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I Summary 

Background 

On the 1st of January 2014, the European Union introduced a phased discard ban or “Landing 
Obligation” for regulated species, as part of Common Fisheries Policy (CFP) Basic Regulation 
(Article 15). Today, in the post-Landing Obligation world, it may appear that a report on discard 
survival has little relevance. However, The Landing Obligation policy includes a high survival 
exemption (HSE) for “species for which scientific evidence demonstrates high survival rates, 
taking into account the characteristics of the gear, of the fishing practices and of the ecosystem” 
(Article 14, paragraph 4b). The HSE generated considerable interest from stakeholders, who 
wished to demonstrate that their particular fisheries did in fact have a suitably high survival 
rate for discarded unwanted catch. 

Research aimed at determining whether aquatic organisms survive after being caught and 
subsequently released has been conducted over many decades. However, in 2014, there had 
been no comprehensive assessment of all the scientific methods and approaches that can be 
employed to estimate the survival of discarded fish and other aquatic animals.  To that end, 
ICES established the Workshop on Methods for Estimating Discard Survival (WKMEDS), in 
January 2014, to provide guidance on best practice for methods to quantify the survival of 
discarded, unwanted catch. 

WKMEDS published its first preliminary guidance on best practice for survival estimation 
methods in April 2014 (ICES, 2014) – just four months after the group was established. This 
preliminary guidance provided the framework for WKMEDS to develop and apply these 
methods, over the following years, to gather evidence in support of applications for HSEs. This 
Cooperative Research Report (CRR) is the culmination of that collective research, providing a 
state-of-the-art review of the current best practice for methods to estimate discard survival. 

Survival Assessment Methods 

The guidance presented in this CRR identifies three main approaches for conducting discard 
survival assessments:  

i) Vitality assessments: the vitality of the subject to be discarded is scored relative to 
any array of indicators (e.g. activity, reflex responses, and injuries) that can be com-
bined to produce a vitality score. These assessments do not in themselves generate an 
absolute survival estimate, but can quantify “at-vessel” or “immediate” mortality lev-
els. Where vitality scores have been correlated to the likelihood of survival, by con-
ducting vitality assessments in combination with captive observation and/or tagging, 
they can be used as a proxy for survival likelihood (Section 8). 

ii) Captive observation: the subjects undergo a normal catch-and-sorting process, and 
are then held in captivity for a sufficiently long period to determine their fate (Section 
9). 

iii) Tagging: the subjects to be discarded are tagged and released, and either their behav-
iour/physiological status is remotely monitored (via biotelemetry) to determine its 
post-release fate, or survival estimates are derived from the number of returned tags 
(Section 10). 
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Vitality assessments cannot provide survival estimates in isolation. Captive observation 
methods can do so, but cannot determine the influence of predation on the survival of discarded 
organisms. Therefore, the method which can potentially generate the most robust estimates of 
discard survival is tagging, since it includes the effects of predation.   

A wide variety of species may be important as predators of discarded animals, including birds, 
marine mammals, fish, and even benthic invertebrates. Due to the stresses associated with 
capture and release, most discarded animals are likely to be compromised in their ability to 
evade such predators.  As such, mortality due to this increased risk of predation may add to 
any estimates of post-release mortality resulting from the capture and release related stressors 
alone.   

To address this potential source of uncertainty and bias in discard survival estimates, this CRR 
also describes over the different sections methods for assessing the nature and magnitude of 
seabird predation on the discarded catch.  There are several reasons for focusing on seabird 
predation including: (i) seabirds forage at or just below the sea surface and, therefore, they are 
one of the first predatory threats to discarded fish, and can be visually observed with relative 
ease, (ii) they are arguably the most abundant discard scavengers in many fisheries, and (iii) 
there is a large body of research investigating seabird–fishery interactions, particularly with 
respect to the importance of discards as food for avian fauna. 

In isolation, each of these methods (vitality assessment, captive observation, tagging 
observation, and avian predation) has limitations which can restrict the usefulness of the 
survival estimates they produce. However, when two or more of these methods are combined, 
there is clear potential for considerable synergistic benefits. The benefits of this integrated 
approach include: (i) reducing resource requirements, (ii) increasing the scope of the 
investigation, and (iii) improving the accuracy, precision, and applicability of discard survival 
estimates. 

Selecting the appropriate method/s 

The choice of method depends primarily on the objectives for the survival assessment, which 
should be defined in consultation with key stakeholders in the fishery of interest, including 
fishers and managers, as well as those conducting and funding the work.  This CRR identifies 
six common objectives ranging from: 1) providing estimates of the proportion of discards that 
appear dead or impaired at the point of discarding under particular conditions (referred to as 
“survival potential”); to 6) generating a discard survival rate for a population that is 
representative of a fishery (management unit), including the influence on survival of selected 
variables.  The methods necessary to achieve these objectives increase in complexity, from the 
first (1) to the last (6), as do the required amounts resources and time. This will likely influence 
the initial choice of objective.   

Once the objectives have been agreed upon, and the appropriate method(s) selected, the 
experimental design should ensure that the results will be scientifically valid, while optimizing 
the use of resources and subject animals.  This will be best achieved by considering the following 
general relevant research questions, in addition method-specific questions and considerations, 
which are detailed in the relevant sections in the CRR. 

• Are clear, unambiguous criteria being used to assess the survival status of test 
subjects? 

• Before investing in a full survival assessment, have test-control subjects been 
successfully collected, and can they be monitored using the selected method (e.g. 
captive observation or tagging) without killing a substantial proportion of them? 
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• Will the controls be measurable, predictable, and representative of the experimental 
population and monitoring methods?  

• Are the controls representative of the treatment groups; i.e. biologically (length, sex, 
fitness/condition), and in terms of sample size, and spatial and temporal origin? 

• Will the control subjects experience the same experimental conditions? 
• Are “blind controls” going to be used to avoid observation bias? 
• Have all potential sources of experimental bias been considered in the design and 

acquisition of the control subjects? 
• Have pathway analysis and literature reviews been used to identify the most likely 

potential explanatory variables to be considered in an experimental design? 
• Will treatment subjects and experimental conditions be representative of the fishery? 
• Will the treatment and control subjects be randomly selected to account for bias? 
• Has an appropriate statistical analysis of the survival data been identified? 
• Are appropriate power analysis techniques being used to calculate optimal sample 

sizes and number of replicates for the hypothesized treatment effects and required 
statistical power? 

Conclusions and Recommendations 

The introduction of the Landing Oblogation, and its inclusion of HSE, has motivated 
stakeholders in several fisheries to begin research programmes, based on the guidance provided 
in this CRR, to investigate the survival potential of various components of the unwanted catch.  
This has increased our collective understanding of the stressors associated with the capture 
process, and, in turn, motivated efforts to mitigate these stressors to promote high discard 
survival and catch welfare in general. 

To further promote development in this field WKMEDS recommends that future survival 
assessments should: 

• be representative of the discarded catch and practices in commercial fishing, ideally 
at a metier scale;  

• utilise one or more of three methods: vitality assessments, captive observation, 
and/or tagging observation;  

• clearly define the state of death for the species of interest, preferably using multiple 
criteria pertinent to the chosen method; 

• avoid biasing results through observation induced mortality, and, wherever 
possible, demonstrate this using appropriate controls;  

• monitor the subject animals at a frequency and over a sufficient time period to 
describe any delayed mortality attributable to the catch-and-discarding process;  

• incorporate careful design and analysis to ensure that the results are scientifically 
valid, while optimizing the use of resources and subject animals; and 

• where practical, integrate two or more of the methods to estimate discard survival, 
to increase the scope of the investigation, as well as improve the accuracy, 
precision, and applicability of the estimates.
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1 Introduction 

Mike Breen and Tom Catchpole 

Research aimed at determining whether aquatic organisms survive after being caught and 
subsequently returned to the water has been conducted over many decades. Although there 
have been reviews of the outputs from this work (e.g. Davis, 2002; Broadhurst et al., 2006; Revill, 
2012; Uhlmann and Broadhurst, 2015), there has, to date, been no comprehensive assessment of 
all the scientific methods and approaches that can be employed in meeting this aim. ICES 
Workshop on Methods for Estimating Discard Survival (WKMEDS) was established to describe 
and provide guidance on best practice for methods to quantify the survival of aquatic organisms 
caught and returned to the water. 

