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Abstract: With the rapid population growth, there is an urgent need for innovative crop improvement
approaches to meet the increasing demand for food. Classical crop improvement approaches involve,
however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based
approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9
system for gene editing has made advances in the efficient targeted modification in many crops
for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA
interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop
improvement by permitting the downregulation of gene expression by small molecules of interfering
RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered
regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas)
have appeared prominently as a powerful tool for precise targeted modification of nearly all crops’
genome sequences to generate variation and accelerate breeding efforts. In this regard, the review
highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful tech-
nologies to improve agronomically important plants to enhance crop yields and increase tolerance to
environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in
view of global food security and sustainable agriculture.

Keywords: crop; CRISPR/Cas9; resistance; RNA interference; stress

1. Introduction

Food plays a vital role in the existence of human life on earth. With a rapidly growing
population, it is, however, very difficult to fulfill the increasing demand for food globally
by using traditional methods of crop improvement. People are making continuous efforts
to improve crop yield, nutrient content, and to make disease-resistant crops by using
conventional methods of crop improvement. Unfortunately, these plant breeding methods
are not viable with the current needs of a fast-growing population as these approaches are
laborious and time-consuming.

It has been evaluated that by the year 2050, there is an urgent need for increasing
food production by 70% to feed the expanding population globally [1]. At present, a
range of approaches such as crossbreeding, transgenic breeding and mutation breeding
are in practice for the production of genotypes that are disease-resistant and resilient to
climate change and other stresses. However, crossbreeding and mutation breeding are
untargeted breeding methods with really backbreaking processes, while the production and
commercialization process of the genotypes produced also faces many limitations, whereas

Plants 2021, 10, 1914. https://doi.org/10.3390/plants10091914 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-6500-4139
https://orcid.org/0000-0002-1739-7206
https://doi.org/10.3390/plants10091914
https://doi.org/10.3390/plants10091914
https://doi.org/10.3390/plants10091914
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10091914
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants10091914?type=check_update&version=1


Plants 2021, 10, 1914 2 of 31

in the case of transgenic breeding, apart from the long and costly commercialization process,
genetically modified crops also encounter the challenge of public acceptance [2].

Recently, many advances have been made in the RNA-based gene regulation approach,
i.e., RNA interference (RNAi), a gene regulatory tool that has been significantly diversified
for crop improvement by modifying the expression of the gene for better trait quality
with fewer biosafety issues as an expression of the transgene that is absent in transgenic
lines. RNAi is a gene silencing phenomenon, which can be employed for the assessment of
gene function, plant metabolic engineering, and in the development of stress-tolerant and
disease-resistant crops [3].

Over the past five years, the RNA-guided nucleases-based gene editing approach i.e.,
the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated
protein (CRISPR/Cas), has been recognized as an efficient tool for targeted gene editing in
crops [4]. CRISPR allows targeting a sequence for gene knockin, knockout, and replacement
along with observing and regulating gene expression by binding a specific sequence at
the genome and epigenome levels. The genome editing function of CRISPR depends
upon the three components viz. CRISPR RNA (crRNA), CRISPR-associated enzymes
(Cas), and trans-activating crRNA (tracRNA). These three components can be constructed
together to form a single chimeric synthetic RNA molecule known as single-guide RNA
(sgRNA) for genome editing functions [4]. CRISPR provides the possibilities of targeting
multiple genes simultaneously along with the ease of multiple editing. Thus, it has been
widely used to edit, regulate, and monitor genes not only in plants but also in bacteria
and animals. For genome modification, dsDNA breaks are introduced at specific locations
by site-specific nucleases, which further stimulates DNA repair mechanisms, i.e., non-
homologous end joining (NHEJ) and homology-directed repair (HDR) to introduce specific
genome modifications. The NHEJ pathway works by ligating the broken ends of DSB
without using homologous DNA, which results in insertions or deletions (InDels) or single-
nucleotide polymorphism (SNP) at the cut site leading to frameshift or nonsense mutations.
In the case of HDR, gene replacement takes place with the help of a homologous template
at the breakpoint. Therefore, both NHEJ and HDR play an important role in nuclease-
based gene editing [5]. In crop breeding, this approach generates the transgene-free bred
cultivars. In this regard, this review encompasses various roles and possible applications
of RNAi and the RNA-guided CRISPR/Cas9 system as powerful technologies to improve
agronomically important crops to significantly enhance crop yields and tolerance to various
environmental stress agents of both biotic and abiotic origin. Limitations, challenges, and
potential future development have also been discussed.

2. RNA Interference

RNA interference is an evolutionarily conserved, naturally occurring, gene regulatory
phenomenon in eukaryotic cells. It has been evolved to protect cells against invading
foreign DNA. Besides this, it also helps in maintaining genomic stability, transposon move-
ment regulation, epigenetic modification, and controls cellular processes at transcriptional
and translational levels [6,7]. The gene silencing phenomenon was unfolded accidentally
in Petunia flowers when Napoli et al. [8] were experimenting to deepen the color of petunia
flowers by upregulating the gene coding for pigment production, which surprisingly re-
sulted in variegated flowers instead of expected deep purple flowers. Since the expression
of a homologous endogenous gene, as well as a transgene, was suppressed, the phe-
nomenon was called “co-suppression” [8]. Fire et al. [9] discovered the same phenomenon
in the nematode Caenorhabditis elegans, when they injected dsRNA in C. elegans, which
resulted in efficient silencing of the target endogenous gene homologous to RNA, hence
the phenomenon was named RNA interference (RNAi) [9]. This turned out to be one of
the most compelling discoveries in biotechnology, because of its targeted gene regulation,
accuracy, and heritability [10,11]. The gene expression in plants can be regulated through
plant endogenous small RNAs (sRNAs) and it can be divided into endogenous short inter-
fering RNAs (siRNAs) and microRNAs (miRNAs) [12]. The locus annotations of siRNAs
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are behind miRNAs, which have well-annotated loci. However, miRNAs consist of a small
portion of the total sRNA pool. Moreover, miRNAs are more conserved as compared to
siRNA across species [12]. The miRNAs can be applied to achieve simultaneous silencing
of multiple targets through the production of polycistronic miRNA precursors [13]. More-
over, the segregation of the RNAi transgene has been reported to produce non-genetic
MSH1 (a plant-specific mitrochondrial-and plastid-targeting protein) memory, which can
be inherited in multiple generations [14]. The study suggested that RNAi suppression of
MSH1 could lead to inconsistency in the phenotype related to the developmental and stress
response pathways.

Similar mechanisms have also been observed in fungi as “quelling” [15] bacteria such
as the CRISPR/Cas system [16], algae [17], fruit fly [18], and mammals [19]. Since then,
research in this field has been burgeoning and researchers feel that RNAi is a promising
tool for gene regulation with greater potential as compared to other post-transcriptional
gene regulation technologies such as antisense technology. RNAi is a naturally occurring
phenomenon in eukaryotes with its oldest and omnipresent antiviral defense system,
whereas almost all antisense RNAs are found in prokaryotes [20].

In this biological process, small non-coding RNAs (21–28 nt. long), which participate
in the gene regulation, are the cleavage product of dsRNAs, i.e., microRNA (miRNA) and
small interfering RNA (Si RNA). The process of cleavage is carried out by a multidomain
endoribonuclease named Dicer or the Dicer-like enzyme, which belongs to the RNase
III family [21]. Finally, these small non-coding RNAs (ncRNA) are associated with the
RNA-induced silencing complex (RISC), argonaute (AGO) [22], and other effector proteins,
and cause complex degradation of the target messenger RNA [16,23]. Thus, RNAi can be
defined as the capability of endogenous or exogenous dsRNA to inhibit the expression of
the gene whose sequence is complementary to dsRNA [24].

2.1. RNAi Mechanism
2.1.1. Components of RNAi Machinery

Two ribonucleases participate in the RNAi pathway—first, Dicer and second, the
RNA-induced silencing complex (RISC), where Dicer cleaves the dsRNA into active small
non-coding RNAs and initiates the RNAi pathway [21], while RISC with the RNase H core
enzyme Argonaute (AGO) accomplishes the gene silencing [22]. The Dicer family belongs
to the class 3 RNase III enzyme and consists of four domains: N-terminal helicase domain,
a PAZ (Piwi/Argonaute/Zwille) domain, dual RNase III domains, and a dsRNA binding
domain. The primary function of these enzymes is to recognize the dsRNA precursor from
the RNAi pathway and to generate small non-coding RNA of a specific length (21–24 nt
long). The Dicer catalysis model proposes that in the multidomain dicer enzyme, two
RNase III domains dimerize and form an intramolecular pseudo-dimer, which serves as the
active center. It has also been suggested that each domain cuts a single strand of dsRNA,
forming a new terminus [25]. Finally, the last step of the RNAi pathway, i.e., gene silencing
by target mRNA degradation, is performed by RISC in association with the argonaute
(AGO) protein and other effector proteins. Argonaute proteins are primarily found in
bacteria, archaea, and eukaryotes. The significant function of the Argonaute protein is
to recognize guide strand termini, cleave the target mRNA with its nuclease activity, or
recruit other proteins involved in silencing. RISC with gene silencing also participates in
the cellular surveillance process [16,20].

