
Vol.:(0123456789)
1 3

https://doi.org/10.1007/s11104-021-05038-0

REGULAR ARTICLE

Forest management to increase carbon sequestration 
in boreal Pinus sylvestris forests

Karolina Jörgensen   · Gustaf Granath   · 
Björn D. Lindahl   · Joachim Strengbom   

Received: 8 April 2021 / Accepted: 4 June 2021 
© The Author(s) 2021

Fertilization of thinned stands increased stocks sim-
ilarly regardless of including (11%) or excluding 
(12%) removed biomass, and fertilization combined 
with abstention from thinning had a synergistic effect 
on C stocks that generated an increase of 79% (35% 
when removed timber was included in the C stock). 
A positive effect of fertilization on C stocks was 
observed along the entire gradient but was greater 
in relative terms at high latitudes. Fertilization also 
reduced soil respiration rates.
Conclusion Taken together, our results suggest that 
changed forest management practices have major 
potential to increase the C sink of boreal forests. 
Although promising, these benefits should be evalu-
ated against the undesired effects that such manage-
ment can have on economic revenue, timber quality, 
biodiversity and delivery of other ecosystem services.

Keywords Forestry · Fertilization · Thinning · 
Climate mitigation · Latitudinal gradient · Nitrogen

Introduction

The goal of net zero emissions of carbon dioxide 
 (CO2) by 2055 calls for drastically decreased emis-
sions of greenhouse gasses, but also measures that 
increase removal of carbon (C) from the atmosphere 
(IPCC 2018). Forests are important global C sinks 
that annually sequester an estimated 2.4 Gt of C from 
the atmosphere (Pan et al. 2011), and thereby pivotal 
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components of “natural climate solutions” (Canadell 
and Raupach 2008; Griscom et  al. 2017). Recently, 
global afforestation to counter historical deforesta-
tion has been promoted as a possible means to miti-
gate climate change (Bastin et al. 2019), but mitiga-
tion can also be achieved by changed silvicultural 
practices (Canadell and Raupach 2008; Griscom 
et al. 2017). Since the capacity of forests to bind C is 
linked to stand dynamics and soil fertility, which can 
both be manipulated by directed management (Mag-
nani et al. 2007; Tamm 1991), optimization of forest 
management towards increased C sequestration might 
be an important measure to reach net zero emissions 
within the next couple of decades.

The boreal forest is one of the largest terrestrial 
biomes, and about two thirds of the area is managed 
in some way (Gauthier et  al. 2015). Young, actively 
growing trees in plantations have a major potential to 
store C in newly formed wood (Bastin et al. 2019). In 
addition, a combination of low temperature, recalci-
trant litter and competitive inhibition of decomposers 
leads to accumulation of a purely organic O-horizon 
clearly separated from, and overlying, the mineral soil 
(hereafter: organic horizon) (Berg and McClaugh-
erty 2014; Steidinger et  al. 2019; Tamm 1991).The 
organic horizon, which is characteristic of boreal 
forests and sometimes referred to as the “mor layer”, 
consist of both litter- and root-derived C (Clem-
mensen et  al. 2013) and constitutes a significant 
store of C (Pan et  al. 2011; DeLuca and  Boisvenue 
2012). The C stock of the organic horizon is relatively 
dynamic and possible to manipulate into increased C 
sequestration within decades (Moldan et  al. 2006), 
whereas the around two thirds of the total soil organic 
C (SOC) that is stored in the mineral soil (Nilsson 
et al. 2017) are relatively stable (Rumpel et al. 2002; 
Schulze et al. 2009).

Most forests in Fennoscandia are intensely man-
aged for biomass production, and thinning is a com-
monly used practice to improve timber quality and 
increase economical revenue during a forestry rota-
tion period (Royal Swedish Academy of Agricul-
ture and Forestry 2015). In essence, thinning shifts 
stand structure from many trees with low individual 
biomass towards fewer but larger trees by reducing 
competition and should not, at least theoretically, 
have a major effect on long-term C accumulation. 
This process occurs also without active management, 
as outcompeted trees die (i.e. self-thinning), but to a 

lesser extent than during active thinning operations 
(Westoby 1984). Nevertheless, thinning always has 
momentary negative effects on the standing biomass, 
and commonly results in lower standing biomass 
compared to when forests are left for self-thinning 
(Bergh et al. 2014). Despite that thinning reduces tree 
biomass, and presumably also C input into the soil, 
thinning effects on soil C stocks have appeared to be 
minor (Mayer et  al. 2020). However, when evaluat-
ing over-all effects of thinning on long-term C accu-
mulation, both standing biomass and soil, as well as 
C potentially stored in removed timber have to be 
included.

