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1  |  INTRODUC TION

Trees are long lived organisms that withstand the attack of a wide 
range of pathogens that often occur simultaneously (Tobias & Guest, 

2014). Therefore, these organisms have evolved a layered and tune-
able defence strategy, which includes pre- formed physical barriers, 
pathogen and damage recognition, signal transduction, production 
of metabolites and compartmentalization of damaged areas (Bonello 
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Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during 
their long lifespan. Ironically, the genetic and molecular mechanisms controlling this 
process are poorly understood. The objective of this study was to compare the ge-
netic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its 
sympatric congener Heterobasidion parviporum. Heterobasidion root-  and stem- rot is 
a major disease of Norway spruce caused by members of the Heterobasidion annosum 
species complex. Resistance to both pathogens was measured using artificial inocula-
tions in half- sib families of Norway spruce trees originating from central to northern 
Europe. The genetic component of resistance was analysed using 63,760 genome- 
wide exome- capture sequenced SNPs and multitrait genome- wide associations. No 
correlation was found for resistance to the two pathogens; however, associations 
were found between genomic variants and resistance traits with synergic or antago-
nist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance 
in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later 
bud- set and thicker stem diameter, allowed longer lesions, but this was not the case 
for H. parviporum. In summary, this study detects genomic variants with pleiotropic 
effects which explain multiple disease resistance from a genic level and could be use-
ful for selection of resistant trees to both pathogens. Furthermore, it highlights the 
need for additional research to understand the evolution of resistance traits to multi-
ple pathogens in trees.
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et al., 2006; Ennos, 2015; Franceschi et al., 2005; Kovalchuk et al., 
2013; Nemesio- Gorriz et al., 2016; Oliva et al., 2015; Solla et al., 
2002). Although the understanding of major genes conferring dis-
ease resistance to single diseases in plants has advanced, the genetic 
and molecular mechanisms controlling quantitative disease resis-
tance traits and its effectiveness against multiple attackers remains 
scarce, particularly in trees (Abdullah et al., 2017; Chen et al., 2018; 
Corwin & Kliebenstein, 2017; Ismael et al., 2020; Weiss et al., 2020).

Quantitative resistance traits have a continuous distribution of 
phenotypes from susceptible to resistant and are controlled by quan-
titative trait loci (QTL) -  multiple loci with small to moderate effects 
(Corwin & Kliebenstein, 2017; Nelson et al., 2018). Quantitative dis-
ease resistance is assumed to be nonstrain specific and therefore 
durable (Ismael et al., 2020; Nelson et al., 2018; Wiesner- hanks & 
Nelson, 2016), however it is not always effective against different 
pathogens (Corwin & Kliebenstein, 2017). The nature of disease re-
sistance to multiple pathogens could theoretically be explained from 
an organism level to a single gene level (Wiesner- hanks & Nelson, 
2016). At the organism level, individuals can be resistant to multi-
ple diseases because different unlinked QTLs present in an organ-
ism's genome are effective against different diseases independently 
(Risterucci et al., 2003; Wiesner- hanks & Nelson, 2016). At the genic 
level, multiple disease resistance could arise through the linkage of 
clusters of loci effective against single diseases (Schweizer & Stein, 
2011) or by individual pleiotropic genes, where the same gene con-
fers resistance to multiple diseases (Nelson et al., 2018; Wiesner- 
hanks & Nelson, 2016; Wisser et al., 2011).

The mapping and identification of QTLs is typically done through 
linkage mapping studies or genome- wide associations studies (GWAS) 
(Nelson et al., 2018). To guarantee the success of these experiments, 
they must be performed with high precision and comparable infec-
tion systems between pathogens, which is particularly challenging in 
forest systems (Ismael et al., 2020; Quesada et al., 2010). In recent 
years the knowledge of conifer genomics has improved vastly, which 
has allowed for more detailed studies on the genomic architecture of 
disease resistance traits (Elfstrand et al. 2020; Lind et al., 2014; Weiss 
et al., 2020). Within conifers, a well- studied pathosystem that allows 
for precise phenotyping is stem-  and root- rot caused by members of 
the Heterobasidion annosum s.l species complex (Bodles et al., 2007; 
Chen et al., 2018; Dalman et al., 2013; Lind et al., 2014; Mukrimin 
et al., 2018; Skrøppa et al., 2015; Steffenrem et al., 2016).

Speciation in the Heterobasidion annosum s.l species complex 
began with a split between the ancestor of the pine- infecting species 
H. annosum s.s. and H. irregulare, and the ancestor of the nonpine- 
infecting species H. parviporum, H. abietinum, and H. occidentale 
(Chen et al., 2015; Dalman et al., 2010). Species in the complex gen-
erally display sexual and somatic incompatibility and have different 
host ranges (Garbelotto & Gonthier, 2013). H. parviporum and H. an-
nosum s.s., however, readily infect Norway spruce and share much of 
the Norway spruce distribution on the European continent (Figure 
S1; Chen et al., 2015; Dalman et al., 2010; Garbelotto & Gonthier, 
2013; Niemela & Korhonen, 1998).