2.1.2. Mechanism of Action

Over the last two decades, the functionality of small non-coding RNA in gene regula-
tory processes of transcriptional gene silencing (TGS) and post-transcriptional gene silenc-
ing (PTGS) has continuously been explored. Various classes of small non-coding RNAs
have been discovered so far. These include miRNA, siRNA, piRNA (PIWI–interacting
RNA), qiRNA (QDE-2-interacting RNA), svRNA (small vault RNA), etc., having different
biogenesis pathways and regulatory mechanisms [26]. Initially, the process of biogenesis of
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miRNA and siRNA differs to form their corresponding dsRNA precursors as the cellular
origin of miRNA is the genomic DNA, whereas siRNA can be generated endogenously via
cleavage of dsRNA into smaller segments or it can be exogenously derived directly from the
viruses, transposons, or transgene. Regardless of these differences, they have similarities
in their sizes and sequence-specific inhibitory functions, which clearly suggest that their
respective biogenesis pathways and mechanisms are related to each other somehow. The
RNAi pathway comprised four steps: The formation of snRNA as a cleavage product of
dicer, loading of snRNA into the RISC complex, activation of the silencing complex, and
target mRNA degradation [20].

2.2. Micro RNA (miRNA)

miRNAs are 21–24 nucleotide (nt)-long small RNAs, which are derived from MIR
genes. The biogenesis of miRNA occurs in the nucleus by RNA polymerase II aided
transcription of MIR genes, forming a primary miRNA (pri-miRNA) transcript of about
1000 nt (Figure 1). Due to the presence of intramolecular sequence complementarity in
pri-miRNA, an imperfect folded-back stem-loop or hairpin structure formation takes place,
which is further processed into a short stem-loop precursor known as pre-miRNA with the
aid of DCL1 assisted by the dsRNA binding protein DRB1or HYL1 [27]. This pre-miRNA is
again cropped by DCL1 in the nucleus and generates the RNA duplex (miRNA:miRNA*),
which consists of mature miRNA (guide strand) and miRNA* (passenger strand) [28]. The
3′-terminals of the RNA duplex get methylated by HUA ENHANCER (HEN1) at the 2′-O-
hydroxyl group to prevent degradation of miRNA:miRNA* [29,30]. After methylation, the
RNA duplex is exported to the cytoplasm where mature miRNA is loaded onto the RISC
complex with AGO and other effector proteins. This miRNA-induced silencing complex
(miRISC) base pairs with the complementary target mRNA completely, then the AGO
protein with its characteristic nuclease activity degrades the target mRNA [31]. In the case
that complete base pairing does not occur between miRISC and the target mRNA, then
miRISC inhibits the translation process.

In 2011, Huntzinger and Izaurralde suggested that miRNA-mediated downregulation
of gene expression occurs by (1) miRISC-mediated inhibition of translational initiation or
ribosome subunit joining, premature degradation of the budding polypeptide chain, and
an increase in drop off of the ribosome; or (2) inducing deadenylation and destabilization of
the target mRNA [32]. Expression of miRNA is usually witnessed during the phase of plant
growth and development, secondary metabolite synthesis, abiotic and biotic stress, etc.
Hence, a change in expression and biogenesis of these RNAs could lead to the formation of
the crop with agronomically valuable characteristics [33].

2.3. Small Interfering RNA (siRNA)

Gene silencing through RNAi can be triggered via long dsRNA or short hairpin pre-
cursors, which can perfectly base pairs with the gene to be silenced. The introduction
of long endogenous dsRNA directly into the cytoplasm or access of transgene, viral in-
truders, or transposable elements can ignite the RNAi pathway by recruiting the Dicer or
Dicer-like enzymes [34]. This Dicer enzyme crops these dsRNAs into short 21–24 nt long
SiRNA duplexes with 2nt overhangs at the 3′OH end and 5′ phosphorylated ends [35,36].
Thereafter, the SiRNA-induced silencing complex (SiRISC) is recruited and degrades the
sense strand (has precisely the same sequence as that of target mRNA) of SiRNA, whereas
the antisense strand of siRNA along with siRISC get loaded onto the target mRNA in
a sequence-specific manner (Figure 2). siRISC incorporation with the AGO protein and
other effector proteins leads to post-transcriptional gene silencing (PTGS) by cleavage of
the target mRNA or inhibition of translation [37]. Aside from this, siRNAs by chromatin
regulation can also participate in the co-transcriptional gene silencing. Dicer-independent
siRNA genesis has also been reported in Neurospora, C. elegans, Schizosaccharomyces pombe,
and Arabidopsis [38–41]. These dicer-independent siRNAs mostly arise from transposable
elements, intergenic elements, and transgenes [41].
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Figure 1. Mechanism of miRNA biogenesis and gene silencing. The miRNA biogenesis commences with the transcription
of miRNA genes into pri-miRNA by RNA polymerase II, which is further subjected to primary and secondary processing
via the enzyme complex of DCL-1, SE, and HYL1 leading to the generation of pre-miRNA and an miRNA/miRNA* duplex,
respectively. Further the HEN1-mediated methylation at the 3′-OH end leads to the export of the duplex to the cytoplasm.
In the cytoplasm, the passage RNA strand is degraded and the guide strand from the miRNA-inducing silencing complex
(miRISC) directs the degradation or translation inhibition of the target mRNA.
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Figure 2. siRNA biogenesis and gene silencing. Here the action of Dicer or the Dicer-like enzyme on the precursor RNA
results in an siRNA duplex with overhangs at 3′-OH ends. Further, the antisense strand from siRNA induces the silencing
complex by associating with the RISC protein. Thereafter, incorporation of AGO and other effector proteins with siRISC
facilitate the gene silencing through degradation of the target mRNA or translation inhibition.

2.4. Role of RNAi in Crop Improvement

In the 21st century, one of the major goals is to provide food security and stop the
malnutrition across the world, but factors such as abiotic and biotic stresses, anthropogenic
effects, climate change, and depletion of natural resources limit the crop production glob-
ally [1,42]. Thus, to overcome these problems, genetic engineering should be used in a way
to manipulate the physiology of plants, genomes, and proteomes. In this context, RNAi has
been extensively explored by researchers for improving a range of crop features including
stress tolerance, disease resistance, yield enhancement, etc. (Table 1).
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Table 1. Crops with improved stress tolerance through RNAi.

Trait(s) Crop Improved Resistance Against Targeted
Gene(s) References

Virus resistance

Nicotiana bethamiana Chilli-infecting begomoviruses
AC1
AC2
βC1

[43]

Triticum spp. Triticum mosaic virus (TMV) Coat protein (CP) [44]

Oryza sativa Rice black streak dwarf virus (RBSDV) S7-2
S8 [45]

Solanum tuberosum
Potato virus X (PVX),
Potato virus Y (PVY)
Potato virus S (PVS)

CP [46]

Glycine max
Soybean mosaic virus (SMV) SMV P3 cistron [47]

Mungbean yellow mosaic virus (MYMIV) CP [48]

Arachis hypogaea Tobacco streak virus (TSV) CP [49]

O. sativa Rice tungroo bacilliform virus (RTBV)
Rice tungroo spherical virus (RTSV)

Coat protein 3
CP3 [50]

Glycine max Soybean mosaic virus (SMV) eIF4E1 [51]

N. bethamiana Tomato yellow leaf curl Thailand virus
(TYLCTV) GSA [52]

Bacterial resistance
A. thaliana

Agrobacterium tumefaciens iaaM
ipt [53]

Pseudomonas syringae PPRL [54]

Citrus limon Xanthomonas citri CalS1 [55]

Fungal resistance

S. tuberosum Phytophthora infestans Avr3a [56]

T. aestivum Fusarium graminearum Chs 3b [57]

Musa spp. F. oxysporum f. sp. cubense (Foc) Foc velvet protein [58]