Relevant work on discard survival has been conducted in commercial and recreational fisheries 
around the world, and the content of this report is designed to have global applicability. The 
catalyst for the formation of WKMEDS was the recent change in European Union fisheries 
policy, which has meant that there is a particular need for guidance on how to investigate levels 
of discard survival. Article 15 of the reformed Common Fisheries Policy (CFP) Basic Regulation, 
which came into force on 1 January 2014, introduced a phased discard ban or landing obligation 
for regulated species. The policy includes a number of exemptions and flexibility tools. In 
paragraph 4(b), an exemption from the landing obligation is described for “species for which 
scientific evidence demonstrates high survival rates, taking into account the characteristics of the gear, of 
the fishing practices and of the ecosystem”. To support any proposal for an exemption for selected 
species or fisheries, therefore, clear, defensible, scientific evidence of high discard survival rates 
are required. This has generated interest from various stakeholders in understanding the 
methods to generate discard survival estimates and in evaluating the quality and robustness of 
the results from survival assessments. 

There are practical and scientific limitations to all of the methods currently available for 
estimating discard survival (ICES, 1995, 1997, 2000, 2004, 2005; Revill, 2012; Gilman et al., 2013). 
Consequently, there is a need for the provision of guidelines and identification of best practice 
for undertaking discard-survival assessments. In response to a request from the European 
Commission, through the Scientific, Technical and Economic Committee for Fisheries (STECF, 
2014), to address this need for guidance, ICES established a Workshop on Methods for 
Estimating Discard Survival (WKMEDS) on 1 January 2014. 

WKMEDS, chaired by Mike Breen (Norway) and Tom Catchpole (UK), were tasked to: 

a) Develop guidelines and, where possible, identify best practice for undertaking discard 
survival studies (using the framework detailed in the report of STECF Expert Working 
Group EWG 13-16; ICES WKMEDS, 17–21 February 2014 workshop); 

b) Identify approaches for measuring and reducing, or accounting for, the uncertainty 
associated with mortality estimates; 

c) Critically review current estimates of discard mortality, with reference to the 
guidelines detailed in a and collate existing validated mortality estimates; 

d) Conduct a meta-analysis, using the data detailed in c, to improve the understanding 
of the explanatory variables associated with discard mortality and identifying 
potential mitigation measures; and 
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e) Based on ToR a) to d) a Cooperative Research Report (CRR) should be developed for 
consideration by  ICES Advisory (ACOM) and Scientific (SCICOM) committees. 
Subsequently revised to include ToR a) and b) only to contain the scale of the task. 

This group worked by correspondence and a series of workshops were held 2014–2016: 17–21 
February 2014, 24–28 November 2014, and 12–16 December 2017, ICES Headquarters, 
Copenhagen; 20–24 April 2015, London, UK; 30 November–4 December 2016, Ghent, Belgium; 
and 23–27 May 2017, Lorient, France. 

1.1 Objectives for guidance notes 

The primary objective of this document is to provide the user with an overview and guidance 
on the currently available methods for estimating survival rates of fish (and other animals) that 
are discarded as part of commercial fishing operations. By providing examples of best practice, 
it is expected that this guidance will allow the user to produce reliable estimates of discard 
survival. 

This report will: 

• describe the concepts behind assessing discard survival (sections 2 and 4); 
• provide guidance on the selection of the most appropriate methods and experimental 

designs, as well as how to integrate and utilize information from them, with respect 
to specific discard survival objectives (sections 4, 5, 6, and 7);  

• describe three different approaches for estimating survival (vitality assessment, 
captive observation, and tagging; sections 8, 9, and10);  

• describe methods for assessing avian predation upon discard (section 11);  
• provide an overview of survival data and the most appropriate methods for analysing 

and reporting results from them (sections 12 and 13). 

It is assumed that the user of these guidance notes has sufficient scientific training, or at least 
access to suitable scientific support, to be able to conduct the techniques described in these notes 
in an appropriately systematic and disciplined manner. However, these guidance notes are also 
intended to be informative for other stakeholders associated with fishing (primarily fishers and 
managers) who wish to support and understand discard survival estimates. 

1.2 Note on high survival 

As well as describing and recommending how best to estimate discard survival, it is recognized 
that stakeholders will also require guidance on the second element of the exemption – what 
constitutes "high survival rates". However, this is not the remit of WKMEDS, and readers are 
directed to STECF EWG 13–16 (STECF, 2013). The STECF EWG concluded that the term “high 
survival” is somewhat subjective and that defining a single value cannot be scientifically 
rationalized. Therefore, it is advised that assessing proposed exemptions on the basis of "high 
survival" need to be considered on a case-by-case basis, taking account of the specificities of the 
species and fisheries under consideration – more details in Information Box 1.1. 
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Information Box 1.1. Excerpts from `Scientific, Technical and Economic Committee for 
Fisheries (STECF) – Landing obligation in EU fisheries (STECF-13-23). 2013. 
Publications Office of the European Union, Luxembourg, EUR 26330 EN, JRC 86112, 115 
pp.´ 

“… the fundamental intention of landings obligation [Article 4.2(a)] is to reduce the 
current high levels of discards as they represent: (i) a waste of natural resources in the 
sense that fish are caught and killed for no apparent benefit  or; (ii) that removing these 
fish without utilisation represents a waste in terms of future reproductive potential 
thereby negatively impacting on stock sustainability; (iii) a waste in the context of 
foregone future yield thereby negatively impact on the financial viability of fisheries 
sector and (iv) waste in terms of costs associated with onboard catch sorting. 

However, the obligation to land all catches will result in the retention of fish that may 
previously have survived the discarding process. In such cases, it is conceivable this could 
compete with other management objectives, including the long-term sustainability of the 
stock [Article 2(1)] and improving financial viability of the fishing sector as any surviving 
discards would previously have had a positive contribution to the stock. In practice, this 
will lead to an increase in fishing mortality and a reduction in stock biomass…” 

“The scale of any potential impact on stock productivity associated with the retention of 
surviving discards is dependent on several a number of factors. These include the survival 
rate at age and the overall contribution discards make to the catch (discard rate). 
Moreover, the importance of total fishing mortality (F) (including discards) relative to 
natural mortality (M) should be considered. High natural mortality may reduce benefits 
of letting surviving discards return to the sea. 

However, the above observations and comments must be taken in context of the broader 
objectives of reducing waste and the elimination of discards and the explicit objective to 
incentivise the use of more selective harvesting/exploitation practices in order to 
minimise unwanted catch (Article 14).  

EWG 13-16 considers that permitting exemptions would limit incentives to improve 
exploitation pattern. This is likely to result in retention of the status quo i.e. no change in 
exploitation pattern pre and post introduction of the landings obligation, which would 
undermine the broader objectives of minimising unwanted waste and elimination of 
discards. EWG 13-16 therefore considers that the trigger point to permit exemptions based 
on high survival should be of sufficient magnitude to provide strong incentives to change 
fishing tactics and technical characteristics of fishing gears to improve selectivity…” 

In conclusion “… the selection of a value which constitutes “high survival” is subjective 
and is likely to be species- and fishery-specific. The choice of trigger will need to be based 
on “trade-offs” between the stock benefits of continued discarding and the potential 
removal of incentives to change exploitation pattern and how this contributes to the 
minimisation of waste and the elimination of discards. Such an evaluation also should 
consider the potential benefits for other stocks and the broader ecosystem that would arise 
from changes in exploitation pattern. If it is foreseen such changes would result in larger 
benefits than permitting continued discarding, then this should take precedence over the 
application of exemptions based on high survival. …” 
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Information Box 1.1 (continued)  

“EWG 13-16 considers that avoidance of unwanted catch should be the primary focus … 
The choice of value … considered in the context of Article (article) 15.2(b) will depend on 
which objective (e.g. avoidance of waste; improve stock sustainability; improve financial 
viability) has the highest priority. The “trade-offs” are a construct of the following points 
which may need consideration when deciding on the triggering exemptions based on 
high survival: 

• the estimated survival rate & it associated uncertainty; 
• the age structure of the discards and their survival rate at age 
• the relative importance of discards in the overall catch 
• the relative importance of F (including discards) compared to M; 
• the impact of the landing obligation on the stock; 
• the potential for improving selectivity and handling practices; and  
• the level of motivation for fishers to avoid unwanted catches. ” 
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2 Background 

Mike Breen and Tom Catchpole 

2.1 What are discards? 

“Discards are the portion of a catch of fish which is not retained on board during commercial 
fishing operations and is returned to the sea” (Catchpole et al., 2005). The discarding process 
can be defined by different phases: (i) capture by the fishing gear; (ii) handling at the surface; 
and (iii) release back to the water (Figure 2.1). During each of these phases, a fish will be exposed 
to different influencing factors and injurious events that will affect its survival potential (Section 
8). A key task of a survival assessment is to ensure that these main influencing factors and their 
variability are properly identified and described for the species and fisheries of interest 
(Section 3). 