Although not as common as thinning, nitrogen (N) 
fertilization is a management alternative that can pro-
mote net C uptake in trees due to strong N limitation 
in most forests (Högberg et al. 2017; Hyvönen et al. 
2008; Tamm 1991; Vitousek and Howarth 1991). 
Increased N input, through atmospheric deposition 
or fertilization, can also promote C sequestration in 
the organic horizon (Magnani et  al. 2007; Hyvönen 
et  al. 2008; de Vries et  al. 2009; Maaroufi et  al. 
2015; Tipping et al. 2017). Fertilization can promote 
belowground C sequestration by stimulating inputs, 
but also by reducing decomposition (Janssens et  al. 
2010). This can be achieved either via changes in 
composition and activity of decomposer communities 
(Entwistle et al. 2017), or by interference with myc-
orrhizal symbiosis (Baskaran et  al. 2017). However, 
as extensive thinning may decrease photosynthesis 
and C fluxes to biomass and soils, and thereby reduce 
the potential of fertilization to stimulate C sequestra-
tion, interactive effects between thinning practices 
and fertilization are likely and potentially impor-
tant when guiding management towards increased C 
sequestration.

Increased N input can shift nutrient stoichiometry 
towards higher N:P ratios, which may lead to phos-
phorus (P) limitation and impaired growth, at least 
in more nutrient rich, temperate systems (Braun 
et  al. 2010). Twenty years of N additions increased 
the N:P ratio in Picea abies needles, but not to such 
extent that growth was reduced, with no indication 
of P limitation (Palmqvist et al. 2020). On the other 
hand, Hyvönen et  al. (2008) observed lower N use 
efficiency on tree growth in forests fertilized with N 
only compared to combined N, P and potassium (K) 
fertilization.
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Although there is a prospect to manage boreal 
forests towards improved  CO2 withdrawal through 
thinning and fertilization, C sequestration is not the 
only ecosystem service that boreal forests provide. 
For example, production of high quality saw-timber 
may not always go hand in hand with maximized 
biomass production and C sequestration, and forest 
management often interacts and/or interferes with 
a number of other ecosystem properties with poten-
tially conflicting goals (Strengbom et  al. 2018). 
Leaching of nutrients, both during and after the for-
est rotation period, is of particular concern. Although 
boreal forests are strongly N limited (Högberg et  al. 
2017), additions of N may render them N saturated 
and cause leaching and eutrophication of water (Aber 
et al. 1989). There is also a major risk that forest thin-
ning and fertilization operations lead to losses of bio-
diversity (Strengbom and Nordin 2008).

Here, we used a 40-year field trial that studied 
interactive effects of fertilization (N and P) and thin-
ning across a boreal latitudinal gradient in Sweden 
to estimate the potential of managing boreal Scots 
pine (Pinus sylvestris) dominated forests towards 
increased C sequestration. We aimed to assess effects 
on C accumulation in standing tree biomass and the 
organic horizon, as well as in timber removed dur-
ing thinning operations. To explore the mechanisms 
behind changes in belowground C stocks, we investi-
gated the balance between C losses in the form of soil 
respiration and C inputs based on tree productivity. 
We also measured levels of inorganic N (nitrate and 
ammonium) in the soil.

Material and methods

Experimental design and tree monitoring

We used 29 Scots pine (Pinus sylvestris L.) dominated 
forest stands (percent pine of total stem volume: min 
84%, median 100%) from a long-term thinning and fer-
tilization experiment established along a 1300 km lati-
tudinal gradient (56–67°N) in Sweden. The experiment 
was initiated between 1969 and 1982, when the sites 
were at canopy closure, i.e. at the time when opera-
tional thinning would be performed according to stand-
ard silvicultural practice. Depending on latitude, this 
occurred when the stands were between 32 and 54 years 