N. tabacum Sclerotinia sclerotiorum Chs [59]

S. lycopersicum F. oxysporum Fow2
chs V [60]

O. sativa

Magnaporthe oryzae
MoABC1
MoMAC1
MoPMK1

[61]

Rhizoctonia solani RPMK1-1
RPMK1-2 [62]

Zea mays Aspergillus flavus ZmPRms [63]

S. lycopersicum F. oxysporum
Fmk1
Hog1
Pbs2

[64]

Z. mays A. flavus Amy1 [65]

S. tuberosum Phytophthora infestans
Alternaria solani

PVS1
PVS2
PVS3
PVS4

[66]

Glycine max Phytophthora sojae GmSnRK1.1 [67]

S. lycopersicum F. oxysporum ODC [68]
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Table 1. Cont.

Trait(s) Crop Improved Resistance Against Targeted
Gene(s) References

Virus resistance

Nicotiana bethamiana Chilli-infecting begomoviruses
AC1
AC2
βC1

[43]

Insect resistance

S. lycopersicum Helicoverpa armigera HaCHI [69]

N. tabacum Bemisia tabaci AChE
EcR [70]

Lettuce B. tabaci V-ATPase [71]

A. thaliana Myzus persicae MyCP [72]

Brassica rapa Tetranychus urticae COPB2 [73]

Nematodes
Resistance

S. lycopersicum Meloidogyne incognita Mi-cpl1 [74]

N. benthamiana Radopholus similis Rs-cps [75]

S. lycopersicum M. incognita PolA1 [76]

Glycine max
Heterodera glycines Hg16B09 [77]

HgY25 HgPrp17 [78]

A. thaliana M. incognita

Mi-msp3
Mi-msp 5
Mi-msp18
Mi-msp24

[79]

Abiotic stress
tolerance

N. tabacum Salt tolerance Nt ε-LCY [80]

O. sativa Salt tolerance OsPEX11 [81]

B. rapa Salt tolerance GIGANTEA (GI) [82]

A. thaliana Drought tolerance PAD4
LSD1 EDS1 [83]

O. sativa Drought tolerance OsGRXS17 [84]

O. sativa Drought tolerance OsDSR-1 [85]

O. sativa Drought tolerance OsERF101 [86]

S. lycopersicum Drought and salt tolerance SlbZIP1 [87]

N. tabacum Drought tolerance BrDST71 [88]

T. aestivum Salt tolerance TaPUB-1 [89]

A. thaliana Osmotic tolerance WZY2 [90]

2.4.1. Biotic Stress Resistance

In plants, biotic stress is caused by living organisms, especially viruses, bacteria, fungi,
insects, arachnids, nematodes, and weeds. These organisms account for about a 40% loss
in the overall yield of six major food and cash crops [91]. RNAi technology has opened up
new prospects for crop protection against biotic stresses.

RNAi-Mediated Virus Resistance

Viruses are the leading agents behind the major loss of crop productivity as it is very
difficult to control them due to their diverse strategies to multiply and transmit diseases
in the host plant. Therefore, pathogen-derived resistance (PDR) has been considered as
one of the most efficient approaches in fighting viral infections in plants. However, there is
one more approach, i.e., RNA interference that provides broad-spectrum resistance against
viral infections by targeting multiple regions of a viral gene. It relies on the principle of
targeted silencing of the viral coat proteins (CP). In 1998, the first RNAi-mediated virus-
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resistant potato transgenic lines were reported, which were transformed by simultaneous
expression of both sense and antisense transcripts of the helper-component (HC-Pr) gene
and showed complete resistance against Potato virus Y (PVY) [92]. Missiou et al. [93]
developed potato transgenic lines that were highly resistant to three strains of PVY by
expressing the dsRNA derived from the 3′-terminal end part of viral coat proteins (CP),
which has been reported as the highly conserved region of PVY isolates. Over recent
years, many RNAi-mediated virus-resistant cultivars targeting the viral coat protein have
been produced i.e., Beet necrotic yellow vein virus (BNYVV)-resistant tobacco [94], Plum pox
virus (PPV)-resistant Prunus domestica and N. benthamiana [95], and Bean golden mosaic virus
(BGMV)-resistant Phaseolus vulgaris [96].

Si-RNA-mediated silencing of the African cassava mosaic virus (ACMV) by targeting
the replication-associated protein 1 (AC1) resulted in a 66% decrease in ACMV genomic
DNA [97]. In 2009, Vanderschuren et al. [98] performed an experiment in which they devel-
oped dose-dependent RNAi-mediated transgenic cassava lines resistant to ACMV. Cassava
brown streak disease (CBSD) is considered one of the threats for cassava (Manihot esculenta)
cultivation in East Africa. In this regard, Patil et al. [99] first developed cassava plants
resistant to CBSD and provided protection against two causative organisms belonging to
two different species, i.e., the Cassava brown streak virus (CBSV) and the Cassava brown streak
Uganda virus (CBSUV) by using RNAi construct containing 397-nt from N-terminal end
and 491-nt from the C-terminal end of the coat protein gene of the viruses [99].

Tobacco streak virus (TSV)-resistant transgenic lines of both tobacco and sunflower
(Helianthus annuus L.) were produced by RNAi technology using a 421-bp-long coat protein
gene containing both sense and anti-sense coat protein sequences [100]. Rice strip disease
caused by the Rice strip virus (RSV) was successfully suppressed in two RSV-susceptible
varieties of Japonica by RNAi construct consisting of the CP gene and the disease-specific
(SP) gene [101]. Soybean mosaic virus (SMV)-resistant transgenic lines of soybean were
produced by introducing a hairpin RNAi construct containing the Hc-Pro gene [102].
Peanut (Arachis hypogaea L.) plants resistant to the Tobacco streak virus were developed using
hairpin RNA comprising TSV-coat proteins.

Pooggin et al. [103] demonstrated that DNA of a replicating virus can be used as an
RNAi target. They used this approach in the silencing gene associated with bidirectional
promoters and witnessed recovery from infection of the Mungbean yellow mosaic India virus
(MYMIV) in Vigna mungo.

A study conducted on N. benthamiana and Vigna unguiculata plants to develop resis-
tance against the Bean common mosaic virus (BCMV) by exogenous application of RNAi
construct containing viral coat proteins to protect plants from aphid mediated transmis-
sion of BCMV [104]. Rice tungroo bacilliform virus (RTBV)- and Rice tungroo spherical virus
(RTSV)-resistant O. sativa cultivars have been developed by using a highly conserved
coat protein 3 (CP3) gene in an RNAi construct. They observed high resistance in O. sativa
against tungroo disease, and the ability to transmit the virus has also been decreased in
transgenic lines [50].

RNAi-Mediated Bacterial Resistance

Bacteria serve as the biggest hurdle in crop production as they are ubiquitous in nature
as well as replicating with great speed and causing infection. Hence, it is important to
produce bacterial-resistant crops. Escobar et al. [53] conducted a study on A. thaliana and
S. lycopersicum (tomato) to suppress crown gall disease caused by Agarobacterium tuminifaciens
through RNAi technology. For this, they designed dsRNA construct homologous to onco-
genes iaaM and ipt, which are necessary for tumor formation. Katiyar-Agarwal et al. [54]
demonstrated that P. syringae infection in A. thaliana induced biogenesis of endogenous
si-RNA i.e., nat-SiRNAATGB2. This siRNA downregulated the expression of the PPRL
gene, which is considered a negative regulator of the RPS2 resistance pathway.
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RNAi-Mediated Fungal Resistance

Research findings suggest that RNAi technology can be used to enhance resistance
against fungi in genetically engineered crops. Gene silencing has been studied using
homologous transgenes (co-suppression), antisense or dsRNAs in many plant-pathogenic
fungi such as Cladosporium fulvum [105], Venturia inaequalis [106], N. crassa [107], and
Magnaporthe oryzae [108]. Enhancement of resistance against Phytophthora parasitica var.
nicotianae has been observed in N. tobacum by downregulation of the GST (glutathione
S-transferase) enzyme gene via RNAi [109]. Fusarium wilt has been classified among
the most destructive diseases of banana, caused by F. oxysporum f. sp. Cubense (Foc).
Banana transgenic lines developed by intron hairpin RNA (ihp-RNA)-mediated expression
of si-RNA has shown enhancement in resistance against Foc. This was achieved by the
downregulation of a vital gene of Foc fungus and confirmed by performing 6-week-long
bioassays in the greenhouse [58]. Chen et al. [110] explored the role of RNAi machinery in
the causative agent of wheat head blight, i.e., Fusarium graminearum by the aid of hpRNA
for silencing the target mRNA. They also studied the importance of FgAgo (Argonaute
protein) and FgDicer2 in gene silencing.