The landing obligation explicitly mentions recreational fisheries and their potential effect on 
fishery resources. Recreational fishers often practice catch-and-release (C and R), with release 
rates that often exceed 60% and are dependent on many factors including legal restrictions and 
voluntary C and R (Ferter et al., 2013). While Member States are required to ensure that marine 
recreational fisheries are conducted in a manner compatible with the European Common 
Fishery Policy (CFP), there is also a large body of literature estimating post-release survival and 
explanatory variables. We would like to point out that the words “discards” and “releases” may 
often be used interchangeably and that the recreational knowledge base provides many 
examples of best practice for studying release survival. 

2.2 What is discard survival? 

Before discussing the most appropriate methods for measuring the survival of discards, it is 
useful to consider what we mean by “survival”. It can be defined as: “The state or fact of 
continuing to live or exist, typically in spite of an accident, ordeal, or difficult circumstances” 
(OED, 2014). However, there can be varying states of “survival” where, depending upon the 
stresses and injuries endured, individuals can be defined as having differing levels of “vitality” 
(Davis, 2010; Dawkins, 2004). Understanding and measuring these signs of vitality can be useful 
for predicting the likelihood of survival in fisheries biology (e.g. Benoît et al., 2010; Davis, 2010). 

The opposite of survival is death, which is a more definitive state to identify. Therefore, 
typically when we measure the “survival” of organisms after they have experienced a particular 
treatment, we, in fact, quantify the number of individuals that died, based on a measurable 
definition of death. More precisely, we usually measure mortality rates, which is the number of 
individuals that die over a defined period of time. The inverse of the mortality rate is the 
survival rate. 

2.3 Survival and time 

Death is not normally an instantaneous process, and some time will elapse between an initial 
exposure to a fatal stressor and the eventual cessation of life. In addition, if observed long 
enough, any individual will die. Therefore, the time-frame over which we make observations 
will have an important influence upon the estimated survival rate. 
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Figure 2.1. Stressors influencing the survival of captured-and-discarded organisms during fishing (redrawn 
from Davis, 2002, including concepts from Broadhurst et al., 2006). © Canadian Science Publishing or its 
licensors. 
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There is no standard time-frame for conducting a survival assessment, as it depends on the 
species in question, the nature of the fatal stressors, and the logistical limitations of the 
investigation (Wassenberg and Hill, 1993). As such, in the scientific literature there is 
considerable variation in the observation periods used in different assessments, and this has led 
to the evolution of generic time-frames: “immediate” (minutes to hours after treatment) and 
“delayed” mortality; where “delayed” mortality can sometimes be described as “short-term” 
(days to weeks) or “long-term” (weeks to years). These are quite arbitrary and subjective terms 
that have the potential to confuse, so they should be used with caution. Regardless of the 
duration of the observation, it is necessary to know the rate of mortality and whether an 
asymptote was reached in the observed mortalities following a treatment, e.g. having gone 
through the catch-and-discard process. This provides greater confidence that most of the 
mortality associated with the discarding process was observed (Information Box 12.1). 

2.4 Variability of discard survival estimates 

A recent comprehensive review of estimated discard survival rates showed that some estimates 
of survival vary considerably – in extreme cases between 0 and 100% within a single study 
(Revill, 2012; see Annex 2 for examples). In such cases, there may be little practical use for 
discard survival estimates in managing the fishery because the conditions leading to discard 
mortality are so variable.  

When presenting discard survival rates, it is important to consider that these are the summation 
of many individual deaths. Understanding the processes that led to the death of the individual 
is useful for interpreting discard survival and key to learning how to increase it. Variability 
observed in discard estimates is driven by (i) the variability in the stresses experienced by the 
individual, and (ii) the biological characteristics and status of the individual. 

 
Figure 2.2. The rate of mortality can provide information on the relationship between stressors and death 
(redrawn by permission from Springer Nature from Ellis et al., 2012; Wedemeyer, 1996). 
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2.4.1 Variability of survival from stressors 

A fish or other animal will experience an array of different potentially injurious events or 
stressors throughout each phase of the capture process: (i) capture by the fishing gear; (ii) 
handling at the surface; and (iii) release back into the water (Figure 2.1). In this context, an array 
of factors that could influence discard mortality can be identified (Section 8). These can be 
classified into three broad categories: biological (e.g. species, size, age, physical condition, or 
occurrence of injuries), environmental (e.g. changes in temperature, depth, or light conditions), 
and technical (e.g. fishing method, catch size and composition, handling practices on deck, or 
air exposure) (Davis, 2002). Each stressor and the additive effects of multiple stressors will 
influence the survival of an individual. The key stressors identified in the catch, handling, and 
release phases should be represented in the experimental design and resultant survival 
estimates (Section 5). Moreover, the survival rate derived from the experiment can provide 
information on the relationship between stressors and survival from which fatal mechanisms 
can sometimes be inferred (e.g. Ellis et al., 2012; Figure 2.2). 

2.4.2 Variability of survival from individual characteristics 

Every animal has critical biological systems that maintain its vitality throughout its life. If any 
one of these systems permanently fails, the animal will die (Hillman, 2003). For a fish, these 
systems include the cardiovascular, respiratory, and neurological systems, the loss of any one 
of which will rapidly kill the fish (Ellis et al., 2012; Roberts, 2012). There are other critical systems 
that, if severely disrupted, will significantly increase the likelihood of the fish dying, but maybe 
over a longer period (i.e. hours to days), including, for example, the osmoregulatory, metabolic, 
immunological, endocrinological, and behavioural systems (Ellis et al., 2012; Roberts, 2012). 
Failure of these systems, or components thereof, can happen for many different reasons, 
including traumatic injury, physiological disruption or “stress”, disease, senescence (aging), or 
any combination of these. 

Under normal circumstances, every animal has a finite metabolic capacity which is allocated to 
both the basal functions (i.e. the critical biological systems) and non-basal functions (i.e. 
locomotion, digestion, and growth) (McKenzie et al., 2016). If the animal is faced with a life-
threatening situation (a stressor; e.g. predator, injury, or change in environmental conditions), 
this metabolic capacity will be directed to the most appropriate functions to counteract the 
stressor and keep the animal alive, commonly referred to as a stress response. However, if there 
is insufficient metabolic capacity for the animal to counteract the stressor (or combinations of 
stressors) and maintain its basal functions, it will likely die. Individual animals will have 
different metabolic capacities depending on various factors, including age, size, nutritional 
status, physical condition, and sexual maturity (McKenzie et al., 2016). Therefore, what simply 
manifests as the death of an individual can have numerous possible causes, mechanisms, and 
time-frames. 

2.5 Benefit of studying factors influencing discard survival 

When discarding fish, we can anticipate that there will be common fatal mechanisms leading to 
the deaths of individual fish. Therefore, there are likely to be factors that can be correlated with 
survival. Examining these factors allows us to understand and explain the variability in discard 
survival estimates (Section 7). Based on this improved understanding of discard survival and 
its explanatory variables, it may be possible to develop and modify capture and handling 
processes to promote the survival of released animals. 
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3 Main recommendations to practitioners 

Tom Catchpole and Mike Breen  

This practical guidance identifies three main approaches for conducting discard survival 
assessments (Section 4): captive observation, tagging, and vitality assessment. In summary: (i) 
captive observation is an approach whereby organisms, having gone through the normal catch-
and-sorting process, are held in confinement to determine their fate; (ii) tagging involves the 
remote monitoring of activity patterns or status by deploying data logging devices on 
organisms which have undergone the catch-and-discard process; and (iii) for vitality 
assessments, an organism’s physical condition at the time of discarding is scored (e.g. based on 
health condition, injuries, or reflexes). Vitality assessments do not in themselves generate an 
absolute survival estimate, but can quantify “at-vessel” or “immediate” mortality levels. 
However, when correlated with a likelihood of survival at vitality (derived from tagging or 
captive observation methods), a vitality index can be used as a proxy for survival. 