old. At the time of our field campaign in 2016, the 
stands were between 65–99 years old. The experimen-
tal plot net size was typically 25 × 40 m (0.1 ha) with 
a surrounding buffer zone of 10  m, and we sampled 
four treatments at each of the 29 sites: “no thinning”, 
“thinning”, “thinning + N” and “thinning + N + P”. At 
nine sites distributed along the gradient, an additional 
treatment of “no thinning + N” was also sampled, mak-
ing the total number of plots 125. Thinning operations 
occurred one to four times during the experimental 
period (Supplementary table 1), with the first thinning 
conducted when the trees were between 12 and 16 m 
high. Due to variation in initial basal area, the inten-
sity of the initial thinning varied among sites, but cor-
responded on average to a 20–25% reduction in basal 
area. Subsequent thinning aimed to keep the basal area 
constant over time at around 18  m2  ha−1 (Nilsson et al. 
2010). Since the aim of the thinning was to achieve an 
even spatial distribution of healthy residual stems, trees 
with low vitality and severe damage were removed at 
the time of thinning as well as other species than pine. 
Only stems were removed, and tops and branches 
(including needles) were left in the plots. Nitrogen 
was added as ammonium nitrate  (NH4NO3) at a rate of 
100–150 kg N  ha−1 every  5th year for the first 25 years, 
and thereafter every  7th year. Phosphorus was added as 
superphosphate (CaSO4 + Ca(H2PO4)3) correspond-
ing to 100 kg P  ha−1 at the initiation of the experiment, 
and thereafter the same dose every 20–21  years. The 
experimental set-up is described in more detail in Nils-
son et al. (2010) and Bergh et al. (2014), as well as in 
Supplementary table 1.

All trees within the plots were individually marked, 
and measured (height and diameter at breast height) at 
the initiation of the experiment as well as at the end of 
the study period. The diameter of trees removed during 
thinning, or by accidental windfalls, were measured at 
five or six occasions over the experimental period.

Sampling and chemical analyses of the organic 
horizon

All stands in the study had podzol soils with an 
organic horizon thickness ranging 2.5 to 11.7  cm 
(average: 5.9 cm), which had a C:N ratio of 25.2–62.8 
(average: 40.6), and a pH of 3.3–4.6 (average: 3.7). In 
July 2016, we sampled the organic horizon (O-hori-
zon) at 26 of the sites by pooling 25 soil cores (3 cm 
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in diameter) collected in a grid pattern across each 
0.1  ha plot. Due to logistic problems, 3 sites were 
sampled during the same period the following year. 
Living plants and litter (equivalent to the Oi horizon, 
commonly accounting for less than 5% of the C in 
the organic horizon (Sterkenburg et  al. 2018)) were 
removed from the soil surface before sampling. The 
underlying mineral soil layer was removed together 
with larger roots (> 2 mm), and the organic horizon 
(Oe and Oa) of the 25 cores was pooled into a sin-
gle composite sample per plot. The transition from 
organic horizon to mineral soil was generally sharp, 
but in cases where the transition was more gradual 
we chose to include the uppermost part of the mineral 
soil together with the organic horizon rather than dis-
carding parts of the organic horizon. The soil samples 
were put in a cooler and frozen (-20 ºC) within 48 h.

Organic matter concentration (OM), mineral N 
availability, and C and N concentration in the organic 
horizon were determined from subsamples after 
homogenization of the frozen composite sample. 
OM content was determined by accounting for water 
content (drying at 105 º for 24 h). A subsample was 
freeze-dried and finely ground in a ball mill before 
determination of C and N concentration in 0.4  g of 
soil in a combustion elemental analyzer (TruMac 
CN, LECO, Saint Joseph, MI, USA). Ammonium 
 (NH4

+-N) and nitrate  (NO3
−-N) concentrations were 

analyzed from extracts with a 1:2.5 mass ratio of 
freshly frozen soil and 2 M KCl in an Autoanalyzer 
(BRAN-LUEBBE XY-2 Sampler, SEAL Analytical 
Inc., Australia) and scaled to mg N  m−2 (sampled soil 
dry weight × inorganic-N concentration, divided by 
the area of the 25 sampling cores).