Agarobacterium-mediated transformation (AMT) of RNAi constructs act as a potent
approach for investigating the role of the gene involved in pathogenesis. Transformation
of F. oxysporum spores using RNAi construct of three MAP Kinase signaling genes (viz.
Fmk1, Hof1, and Pbs2) via AMT resulted in reduced invasive growth on tomato fruits,
pathogenesis, loss of surface hydrophobicity, and hypo-virulence on tomato seedlings [64].

Functional analysis of the membrane-localized gene GmSnRK1.1, important for soy-
bean resistance against Phytophthora sojae, has been done by overexpressing the gene and
RNAi silencing. Results obtained show that overexpression of genes increase the resistance
whereas RNAi-mediated silencing leads to a reduction in resistance [67].

RNAi-Mediated Insects and Nematode Resistance

Insects and nematodes are capable of causing severe damage to the crops. Some of the
most disastrous nematodes are Meloidogyne spp., Heterodera and Globodera spp., Pratylenchus
spp., Helicotylenchus spp., Radopholus similis, Ditylenchus dipsaci, Rotylenchulus reniformis,
Xiphinema spp., and Aphelenchoides spp. [111]. Gheysen and Vanholme [112] suggested
that the expression of dsRNA targeting the housekeeping gene and the parasitism gene of
root-knot nematodes (RKN) in a host plant led to resistance against nematode infection.
Bioengineering of crops expressing dsRNA that targets the RKN parasitism gene could
help in providing broad-spectrum resistance to crop against RKN [113].

Cyst nematodes are considered to be highly evolved sedentary endoparasites that
cause great damage to the crops globally. Through host-induced RNAi silencing, all four
parasitism genes of the sugar beet cyst nematode (Heterodera schachtii) were targeted with A.
thaliana as the host, resulting in a decrease in the number of female nematodes. No complete
resistance was observed, however, but the reduction in developing nematodes ranges 23–
64% in different RNAi lines [114]. Similarly, enhanced resistance against the soybean cyst
nematode H. glycines has been reported by targeting reproduction and fitness-related genes,
i.e., HgY25 and HgPrp17 in soybean transgenic lines [78].

RNAi-mediated root-knot nematode (Meloidogyne incognita) resistance was pursued
in A. thaliana for targeting two housekeeping genes i.e., splicing factor (349 bp) and inte-
grase enzymes (624 bp). Splicing factor and integrase enzyme are important for nema-
todes as they play a prominent role in RNA metabolism. Hence, their RNAi-mediated
silencing resulted in a significant decrease in the number of galls, females, and egg
masses [115]. Tsygankova et al. [116] examined RNAi-mediated invitro resistance in
bread wheat (T. aestivum L.) against the parasitic nematode H. avenae using bioregulators
of microbial origin.

The success of the cry toxin from Bacillus thuringiensis as an insecticide has led to the
foundation of RNAi-mediated insect resistance in crops. The RNAi technology came into
the limelight when two reports regarding insect control occurred in the scientific community.
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Mao et al. [117] developed transgenic lines of Arabidopsis and tobacco plants expressing
CYP6AE14- specific dsRNA. In cotton worm, this gene confers resistance against gossypol,
a polyphenol compound. When cotton bollworm larvae fed on leaves of transgenic lines,
they showed sensitivity against gossypol in an artificial diet. Baum et al. [118] developed
transgenic maize lines resistant to western corn rootworm by expressing dsRNA specific to
the gene encoding the A subunit of V-type ATPase pump. Thus, these results suggested
that the RNAi pathway can be exploited to control pests from harming the plants by
targeting the significant gene of insects. V-type ATPase subunit-A coding genes were also
used crucial to develop resistance against the whitefly (B. tabaci) population in tobacco
plants [119]. Likewise, RNAi-mediated whitefly (B. tabaci)-resistant transgenic lines of
lettuce (Lactuca sativa) targeting V-ATPase transcripts in the whitefly increased the mortality
rate of insects feeding on transgenic plants from 83.8−98.1% [71].

Wang et al. [120] reported that 3-hydroxy-3-methyl glutaryl coenzymeA reductase
(HMG-CoA reductase, HMGR) is a significant enzyme in the insect mevalonate pathway
and can be utilized as a potential target to produce insect-resistant cultivars using RNAi.
Similarly, the chitinase (HaCHI) gene important for molting in insects can also be used
as a target to produce insect-resistant plants. Through host-induced RNAi, Helicoverpa
armigera-resistant transgenic tobacco and tomato plants were developed [69].

2.4.2. Abiotic Stress Tolerance

Plants in their natural field conditions constantly get exposed to various abiotic factors
such as high salinity, variation in temperature, flood, drought, and heavy metals, which
hinders proper growth and development in plants. These factors are also one of the major
causes behind huge crop losses globally. The changing climatic conditions and rapidly
expanding population demand creates an urgent need to develop more stress-tolerant
cultivars. Hence, RNA interference technology can be exploited to develop transgenic
cultivars that can cope with different abiotic stresses. Functional genomics studies revealed
that novel genetic determinants are involved in stress adaptation in plants, which can be
employed to attain stress tolerance [121].

The receptor for activated C-kinase 1(RACK-1) is a highly conserved scaffold pro-
tein that plays a significant role in plant growth and development. RNAi-mediated
downregulation of RACK-1 gene in transgenic O. sativa plants has shown more toler-
ance to drought stress as compared to the non-transgenic O. sativa plants [122]. Like-
wise, disruption of O. sativa farnesyltransferase/squalene synthase (SQS) by maize squa-
lene synthase via RNAi resulted in enhanced drought tolerance at the vegetative and
reproductive stages [123].

Stress tolerance and development in plants are regulated by miRNA, also negatively
affecting the expression of the post-transcriptional gene. Wang et al. [124] examined
that miRNAs are involved in the very early stage during seed germination and identi-
fied that miRNA-mediated regulation of gene expression is present in maize imbibed
seed. Wang et al. [125] reported 32 known members of 10 miRNA families and 8 new
miRNAs/new members of known miRNA families that were found to be responsive to
drought stress by high-throughput sequencing of small RNAs from Medicago truncatula.
These findings suggest the importance of miRNAs in the response of plants to abiotic stress
in general and drought stress in particular.

OsTZF1 is a member of the CCCH-type zinc finger gene family in rice (O. sativa).
Conditions like drought, high-salt stress, and hydrogen peroxide can induce the expression
of OsTZF1. Expression of OsTZF1 gene was also induced by abscisic acid, methyl jasmonate,
and salicylic acid. The OsTZF1 gene overexpressed in transgenic plants showed enhanced
tolerance to high salt and drought stresses, whereas transgenic O. sativa plants in OsTZF1
gene silenced using RNAi technology has shown less tolerance. This suggests the role
played by OsTZF1 gene in abiotic stress tolerance [126].

Dehydrin proteins play a significant role in protecting plants from osmotic damage.
Various research results suggest that the overexpression of the dehydrin gene WZY2 pro-
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vides more tolerance for plants against osmotic stress. A study conducted by Yu et al. [127]
suggests that RNAi-mediated silencing of the WZY2 gene in A. thaliana makes plants
intolerant to osmotic stress.

2.4.3. Seedless Fruit Development

Seedless fruits are generally appreciated by the consumers as seedlessness increases
the quality of fruit with the enhancement of shelf life [128,129]. Seedless fruits can be
obtained by parthenocarpy, which involves the development of fruit directly from the ovary
without fertilization. In eggplant, seedlessness prevents browning and texture reduction of
pulp [130]. The production of seedless fruits can be induced artificially by disrupting the
genes involved in the formation process of seed and seed set. The seed formation process
is regulated by the phytohormones both temporally and spatially. Generally, seedless fruit
obtained by inducing mutation or alteration in phytohormones shows pleiotropic effects
i.e., change in taste, reduced fruit size, etc. Hence, for the production of parthenocarpic
fruits, novel methods with more efficiency should be employed [130]. It has been shown
that seed development in fruits limits the yield in cucumber [131,132] and tomato [133].
Thus, the replacement of seed and seed cavities with edible fruit tissue is highly desirable
and appreciated by consumers, breeding companies, and production companies. Auxin
response factors (ARFs) encode transcription factors that control auxin-dependent plant
developmental processes. ARF7 factor of tomato (S. lycopersicum) designated as SlARF7 was
found to be highly expressed in unpollinated mature ovaries. Further research revealed that
the expression of slARF7 remains high from the initial period of flower development to the
formation of mature flowers and decreases within 48 h after pollination. RNAi-mediated
development of transgenic tomato lines with a downregulated slARF7 gene resulted in the
generation of parthenocarpic fruits [134]. Schijlen et al. [135] developed seedless tomatoes
through RNAi-mediated suppression of the chalcone synthase (CHS) gene, the first gene
used in the flavonoid synthesis pathway. Likewise, post-transcriptional gene silencing of
the flavonol synthase (FLS) gene, a vital enzyme for flavonols production, resulted in the
generation of seedless or less-seeded fruits in tobacco (N. tobacum cv xanthi) [136].