In general terms, methods increase in scientific robustness to estimate discard survival from 
vitality assessments, through captive observation, to tagging. While vitality assessments cannot 
provide survival estimates in isolation, captive observation methods can do so. However, these 
exclude the influence of predation on the survival of discarded organisms. The method which 
can potentially generate the most robust estimates of discard survival is tagging, which can 
include the effects of predation.  

It is important to note that all of these methods can be applied and integrated in different ways 
to achieve different objectives, and these are detailed in Section 4 (Table 4.1). The most 
important aspects of this guidance are summarized in the following section. Where possible, 
guidelines are presented as questions that practitioners should ask themselves when planning 
a discard assessment. 

3.1 Key questions for practitioners 

3.1.1 Are criteria given to define when death occurred?  

Determining precisely when a death has occurred from a biological perspective is difficult. 
However, for survival assessments, a key component is to have a clear definition of how death 
is recognized so there can be confidence that the data were consistently collected.  

For further details see Section 6 (“Using controls in discard survival assessments”) and Section 7 
(“Explanatory variables”). 

3.1.2 Is a control being used to inform of experimental induced mortality? 

A method control is used to inform on the level of induced mortality due to the observation 
method. The lower the method control survival, the more uncertainty there is in the estimated 
treatment survival. There are currently no reliable methods for correcting for this uncertainty, 
other than improving methods to reduce method related mortality. It is a substantial challenge 
to source and apply controls in these studies. Ideally, controls should be representative of the 
same population/ location/size/condition of the treatment fish, but having not gone through the 
catch and discard process. 

For further details see Section 6 (“Using controls in discard survival assessments”). 
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3.1.3 Is mortality being observed/modelled to asymptote? 

It is important that the monitoring time is sufficient so that researchers are confident that all 
discard-induced mortality has been observed. Where it is impossible to monitor for long periods 
due to practical reasons, extension models can be applied to estimate the final levels of survival. 

For further details see Section 5 (“Power analysis”), Section 12 (“Survival data: format, structure, 
and simple summary analysis”), and Section 13 (“Analysis and modelling of survival and 
vitality data”). 

3.1.4 Does the sample represent the part of the catch being studied? 

Different studies may focus on different components of the catch, e.g. the full catch of the 
species, only the discarded fraction, or only individuals below a minimum size. How the sample 
was selected is an important consideration in assessing the quality of the study, so there can be 
confidence that the result is representative of the part of the catch being studied. 

For further details see Section 5 (“Power analysis”), Section 7 (“Explanatory variables”), and 
Section 12 (“Survival data: format, structure, and simple summary analysis”). 

3.1.5 Does the sample represent the relevant population in the wider fishery? 

If the study is designed to provide an estimate that is representative of a fishery, the data should 
be representative of the full range of operational and environmental conditions associated with 
the fishery. 

For further details see Section 5 (“Power analysis”), and Section 7 (“Explanatory variables”). 

3.2 Experimental design 

Survival assessments should be carefully designed to ensure that the results will be scientifically 
valid, while optimizing the use of resources and subject animals: 

• Will treatment subjects and experimental conditions be representative of the fishery? 
• Will the treatment and control subjects be randomly selected to account for bias? 
• Has the appropriate use of statistical analysis been considered early in the 

experimental design process? 
• Are appropriate power analysis techniques being used to calculate optimal sample 

sizes and number of replicates for the hypothesized treatment effects and required 
statistical power? 

For further details see Section 5 (“Power analysis”). 

3.3 Controls 

Important considerations when using controls in discard survival assessments: 

• Before investing in a full survival assessment, have test-control subjects been 
successfully collected, and can they be monitored using the selected method (e.g. 
captive observation or tagging) without killing a substantial proportion of them? 

• Are clear, unambiguous criteria being used to assess the survival status of test 
subjects? 
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• Will the controls be measurable, predictable, and representative of the experimental 
population and monitoring methods? 

• Are the controls representative of the treatment groups; i.e. biologically (length, sex, 
fitness/condition), and in terms of sample size, and spatial, and temporal origin? 

• Will the control subjects experience the same experimental conditions? 
• Are “blind controls” going to be used to avoid observation bias? 
• Have all potential sources of experimental bias been considered in the design and 

acquisition of the control subjects? 

For further details see Section 6 (“Using controls in discard survival assessments”). 

3.4 Identifying potential explanatory variables 

• Have pathway analysis and literature reviews been used to identify the most likely 
potential explanatory variables to be considered in an experimental design? 

• Will the most common potential explanatory variables be considered as part of 
experimental design?  

o Technical: gear type and configuration, handling, and deployment duration; 
o Environmental: water temperature, depth change, and air exposure; 
o Biological: body size and physical injury. 

• To what degree of accuracy and precision should the potential explanatory variables 
be measured? How can this be done? 

• Has the potential for intercorrelations between potential explanatory variables been 
considered? 

• How will the potential explanatory variables and any intercorrelations be addressed 
by a well-controlled and replicated design? 

For further details see Section 7 (“Explanatory variables”). 

3.5 Vitality assessments:  visual health, injury, and reflex 

Important questions for practitioners when using vitality assessments: 

• Is there a defined method for selection of the assessed fish? 
• Are the health state (vitality) categories clearly defined? 
• Are the selected protocols effective in assessing health/injury of fish? 
• Were the selected reflexes developed using “unstressed” fish (not exposed to capture 

treatment) and consistently observed? 
• Are there time-limits set for responses/reflexes? e.g. operculum movement within 5 s. 
• Has the potential for observer bias been considered? 
• Are the vitality assessments consistent across all parts of the study? 

For further details see Section 8 (“Vitality assessment”). 
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3.6 Captive observation 

Important questions for practitioners when using captive observation: 

• Are holding/transfer facilities sympathetic to the biological/behavioural needs of the 
subjects? 

• Are the holding/transfer conditions the same across treatments/replicates? 
• Is there potential for additional stress/injury/mortality with captive fish? 
• Are the holding/transfer conditions representative of “ambient” (discarded to) 

conditions? 
• Are there appropriate protocols for handling/removal of dead specimens? 
• Are there appropriate protocols for monitoring live specimens? 
• Is there sufficient frequency in observations during the monitoring period?  
• Is there potential for stress/injury in subjects during observation? 

For further details see Section 9 (“Captive observations”). 

3.7 Tagging 

Important questions for practitioners when using tagging: 

• Has the potential for tagging-induced mortality been considered and quantified? 
• Are fish being released in the same area as they were caught? 
• Are any tag losses being accounted for? 
• Can discard-related mortality be distinguished from natural mortality, fishing 

mortality, and emigration? 
• Is the duration of the at-liberty tagged period sufficiently long to estimate discard 

survival? 
• For mark–recapture (traditional) tags: Are catches in the fishery sufficiently large to 

provide the required tag return rate needed to estimate discard survival? 
• For acoustic and data storage (DST) tags: Can the death of an individual be accurately 

determined from the data? 
• For acoustic tags: Does the acoustic receiver array provide full coverage of the area? 
• For pop-off DST tags: Is there a similar likelihood of tag recovery for both survivors 

and non-survivors? 

For further details see Section 10 (“Tagging”) 

3.8 Avian predation assessment 

Predation on discards by seabirds is addressed separately in this guidance, since it is not 
considered in the main approaches (see Section 4.2) but may substantially influence discard 
survival. The methods for assessing avian predation described here can supplement any of the 
main approaches to improve estimates of discard survival. 

Current estimates of seabird predation do not discriminate between discards that are already 
dead and others that may survive. Therefore, revised methods are provided which include the 
vitality of the discards, so that seabird predation can be assessed in relation to discard survival. 
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A two-tier approach is proposed, first to estimate the risk of seabird predation in a fishery, and 
second to make direct observation of discard mortality from ship-based research. 

For further details see Section 11 (“Methods for assessing avian predation on discards”). 

3.9 Analysis 

Recommendations: 

• Survival assessments should aim to collect sufficiently high-resolution longitudinal 
data to allow reliable estimation of asymptotic survival (SA). 

