod et al. 2018). In other taxa, such as black-capped chickadees

(Poecile atricapillus), individuals from harsher environments sig-

nificantly outperform conspecifics from more benign conditions

in cognitive tasks (Roth et al. 2010). Whereas across species of

mockingbird (Mimidae), song complexity - assumed to reflect

cognitive ability - is more elaborate in species inhabiting ar-

eas where climate patterns are not that predictable, compared to

species from more stable environments (Botero et al. Botero et al.

2009). These examples give weight to the prediction that harsh,

spatially complex, and/or unpredictable environments may select

for larger brains and increased cognitive abilities across animals

(Godfrey-Smith 2002; Dukas 2004). In a similar manner, the

often-unpredictable ephemeral habitats inhabited by fast-living

killifishes could impose selection on increased cognitive ability,

yielding larger relative brain sizes in comparison to slow-living

killifish. Yet, some slow-living killifish species can migrate in

and out of temporary habitats by moving over land, where they

co-occur with fast-living species and are likewise subjected to un-

predictable environmental conditions (Furness 2016; Livingston

et al. 2018; Eckerström- Liedholm et al. Eckerström-Liedholm

et al. 2019). Additional research is hence required to determine

whether differences in relative brain size are associated to

differences in cognitive ability between the life-history groups.

Despite our predictions, fast-living species may have an

energy budget capable of producing and maintaining a large

brain. A negative association between somatic maintenance and

brain size seems evident in guppies (Poecilia reticulata), where

a larger brain size is associated with both lowered investment

into the immune system and faster rates of aging (Kotrschal

et al. 2016, Kotrschal et al. 2019). Likewise, parasitoid wasps

(Nasonia vitripennis) with larger brains age faster than parasitoid

wasps with smaller brains (van der Woude et al. 2019). Among

vertebrate taxa, fast-living killifishes have some of the highest

recorded rates of aging (Genade et al. 2005; Blažek et al. 2013;

Berois et al. 2015), which is commonly linked to decreased en-

ergetic investment into somatic maintenance (Kirkwood 1977).

Hence, if fast-living killifishes reduce energetic investment

into somatic maintenance, energy may be available for relevant

life-history traits (e.g., growth) and a larger brain. The patterns

we observed may alternatively be driven by selection for smaller

brain sizes in slow-living killifishes. As mentioned previously,

some slow-living killifish species do periodically move across

terrestrial habitats to find new water bodies (Livingston et al.

2018). Exposure to air generally increases oxygen usage (Liv-

ingston et al. 2018), therefore it is possible that these species

have specific adaptations to minimize their oxygen usage under

conditions where typical fish respiration mechanisms are inef-

ficient (e.g., on land), such as reducing the size of costly and

oxygen-demanding tissues like the brain. Comparable patterns

have been observed in birds, where migratory species have

smaller relative brain sizes, presumably as a consequence of

energetically demanding migratory behaviors (Sol et al. 2010).

Although the mechanisms we have discussed are unavoidably

speculative, there are clear arguments for both selection for

higher cognitive ability in fast-living fish, and/or selection for

tolerance to air-exposure in slow-living fish.

Possible non-adaptive explanations for brain size divergence

among killifishes arise from evolutionary processes not directly
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linked to brain size. For example, differences in brain size could

be a side effect of divergent selection on body shape, as many

slow-living killifishes tend to have a more elongated body shape,

compared to fast-living species (Sowersby et al. unpublished

data). In general, fish with more elongated bodies, such as moray

eels, tend to have smaller relative brain sizes (Bauchot et al.