Aucsia genes are distinctly expressed in auxin biosynthesis parthenocarpic flower buds
of tomato. The silencing of these genes by RNA interference resulted in parthenocarpic fruit
development in tomato with some other auxin-related phenotypes [137]. Takei et al. [138]
isolated and characterized small parthenocarpic fruit and flower (spff) mutants in a tomato
cultivar. Linkage analysis and RNAi-based silencing of the Solyco4g077010 gene, which
encodes the receptor-like protein kinase, resulted in impaired male sterility with partheno-
carpic fruit set development.

2.4.4. Shelf-Life Enhancement

Fruits and vegetables are more vulnerable to spoilage as compared to cereals because
of their nature and composition. Despite being one of the leading producers of fruits
and vegetables, India faces massive losses due to post-harvest mishandling, spoilage, and
pest invasion during storage and transportation. Hence, it is essential to augment the
shelf-life of fruits and vegetables to minimize horticultural losses. This can be achieved by
delaying the ripening of the fruit by regulating ethylene biosynthesis, ethylene-mediated
signaling, and ethylene response elements with the aid of RNAi. In contrast to other
phytohormones, ethylene is the gaseous hormone that plays a major role in the process
of fruit ripening through a cascade of signals. 1-Aminocyclopropane-1-carboxylate (ACC)
oxidase is an enzyme that catalyzes the biosynthesis of ethylene from its precursor ACC.
Tomato transgenic lines with enhanced shelf life have been developed by RNAi-facilitated
suppression of ACC oxidase enzyme [139]. Similarly, the expression of three homologs of
1-Aminocyclopropane-1-carboxylate synthase (ACS) was suppressed during the period of
ripening in tomato fruits, thereby leading to the production of delayed ripening tomato
fruits due to the inhibition of ethylene production [140]. Meli et al. [141] have identified and
targeted two ripening-specific N-glycoprotein modified genes, α-mannosidase (α-Man)
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and β-D-N-acetylhexoaminidase (β-Hex), and their suppression via RNAi resulted in fruit
softening with an extended shelf life.

The SISGR1 gene encodes for the STAY GREEN protein, which regulates fruit color
development and ripening by altering ethylene signal transduction in tomatoes. Fruit shelf-
life was found to be extended in SISGR1-gene-suppressed transgenic tomato lines [142].
Repression of two banana E class (SEPALLATA3) MADS box genes, i.e., MaMADS1 and
MaMADS2, through RNAi resulted in transgenic bananas (Musa ascuminata) having desir-
able characteristics such as delayed color development, reduced fruit softening, delayed
ripening and extended shelf-life [143]. Yang et al. [144] reported 22 individual pectate
lysase genes in tomato, out of which one pectate lysase gene, i.e., SIPL, has been found to be
dominantly expressed during fruit maturation. RNA interference studies of SIPL revealed
that it plays a significant role in the enhancement of fruit firmness, pathogen resistance,
and prolongation of shelf life. Similarly, carotenoid and flavonoid content in tomatoes was
increased by knocking down the endogenous photomorphogenesis regulatory gene DET1
using RNAi [145]. The phenomenon of accumulation of sucrose and other reducing sugars
in potato tubers during storage at low temperatures is called ‘cold sweetening’. In potato
tubers, sugar phosphatase (SPP) plays a significant role in carbohydrate metabolism at
room temperature. Downregulation of the SPP gene through RNAi leads to inhibition of
cold-induced hexogenesis in transgenic tubers [146].

2.4.5. Male Sterile Plants Development

The development of hybrid cultivars has augmented productivity due to hybrid
vigor and improved uniformity. Hybrid production depends on the development of male
sterility in one parent to ensure purity in hybrids for further production of hybrid seeds.
Several methods involving conventional as well as genetic engineering has been reported
for the production of male-sterile plants; however, RNAi has turned out to be one of the
most efficient tools in the development of male sterile lines by targeting male-specific
genes that participate in tapetum and pollen development. In tobacco plants, TA29, a
male-specific gene expressed in anthers during microspore development has been targeted
using RNAi technology, giving rise to transgenic male sterile lines [147]. Likewise, the
downregulation of the Bcp1 gene of A. thaliana expressed in both diploid tapetum and
haploid microspore resulted in the generation of transgenic male-sterile plants [148]. S-
adenosylmethionine decarboxylase (SAMDC) is considered a significant enzyme in the
biosynthesis of polyamines in tomato plants. Suppression of SAMDC gene in the tapetal
tissue of tomato plants leads to the development of male sterility [149].

Cytoplasmic male sterility is the maternally inherited phenomenon present in plants.
Nuclear genes play a crucial role in the rearrangement of mitochondrial DNA, which is
found to be associated with the naturally occurring phenomenon of cytoplasmic male steril-
ity during plant development. Suppression of Msh-1—a nuclear gene in tobacco and tomato
plants—resulted in reproducible mitochondrial DNA rearrangement with male-sterility [150].

2.4.6. Flower Color Modification

Floriculture or flower farming is a field of horticulture that deals with flowers and
ornamental plant cultivation. Nowadays, the demand for flowers in different colors and
patterns has increased for the purpose of decoration and scents. This can be achieved by
silencing the pigment encoding genes using RNA interference technology. A cDNA en-
coding the chalcone isomerase (CHI) gene isolated from petals of N. tobacum was suppressed
using RNAi, thus reducing pigmentation and altering flavonoid components in flower
petals [151]. Similarly, flower color alteration in liliaceous ornamental Tricyrtis sp. has
been reported using the RNAi construct TrCHS1 targeting chalcone synthase (CHS) [152].
RNAi-facilitated suppression of three anthocyanin biosynthetic genes, chalcone synthase
(CHS), anthocyanidin synthase (ANS), and flavonoid 3′,5′-hydroxylase (F3′5′H), led to changes
in flower color of ornamental gentian plants [153]. Naturally, the flower of gentian plants
is vivid blue in color. The accumulation of a polyacrylate delphinidin ‘gentiodelphin’
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in the petals of gentian plants contribute to the flower color. Anthocyanin 5,3′-aromatic
acyltransferase (5/3′AT) and flavonoid 3′,5′-hydroxylase (F3′5′H) are crucial enzymes for
gentiodelphin biosynthesis and their downregulation via RNAi causes modification in
flower color [154].

He et al. [155] experimented to rebuild the delphinidin pathway, for which they first
identified two cultivars of chrysanthemum and isolated seven anthocyanin biosynthesis
genes, namely CmCHS, CmF3H, CmF3′H, CmDFR, CmANS, CmCHI, and Cm3GT. Further-
more, the overexpression of the Senecio cruentus F3′5′H (PCFH) gene and suppression of
the CmF3′H gene in chrysanthemum resulted in increased cyanidin content with brighter
red flower petals, but the accumulation of delphinidin has not been reported.

2.4.7. Nutritional Improvement

Plants serve as the major source of required nutrients in the human diet. However,
more than two-thirds of the world’s population is deficient in one or more essential mineral
elements [156]. RNAi can be employed to achieve the required levels of nutrients in
crops by modifying various biochemical and physiological pathways. Omega-3 fatty
acid desaturase (FAD3) enzyme catalyzes the synthesis of α-linolenic acid (18:3) in the
polyunsaturated fatty acid synthesis pathway. α-linolenic acid is responsible for instability
in soybean (Glycine max) and other seed oils. Flores et al. [157], through siRNA-mediated
silencing of FAD3 in soybeans, significantly decreased the level of α-linolenic acid by 1–3%
as compared to other non-transgenic lines. In Camelina sativa, the oilseed quality has been
improved by downregulating the fatty acyl-ACPthioesterase (FATB) gene using artificial
miRNA (amiFATB). The results showed a considerable decrease in total saturated fatty
acids content with a 45% reduction in palmitic acid (16:0) and a 38% reduction in stearic
acid (18:0) as compared to wild-type seeds [158].