Norway spruce (Picea abies L. Karst) is a dominant conifer in 
boreal forests in Europe with a vast current population size (Wang 

et al., 2020). The sequencing of the Norway spruce genome and 
subsequent work has allowed the description of the species’ evolu-
tionary history and population structure (Chen et al., 2019; Nystedt 
et al., 2013; Wang et al., 2020). Norway spruce is divided into three 
main domains, probably as a result of refugia through glaciation pe-
riods: a northern (Fennoscandian) domain ranging from Norway in 
the west to central Russia and two other domains in the Alps and 
Carpathians, with signs of main domain admixture— probably linked 
to recent expansion following the last glaciation period (Chen et al., 
2019; Li, 2020; Tsuda et al. 2016). Recent studies have described the 
genetics of wood properties, growth, phenology traits (Baison et al., 
2019; Milesi et al., 2019) and resistance to H. parviporum (Chen et al., 
2018; Elfstrand et al. 2020).

Resistance to H. parviporum in Norway spruce is heritable (Chen 
et al., 2018; Lind et al., 2014; Steffenrem et al., 2016) and is char-
acterized by many genes with relatively small effects on resistance 
(Elfstrand et al. 2020). One QTL in PaLAR3, a gene involved in the syn-
thesis of catechin and linked to H. parviporum resistance in Norway 
spruce, is known to respond to other stressors such as H. annosum 
s.s., the blue- stain fungus Endoconiophora polonica, and mechan-
ical wounding (Danielsson et al., 2011; Hammerbacher et al., 2014; 
Nemesio- Gorriz et al., 2016). Therefore, we hypothesised that quan-
titative resistance to H. parviporum could provide multiple- disease 
resistance to other members of the H. annosum s.l. species complex. 
In this study we measured disease resistance traits to H. annosum s.s. 
and H. parviporum in a well- characterized Norway spruce population 
part of the Swedish Norway spruce breeding programme (Baison et al., 
2019; Chen et al., 2018, 2019; Lind et al., 2014; Milesi et al., 2019). 
The programme is a result of phenotypic selection of trees across 
Europe based on growth, survival, stem quality and vitality, resulting 
in the inclusion of seven recognized Norway spruce genetic clusters in 
the current breeding population (Chen et al., 2019; Haappanen et al. 
2015; Milesi et al., 2019). We formulated the specific hypotheses that 
(i) Norway spruce has variation in its resistance traits to H. annosum 
s.s., (ii) resistance to H. annosum s.s. is correlated to resistance to H. 
parviporum, and (iii) QTLs could explain multiple- disease resistance in 
Norway spruce. To test these hypotheses, we studied resistance traits 
in 400 Norway spruce half- sib families following inoculation with H. 
annosum s.s. using quantitative genetics and genome- wide association 
methods (GWAS). Furthermore, we compared additive genetic resis-
tance in half- sib families phenotyped for both H. annosum s.s and H. 
parviporum and identified potential multiple disease resistance QTLs 
with pleiotropic effects using multitrait GWAS.

2  |  MATERIAL S AND METHODS

2.1  |  Plant material

A total of 400 open pollinated half- sib families from members of 
the founder population of the Swedish Norway spruce breeding 
programme were sown in 2016 (18 seedlings/family). After the first 
growth season, seedlings were randomised into a complete block 
design with three replications (Figure 1a), where each family was 
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planted in 4- tree row- plots in plastic trays consisting of 24 separate 
0.124 L plastic pots. The seedlings were grown for another season in 
Skogforsk's experimental nursery at Ekebo, Sweden (55°56′53.1″N 
13°6′52.2″E) and subjected to standard watering and fertilisation. 
No fungicides were used during cultivation.

2.2  |  Artificial inoculations and phenotyping

Artificial inoculations were performed as described in Chen 
et al. (2018) with H. annosum s.s. Sä 16- 4. The fungus was grown 
on Hagem's media plates for three weeks prior the experiment to-
gether with 5 mm P. abies wood plugs. Immediately prior to inocula-
tion, bark was removed with a 6- mm diameter cork borer at 10 cm 
from the base of the seedling. A wooden plug colonised by H. an-
nosum s.s. was then placed at the wound and covered with Parafilm 
(Chen et al., 2018). Ambient light and temperature conditions were 
maintained for 21 days, after which plants were harvested (from 20 
August 2018 onwards).

Upon harvest, the diameter at the point of inoculation (D) was 
recorded and the lesion length (LL) above and below the edge of 
the inoculation point on the inner side of the bark was measured. 

Sapwood growth of the fungus (SWG) was measured according 
to Arnerup and collaborators (2010): The inoculated stem was cut 
up into 5- mm discs and placed on moist filter paper in 9 cm Petri 
dishes together with the original colonised wooden plug. To avoid 
contamination, the stem was cut from the tip to, and the base to the 
point of inoculation, respectively. After seven days incubation under 
humid conditions, the presence of H. annosum s.s. on the discs was 
determined by observation of characteristic conidiophores under a 
stereomicroscope (Arnerup et al., 2010; Swedjemark et al., 1997).

Time of bud- set of seedlings following the first growing season, 
from mid- October to mid- November 2017, was recorded twice per 
week, with “1” and “0” representing the presence and absence of a 
visible bud, respectively.

Out of the 400 half- sib families phenotyped for H. annosum s.s., 
269 were previously phenotyped for the same resistance traits to H. 
parviporum and reported by Chen et al. (2018).