Carbon stocks

The organic C stock of the organic horizon was cal-
culated as soil dry weight (DW) × C concentration, 
and scaled up to tonnes (t)  ha−1 based on the added 
area of the 25 sampling cores. Biomass of trees was 
estimated using allometric functions based on plot 
average tree stem diameter and height (Marklund 
1988) (Supplementary Material and Method) for 
Scots pine, Norway spruce and birch (as a proxy 
for all deciduous trees) multiplied by the num-
ber of trees. For biomass of trees removed dur-
ing thinning, the height of the trees was estimated 

(Laasasenaho 1982) before using the allometric 
functions. For belowground biomass of the trees, 
we used the allometric functions developed by 
Petersson and Ståhl (2006). Our allometric func-
tions provided biomass estimates of wood, branches 
and needles, stump and coarse roots (> 2 mm). The 
fine root biomass (< 2  mm) was included as part 
of the organic horizon pool. The above allometric 
functions have been shown to be very robust along 
latitudinal and fertility (i.e., stand index) gradients 
in Sweden. Marklund (1988) reported only margin-
ally improved predictability when adding one of 
these predictors. For example, the  R2 value of the 
pine stump model increased from 0.972 to 0.978 
when including latitude as a predictor. Hence, our 
biomass estimates should not be biased across the 
latitudinal gradient or treatments, with the caution-
ary note that the allometric functions have not been 
tested for highly fertilized trees.

We estimated C stocks in standing and removed 
biomass by assuming a 50% C-content (Neumann 
et  al. 2016). In the ecosystem calculations, we 
included C stock in trees (including coarse roots) 
and in the organic horizon but assumed no changes 
in C stocks in the mineral soil and shrub layer. 
Changes in C stocks in response to management 
were calculated in two different ways. In the first 
approach, we only considered C that was stored at 
site, i.e. in standing biomass, roots and organic hori-
zon. In an alternative approach, we also included C 
in wood removed during thinnings, which poten-
tially may be stored outside the forest, in timber or 
forestry products. In reality, the degree and dura-
bility of C storage in removed wood depend on its 
subsequent fate. A proper life cycle analysis (LCA) 
was outside the scope of this study, and our two 
approaches can be interpreted as boundary esti-
mates. However, assuming a 30–46-24% distribu-
tion of harvested biomass between wood products, 
paper/pulp and fuel for energy production, respec-
tively (Lundmark et  al. 2014), and an average half 
time of 30 years for C in wood products and 2 years 
for C in paper/pulp or fuelwood (IPCC 2006), the 
expected half-time of C stored in forest products 
can be estimated to around 10 years.
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Soil respiration

Soil  CO2 flux  (Rs) measurements were recorded in 
2017 on rain-free days between June  29th and July 
 29th in all treatments except “thinning + NP”, sum-
ming up to 96 measured plots. We measured soil  Rs 
from south to north to track phenological advance-
ment of the vegetation, so that all sites were measured 
at a similar phenological stage. In each plot, we meas-
ured  Rs at ten evenly distributed positions, distanced 
at least 0.5 m from the plot edge and from the nearest 
tree. Based on a pilot power analysis on  Rs measure-
ments from 20 locations within a 0.1 ha plot, similar 
to the experimental sites, we concluded that ten sam-
ples would be sufficient to detect a 15% change in  Rs 
from 100 mg C  m−2  h−1.

Rs was measured in a closed chamber constructed 
by a PVC collar (diameter = 30 cm, height = 14.5 cm, 
internal volume = 10.2  dm3). To minimize the influ-
ence of aboveground plant respiration, we removed 
all living ground vegetation before gently pushing the 
chamber 0–1  cm into the soil.  Rs was estimated by 
use of a portable soil respiration chamber and a port-
able infrared  CO2 gas analyzer (Vaisala GMP343). 
 CO2 concentration was recorded at 15-s intervals 
during 3 min. To calculate  CO2 exchange rate, we fit-
ted a quadratic relationship between  CO2 and time, 
where the linear term is the estimated exchange rate. 
A quadratic model gives a more accurate exchange 
rate (Kutzbach et al. 2007), and during field measure-
ments, we noticed that the increase in  CO2 concentra-
tion levelled off with time.  Rs was calculated on an 
area basis (mg C  m−2   h−1) accounting for chamber 
temperature and volume according to standard equa-
tions (Kutzbach et al. 2007).

After each  Rs measurement, we recorded soil 
water content (WC) and soil temperature within the 
collar. We measured WC with a soil moisture sensor 
(Meter GS3 probe with a Pro-check reader) and used 
the mean value of four recordings. To measure soil 
temperature, a digital lab thermometer (TFA LT-101) 
was inserted into the organic soil layer and left for 
one minute before recording the temperature.