Kusaba et al. [159] generated an O. sativa cultivar with low glutenin content (named as
LGC-1) through the silencing of the gluB gene using hairpin RNA. A high amylose content
Triticum cultivar has been produced by suppressing the expression of two starch branching
enzyme (SBE) II (namely SBEIIa and SBEIIb) in Triticum endosperm using RNAi [160]. In
plants, starch phosphorylation and starch dephosphorylation act as crucial components
in the starch degradation process. Downregulation of glucan water dikinase (GWD) and
phosphoglucan phosphatase (SEX4) through RNAi resulted in the accumulation of starch in
leaves of A. thaliana and Z. mays [161]. Carotenoid content in Brassica napus was elevated by
RNA-mediated silencing of ε-Cyclases (ε-CYC). Seeds obtained by RNAi transgenic Brassica
lines were found to be rich in β-carotene, zeaxanthin, lutein, and violaxanthin [162].

RNAi can also be employed for the accumulation of minerals in crops. Aggarwal et al. [163],
through RNAi-mediated downregulation of inositol pentakisphosphate kinase (IPK1), pro-
duced Triticum grains with high Zn and Fe content with a reduced level of antinutrient
phytic acid (PA).

2.4.8. Secondary Metabolite Production

Plant secondary metabolites are used in fragrances, drugs, food additives, pigments,
and pesticides. Biosynthesis of secondary metabolites is regulated by an array of multiple
genes, but sometimes it may get obstructed by certain undesirable compounds. RNAi can
be used as an effective approach to suppress the expression of those compounds as well as
for secondary metabolite manipulation [164]. Allen et al. [165] reported the replacement of
morphine with non-narcotic alkaloid (S)-reticuline in the opium poppy (Papaver somniferum)
through RNAi-mediated silencing of multiple genes participating at different steps in a
complex biochemical pathway. They constructed hpRNA for suppressing the expression of
all the members of the codeine reductase (COR) gene family. This led to the development of
transgenic lines consisting of (S)-reticuline, a non-narcotic alkaloid precursor, by replacing
morphine, codeine, and opium.

Caffeine acts as a natural stimulant for the central nervous system, respiratory system,
and circulatory system. It also lessens the risk of liver cancer, mouth, and throat cancer.
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Besides this, its excess intake may cause some health issues such as insomnia, nervousness,
an upset stomach, restlessness, and muscle tremors. In coffee plants, three enzymes
participate in the caffeine biosynthesis viz. CaXMT1, CaMXMT1 (theobromine synthase),
and CaDXMT1 (caffeine synthase). The RNAi-mediated silencing of the CaMXMT1 gene
resulted in a 70% decrease in caffeine content, indicating RNAi technology can be employed
for the production of decaffeinated coffee beans [166]. Similarly, low-caffeine-content-
containing tea (Camellia sinensis) transgenic lines were developed by downregulating the
caffeine synthase (CS) gene using RNAi [167].

Salvia miltiorrhiza is a famous Chinese herb, also used in other Asian countries. The pro-
duction of phenolic acid was enhanced by downregulating the initial enzyme in flavonoid
biosynthesis, i.e., the Chalcone synthase (CHS) gene with elicitor treatment of salicylic acid.
Results showed a considerable decrease in flavonoid production with an increase in phe-
nolic acid content [168]. In several aromatic plants such as spearmint (Mentha spicata),
tiny, specialized structures are present for secondary metabolite production called peltate
glandular trichomes (PGT). Wang et al. [169] examined the role of transcription factors in
the secondary metabolite biosynthesis pathway, for which they isolated and functionally
characterized a MsYABBY5 gene expressed in PGT. The production of terpenes was in-
creased after the suppression of the MsYABBY5 gene, suggesting that encoded transcription
factors act as a negative regulator for secondary metabolite production.

In papaya (Carica papaya L.) plants, the DE-ETIOLATED-1 (DET1) gene, which is a
negative regulator of photomorphogenesis, was suppressed through RNAi in embryonic
callus to study its effects on the expression of a gene involved in the biosynthesis pathway of
secondary metabolites, with results suggesting a relationship between the photo-regulated
pathway and secondary metabolite synthesis [170].

3. Clustered Regularly Interspaced Short Palindromic Repeat
(CRISPR)/CRISPR-Associated Protein (CRISPR/Cas)

Until 2013, the zinc-finger nucleases (ZFNs) and transcription activator-like effector
nucleases (TALENs) were used as the most prevalent gene-editing tools [171–173]. These
methods of gene editing rely on the use of specific DNA recognition and binding properties
of specialized proteins viz. customized homing nuclease (meganuclease), zinc-finger
nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs). These
nucleases are fusion products of domains derived from zinc finger transcription factors
or transcription activator-like effectors formulated to identify almost any DNA sequence
and the endonuclease domain of class II restriction enzyme, which can introduce double-
stranded breaks (DSBs) [174]. CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats) and the CRISPR-associated protein-9 (Cas9) nuclease system came out as a viable
tool for targeted gene editing in plants [175]. In the last decade, the CRISPR/CAS system
has made great achievements in many fields owing to its targeting, efficiency, versatility,
and simplicity (Figure 3).
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Figure 3. Applications of the CRISPR/Cas9 system in crop improvement. Here, the omission of undesirable traits and the
adjunction of purposeful traits occurs through highly specific targeted genome modification.

CRISPR comprises a DNA fragment with short palindromic repeats that are inter-
spaced by the short sequences of variable length regarded as ‘non-repetitive’ elements or
spacers. The CRISPR assembly was first recognized in the genome of Escherichia coli in
1987 [176]. The functional relationship between the CRISPR locus and adjacently located
CRISPR-associated (Cas) genes was identified later [177]. The biological function of the
CRISPR/Cas system was, however, unknown until 2015. A quantum leap came in the
gene-editing technology with the findings that variable spacer sequences are derived from
the foreign genome of virus and plasmid, suggesting the role of the CRISPR/Cas system
as part of the adaptive immunity in prokaryotes [178–180]. The immunity is acquired by
the acquisition of short DNA segments of invading viruses and plasmids in between the
adjacent repeats as spacers. The CRISPR/Cas system provides immunity by utilizing the
RNA-guided nucleases to cleave the genome of invaders in a sequence-specific manner.
This was experimentally confirmed in 2007, i.e., phage-resistant bacteria have integrated
spacers similar to the nucleic acid sequence of bacteriophage and the phage-resistant phe-
notype can be altered by the insertion or deletion of particular spacers. This implies that
CRISPR, in association with Cas genes, could participate in providing immunity against
viruses and plasmids [181]. The motifs associated with spacer precursor (proto-spacers)
from the genome of invading viruses were identified at the time of the spacer uptake mech-
anism. These short stretches of di- or trinucleotides, which usually have sequence 5′-NGG-
3′ and exceptionally 5′-NAG-3′ present at one position downstream to proto-spacers, were
named proto-spacers adjacent motifs (PAMs). These motifs (PAMs) play a key role in
the identification of proto-spacers as well as assuring the correct integration of spacers
in between repeated arrays of CRISPR [178,182,183]. Specificity is provided by the ‘Seed
Sequence’ present approximately 12bp upstream of PAM, which must be complementary
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to the RNA. Brouns et al. [184] revealed that a long-transcript CRISPR RNA precursor
(pre-crRNA) is produced by transcription of the CRISPR locus, which further processed
into a mature crRNA molecule, which serves as single guide RNA (sgRNA). Each crRNA
molecule consists of spacers, which are flanked by short DNA repeats, and this crRNA com-
bines with transactivating CRISPR RNA (tracr RNA), which stimulate Cas9 and mediates
the antiviral response. In 2010, it was experimentally proved that the CRISPR1/Cas sys-
tem of Streptococcus thermophiles naturally uptakes spacers from a self-replicating plasmid
containing antibiotic-resistant genes, provided to select transformed bacteria. They also
examined in vivo that CRISPR1/Cas creates double-stranded breaks at specific sites within
proto-spacers, suggesting the molecular basis of CRISPR/Cas system-mediated adaptive
immunity [185]. As compared to ZFNs and TALENs, the construction of the CRISPR/Cas
system is easier as it consists of just a Cas9 protein and a synthetic single-guide RNA
(sgRNA), which needs to be designed complementarily to the target DNA sequence.