2.3  |  Statistical analyses

Measured traits were checked for recording errors and normality. 
From a total of 5,924 observations, those with SWG =0 and no 

F I G U R E  1  Experiment set up. (a) 
Genotyping and phenotyping. Mother 
trees were genotyped and SNPs were 
filtered. Thereafter tree origin prediction 
and GWAS was performed. Half- sib 
families from the genotyped mother trees 
where phenotyped in three different 
blocks. These values were used to 
calculate EBVs, which in turn were used 
to calculate genetic correlations and the 
GWAS. (b) The half- sib families were 
phenotyped for resistance traits against H. 
annosum s.s. (N = 400) and H. parviporum 
(N = 501). The families phenotyped for 
both pathogens (N = 269) were used 
to calculate genetic correlations. Due 
to genotype filtering based in SNPs 
missingness, only a subset of mother trees 
met the cutoff and was used for origin 
assignment and GWAS
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conidiophores observed at either the point of inoculation or the in-
oculation plug were excluded from analyses (N = 235). Due to exper-
imental errors progenies from the first block, with more than 75% of 
the seedlings scoring SWG =0, were also excluded (N = 69 observa-
tions). Resistance traits to H. parviporum phenotyped by Chen et al. 
(2018) were reanalysed in accordance with our criteria to remove 
bias. As LL showed a significant deviation from a normal distribution, 
the data was log- transformed, and a 0.5 constant was added to each 
value. Variance and covariance components for each trait were esti-
mated using ASReml- R 4 (Butler et al., 2007) and the following linear 
mixed model was fitted for each trait individually:

Where yijkl is each observation on the lth seedling from the kth family 
in the jth block, � is the general mean and Bi is the fixed effect of the 
jth block. The variable Fk is the random effect of the kth family, eijkl is 
the random residual effect and Dijkl is a covariate for diameter at in-
oculation point. Wald tests were used to estimate the significance of 
fixed factors. Estimated breeding values (EBVs) for each family were 
defined as the coefficients of the random effect. Genetic correlation 
between traits was assessed by testing the association between EBVs 
using Pearson's product moment correlation in R.

The individual- tree narrow- sense heritability for each trait was 
estimated using the equation:

where h2
i
,�̂2

a
, �̂2

f
,�̂2

e
, and �̂2

p
 are narrow- sense heritability, additive ge-

netic effect, family, residual, and phenotypic variance components, 
respectively.

Time of bud- set was fitted in a nested logistic mixed model as 
follows:

Where yijklm is each observation on the lth seedling, at the mth week, 
from the kth family in the jth block where “1” corresponds to presence 
and “0” to absence of buds in the seedling, � is the general mean and 
Biis the fixed effect of the jth block. The variable Fkm is the random 
effect of the repeated measurements for the kth family and Gmk is the 
random effect of the mth week within the kth family, with a first order 
auto regressive variance assumption and eijklm is the random residual 
effect. EBVs for each family were defined as the coefficients of the 
random effect of Fk.

2.4  |  SNP identification

Mother trees to the half- sib families were genotyped using 40,018 
probes to cover intragenic regions in 26,219 P. abies gene models 
(Vidalis et al., 2018). DNA extraction, sequencing, and initial variant 

calling is described elsewhere (Baison et al., 2019; Bernhardsson 
et al., 2020).

Variants were filtered according to Bernhardsson 
et al. (2020) with minor modifications. Briefly, only biallelic 
SNPs within the extended probe regions were included with 
QualbyDepth > 2.0, FisherStrand < 60.0, RMSMappingQuality 
(MQ) > 40, MappingQualityRankSumTest (MQRankSum) > −12.5, 
ReadPosRankSumTest (ReadPosRankSum) > – 8.0, StrandOddsRatio 
(SOR) < 3.0 using vcftools (Danecek et al., 2011). SNPs with depth 6– 
40, GQ < 15, mean depth between 10– 30, 20% missing data, minor 
allele count 1, and a p- value = >1e−10 for excess of heterozygosity 
were retained to avoid collapsed reads. Individuals with more than 
30% missing variants after filtering were excluded from analysis. 
Missing variants in the remaining individuals were imputed with beagle 
4.1 (Browning & Browning, 2007).

2.5  |  Mother trees origin assignment

The ancestral origin of mother trees was assessed following Chen et al. 
(2019) based on genotype similarity to individuals with known origin 
collected across P. abies natural range. Coordinates of the first five 
principle components of P. abies trees, from a sample population of 
2572 (Li, 2020), with documented geographic origins and representa-
tive of the seven main genetic clusters were used as a training set in 
a “Random Forest” regression model (“randomForest” v4.6- 14 pack-
age [Liaw & Wiener, 2002], r software v.3.3.1). The coordinates of the 
first five components of unknown individuals were then used to as-
sign each mother tree to a given genetic cluster. The procedure was 
repeated 200 times with 8,000 iterations to estimate the accuracy of 
each assignment. Assignment of mother trees to a genetic cluster was 
determined to be true when the same allocation was repeated on more 
than 98% of occasions.