Statistical analysis

To test the effect of treatments and environmen-
tal variables on response variables, we used linear 
mixed models (LMM) in the lme4 package  (Bates 

et  al. 2015)  of R 3.5 (R Core Team 2018). Thin-
ning was included as a fixed factor, while N appli-
cation was included as a continuous variable cor-
responding to the accumulated N load at the time 
of the field sampling, to account for variation in N 
load between sites. To make interpretation easier, N 
application was standardized by the mean N appli-
cation. Thus, one unit change in N application (i.e. 
the effect size in our models) corresponded to the 
mean N application (881  kg   ha−1) and the stand-
ardized range (0.6 – 1.7) corresponded to an actual 
range of (500 – 1200 kg  ha−1). We included P addi-
tion as a factor (not for the  Rs model), but as this 
treatment always was applied in combination with 
the N and thinning treatments, its additive effect 
was modelled in combination with these treat-
ments. To assess if the effect of the management 
regimes changed across the latitudinal gradient, 
we ran models where we included the interactive 
effect of treatment and latitude. Site was included 
as a random factor, and for the  Rs model, treat-
ment plot was added as an additional random fac-
tor nested under site to account for multiple samples 
within a plot.  Rs is modified by soil temperature and 
moisture  (Davidson et  al. 1998), and we therefore 
included these variables as covariates to control 
for local effects. As expected, these variables had 
an influence on  Rs, but due to a technical failure, 
soil water content was not recorded at two sites. To 
be able to include these sites in the full model, we 
employed an imputation method implemented in the 
R package amelia (Honaker et al. 2011), which cre-
ates many data sets with imputations, run individual 
models, and finally average these models to account 
for extra variation due to imputation. Given the high 
replication, we calculated effect-size uncertain-
ties (95% confidence interval) and P-values based 
on Wald statistic. Residuals were visually checked 
for homogeneity and normality. The residual vari-
ance of the  Rs model increased with  Rs, wherefore 
 Rs was log-transformed. We also plotted the soil 
temperature at the time of  Rs measurement against 
latitude to evaluate if there were any systematic dif-
ferences in temperature across the latitudinal tran-
sect (Supplementary Fig. 1). Tables were produced 
using the sjPlot package (ver 2.6.2) (Lüdecke 2018). 
Treatment effects are evaluated relative to thinning 
without fertilization, which is the standard silvicul-
tural practice in Swedish forestry.
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Results

First we only considered C stored at the site, as a 
boundary estimate that assumes that all C in removed 
biomass is rapidly returned to the atmosphere. Fer-
tilization combined with abstention from thinning 
increased the C stock by 90 t C  ha−1 (CI: 80–100) 
(+ 79%) over a 40-year period, compared to the 
standard practice of thinning without fertilization 
(Fig. 1a, Supplementary table 2). A major fraction of 
the increased sequestration (84 t C  ha−1, CI: 74–93) 
occurred through increased production and retention 
of standing biomass, while increased C storage in 
the organic horizon accounted for a smaller propor-
tion (6 t C  ha−1, CI: 3–9). Abstaining from thinning 
alone increased the total C stock by 57 t C  ha−1 (CI: 
50–64) (+ 50%) but had no significant effect on soil 
C. Both biomass production and organic horizon C 
storage were stimulated by N additions. The increase 
was most pronounced when fertilization and absten-
tion from thinning were combined, as indicated by 
a significant interaction effect. Repeated N fertiliza-
tion, on average 881 (500 – 1200) kg N  ha−1 over 
the 40 year period, increased the ecosystem C stock 
by 12 t C  ha−1 (CI: 5–19) (+ 11%) in thinned stands, 
and by 33 t C  ha−1 (CI: 23–42) (+ 19%) without thin-
ning (Fig. 1c). Complementation of the N fertilization 
with P had no effect on tree growth, but increased the 
organic horizon C stock in thinned stands by 3 t C 
 ha−1 (CI: 1–5) relative to N fertilization only (Fig. 1a, 
Supplementary table 2).

In a second scenario, we included the C that had 
been removed from the stands during thinning in the 
total C stocks, as a boundary case where all removed 
C was assumed to remain sequestered in stored wood 
and forest products (Fig. 1c, Supplementary table 2). 
Fertilization combined with abstention from thinning 
then increased the C stock by 53 t  ha−1 (CI: 45–61) 
(+ 35%) compared to the standard practice of thin-
ning without fertilization. Inclusion of the C storage 
in thinned timber did not eliminate the positive effect 
of abstention from thinning, indicating that total pro-
duction was higher in stands left without thinning. 
Furthermore, the positive effect of fertilization on C 
sequestration was again higher without thinning com-
pared to thinned stands.