• Survival estimates and their measures of effect (risk difference, risk ratio, and odds 
ratio) should be reported with their confidence intervals as well as any corresponding 
p-values in order to correctly frame the estimates with respect to their uncertainty.  

• Effect measures should not be used to “correct” survival estimates with respect to 
method-control mortality, as this could mask any inherent uncertainty with respect to 
the accuracy of the estimates. 

• Longitudinal survival data are the most informative survival data format. They allow 
the accurate estimation of asymptotic survival values directly, using mixture 
distribution models, or indirectly, using non- or semi-parametric models. 

• Modelling of longitudinal and cross-sectional survival data (including vitality) using 
mixed modelling techniques, can account for the complex hierarchical data structures 
and other confounding effects (e.g. observer bias) that are common to survival 
assessments. 

• Integrating related survival and vitality data from different sources, including vitality, 
tagging, and avian predation, is a useful means of scaling up from small-scale survival 
assessments to a scale that is relevant for management decisions. 

For further details see Section 12 (“Survival data: format, structure, and simple summary 
analysis”) and Section 13 (“Analysis and modelling of survival and vitality data”). 
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4 Discard survival assessments 

Tom Catchpole, Mike Breen, Michael Davis, Hugues Benoît, Floor Quirijns, 
and Sebastian Uhlmann 

4.1 What is a discard survival assessment? 

For the purposes of this report, a discard survival assessment is an investigation, experiment, 
or project that has the principle aim of quantifying the survival of aquatic organisms after 
having been caught and released back to the water. Survival assessments can be undertaken as 
part of regular ongoing monitoring in commercial fisheries, typically via a tagging program, or, 
more commonly, as part of dedicated experiments. 

4.2 Experimental approaches 

Experimental methods used to conduct discard survival assessments can be grouped into three 
main approaches: 

iv) Vitality assessments: the vitality of the subject to be discarded is scored relative to any 
array of indicators (e.g. activity, reflex responses, and injuries) that can be combined to 
produce a vitality score. In the cases where these scores have been correlated to the 
likelihood of survival, they can be used as a proxy for survival likelihood (see Section 8).  

v) Captive observation: the subject to be discarded is observed in captivity to determine 
whether it lives or dies (see Section 9).  

vi) Tagging: the subject to be discarded is tagged and released, and either its 
behaviour/physiological status is remotely monitored (via biotelemetry) to determine its 
post-release fate, or survival estimates are derived from the number of returned tags (see 
Section 10). 

Sections 8–10 describe these approaches, including the principles behind each method, and their 
benefits and limitations. Before using estimates of discard survival in the context of fisheries 
management, consideration should be given to these limitations and potential sources of error. 

4.3 Towards an integrated approach 

In isolation, each of these methods has limitations which can restrict the usefulness of the 
survival estimates they produce. However, when two or more of these methods are combined, 
there is clear potential for considerable synergistic benefits. The benefits of this integrated 
approach include: (i) reducing resource requirements, (ii) increasing the scope of the 
investigation, and (iii) improving the accuracy, precision, and applicability of discard survival 
estimates. The mechanism of integration and the outputs that can be achieved are detailed in 
Table 4.1. 

In general terms, vitality assessments provide both the proportion of discards that are dead at 
the point of discarding, and a measure of vitality impairment for the remainder of the catch. 
This vitality impairment can be an indicator of a reduced survival potential. The technique does 
not provide a survival rate per se, but when combined with captive observation and/or tagging 
techniques, it can generate a proxy for estimating survival across a representative range of 
conditions. Captive observations in isolation give a discard survival estimate that excludes 
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predation and relates only to the fishing conditions under which the individuals were captured 
and observed. However, when captive observation is combined with vitality assessments, a 
survival rate (excluding predation) that is representative of the fishery can be generated. 
Similarly, the tagging approach in isolation provides a discard survival rate that relates only to 
the conditions under which the fish were tagged. Tagging is the only approach that delivers a 
survival rate that is inclusive of predation. Thus, when integrated with vitality assessments, and 
potentially also with captive observations, it provides the most complete approach for 
estimating a discard survival rate that is representative of a fishery. The potential exception is 
in quantifying the level of avian predation on discarded catches and how this affects the overall 
discard survival rate. To this aim, a separate section on methods to estimate avian predation is 
provided which can be used in conjunction with any of the three main approaches (Section 11). 

4.4 Planning a survival assessment – an integrated approach 

When planning and conducting a survival assessment, there are several key steps and decisions 
that have to be made, as summarized in Figure 4.1. 

 

Figure 4.1. Overview of the survival assessment process. 

Stakeholder involvement (Figure 4.1 A; Section 4.5) 

The importance of involving stakeholders at all stages of designing, conducting, and reporting 
survival assessments cannot be overstated. As well as providing invaluable information about 
the characteristics of the species and fisheries, it will also increase the value of the assessment 
data and its uptake into the management of the fisheries. 
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Prioritization - identify candidate species, fisheries, and variables (Figure 4.1 B; 
Section 4.6) 

The choice of which species in which fisheries to study depends on several criteria: existing 
survival information, biological traits of the species, species population status, magnitude of 
discarding, fishery characteristics, environmental characteristics, socio-economic value of the 
fishery, available resources, and management policy. The process of prioritizing is unlikely to 
be simple and may involve several iterations, with results of preliminary studies informing the 
final choice. 

Experimental design (Figure 4.1 C1; Section 5) 

Survival assessments should be carefully designed to ensure that the results will be scientifically 
valid while also optimizing the use of resources and subject animals. This requires careful 
planning on how the data will be collected and analysed in order to answer a specific research 
question. The key concepts underlying the experimental design process are discussed in Section 
5, including the experimental unit, controls, replication, randomization, and orthogonal and 
non-orthogonal designs. In addition, power analysis is introduced as a method for defining the 
statistical power of an experimental design, and for determining the optimal number of 
replicates and subjects. 

Controls (Figure 4.1 C2; Section 6) 

Including controls within the survival assessment informs the researcher on the factors 
influencing observed mortality. In the rare cases where 100% of the treatment subjects survive, 
it can clearly be concluded that neither the treatment nor the survival assessment method had 
any fatal effects. However, when survival is < 100%, it cannot be  discerned whether the 
mortality was due to the treatment (having gone through the catch and discard process) or the 
experimental process (e.g. having been contained or tagged) unless a control is employed.  

Explanatory variables (Figure 4.1 C3; Section 7) 

A key first step in experimental design is to identify the explanatory variables that are most 
likely going to influence discard survival in the species and fishery of interest. This is done both 
conceptually, by considering the path taken by the fish during the capture process to identify 
the likely stressors to which an organism may be exposed, and by physically measuring these 
variables at each stage of the fishing operation: capture, handling, and release ensuring that the 
full range of their variability is described (Section 7). Subsequent survival assessments will then 
ensure that the main factors and their variability are properly represented in the experimental 
design and analysis (sections 5, 12, and 13). 

Selecting and integrating methods for estimating survival (Figure 4.1 D1, D2 and D3; 
Section 4.7) 

Selecting the most appropriate methods for estimating the survival of a particular species or 
group of species in a particular fishery will depend on the precise objective of the study 
(Table 4.1). Method selection will depend on many factors including the characteristics of the 
species and the fishery and the available resources. In Section 4.7, we discuss the available 
options and the implications these will have on the application and utility of the survival 
estimates.  
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Predation (Figure 4.1 E; Section 11) 

The survival estimates derived from steps C and D may not account for all sources of 
predation. Specifically, the three main approaches for estimating discard survival (D1, 
D2 and D3) are unlikely to accurately assess the influence of avian predation. Here, a 
separate section on methods to estimate avian predation is provided, which can be 
used in conjunction with any of the three main approaches. The avian predation 
methods do not provide absolute survival estimates, but can be applied to adjust the 
survival estimates derived from the three main approaches. 

Analyzing and summarizing survival data (Figure 4.1 F; sections 12 and 13) 

When presenting survival estimates, important contextual details should be made explicit, as 
well as the limitations and assumptions of the methods employed that could introduce 
uncertainty in the estimates. For example: 

• context - i.e. time-frame/mortality rate, explanatory variables, sample size, and level 
of replication; 

• limitations and assumptions – i.e. restricted monitoring period, exclusion of 
predators, method-induced effects; and 

• uncertainty – i.e. estimate confidence intervals, suspected biases, or imprecision. 