3.1. Mechanism of Action

Makarova et al. [186] classified the CRISPR/Cas system into three distinct polythetic
classes, named Type I, II, and III. Cas1 and Cas2 serve as a vital constituent of all three
systems as they play a crucial role in the integration of spacers in between the repeated
array of CRISPR. Each system consists of its signature proteins and depends on these
proteins to generate an immune response against the invading virus or plasmid [187].
In summary:

1. Type I systems contain signature protein Cas3 that consists of both helicase and DNase
domains for the degradation of target [188]. Recently, six subtypes of the type I system
(Subtype I-A to I-F) have been identified to contain a variable number of Cas proteins.
Aside from Cas proteins, the type I system also encodes for the CRISPR-associated
complex for the antiviral defense (Cascade) complex, and Cas3 is also the part of
this complex.

2. Type II encodes three signature proteins, viz. Cas1, Cas2, and Cas9, and sometimes
a fourth protein, i.e., Csn2 and Cas4. Cas9 is a multifunctional protein that plays a
crucial role in the Type II system in adaptation to the degradation of the target along
with trans-encoded small RNA (tracr RNA) [4,185,189,190]. Three subtypes of the type
II system have been discovered, namely type II-A, type II-B, and type II-C [191,192].

3. Type III is defined by the presence of Cas10, whose function is still unclear. Two
subtypes of the type III system (type III-A and type III-B) have been identified [193].

Type I and II systems target DNA degradation, but exceptionally, the type III system
targets DNA as well as RNA. The most widely used system is the type II CRISPR/Cas9
system from Streptococcus pyogenes [4]. Until now, the type II system has been studied
in bacteria but type I and type III systems have marked their presence in both bacteria
and archaea [186]. The general mechanism of action of the CRISPR/Cas system involves
three stages, i.e., adaption, expression, and interference. The proteins involved in the
adaption stage (namely, Cas1 and Cas2) are highly conserved, whereas in expression and
interference stages, the proteins vary greatly between the organisms. Each stage details are
given below:

1. Adaption stage: The short pieces of DNA homologous to the genomic sequence of
the invading virus or plasmid get incorporated at the leader side of the CRISPR locus.
A new spacer unit is created by the duplication of repeats at every integration step.
In type I and III CRISPR/Cas systems, the selection of proto-spacers occur by the
recognition of PAMs present on or near the location of proto-spacers of the invading
genetic element [183,194,195]. After the recognition, Cas1 and Cas2 proteins help in
the integration of proto-spacers in between the repeat arrays of CRISPR.

2. Expression stage: At this stage, the expression of the spacer takes place via transcrip-
tion of the CRISPR locus and leads to the generation of a long transcript of pre-CRISPR
RNA (pre-crRNA), which is processed into short crRNA by endoribonucleases. In the
type I CRISPR/Cas system, pre-crRNA binds with the CRISPR-associated complex for
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the antiviral defense (Cascade) complex, processed into crRNA by cleavage through
Cas6e and Cas6f. The crRNA produced has an 8-nt repeat fragment at the 5′ end and
the fragment left forms the hairpin structure on the 3′ end. In the type II CRISPR/Cas
system, a repeated fragment of pre-crRNA pairs with the trans-encoded small RNA
(tracer RNA), which is further cleaved by RNase III in the presence of Cas9 [189].
Consequently, cleavage at a fixed distance in spacers may lead to maturation. The
type III system uses the Cas6 protein for processing to crRNA, but afterward, crRNA
is transferred to a different complex of Cas proteins, namely Csm in subtype III-A
systems and Cmr in Subtype III-B. Further, cleavage occurs at the 3′ end in subtype
III-B subsystems [196].

3. Interference stage: After the expression, invading DNA or RNA is targeted and
cleaved within proto-spacer sequences. The crRNA acts as a single guide RNA and
guides the Cas protein towards the complementary target sequences of the invading
genome of the virus or plasmid. In type I systems, the Cascade complex is guided by
crRNA towards complementary target DNA, and invading DNA possibly cleaved by
Cas3 protein. The Cas9 protein loaded with crRNA cleaves the target DNA in type II
systems. The subtype of the type III system, III-A systems, target DNA [194] whereas
III-B systems target RNA [196].

3.2. Applications

Progression of the CRISPR/Cas system from a biological defense phenomenon to
a gene-editing tool came into light when it was revealed that the genome sequence can
be remodeled by simply modifying the 20nt in the crRNA, and fusing it with tracr RNA
to make a single chimeric guide RNA (gRNA). This led to the reduction of the three-
component system to a two-component CRISPR/Cas system [4]. Unlike the Cas3 protein,
which degrades the target completely, Cas9 introduces single double-stranded breaks
(DSBs) in DNA, which is a salient feature to be an efficient gene-editing tool. DSBs induced
in DNA triggers the DNA repair pathways in the cell, and CRISPR/Cas9 manipulates
these pathways to alter the genome. Two main pathways are involved in the DNA repair,
viz. non-homologous end joining (NHEJ) and homology-directed repair (HDR). NHEJ is
more error-prone as while the cuts, insertion, or deletion (InDels) mutation may take place,
gene knock-out of mutation occurs in the coding region or the production of a cripple gene
product. HDR utilizes another piece of DNA homologous to target DNA to repair DSBs.
As in HDR, the incorporation of a DNA element takes place through recombination, so
any kind of insertion, deletion, or alteration in the sequence can be done [197,198]. Off-
target cleavage can be avoided by selecting unique target sites adjacent to PAM [4]. These
approaches have previously been studied using ZFNs and TALENs, but comparatively,
Cas9 is simple to construct while it can also target multiple genes simultaneously [197].

Owing to its high efficiency, versatility, and simplicity, the CRISPR/Cas system can be
employed for developing new cultivars (Table 2). It has been widely used in many plants
such as A. thaliana, N. benthamiana, O. sativa, and S. tuberosum [199,200].
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Table 2. CRISPR/Cas9 system-mediated gene editing in crops.

Trait(s) Crop Used Targeted Gene(s) References

Drought tolerance Z. mays (Maize) ARGOS8 [201]

Turnip mosaic virus (TMV) resistance A. thaliana eIF(iso)4E [202]

Cucumber vein yellowing virus (CMYV)
resistance Cucumis sativus eIF4E [203]

Drought tolerance S. lycopersicum SlMAPK3 [204]

Cold tolerance O. sativa OsAnn3 [205]

Parthenocarpic fruit development S. lycopersicum SlIAA9 [206]

Chilling stress tolerance S. lycopersicum SlCBF1 [207]

Tomato yellow leaf curl virus (TYLCV)
resistance S. lycopersicum, N. benthamiana Coat protein (CP) Replicase (Rep) [208]

Cauliflower mosaic virus (CMV) resistance A. thaliana CaMV CP [209]

Rice tungro spherical virus (RTSV) resistance
O. sativa

eIF4G [210]

Salt tolerance OsRR22 [211]

Male-sterile development T. aestivum Ms1 [212]

Heat stress tolerance S. lycopersicum SlMAPK3 [127]

Drought and salt stress tolerance
A. thaliana

DAP4
SOD7 [213]

Drought tolerance AREB1 [214]

Wheat dwarf virus (WDV) resistance Hordeum vulgare CP
Rep/Rep4 [215]

Yield improvement B. napus BnaMAX1 [216]

Yield improvement
Stress tolerance O. sativa (Nippobare)

OsPIN5b
GS3

OsMYB30
[217]

Yield improvement
O. sativa

Cyt P450 homeologs
OsBADH2 [218]

Drought and stress tolerance OsDST [219]

Tomato yellow leaf curl virus (TYLCV)
resistance S. lycopersicum rgsCaM [220]

Soyabean mosaic virus (SMV) resistance Glycine max
GmF3H1
GmF3H2

GmFNSII-1
[171]

3.2.1. Yield Improvement

In several plants, seasonal change in day-length may trigger flowering and day-length
sensitivity, limiting their geographical range of cultivation. A CRISPR/Cas9-mediated
mutation in SPG5, which is a repressor of florigen paralog and flowering, resulted in rapid
flowering with enhancement in the compact determinate growth habit of field tomato [221].
Li et al. [222], using the RNA-guided Cas9 system, demonstrated that this technology
can be used in vivo as the desired target mutator (DTM) to develop a mutated maize
germplasm. For hybrid breeding in crops, photoperiod and thermosensitive genetic male
sterility (PGMS and TGMS) are the two main components. To improve the yield potential
of O. sativa, the development of hybrid O. sativa is important. Hybrid O. sativa breeding
relies on the two-line system, and the generation of thermo-sensitive genetic male sterility
is widely used in this system. TMS5 broadly applied the TGMS gene from China, which
was manipulated using the CRISPR/Cas system to develop new ‘transgene clean’ TGMS
lines. Eleven novel cultivars of TGMS were developed in one year, indicating the ability
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of the CRISPR/Cas system to improvieefficiency in hybrid O. sativa breeding [223]. Li
et al. [224] employed a CRISPR/Cas gene-editing tool to mutate Gna1, DEP1, GS3, and IPA1
genes of the O. sativa cultivar Zhonghua 11, resulted in T2 generation of gna1, dep1, and gs3
mutants showing characteristics such as enhanced grain number, dense erect panicles, and
larger grain size, respectively.