When we modelled the potential of changed 
management regimes across latitudes, we found 
that the positive effect of N addition on above- and 

below-ground C sequestration was highest in the 
low-productive ecosystems in the northern parts 
of the boreal zone (Fig.  2, Supplementary table  3). 
The interaction between latitude and thinning was 
associated with a large uncertainty (Organic hori-
zon: P = 0.69, Net tree production: P = 0.13). For 
simplicity and robustness of the model, we therefore 
removed this interaction term from the model.

The combination of fertilization and abstention 
from thinning decreased soil respiration by 19% (CI: 
5–31) compared to the unfertilized, thinned stands 
(Fig. 3, Supplementary table 4). The other treatments 
had no significant effect. Within treatments, soil C 
stocks were not positively linked to tree growth; in 
fact, there was a marginally significant negative cor-
relation (Fig. 4, Supplementary table 5). Latitude had 
no influence on soil respiration (P = 0.85) and was 
excluded from the model.

Mineral N levels were slightly elevated, although 
not statistically significant, after N fertilization. This 
increase was entirely ascribed to ammonium, whereas 
the contribution of nitrate was low and generally 
close to the detection limit (Fig.  5, Supplementary 
table 6).

Discussion

Compared to the standard silvicultural practice of 
thinning, both abstention from thinning and fertiliza-
tion had a major influence on C accumulation in Scots 
pine forests. While the main purpose of thinning in 
forestry is to increase timber quality and provide early 
economic revenue during a forest rotation cycle, thin-
ning may also reduce competition for nutrients and 
light, which in turn is expected to increase growth 
of the remaining trees (Royal Swedish Academy 
of Agriculture and Forestry 2015). Here, thinning 
reduced over-all C accumulation in stands irrespec-
tive of whether C in harvested timber was included 
or not. This result is in accordance with other thin-
ning trials in boreal Fennoscandian (Mäkinen and 
Isomäki 2004), Mediterranean (Bravo-Oviedo et  al. 
2015), Central European (Seidl et  al. 2007), and 
temperate regions of central North America (Powers 
et al. 2011). Without fertilization, we found no effect 
of thinning on the C stock in the organic horizon. 
Similarly, a meta-analysis concluded that, although 
thinning commonly reduces litter input in coniferous 
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forests, the effects on the soil C stock are often small 
(Zhang et al. 2018).

The strong positive effect of fertilization on tree 
growth confirms earlier findings from boreal forests 
(Bergh et  al. 2014; Högberg et  al. 2017; Hyvönen 
et  al. 2008; Tamm 1991; Valinger et  al. 2000). The 
stimulation of C sequestration in trees was, however, 
not large enough to compensate for C losses during 

thinning. Similarly, Valinger et al. (2000) found that C 
stocks in thinned stands matched those in self-thinned 
stands only under moderate thinning intensities, even 
when productivity was boosted by fertilization. The C 
sink in tree biomass was also more responsive to fer-
tilization without thinning, presumably as the larger 
standing biomass and larger leaf area could exploit 
more of the additional N to increase productivity.

Fig. 1  Effects of different management scenarios on C stocks 
(trees, organic horizon), C removed by thinning, and total 
ecosystem C gain. (a) Tree and organic horizon C stocks in 
stands subjected to the standard silvicultural practice of thin-
ning and the effect of different alternative management sce-
narios, applied over a period of 40 years. (b) C removed dur-
ing thinning operations. (c) Ecosystem C stocks under different 
management scenarios and associated effects on net C seques-
tration (numbers beside the points). Red symbols represent 

total C stocks that includes removed thinned wood, and black 
symbols represent standing C stocks without removed wood. 
Dashed lines show the standard silvicultural practice of thin-
ning without fertilization. Points represent adjusted means and 
numbers in parentheses (a) and error bars (b, c) represent 95% 
confidence intervals. The average N application corresponds to 
881 kg  ha−1 applied over circa 40 years. See table S2 for sta-
tistics
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The observed increases in organic horizon C 
stocks after nutrient addition are in line with previous 
studies (Hyvönen et  al. 2008; Janssens et  al. 2010; 
Maaroufi et  al. 2015). Although the belowground C 
sink was much smaller than sequestration in tree bio-
mass, changes may still be more important from a cli-
mate mitigation perspective, as they can be assumed 
to represent a more stable and long-lasting form of C 
sequestration (Kyaschenko et al. 2019; Rumpel et al. 
2002; Schulze et  al. 2009). Nevertheless, the long-
term stability of the soil C sink induced by fertiliza-
tion remains an open question.