2.6  |  SNP phenotype associations

Genome wide associations using different data sets were performed. 
For H. annosum s.s., 330 mother trees were included after filtering for 
genotyping quality and relatedness (see above; Figure 1b). In order 
to perform multitrait GWAS between resistance traits to both H. an-
nosum s.s. and H. parviporum we used the 220 overlapping mother 
trees between the population phenotyped for H. annosum s.s. resist-
ance in this study and the population used in Chen et al. (2018) and 
Elfstrand et al. (2020). Associations were tested with GEMMA (Zhou 
& Stephens, 2012, 2014). EBVs calculated with ASreml R- 4 (Butler 
et al., 2007) were used as the phenotype for each trait and kinship 
was accounted for with a standardized kinship matrix calculated in 
gemma (Zhou & Stephens, 2012, 2014). Principal component analysis 
(PCA) was computed with plink 1.9 (Chang et al., 2015) and used to 
identify and remove mother trees that were either too different or 
had very close family relationships with one another. Additionally, to 
account for population structure, three to four principal components 

yijkl = � + Bi + Dijkl+Fk + eijkl
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were used as covariates depending on the subset of samples. Only 
SNPs with a minor allele frequency (MAF) > 0.05 were used for the 
associations (63,760 SNPs for H. annosum s.s., 63,372 for H. parvipo-
rum and 63,606 for the overlap). The tested model was:

Where y is a matrix of n × d traits, W a matrix of c × d covariates (fixed 
effects), � is a matrix of the corresponding coefficients, x is an n - vector 
of the SNP genotypes, � is a d vector of effet sizes for the d phenotypes, 
U is an n × d matrix of the random effects and � is an n × d matrix of 
errors (Zhou & Stephens, 2012, 2014). Wald association tests were 
performed for each analysis testing the alternate hypothesis � ≠ 0. In 
order to correct for multiple comparisons, False discovery rate (FDR) 
and Bonferroni, corrections were calculated with R. Since very few 
markers were significant following multiple comparisons correction, a 
suggestive significance threshold of 1x10−5 (equivalent to the to 99.9 
percentile) was used to identify candidate genes. The proportion of 
phenotypic variance explained by the SNP (PVE) was calculated ac-
cording to (Shim et al., 2015).

The multitrait combinations were selected based on hypothe-
sized relationships between traits, namely LL and SWG, within the 
experiment (different traits for the same pathogen) and between 
pathogens (same trait for different pathogens).

2.7  |  Gene model identification

snpEff 4 (default parameters, Cingolani et al., 2012) was used to as-
sess the putative function of the candidate SNPs. Ensembl general 
feature format (GFF, gene sets) information was utilised to build the 
P. abies snpEff database. Gene annotations were obtained from the 
P. abies v1.0 genome hosted at ConGenIE (http://conge nie.org/). 
The position of the variants in Norway spruce genome was retrieved 
from the latest genetic map (Bernhardsson et al., 2019).

3  |  RESULTS

3.1  |  Resistance to H. annosum s.s. is not correlated 
to resistance to H. parviporum in Norway spruce

Resistance to H. annosum s.s. was variable in Norway spruce half- 
sib families with individual plant values for LL (lesion length in inner 
bark) ranging from 0 to 21 mm with a mean of 3.5 mm, and values 
of SWG (sapwood growth) ranging from 0 to 80 mm with a mean 
of 15.4 m (N = 5924). The block effect was significant in the mixed 
model for both traits, as well as the diameter at inoculation point, 
which had a significant positive effect on both LL and SWG (Table 1). 
Narrow sense heritability estimates (h2) were 0.49 for LL and 0.69 
for SWG (Table 1) and a positive correlation between traits was ob-
served (Table 2).

Out of the 400 half- sib families phenotyped with H. annosum 
s.s., 226 were previously scored for the same resistance traits to 
H. parviporum and reported in Chen et al. (2018) (Figure 1b). Traits 
measured by Chen et al. (2018) with H. parviporum, and reanalysed 
here show generally larger individual plant values for LL and SWG 
than those for H. annosum s.s. (LL ranged between 0 and 104 mm 
and SWG between 0 and 85 mm with means of 7.6 and 32.6, re-
spectively). Heritability values however, were lower: 0.28 for LL 
and 0.44 for SWG for all the half- sib families phenotyped by Chen 
et al. (2018). Block and diameter at inoculation point were signif-
icant in the mixed model (Table 1). Correlation of the resistance 
traits in response to H. annosum s.s. and H. parviporum inocula-
tions was low and nonsignificant (0.06 for LL and 0.08 for SWG; 
Table 2).

To test if there was a geographic effect on resistance, the an-
cestral origin of mother trees (i.e., before they were introduced in 
the Swedish breeding programme) was inferred based on genotype 
similarity to trees of known origin. One tree was assigned to the 
Carpathian domain, 156 to the Alpine domain, 55 to central Europe, 
27 to north Poland, 21 to Russian- Baltic region, 63 to Central and 

y = W� + x� + u + �

df �̂
2

a
�̂
2

e
�̂
2

p
h2 P(D)

H. annosum s.s. LL 4994 0.09 0.17 0.19 0.49 <2.20 e−16

SWG 4994 100.93 135.21 160.45 0.63 4.69 e−09

Budset 31330 16.04 3.28 19.33 0.83 – 

H. parviporum LL 4536 0.16 0.51 0.55 0.28 2.01 e−11

SWG 4536 102.73 208.31 233.99 0.44 <2.20 e−16

Notes: df: Degrees of freedom; �̂2
a
: additive genetic variance; �̂2

e
: environmental variance; �̂2

p
: 

phenotypic variance; h2: narrow sense heritability; P(D): Wald test p- value for diameter in the 
mixed model.