The design of the experiment will be dictated by the specific question to be answered and the 
analytical method to be applied to the data. This report provides an overview of the available 
techniques for analysing and summarizing survival data. 

4.5 Involving stakeholders 

Results of discard-survival studies may have a large influence on fisheries management. For 
example, it may lead to an exemption from the landing obligation in EU fisheries for certain 
fisheries or species which are assessed to have a high likelihood of survival. To increase the 
acceptance of results with all stakeholders, it is essential that the studies are scientifically robust. 

Because rates of discard survival depend on many variables (Section 7), discard-survival 
assessments may show uncertainty in their results. Such uncertainties may invoke criticism 
about their utility by potential end-users. This emphasizes the importance of managing realistic 
expectations in all stakeholders from the onset of the survival assessments. Fishers and 
managers may have unrealistic expectations of the results of the discard-survival assessments. 

If stakeholders and managers are involved in deciding on the objectives, methods, and outcome 
of the studies, this helps to gain and strengthen their commitment (Johnson and van Densen, 
2007; Kraan et al., 2013). Prioritizing the fisheries and species to be assessed should be done 
together (Section 4.6). The objectives (Section 4.7) and methods must be agreed upon. When the 
results are available, it can be helpful and informative to discuss them with the involved 
stakeholders and managers. 

4.6 Criteria for Prioritizing species, fisheries, and variables 

There may be species/fisheries combinations where neither industry, managers, nor scientists 
believe it useful to spend resources on discard survival assessments. However, there will likely 
be many candidate species and fisheries for which estimates of discard mortality will be desired, 
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either in the context of a possible exemption to the landings obligation described in the EU 
Common Fisheries Policy, or to meet or inform other fisheries management objectives. To 
produce even rough estimates of discard survival for all candidate species/fisheries will be 
beyond current scientific capacities and resources. Therefore, a process to establish priorities 
will be required. Conceptually, there are at least six distinct criteria that could be considered in 
setting priorities, presented below in no particular order. The first two of these criteria are 
related to the survival potential of discards and can be informed by this report  

4.6.1 Biological characteristics of the discarded individuals of interest 

Physical and physiological characteristics of individuals can affect their susceptibility to dying 
as a result of the capture, handling, and discarding processes. Susceptibility varies among 
species, and generally varies inversely with body size within species (Broadhurst et al., 2006; 
Uhlmann and Broadhurst, 2015). Relative susceptibility is known for certain species or 
taxonomic groups (e.g. Revill, 2012), while it can be inferred for others roughly from their 
biological traits (e.g. Benoît et al., 2013; Section 7). Alternatively, assays of species susceptibility 
can generally be conducted rapidly and efficiently in the field (Section 7). 

4.6.2 Characteristics of the fishery 

The survival prospects of a fish are influenced by the capture (e.g. gear type) and catch handling 
(e.g. handling time) characteristics of the fishery as well as the environmental conditions 
experienced by the fish from the time they are captured to the time they return to their habitat 
following discarding (Section 7). A preliminary survey of mortality proxies or indicators from 
the fishery could provide an indication of potential discard survival (Section 8). 

4.6.3 Population status 

There are numerous reasons why population status might affect priority setting. For example, 
there may be a desire to favour depleted species if a successful live-release policy is expected to 
improve the rate or likelihood of recovery. In other instances, there may be evidence that 
mortality of a particular population component (e.g. age, size, or sex) affected by discarding has 
a disproportionate effect on the productivity of the stock. In such a case, successful live release 
may be a particularly effective manner of enhancing productivity. Information on status will be 
generally available from stock assessment reports. 

4.6.4 Magnitude of discards or discard rate 

The absolute amount of fish discarded, and the proportion of the catch discarded (discard rate) 
may both be pertinent considerations. When considering population status, they will reflect 
discard-related mortality and the fraction of fishing mortality that is potentially comprised of 
discard loss. In this respect, they can be used to evaluate the potential benefits of different levels 
of discard survival. Information should be available from fishery monitoring data. The amount 
of discarding is also relevant from the perspective of how much extra sorting time and storage 
space would be taken up on a vessel which may increase the costs associated with an obligation 
to land those fish. 

4.6.5 Socio-economic value 

The socio-economic value of a fishery to the regional or national economy may influence its 
prioritization where suitably resilient species form part of the unwanted catch. 
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4.6.6 Policy implications 

A discussion of the policy implications of mandatory landing exemptions that might affect the 
relative priority of a fishery for detailed assessments is beyond the scope of this report. Relevant 
considerations might include prioritizing fisheries so as to minimize the landing of fish for 
which there is little or no market, and which must be disposed of, and favouring the live release 
of incidentally caught charismatic species.  Alternatively, “choke” species could be identified 
which may be discarded at times in large quantities, but where quota restrictions may imply 
that fishing would be cut short. There are also examples of mandatory release of threatened and 
vulnerable species for some fisheries despite limited knowledge of discard survival rate (e.g. 
IUCN species, or “zero-quota” species). Only with quantified estimates of discard survival is it 
possible to assess the utility of these policies. 

4.7 Selecting methods for estimating survival 

A synthesis of the approaches currently available which are recommended to meet specific 
objectives to estimate discard survival is provided in Table 4.1 and in the following text. Table 
4.1 can be viewed either as a means to identify a single approach to meet a specific objective or 
as a stepwise process (1–6) that may be applied in a project or research programme. In general, 
the approaches increase from the first to the last in the level of resources and time required to 
achieve the stated goal. The outputs that can be generated from the approaches range from 
providing estimates of the proportion of discards that appear dead or impaired at the point of 
discarding under particular conditions (referred to as “survival potential”; 1) to generating a 
discard survival rate for a population that is representative of a fishery (management unit), 
including the influence on survival of selected variables (6). Here, the currently available 
approaches considered most suitable to deliver specific objectives are described. It is assumed 
that the species, size classes, and the fishery (management unit) of interest for investigation 
have been selected. The approach recommended is based on generating results that will meet 
the specific objective using the most cost-effective approach and in the shortest period. Before 
beginning an assessment, expectations should be agreed upon by those conducting and funding 
the work as well as the managers and stakeholders who plan to use the outputs. 

Objective 1: Estimate an immediate discard survival potential for specific conditions 

The recommended approach here is to perform vitality assessments at the point of discarding 
in isolation, i.e. without considering/representing the range of conditions under which the 
management unit operates. This approach is best used to establish whether further investigation 
for a species in a specific fishery is warranted. Where the vitality assessment includes a criterion 
defining dead specimens, this approach provides an approximate estimate of the proportion of 
individuals that are dead at the point of discarding. However, no inferences can be made on 
how long any living specimens will survive beyond this point. Also, imprecision in the 
definition and identification of dead individuals will be reflected in uncertainties in the survival 
estimates (Section 8). The findings from this approach can only be associated with the conditions 
under which the individuals were observed. The influence on survival of any variability within 
the fishery remains unknown. The vitality assessment approach also generates data on 
impairment, observed as the proportion of discards at each defined vitality level, which can be 
utilized in subsequent investigations. 
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Table 4.1. Synthesis of the approaches currently available which are recommended to meet specific objectives 
to estimate discard survival. Please note: (i) the objectives refer to the selected species, variables and 
management rules; and (ii) all suggested approaches can be supplemented with an avian predation 
assessment. 

Objective  Suggested approach  Resource implications 

1. Estimate an 
immediate discard 
survival potential for 
specific conditions  

Vitality assessment on board 
commercial vessel(s), with 
targeted observations of the 
factors that affect mortality.  

Personnel: trained observers and 
fishers.  
Specialist equipment: none. 
Time-frame: hours to days (field trials). 

2. Estimate a discard 
survival potential that 
is representative of the 
management unit 

Vitality assessments on board 
commercial vessels during 
representative range of 
conditions. 

Personnel: trained observers and 
fishers. 
Specialist equipment: none 
Time-frame: hours to days (field trials) 

3. Estimate a discard 
survival rate, excluding 
predation, for specific 
conditions 

Captive observation of 
individuals under particular 
conditions. 

Personnel: experienced researchers and 
fishers. 
Specialist equipment: containment 
facilities (e.g. aquaria and sea cages). 
Time-frame: monitoring periods of days 
to weeks.  