The observed decrease in respiration following 
fertilization (Fig. 3) and the increase in the organic 
horizon C stock (Fig.  1a) indicate decreased rates 

of decomposition, corroborating previous stud-
ies (Janssens et  al. 2010; Maaroufi et  al. 2015; 
Zak et  al. 2008). If anything, soil C stocks corre-
lated negatively with tree productivity within treat-
ments (Fig. 4), supporting the idea that variation in 
C input has marginal influence on belowground C 
accumulation (Lajtha et al. 2018; Terrer et al. 2021). 
Rather, variation in decomposition rates (Janssens 
et al. 2010; Kyaschenko et al. 2017b; Stendahl et al. 
2017), in particular of root derived C (Clemmensen 
et al. 2013; Kyaschenko et al. 2019) seems to play 
a dominant role in regulating the below-ground C 
pool. Increased N availability after fertilization 
may decrease the need for microbial exploitation 
of organic stocks for nutrients, leading to decreased 

Fig. 2  C stocks in (a) trees (including C removed by thin-
ning) and (c) organic horizon, and model estimates of treat-
ment effects on (b) tree net C uptake, and (d) organic horizon 
C accumulation. Colors represent different management sce-

narios and their effects compared to the standard silvicultural 
practice of commercial thinning without fertilization, indicated 
in black. See Supplementary table S3 for statistics
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decomposition (Entwistle et  al. 2018; Terrer et  al. 
2021). In boreal forests, ectomycorrhizal fungi 
have been proposed to regulate belowground C 
accumulation through their mining (i.e. decompo-
sition) of organic matter for N (Clemmensen et  al. 

2013; Lindahl and Tunlid 2015; Sterkenburg et  al. 
2018). Negative effects of fertilization on mycor-
rhizal fungi specialized in exploitation of organic 
nutrients (Baskaran et  al. 2017) may shift both 
functioning and composition of fungal communities 
(Högberg et  al. 2010; Lilleskov et  al. 2002; Maar-
oufi et al. 2019). However, we observed no decrease 
in respiration after fertilization of thinned stands, 
which is in agreement with the lower C accumula-
tion observed in these stands. Potentially, thinning 
increases availability of high C:N substrates in the 
form of dead roots as well as branches and needles 
left in the plot, which may maintain C supply and 
N limitation of the decomposer community. Thus, 
similarly to aboveground responses, the positive 
effect of fertilization on below-ground C sequestra-
tion was highest in the absence of thinning.

Surprisingly, supplementation of N fertiliza-
tion with additional P increased organic horizon C 
sequestration even further (Fig. 1a). We do not have 
respiration data for the plots supplemented with P, 
but we speculate that the higher C stock is a result 
of further reduced decomposition. When N limita-
tion is alleviated by fertilization, P may become a 
limiting factor (Aber et al. 1989; Braun et al. 2010) 
that could stimulate microbial decomposers to mine 
P from organic matter (Forstner et al. 2019; Widdig 

Fig. 3  Model estimates of treatment effects on soil respira-
tion, calculated on a per area  (Rs) basis, are adjusted for vari-
ation in soil temperature and water content. Effects are related 
to the standard silvicultural practice of thinning without ferti-
lization. Bars indicate 95% confidence intervals. See Supple-
mentary  table  S4 for statistics and Supplementary file 3 for 
estimates

Fig. 4  Relationship 
between soil C stocks 
and tree productivity (t 
 yr−1  ha−1) within different 
treatments. See Supplemen-
tary table S5 for statistics
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et  al. 2019). However, (Forsmark et  al. 2020) did 
not find any evidence for that higher microbial P 
mobilization in response to N enrichment would 
affect soil C storage.

A potential problem with adaptation of forest 
management to increase soil C stocks is the possibil-
ity that a substantial part of the accumulated soil C 
stock may be lost after clear-felling (James and Har-
rison 2016; Nave et  al. 2010). Soil temperature and 
moisture are key factors controlling decomposition 
rates (Swift et  al. 1979), and clear-felling influence 
both (Jansson 1987), with a risk of destabilization of 
soil C. Below-ground C stocks also depend on plant-
soil feedbacks and are expected to be sensitive to the 
removal of mycorrhizal trees at harvest (Kyaschenko 
et  al. 2017a). However, whether loss of mycorrhizal 
activity stabilize or destabilize the organic matter, 
remains unresolved (Frey 2019; Sterkenburg et  al. 
2018).