TA B L E  1  Variance and heritability for 
lesion length (LL), sapwood growth (SWG) 
and Bud- set

TA B L E  2  Genetic correlations for lesion length (LL) and sapwood growth (SWG) between H. annosum s.s. and H. parviporum in the 269 
families analysed in interaction with both pathogens

Trait combination Genetic correlation df t p- value

H. annosum s.s. LL × H. annosum s.s. SWG 0.40 392 8.75 <2.2e−16

H. parviporum LL × H. parviporum SWG 0.49 453 12.09 <2.2e−16

H. annosum s.s. LL × H. parviporum LL 0.06 262 0.99 .32

H. annosum s.s. SWG × H. parviporum SWG 0.08 262 1.32 .18

http://congenie.org/
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Southern Sweden genetic cluster and one to the Fennoscandian 
domain; six trees were unassigned to a specific cluster due to 
their highly mixed genetic background. The two trees belonging to 
Fennoscandian and Romanian clusters were removed prior to mak-
ing comparisons. Breeding values for LL in trees infected with H. 
annosum s.s. were significantly different between the southernmost 
and northernmost clusters following a latitudinal cline (Figure 2), but 
that was not the case for SWG or any other phenotypes in H. parvi-
porum (Figure S2). Likewise, breeding values for timing of bud- set 
were significantly correlated with those for LL after infection with H. 
annosum s.s. (r = 0.154, t = – 3.34, df = 396, p = .008), both following 
a latitudinal gradient.

3.2  |  QTLs associated to H. annosum 
s.s. are novel and different from QTLs associated to 
H. parviporum

Genome- wide associations were performed using 63,760 SNPs from 
mothers of half- sib families and EBVs for LL and SWG calculated in 
half- sib families in response to artificial inoculations with H. annosum 
s.s. The distribution of the significance level of associations between 
the SNPs and EBVs (Figure S3) together with the PVE (Table 3) show 
that the resistance traits are probably polygenic, with several sig-
nificant variants having small effects on the traits. After correction 

for multiple comparisons, no SNPs were significantly associated with 
either trait. Nonetheless, a suggestive threshold of p < 1 × 10−5 was 
used to identify the most significant variants associated with LL and 
SWG individually and together in a multitrait model. 13 SNPs asso-
ciated with H. annosum s.s. resistance traits were found when ana-
lysed individually (eight for LL and six to SWG, Table 3) and 12 SNPs 
when the LL and SWG traits were analysed together in a multitrait 
model, from which 4 SNPs where exclusively found in the multitrait 
analysis (Table 3). Only eight markers could be placed in the linkage 
map and these were distributed in seven different linkage groups 
(Figure S4). Interestingly, two of the SNPs detected specifically in 
the multitrait model appear to be involved in plant hormone signal-
ling. MA_27152:21720 is positioned in a putative orthologue of 
AtRAE1, a negative regulator of abscisic acid (ABA) in Arabidopsis (Li 
et al., 2018) and MA_64875:14168 in an orthologue of an enzyme 
involved in the last step of T- zeatin biosynthesis (Kiba et al., 2013). 
Furthermore, one SNP (MA_99821:7939) was found within a gene 
annotated as an “ethylene responsive transcription factor” (Table 3). 
A closer inspection of the gene model MA_99821g0010 shows that 
the gene indeed is a more likely orthologue of Cytokinin response 
factor 2 (AtCRF2) in Arabidopsis. Several SNPs in Pentatricopeptide 
repeat protein-  and Tetraspanin genes were also detected (Table 3). 
No QTLs were found to be associated with resistance to H. parvi-
porum in this, or previous studies (Elfstrand et al. 2020; Mukrimin 
et al., 2018).

F I G U R E  2  Effect of tree origin on 
estimated breeding values (EBVs) for 
resistance traits against H. annosum s.s. 
Horizontal bars represent mean and 
standard error. Half- sib families are 
grouped according to the predicted origin 
of their mother, sorted from southern 
latitudes (green, right- most) to northern 
latitudes (purple, left- most). ALP, Alpine; 
CEE, Central Europe; NPL, North Poland; 
Rus_Bal, Russian Baltic; C_SE, Central 
and South Sweden. EBVs for LL are in 
logarithmic scale. Letters represent 
significant differences according to a 
pairwise t test (p < .005) 
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3.3  |  Multitrait GWAS identifies loci with 
pleiotropic effects on resistance in Norway spruce

In order to test if loci have pleiotropic effects on the same trait for 
resistance to both pathogens, a multitrait GWAS was performed in 
220 half- sib families. Considering the same significance threshold as 
above (p < 1.10−5), 12 SNPs were found to be associated with LL and 
7 with SWG (Figure 3; Table 4). We then investigated correlations in 
allele effect sizes by plotting the effect sizes of all SNPs for resist-
ance to H. parviporum as a function of their respective effect sizes in 
resistance to H. annosum s.s. (Figure 3). The SNPs were classified as 
belonging to two main categories (i) those with the same effect size 
direction for both pathogens (synergistic pleiotropy) (Figure 3, upper- 
left and lower- right; Table 4); and (ii) those with opposite effect sizes, 
(antagonist pleiotropy) (Figure 3 lower- left and upper- right). For in-
stance, MA_97119:12145 in the PaLAC5 gene has synergistic pleio-
tropic effect for LL to both pathogens (Figure 3b; Table 4). Two loci 
with SNP variants positively associated with SWG after inoculation H. 
annosum s.s. but negatively associated after inoculation with H. parv-
iporum are SNPs in an LRR- kinase receptor (MA_404302:2414) and 
a secoisolariciresinol dehydrogenase- like gene (MA_57399:6360) 
(Figure 3a). Additionally, MA_10427923:1055 (FATTY ACID EXPORT 
chloroplastic- like isoform x2) (Figure 3a, lower left quadrant) has a 
positive pleiotropic effect and is co- located within 10 centimorgans 
(cM) from two different SNPs found to be significant in individual 
GWAS for SWG for both pathogens (Figure S4; Table S2).