3.2.2. Abiotic Stress Tolerance

The CRISPR/Cas9 system has enormous potential to generate crops tolerant to abiotic
stresses. CRISPR/Cas9-mediated knock-out of the O. sativa annexin gene OsAnn3 led
to the development of mutant lines tolerant to cold, thus indicating the involvement of
OsAnn3 in cold tolerance of O. sativa [205]. In A. thaliana, C-repeat binding factors (CBFs)
play a decisive role in cold-stress tolerance. However, the precise function of these factors
is unclear owing to the lack of null cbf triplet mutants. Thus, CRISPR/Cas9 has been
employed to produce cbf 1,3 double and cbf 1,2,3 triple mutants by disrupting CBF1 or
CBF1/CBF2 in a cbf3 T-DNA insertion mutant [225].

Mitogen-activated protein kinases (MAPK1) signaling molecules play a significant role
in drought stress tolerance. In tomato, drought stress causes the accumulation of reactive
oxygen species (ROS), which causes oxidative damage in tomatoes. SlMAPK3 mutants
generated by CRISPR/Cas gene editing led to more tolerance in the tomato plants [204].
Maize ARGOS8 acts as a negative regulator of ethylene response. New variants of ARGOS8
were developed with a native maize GOS2 promoter through CRISPR/Cas advanced
breeding technology for the production of drought-tolerant crops. The field study showed
that the ARGOS8 variant of maize has increased grain yield significantly as compared to
the wild type under flowering stress-condition [201].

SNF-1 related protein kinases 2 (SnRK2) serve as the main regulator of hyper-osmotic
stress signaling and ABA-dependent development in plants. SnRK2 and osmotic stress/ABA
activated protein kinase 2 (SAPK2) can be the primary mediator of ABA signaling in
O. sativa subclass I and II. Lou et al. [226] examined the functional role of SAPK2 by produc-
ing loss-of-function mutants using CRISPR/Cas technology. When drought, high-salinity,
and polyethylene glycol (PEG) stresses were given, SAPK2 expression was highly up-
regulated. The SAPK2 mutants showed an ABA-insensitive phenotype during germination
and post-germination stages, suggesting the importance of ABA-mediated seed dormancy.
Moreover, it has been observed that SAPK2 increases the tolerance of O. sativa plants to salt
and PEG stress.

3.2.3. Biotic Stress Tolerance

The CRISPR/Cas9 system originally emerged as part of adaptive immunity in bacteria
and archaea. Over the past years, it has been explored for targeted gene editing in various
plants to provide resistance against biotic stresses. The CRISPR/Cas9 system was used
to confer resistance against the Tomato yellow leaf curl virus (TYLCV) in N. benthamiana
plants by designing sgRNA consisting of coding and non-coding sequences of TYLCV,
resulting in reduced viral DNA accumulation with considerable attenuation in symp-
toms of infection [227]. Similarly, using the sgRNA-Cas9 system in N. benthamiana beet
severe curly top virus (BSCTV) accumulation has also been reduced [228]. Virus-resistant
cucumber (Cucumis sativus L.) cultivars were developed using the sgRNA-Cas9 system to
disrupt the function of the recessive eIF4E gene. Resultant non-transgenic homozygous
T3 progenies showed resistance against the Cucumber vein yellowing virus (Ipomovirus)
infection, potyviruses such as the Zucchini yellow mosaic virus and the Papaya ringspot
mosaic virus-W [203]. Likewise, Pyott et al. [202] employed CRISPR/Cas9 technology to
introduce deleterious site-specific mutation in the eIF(iso)4E locus of A. thaliana to develop
transgenic lines completely resistant against the Turnip mosaic virus (TuMV), which is a
major pathogen for vegetables. These findings suggest that the CRISPR/Cas9 system is
an innovative approach to generate potyvirus-resistant, agronomically important crops
without incorporating transgenes. Zhan et al. [229] used CRISPR/Cas 13a in potato plants
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to develop resistance against the Potato virus Y (PVY). Reduced accumulation of virus and
symptoms was observed in transgenic potato lines.

In A. thaliana, the enhanced disease resistance 1 (EDR1) gene acts as a negative regulator
of the defense response against powdery mildew. CRISPR/Cas9 technology was employed
to develop the Taedr1 Triticum plants by altering the three homeologs of Triticum EDR1. No
off-target mutations have been detected in Taedr1 mutants and were found to be resistant
to powdery mildew [230].

4. Conclusions and Future Prospects

In the 21st century, the foremost task for the agriculture industry is to provide food
security to the rapidly expanding population globally. Besides, developing countries are
also facing malnutrition. Hence, to ensure an adequate supply of balanced food to the
world, there is an urgent need to develop biofortified staple food, vegetables, and fruits,
enriched in all the essential compounds and mineral elements. The development of culti-
vars resistant to biotic stresses and tolerant to abiotic stresses i.e., changing environmental
conditions, high temperature, drought, flood, oxidative stresses, high salt concentration,
and heavy metal-polluted soil, can be a setback for world food security, malnutrition, and
famine problems. The feasibility of using RNAi and CRISPR/Cas9 technology has become
a topic of current interest in the last few years (Figure 4). These approaches hold great
potential to develop crops with high-value agronomic traits by targeting their broad range
of targets, accelerating crop improvement schemes, and increasing their effectiveness.

Figure 4. RNA interference vs. the CRISPR/Cas9 system.

Current progress in CRISPR technology has advanced functional genomics research
and innovative crop development. The recent technological advancement of CRISPR
related to promoter, base editing, and prime editing has enhanced its effectiveness in
gene editing for crop improvement [231]. The selection of the promoter for the expression
of Cas9 and sgRNAs and the configuration of these expression cassettes are crucial to
achieve proficient genome editing. Commonly, there are three expression strategies for the
CRISPR-Cas system in plants, i.e., a mixed dual promoter system, a dual Pol II promoter
system, and a single transcriptional unit system (STU) [232]. Although the STU system
is considered superior over other two systems, it has limitations i.e., refinement of the
system, nonoptimal expression system, and difficult post-transcriptional processes [232].
The limitations could be combatted by using a bidirectional promoter system that can
initiate transcription in both orientations [233]. The two components (cas9 and sgRNA) are
placed on each promoter’s end, enabling the opposite direction transcription. Further, the
opposite architecture of the construct can help in balancing the expression strength and
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permit independent fine-tuning of the individual cas9 and sgRNA expression cassettes
with the use of different enhancers, 3′ UTR, and terminators [234]. Furthermore, ‘base-
editing’, i.e., the newest advancement of CRISPR-Cas-based technology, can be used to
directly install point mutations in cellular DNA without inducing a double-strand DNA
break [235]. The CRISPR/Cas-based, single-base-pair editing system can overcome limited
efficiency and a high rate of undesired insertion or deletion mutations. The CRISPR/Cas
base-editing system depends on the two classes of DNA base editors, i.e., adenine and
cytosine base-editors, and is capable of conducting all four transition mutations (C→T,
T→C, A→G, and G→A) [235]. At present, base-editing is considered as the most effective
tool for plant genome editing. However, the base-editing technologies cannot generate
precise base-edits beyond the four transition mutations. However, the recent technological
evolution of prime editing of the CRISPER/Cas system can overcome the limitations [236].
Prime-editors consist of an engineered reverse transcriptase fused to Cas9 nickase and a
prime-editing guide RNA. In prime-editing, a less stringent protospacer-adjacent motif is
required due to the varied length of the reverse transcriptase template and no “bystander”
editing [237]. However, prime-editing is still in its infancy, and there is a need to study its
specificity and potential for off-target modification.

Moreover, both RNAi and CRISPR/Cas will bring a gene revolution in breeding
crops with desired traits including quality. These technologies may help in supporting
food security in both developed and developing countries. Studies concerned with gene
silencing and gene deletion or disruption have also become essential to analyze the gene
function in crops that could further help to design better gene-editing strategies.
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