4. Estimate a discard 
survival rate, excluding 
predation, 
representative of the 
management unit 

Vitality assessments under 
representative conditions on 
commercial vessel(s), with captive 
observation of individuals 
displaying full range of vitality 
levels, to give an overall 
weighted-mean survival estimate.  

Personnel: trained observers, 
experienced researchers, and fishers. 
Specialist equipment: containment 
facilities. 
Time-frame: monitoring periods of 
days to weeks. 

5. Estimate a discard 
survival rate, including 
predation for specific 
conditions 

Tagging on board commercial 
vessel(s) under particular 
conditions. 

Personnel: experienced researchers and 
fishers 
Specialist equipment: tags. 
Time-frame: monitoring periods of 
days to months/years.  

6. Estimate a discard 
survival rate, including 
predation, 
representative of the 
management unit 

Option 1: Vitality assessment 
under representative conditions 
on commercial vessel(s), with 
tagging of individuals displaying 
in full range of vitality levels, to 
generate an indirect survival 
estimate. 

Personnel: trained observers, 
experienced researchers, and fishers. 
Specialist equipment: tags. 
Time-frame: monitoring periods of 
days to months/years.  

Option 2: Vitality assessment 
under representative conditions 
on board commercial vessel(s), 
with captive observation (short-
term mortality) and tagging (long-
term mortality) of individuals 
displaying the full range of 
vitality levels, to generate an 
indirect survival estimate  

Personnel: trained observers, 
experienced researchers, and fishers. 
Specialist equipment: tags, containment 
facilities (e.g. aquaria and sea cages). 
Time-frame: monitoring periods of 
days to months/years.  
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Objective 2: Estimate an immediate discard survival potential that is representative 
of the management unit 

The recommended approach is to perform vitality assessments at the point of discarding across 
the range of representative conditions under which the management unit operates. This is an 
extension of the first approach in that it provides an approximate estimate of the proportion of 
individuals that are dead at the point of discarding across a representative range of conditions, 
i.e. accounting for any variability of the fishery. Again, as in the first approach, the vitality 
assessment should include a criterion defining dead specimens. The result is representative of 
the management unit, and the relative influence of selected variables on vitality impairment can 
be established. 

Objective 3: Estimate a discard survival rate, excluding predation, for specific 
conditions 

When the objective is to estimate the survival rate under particular conditions, and predation is 
not considered an important or priority factor, then captive observation under defined 
conditions is the recommended approach. This approach provides a discard survival rate that 
excludes the effect of predation, and is representative only of the conditions under which the 
individuals were captured and observed. When using this technique, it must be acknowledged 
that the effect of captivity upon the experimental subjects may underestimate survival, while 
the exclusion of predation may overestimate it. 

Objective 4: Estimate a discard survival rate, excluding predation, representative of 
the management unit 

Where a discard survival rate is required that is representative of the management unit, and 
predation is not considered an important or priority factor, vitality assessments across a 
representative range of conditions for the fishery combined with captive observation is 
suggested. Conducting sufficient captive observation experiments to cover the full variability 
of conditions displayed by a fishery and species is practically difficult and expensive. Instead, 
the variability of vitality levels for discarded individuals can be described. In addition, survival 
estimates for the different vitality levels can be calibrated using captive observation (Section 9). 
These measures can then be combined to produce a proxy survival estimate, which should be 
representative of the conditions in the fishery, excluding the effect of predation. This approach 
also gives the relative influence on discard survival (excluding predation) of selected variables. 
By applying the captive observation results to generate survival estimates, it must be 
acknowledged that these may be underestimated due to captivity effects, while the exclusion of 
predation may overestimate survival. 

Objective 5: Estimate a discard survival rate, including predation, for specific 
conditions 

When the objective is to estimate discard survival for particular fishing conditions that includes 
predation, the tagging approach is suggested. Where seabird predation is thought to be the 
primary source of post-discarding predation mortality, the approaches described in Section 11 
could be used to estimate the mortality due to seabird predation in place of, or, preferably, in 
addition to, the tagging/biotelemetry approach. The findings from these approaches can be 
associated only with the conditions under which the individuals were captured and tagged. The 
survival estimates may be biased to the extent that the capture and handling conditions 
experienced by tagged discards may not reflect the conditions experienced by all discards in the 
fishery. There may also be method-induced mortality due to the tagging procedures. 
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Objective 6: Estimate a discard survival rate, including predation, representative of 
the management unit 

Investigators will often start with the aim to deliver the most comprehensive objective, that is, 
to estimate a discard survival rate that includes predation and is representative of the selected 
management unit. This may be unrealistic because this is likely to require substantial resources 
and will take considerable time to achieve. Here, two options are suggested: the first integrates 
vitality assessments with tagging, while the second integrates vitality assessments, tagging, and 
captive observation. Tagging a sufficient number of individuals to cover the variability of 
conditions displayed by a fishery is practically difficult and expensive.  

• Option 1: Vitality assessment and tagging/biotelemetry. Survival is estimated based 
on tag return rates specific to each vitality level, as determined for individual tagged 
fish prior to release. These conditional survival rates are, in turn, combined with the 
frequency distribution of vitality levels to estimate a survival rate reflective of the 
conditions in the fishery. This approach assumes that the effect of the conditions 
experienced by fish during capture and handling is reflected in the observed 
distribution of vitality levels. These conditions should include all types of stressors 
observed in the fishery of interest, but not necessarily all levels of each stressor type. 
The tagging does not need to be representative of all conditions, but does need to 
include enough tagged discards for each vitality level. This approach can provide 
representative discard survival estimates across the full management unit and include 
the relative influence of selected variables. 

• Option 2: Vitality assessments, captive observation, and tagging/biotelemetry. The 
second option is an integration of all three general methods, vitality assessments 
under a representative range of conditions, combined with captive observation and 
tagging/biotelemetry techniques. Where captive observation has been investigated 
previously, these data can be integrated with newly acquired data from tagging work. 
This option will be selected where data have been generated already, or when 
conducting less tagging work is preferred; e.g. to inform on tagging-related mortality. 
The information given above for objective 4 and option 1 of objective 6 are relevant. 

4.7.1 Including Avian Predation 

In meeting all the objectives (1–6), there is the option of including avian predation assessments. 
Where practitioners observe that seabird predation could be a primary source of post-
discarding predation mortality, avian predation assessments should be included in the study 
so that these mortalities can be accounted for in the final survival estimate. The methods to 
conduct these assessments are described in Section 11, and while they do not generate absolute 
discard estimates in themselves, they allow survival estimates derived from the other 
approaches to be adjusted to account for avian predation levels.  

A mechanism for integrating the data from these approaches is suggested in Section 13. An 
important consideration when combining approaches is to ensure that the survival estimates 
are used and interpreted correctly. An estimate derived (directly or indirectly) from results of a 
captive observation study can be used to establish discard survival rates that exclude predation, 
while an estimate derived from results of tagging can provide discard survival rates that include 
predation. 
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5 Experimental design in survival assessments 

Mike Breen, Chun Chen, Bob van Marlen, and Hugues Benoît 

When designing an experiment, it is advisable to consider at the earliest opportunity, how the 
resulting data will be analysed. This will help in the practical design of the experiment, by 
ensuring you have thought about the data structure in detail, and will ensure that the data are 
collected in an appropriate way to correctly answer the research question. Consulting with a 
statistician and/or experienced analyst is strongly advised to all researchers when planning a 
survival assessment. For more information on the format and structure of data in survival 
assessments, as well as the appropriate techniques for analysing it, refer to sections 12 and 13. 

5.1 Key concepts 

Good experimental design and the subsequent analysis of the data is based on several key 
scientific and statistical concepts (Crawley, 2013): 

5.1.1 Experimental unit 

An experimental unit is the entity within an experiment that is randomly and independently 
assigned to experimental conditions (Lazic et al, 2018).  It would be natural to assume that the 
experimental unit in survival assessments is the individual (fish; Newcombe, 2013). After all, 
the objective of the assessments is to determine the proportion of individuals in a population 
that survive the stresses associated with discarding. Furthermore, the disparity among 
individuals is likely to be the most dominant source of variation in the response variable (i.e. 
survival and/or vitality); assuming the responses of these individuals remain statistically 
independent throughout the experiment. However, if the fish are grouped in some way that 
may affect this independence (e.g. groups sampled from different hauls or groups held together 
for monitoring), then the experimental unit may need to reflect that grouping. That is, it will be 
necessary to consider the hierarchical structure inherent in the data: variation among groups, 
as well as among individuals within groups. This is likely to be a common issue in survival 
assessments where the data are collected from different hauls, geographical areas, periods, 
and/or métiers; and, consequently, have a hierarchical data structure. Ways of addressing this 
are discussed below and in Section 13. 