4  |  DISCUSSION

4.1  |  Resistance to H. annosum s.s. is 
under genetic control, but not correlated to 
resistance to H. parviporum in Norway spruce

Resistance traits to H. annosum s.s. were found to be quantitative, 
heritable, and under strong genetic control with high narrow- sense 
heritability estimates (0.49 for LL and 0.69 for SWG). The narrow- 
sense heritability values obtained in this study are high and in line 
with previous studies for resistance against H. parviporum (Arnerup 
et al., 2010; Chen et al., 2018; Karlsson & Swedjemark, 2006; 
Skrøppa et al., 2015; Swedjemark & Karlsson, 2004). Contrary to 
our expectations, resistance traits to H. annosum s.s. were not sig-
nificantly correlated to the same resistance traits to H. parviporum 
based on the 269 half- sib families phenotyped after artificial inocu-
lations with both pathogens (Table 2). This could be explained by 
differences in the pathogens’ life strategy (Garbelotto & Gonthier, 
2013; Hu et al., 2020; Oliva et al., 2011, 2013), and by the ability 
of H. annosum s.s. to infect Pinus, using mechanisms that could also 
be effective when infecting Picea (Dalman et al., 2013), but which 
are absent in H. parviporum. Alternatively, different environmental 
variables during the years the two experiments were conducted 
could have introduced variation that we cannot account for in our 
experimental design. For example, in Quercus robur resistance traits 

to Erysiphe alphitoides measured over different years were poorly 
correlated as well (Bartholomé et al., 2020). Consequently, the ob-
served quantitative resistance to H. annosum s.s. and H. parviporum is 
likely to be dependent on both the environment in which infections 
take place and the genetic variation in resistance, which may have 
evolved independently to both Heterobasidion species.

The LL in response to H. annosum s.s. inoculation was signifi-
cantly different in different genetic clusters of Norway spruce and 
followed a latitudinal cline; with mother trees from the Alpine do-
main having the longest lesions and trees from Southern and cen-
tral Sweden being the most resistant in response to H. annosum s.s. 
(Figure 1), but not to H. parviporum (Figure S2). This is, to the best of 
our knowledge, the first time that a difference between tree origins 
has been observed in the interaction between a conifer and H. anno-
sum s.l. (Bodles et al., 2007), although provenance effects on disease 
resistance have been reported for other forest pathogens (Hamilton 
et al., 2013; Perry et al., 2016). Moreira et al. (2014) observed that 
the level of constitutive defence in pines increases in species from 
higher latitudes and colder environments and is negatively cor-
related with early plant growth (Moreira et al., 2014). In Norway 
spruce quantitative traits such as growth and spring phenology fol-
low environmental gradients in Europe (Milesi et al., 2019) and the 
LL in response to H. annosum s.s. was positively correlated to the 
timing of bud- set and negatively correlated with diameter at the in-
oculation point, indicating that trees with later bud- set enabled the 
growth of longer lesions than trees which terminated their growth 
early and had thinner stems. Thus, it is possible that growth rhythm 
displayed by plants from higher latitudes with an earlier termination 
of growth allows for a better defence response in the bark to H. an-
nosum s.s. than the faster growing plants from southern origins. It 
is worth noting that resistance traits in Norway spruce to H. parvi-
porum are also correlated to the diameter at the inoculation point 
(Chen et al., 2018), but no significant difference between Norway 
spruce genetic clusters was observed in this interaction (Figure S2). 
This is possibly influenced by the fungi´s respective tissue prefer-
ences, as H. annosum s.s. grows preferentially in the cambium and 
phloem tissues, while H. parviporum is concentrated in the sapwood 
and heartwood tissues (Hu et al., 2020; Oliva et al., 2011). An inter-
action located in the cambium and phloem tissues would be more 
susceptible to seasonal changes in fluxes, as shown previously in 
Norway spruce (Krokene et al., 2012).

4.2  |  Novel gene models associated with resistance 
traits against H. annosum s.s.

Novel QTLs associated with resistance traits to H. annosum s.s. were 
found, four of which were exclusively found using multitrait asso-
ciations (Figure 3; Table 3). Recent use of multitrait GWAS in plant 
systems have proved useful in increasing the discovery power and un-
derstand the genetic make- up of complex traits such as response to 
stressors or leaf morphology (Chhetri et al., 2019; Thoen et al., 2017). 
One advantage of this method is that the analysis of different traits 
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together can lead to the identification of gene models that have a 
common effect on traits, and therefore play a central role in their reg-
ulation. Indeed, this was observed in Arabidopsis, where QTLs associ-
ated with multiple stressors were often involved in hormone signalling 
processes (Thoen et al., 2017). The GWAS of H. annosum s.s. resist-
ance traits identified three Norway spruce orthologues of genes in 
angiosperm ABA and cytokinin hormone signalling pathways: AtRAE1, 
a negative regulator ABA in Arabidopsis (Li et al., 2018); a cytochrome 
P450 involved in the last step of the T-  zeatin biosynthesis (Kiba et al., 
2013), and AtCRF2 (Cutcliffe et al., 2011). Most transcriptomic studies 

in response to Heterobasidion in Norway spruce have suggested that 
jasmonate is the main hormonal pathway activated (Arnerup et al., 
2011, 2013; Lundén et al., 2015), but recently the role of ABA has 
been highlighted (Kovalchuk et al., 2019). Because of the quantitative 
and potentially polygenic nature of the resistance traits in Norway 
spruce, it is likely that hormonal cross- talking takes place in the tissues 
in order to deploy a successful defence response.