N fertilization affected C sequestration at all lati-
tudes, but the marginal effect of additional N supply 
was larger at higher latitudes (Fig.  2). Nutritional 
constraints on C cycling may be stronger at higher 
latitudes, with nutrients locked up in recalcitrant 
organic pools and mycorrhizal interactions playing a 
central role in organic matter dynamics (Clemmensen 
et  al. 2013; Lindahl and Tunlid 2015). Fertilization 
may reduce the impetus for mycorrhiza-driven exploi-
tation of organic nitrogen and associated organic 
matter oxidation (Bödeker et  al. 2014). In addition, 

anthropogenic N-deposition at the southern sites has 
altered soil C:N ratios, which may lower effects of 
additional nutrient enrichment at the southern sites in 
our experiment (Van Sundert et al. 2018).

Taken together, our results support previous find-
ings and demonstrate that changed management 
can promote C sequestration, achieving significant 
gains within decades and, potentially, contribute 
towards the zero net-emission goal. We identified 
abstention from commercial thinning combined 
with fertilization as a particularly efficient way to 
increase C sequestration. Such management seems 
to have great potential as a “natural solution” to 
counter climate change. The effect of management 
on C stocks differed substantially depending on 
whether the C in harvested timber was included or 
not (Fig.  1). This highlights the importance of the 
downstream use of extracted biomass (Baul et  al. 
2017), i.e. if the removed wood is used primarily in 
products with a long residence time, or to produce 
short-lived products, such as paper. A rough calcu-
lation estimates that C in harvested biomass returns 
to the atmosphere after, on average, 10  years, but 
substitution of fossil fuels may add further to cli-
mate change mitigation. A proper LCA is needed 
to fully assess the climate change mitigation poten-
tial of forestry, a task that, however, goes beyond 
the scope of this paper. In this study, we have only 
examined the effects on C stocks in the system, 
without considering the C-cost of implementing 

Fig. 5  Treatment effects on extractable a) ammonium and b) nitrate in the organic horizon. Bars indicate 95% confidence intervals. 
See Supplementary table S6 for statistics
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the different management options. However, LCAs 
on the production of  NH4NO3 as a fertilizer in agri-
culture estimated the C footprint to circa 1.7 kg C 
kg  N−1 (6.2  CO2 eq.), which would amount to circa 
1.5 t C  ha−1 in our study (Skowrońska and Filipek 
2014), thus having a rather small impact on the net 
C accumulation.

Due to their strong N limitation, boreal forests 
have high capacity to retain external N input (Bin-
kley and Högberg 2016; Kjønaas and Wright 2007; 
Näsholm et  al. 2013). However, at some point of 
N input the N retention capacity will be saturated, 
resulting in increased nitrification and the risks of 
gaseous or leaching losses of N, with subsequent 
increased risk of eutrophication of neighboring eco-
systems (Aber et  al. 1989). The high mobility of 
nitrate in soils makes nitrification especially prob-
lematic, but the high N retention of boreal forests 
likely makes them resistant to high rates of N input 
(Ring et al. 2011). Although we observed somewhat 
elevated ammonium concentrations in the fertilized 
plots, nitrate levels were generally below the detec-
tion limit (Fig. 5). Thus, we suspect that most of the 
fertilizer applied during the 40-year experimental 
period (500 – 1200 kg N  ha−1) was retained in soil 
and biomass, and that the experimental sites remain 
below N saturation.

Although promising, management alterations to 
increase C sequestration should be evaluated against 
trade-offs in the delivery of other ecosystem services 
provided by boreal forest. For example, there is a risk 
that forestry directed towards increased C sequestra-
tion, via fertilization and abstention from commer-
cial thinning, leads to biodiversity loss (Allison et al. 
2007; Strengbom et  al. 2011), as well as reduced 
delivery of other ecosystem services, such as produc-
tion of wild berries and reindeer fodder (Strengbom 
et  al. 2018). However, the net loss of such services 
can probably be reduced if C-oriented management 
is constrained to secondary forests, exposed to clear-
cut forestry, which presumably have already lost large 
parts of their original values.
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