2019; cf. Tsuboi et al. 2018). The head size of many slow-living

species could be smaller relative to trunk mass compared to

fast-living species, which would constrain the evolution of abso-

lute brain size and result in smaller relative brain sizes. Another

non-adaptive explanation could stem from differences in the

magnitude of plastic responses in absolute brain size and body

size (sensu Gonda et al. 2011). For example, studies on salmonid

fish have indicated that neural growth is at least partly decoupled

from somatic growth (Pankhurst and Montgomery 1994; Devlin

et al. 2012; Kotrschal et al. 2012). Rearing density has also

previously been found to suppress growth rates in both labo-

ratory (Ribas et al. 2017) and wild fish species (Lorenzen and

Enberg 2002). Preliminary analyses from a follow-up killifish

study suggests that under a 7-day food restriction period, killifish

growth in brain size is ∼3% less plastic (across ad libitum -

restricted feeding regimes) than growth in body size (Näslund

et al. unpublished data). If social conditions also reduce somatic

growth more than neural growth, such effects could potentially

explain our results and would further explain why these effects

were not found in juveniles, which were kept in social isolation.

The fact that we found a non-significant but positive correlation

between growth rate and relative brain size demonstrates some

support for this hypothesis. Lastly, we consider other possibilities

such as maternal effects unlikely to have influenced our results,

as the parent generation of all species were housed either in our

own laboratory or in very similar captive conditions.

We detected significant differences in the relative sizes of

certain brain regions in juveniles, but not in adults. Specifically,

we found that olfactory bulbs, the cerebellum, and the hypotha-

lamus were larger in fast-living species. Differences in brain

regions between juveniles of fast- and slow-living species may

have an adaptive explanation. For example, the hypothalamus is

functionally linked to the release of growth hormones (Roberts

and Savage 1978; Blanton and Specker 2007) and a larger

hypothalamus in fast-living species could facilitate faster growth.

Similarly, the olfactory bulbs and the cerebellum may be larger

in fast-living species to increase foraging ability (e.g., through

increased olfactory and motor function, respectively, Broglio

et al. 2003; Rodríguez et al. 2005), which may be required to

support fast growth rates. Our results hence suggest that the

brain regions that are likely important for rapid growth and

development in fast-living killifishes are larger compared to

slow-living species. However, these differences are only ob-

served in juveniles, which could be due to differences in growth

rates across groups being larger in the juvenile stage compared to

adults.

Differences in brain region size among fast- and slow-living

species could also be a consequence of different developmental

rates or a response to different cognitive demands at different

ontogenetic stages. Previous studies on other fish taxa have

found that relative sub-region sizes change through ontogeny.

For instance, in salmonids, the proportional size (compared to

total brain size) of the cerebellum, the olfactory bulbs, and the

telencephalon, increases through the juvenile stage, whereas

optic tectum size decreases (Näslund et al. 2012). In cyprinid

fish, interspecific differentiation increases toward adulthood

(Brandstätter and Kotrschal 1990); a contrasting pattern to our

results. In our study, adults were sacrificed when all individuals

had reached sexual maturity, as a standardized biological time

point with respect to ontogenetic development (i.e., an evolution-

ary static allometry). Juveniles on the other hand were sacrificed

before they reached sexual maturity and if fast-paced species

were closer to maturity at sampling, the brain could be more

reflective of the adult morphology.

Conclusions
Whether body size effects influence the often observed trade-off

between brain size and life-history has remained unclear. This

knowledge gap motivated our study on killifishes, which have

distinct contrasts in fast and slow life-history strategies across

species, but importantly non-significant variation in mean body

size between life-history strategies. Interestingly, we did not

find the predicted trade-off between brain size and the pace of

life-history, but rather that adults from fast-living species had

larger relative brain sizes, compared to slow-living species. In

contrast to other studies, our comparison between these fast and

slow life-history strategies was not confounded to a great extent

by body size effects. Our results hence provide some challenge to

the generality of the link between brain size and investment into

costly life-history traits. In order to test the wider implications

of our results, we recommend that future studies should aim

to assess the relationship between the pace of life-history and

relative brain size in carefully selected mammal and bird systems

in which there are non-significant or minimal differences in

mean body size across species. Finally, assays on cognitive

abilities and physiology will be necessary to assess why a fast

pace-of-life can result in larger relative brain size.
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