Interestingly, other groups of SNPs in gene models associated 
with H. annosum s.s. point to a possible small RNA- mediated defence 
strategy in Norway spruce. Previously, it has been shown that a large 

F I G U R E  3  Effect size of significant 
SNPs in the multitrait GWAS for 
estimated breeding values (EBVs) for 
resistance traits (LL, lesion length, SWG, 
sapwood growth) to H. annosum s.s. and H. 
parviporum. Dark points represent SNPs 
significant after the suggested threshold 
and the bars behind the standard error. 
EBVs for LL are in logarithmic scale
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number of small interfering RNAs in Norway spruce are related to 
nucleotide- binding site- leucine- rich repeat- type resistance genes 
(Källman et al., 2013). Here, we found a SNP in an argonaute1- like 
gene model associated to LL in both pathogens (Figure 3). This gene 
model is the orthologue of Argonaute1 in Arabidopsis, which is known 
to modulate defence responses against bacterial and fungal patho-
gens by utilising endogenous small RNAs (Ellendorff et al., 2009; 
Katiyar- Agarwal et al., 2006). Interestingly this regulatory pathway 
is also utilised by pathogens like Botrytis cinerea, which use their 
own small RNAs via Argonaute1 to silence specific pathways in the 
host to establish successful infections (Weiberg et al., 2013). Given 
that pentatricopeptide repeat proteins and tetraspanins are also 
involved in RNA- mediated defence in Arabidopsis (Cai et al., 2018; 
Katiyar- Agarwal et al., 2006; Park et al., 2014) it is possible that can-
didate genes belonging to these groups, which were highlighted in 
this study, are involved in RNA mediated defence in Norway spruce 
against H. annosum s.s.

4.3  |  Multitrait GWAS identifies pleiotropic QTLs 
associated with H. annosum s.s. and H. parviporum

Given that the resistance traits to H. annosum and H. parviporum 
had no correlation, it is not surprising that the SNPs associated 

with either pathogen in the univariate analysis were different 
(Table S1). It is worth mentioning that the exonic probes used 
cover only ~39% of the predicted gene models in the spruce 
genome (Vidalis et al., 2018) and that assembly of the genome 
is highly fragmented (Bernhardsson et al., 2019; Nystedt et al., 
2013). There could therefore, be significant variation associated 
to loci that are not observed in this study. Nonetheless, multi-
trait GWAS was used here to identify SNPs associated with re-
sistance traits to both pathogens. A number of SNPs had effects 
that contributed to resistance traits to both H. annosum and H. 
parviporum, resulting in a synergistic pleiotropic effect (Figure 3). 
Interesting examples are the three different SNPs located within 
10 cM in linkage group 3 (Figure S4; Table S2). Two of these SNPs 
were found independently in the univariate GWAS for SWG for 
both pathogens and one other in the multitrait model for SWG 
(Figure 3, “FATTY ACID EXPORT chloroplastic- like isoform X2”). 
It is possible that genetic variation in the region linked to this QTL 
drives the positive pleiotropic effect we observe and could there-
fore be an example of multiple disease resistance conferred by in-
dividual genes clustered in the genome. Similarly, a SNP in PaLAC5 
with a synergistic pleiotropic effect on LL to both pathogens 
(Figure 3, lower- left quadrant), encodes a stress induced laccase 
(Koutaniemi et al., 2015; Laitinen et al., 2017) which is associated 
with resistance to H. parviporum (Elfstrand et al. 2020). This gene 

TA B L E  4  SNPs associated to the same traits (lesion length (LL) and sapwood growth (SWG)) in both H.annosum s.s. and H. parviporum

Trait Position Substitution
Allele 
frequency Variant Description

LL MA_10243484_2131 T/G 0.106 Upstream gene variant Aluminum- activated malate transporter 9

LL MA_10428147_25653 C/T 0.086 Upstream gene variant Conserved oligomeric Golgi complex subunit 2

LL MA_10432585_12933 T/C 0.333 Upstream gene variant Elicitor- responsive 1- like

LL MA_10435193_11103 G/A 0.063 Missense variant Unknown

LL MA_10435979_27030 C/T 0.423 Missense variant Calcium uniporter mitochondrial- like

LL MA_18424_36662 A/G 0.063 Missense variant Unknown

LL MA_18424_37546 G/T 0.061 Missense variant Unknown

LL MA_18547_38950 A/G 0.07 Synonymous variant Argonaute 1- like

LL MA_2971_22606 G/A 0.063 Synonymous variant aldehyde oxidase GLOX- like

LL MA_922824_4364 T/C 0.113 Upstream gene variant SRG1- like

LL MA_97119_12145 C/A 0.077 Upstream gene variant PaLAC5

LL MA_9987602_612 A/G 0.375 Downstream gene 
variant

Nuclear export mediator factor Nemf

SWG MA_10427923_1055 C/T 0.196 Missense variant Fatty acid export chloroplastic- like isoform X2

SWG MA_10432243_9511 T/C 0.13 Upstream gene variant Splicing factor SF3a60 homologue

SWG MA_138196_4550 A/T 0.077 Downstream gene 
variant

Tripeptidyl- peptidase 2- like isoform X1

SWG MA_404302_2414 A/C 0.066 Upstream gene variant Probable LRR receptor- like serine threonine-  
kinase At1g56140

SWG MA_57399_6360 T/C 0.056 Missense variant Secoisolariciresinol dehydrogenase- like

SWG MA_736502_3531 A/C 0.457 Upstream gene variant Pyrophosphate- - fructose 6- phosphate 
1- phosphotransferase subunit alpha

SWG MA_8778565_5315 A/G 0.255 Synonymous variant Clathrin assembly

SWG MA_8778565_5321 T/C 0.255 Synonymous variant Clathrin assembly
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is specifically and differentially expressed in tissues after infec-
tion by H. parviporum, and is likely to be involved in the forma-
tion of the ligno- suberized boundary zone (Elfstrand et al. 2020). 
Ligno- suberized boundary zone formation is a common feature of 
angiosperm and gymnosperm trees in response to a wide range of 
pathogens (Pearce, 1996; Woodward, 1992), which is in line with 
the synergistic pleiotropic effect observed in PaLAC5. Therefore, 
these results indicate that disease resistance to these two patho-
gens exists at genic level.

Another group of SNPs had the opposite effect for the same 
trait to the two pathogens (antagonist pleiotropy). Among the 
gene models harbouring such variants are an LRR- kinase receptor 
(MA_404302_2414) which is positively associated with resistance 
to H. annosum but negatively associated with resistance to H. parvi-
porum (Figure 3, lower- right quadrant). LRR receptors with kinase 
functions are important components of both innate immunity and 
effector- triggered immunity in plants (Nürnberger & Kemmerling, 
2006; Zhao et al., 2009). This particular LRR receptor harbours a 
conserved Malectin domain which is known to determine nonhost 
resistance in barley to powdery mildew strains adapted to wheat 
(Rajaraman et al., 2016). It is therefore possible that this LRR re-
ceptor recognises specific molecular patterns in only one of the 
pathogens leading to a successful defence response. Likewise, a 
secoisolariciresinol dehydrogenase- like gene (Figure 3, lower- right 
quadrant), which encodes for an enzyme involved in the produc-
tion of matairesinol (Suzuki & Umezawa, 2007) had a negative 
pleiotropic effect. Lignans, such as matairesinol, have been shown 
to inhibit the activity of extracellular enzymes produced by a H. 
annosum s.l. isolate in vitro (Johansson et al., 1976; Popoff et al., 
1975). In summary, SNPs associated to resistance traits to both 
pathogens can also have antagonistic pleiotropic effects on the 
infection outcome.

4.4  |  Implications for disease resistance breeding in 
Norway spruce to Heterobasidion root-  and stem- rot

Understanding the genetic architecture of tree resistance traits is 
an important task, as it will facilitate the development of resistance 
breeding strategies and ultimately ensure the success of refor-
estation programmes in the future (Buggs, 2020; Hall et al., 2016; 
Sniezko & Koch, 2017). H. annosum s.l. remains as one of the most 
devastating forest pathogens in the northern hemisphere and im-
proved resistance to this species complex would be a desirable 
trait in breeding programmes (Garbelotto & Gonthier, 2013). Our 
results show that in areas where H. parviporum and H. annosum s.s. 
exist in sympatry, resistance to both species must be considered in 
prospective breeding programmes. Interestingly, we were able to 
show that some SNPs have a synergic pleiotropic effect, and selec-
tion based on these markers could be a useful strategy in breed-
ing for resistance to both pathogens simultaneously. Furthermore, 
the significant variation in resistance to H. annosum s.s. with the 
predicted geographical origin of the mother trees indicates that 

disease resistance should be further studied in the ongoing as-
sisted migration of Norway spruce trees.

5  |  CONCLUSIONS

Here, we have used quantitative genetics together with exome- 
capture genomic data to understand the genetics behind resistance 
in Norway spruce to two closely related forest pathogens. The re-
sults show that resistance to H. annosum s.s. is quantitative, under 
strong genetic control and associated with variation in genes with 
known involvement in defence responses. Interestingly, we demon-
strate that resistance traits in Norway spruce against H. annosum s.s. 
and H. parviporum have no correlation and are most probably the 
result of different underlying genetic mechanisms of resistance and/
or genotype- environment interactions. Additionally, we show that 
resistance in bark is significantly affected by the geographic origin 
of the trees following a latitudinal cline in H. annosum s.s., but not in 
H. parviporum.

Furthermore, we found that these uncorrelated traits are asso-
ciated with genomic variation in gene models with antagonist and 
synergic pleiotropic effects which are potentially involved in disease 
resistance, such as an PaLAC5, an LRR- kinase receptor and a secoisola-
riciresinol dehydrogenase. The QTLs with a synergic pleiotropic effect 
are an example of multiple disease resistance at the genic level and 
are of special interest as they could be utilised to select for trees 
with higher resistance to multiple pathogens. On the other hand, 
markers with an antagonistic pleiotropic effect could explain why 
these pathogens have evolved to inhabit different niches when in-
fecting conifers. Finally, the results of this study highlight the need 
for further research to understand the plasticity of resistance traits 
in response to different pathogens under different environments –  a 
key aspect in the success of reforestation programmes.
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