5.1.2 Controls 

Survival assessments, whether experimental or undertaken as part of ongoing monitoring, 
require some intervention to monitor the fate of animals after capturing, handling, and 
discarding treatments. This may involve tagging, vitality assessment or captivity. These 
additional interventions may themselves affect survival, which needs to be evaluated and 
ideally isolated. Consequently, to be able to infer the nature and magnitude of an experimental 
treatment, it is necessary to have a group that have not experienced the treatment to compare 
with, i.e. the “controls”. The importance and use of controls in survival assessments is discussed 
in Section 6. 

5.1.3 Replication 

The response (i.e. survival or vitality) to a treatment is likely to vary among individuals or 
groups of individuals. To increase the reliability of our description of this response and its 
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variability, it is necessary to repeat the observations on several replicates. These replicates must 
be statistically independent (i.e. not correlated with each other) either by design or conditionally 
using a model, and there should be a sufficient number to ensure the statistical power of the 
experiment (see below for further discussion; Crawley, 2013). 

5.1.4 Randomization 

It is generally difficult to avoid bias when assigning experimental units to a treatment. The best 
approach for removing this potential bias and creating homogeneous treatment groups, is to 
randomly assign the experimental units to an experimental group. However, in practice, it can 
be very challenging to implement randomization properly. Therefore careful consideration 
should be given to any experimental design to ensure that it does not introduce unforeseen 
biases (Lewis and Warlow, 2004; see also: http://www.stat.yale.edu/Courses/1997-
98/101/expdes.htm). 

5.1.5 Orthogonal and non-orthogonal designs 

Good experimental design should ideally aim to have all treatments/effects equally represented 
across the replicates and with no missing data. Such designs are said to be “orthogonal”. 
However, in the case of observational studies like survival assessments, there is only limited 
control over the number of individuals observed and the conditions under which they are 
observed. Moreover, many of the explanatory variables are likely to be correlated with each 
other. These data are “non-orthogonal”. Careful planning and experimental design can alleviate 
many analytical issues associated with non-orthogonal data, e.g. by optimizing the allocation 
of replicates to treatments. 

When analysing the data, it is good practice to try to identify and address potential correlations 
and heterogeneity among explanatory variables (Zuur et al., 2009a). Furthermore, care should 
be taken during model parameter selection to assess the significance of explanatory variables 
against the maximal model to ensure that any confounding interactions with other variables are 
accounted for (Crawley, 2013). 

5.2 Visualizing the experimental design and data structure 

It can be helpful to draw some simple sketches of an experimental design or eventual data 
structure. In Figure 5.1, the fish in tanks 1 and 2 are actually a sub- (or sub-sub) sample from 
selected trips/hauls. How the higher-level samples are determined should not be ignored, since 
they will most likely exhibit higher variation than the lower levels. In other words, the variation 
in survival among vessels/métiers/geolocations is most likely higher than the variation among 
fish in the same haul. If you want to apply inferences from the results to the general population, 
the inferences made at each level should employ the correct formulae for the type of sampling 
used at that level. In many cases, the sampling could be random, but other designs are possible 
(e.g., stratified, systematic). However, in practice, the sampling design may not fully be 
respected at each level, e.g. failure to achieve a fully random selection. Therefore, it is important 
to assess and document the potential for non-random (or biased) sampling, and apply caution 
when generalizing the findings, especially when extrapolating to a wider population.   

Extra sample processing for each group of fish, such as treatments or assignment to holding 
tanks, should also be assigned randomly to avoid confounding factors. For instance, if treatment 
A is always assigned ahead of treatment B, the effect of A compared to B could be attributed to 
a shorter air exposure. Similarly, if fish within treatment A are always assigned to tank 1, which 
happens to be located in a much noisier place than tank 2 (used for treatment B), the lower 

http://www.stat.yale.edu/Courses/1997-98/101/expdes.htm
http://www.stat.yale.edu/Courses/1997-98/101/expdes.htm
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survival of fish in treatment A/tank 1 could be attributed to stress associated with noise 
disturbance rather than differences in the treatment. 

This sketch also helps obtain a better understanding of the data structure. Such hierarchical data 
structures should be incorporated into the models during the data analysis, e.g. by including 
levels such as trip, haul, or tank as random factors (e.g. using GLMM; Section 13.2.4). 

 
Figure 5.1. Example of a simple sketch of the survival experiment, showing several levels of the hierarchical 
data structure. RS: random selection - indicates that the data from the lower level should be randomly drawn 
from the higher level. RA: randomly assigned - indicates that the treatment or some additional processing 
should be randomly assigned to the sample. Treat A and B: Treatments A and B respectively. 

5.3 Power analysis 
Power analysis is a statistical technique to assess the amount of information that is needed to 
make robust statements on the observed effects, and it is often ignored in publications 
(Peterman, 1990). It can be used to determine the sample size needed to infer estimates of 
survival rates with a certain level of confidence. The statistical power of the test is expressed by 
1 – β, where β is the probability of committing a type II error (i.e. not rejecting a false null 
hypothesis); while the significance level (α) refers to the probability of committing a type I error 
(i.e. incorrectly rejecting a true null hypothesis) (Table 5.1; UCLA, 2015). Note, researchers 
sometimes also refer to "confidence level", which is the probability of not rejecting a true null 
hypothesis (i.e. 1 – α). 

Table 5.1. Four possible outcomes for a statistical test of a null hypothesis, depending on the true state of 
nature. 

  State of nature 

Decision 

Do not reject null hypothesis Reject null hypothesis 

Null hypothesis true Correct (1 – α) (“confidence”) Type I error (α) (“significance”) 

Null hypothesis false Type II error (β) Correct (1 – β) (“power”) 
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Power analysis is an important step in experimental design and is often required as part of a 
grant proposal and/or application for an animal experimentation license (Section 14). The most 
common use is to determine the necessary number of subjects needed to detect an effect of a 
given size. Additionally, power analysis can be used to determine “statistical power”, when the 
effect size and the number of subjects available are given. Particularly for survival experiments 
with limited budgets and expensive costs per experiment, it is important to know whether there 
is enough statistical power to justify doing the study, i.e. there is a high probability that the null 
hypothesis will be rejected when there is a genuine treatment effect. Therefore, conducting a 
power analysis is just part of doing good research. It ensures that you have considered every 
aspect of the study and the statistical analysis before you start collecting data (UCLA, 2015). 

Significance levels (α) of 0.05 (i.e. “confidence level” = 95%) and power of 0.8 (β = 0.2) are 
typically applied in power analysis. However, these thresholds are not fixed and can be changed 
depending on how important it is to ensure that the experiment does not (i) falsely identify an 
effect as significant that does not really exist (type I error) or (ii) fail to identify a true effect (type 
II error). For example, significance levels as low as 5 x 10–8 are not uncommon in genetic research 
because sample sizes and the number of tests performed can be extremely large (e.g. Sham and 
Pursell, 2014). The importance of selecting appropriate and realistic significance (α) and power 
(1 – β) levels is accentuated when, for ethical reasons, a researcher is attempting to minimize the 
number of animals within an experimental design (Section 14; Fitts, 2011). 

Before conducting a power analysis, it will also be necessary to establish an input value for the 
“true” effect size, i.e. the difference between treatment and control. There are three approaches 
for informing this decision: literature review, a pilot study, or simply trying a plausible range 
of values. When choosing effect-size input values, it is important to make them scientifically 
and/or societally meaningful so that the required sample sizes will be both practically and 
ethically acceptable. That is, very small effect sizes are likely to need unrealistically large sample 
sizes to meet the required statistical power for the experiment. 

In the following subsections the two general ways of conducting power analysis are outlined. 

5.3.1 Analytical approach 

For simple point estimates (e.g. proportions) and treatment vs. control studies, formulae can be 
derived from the appropriate sampling distribution given knowledge/assumptions about the 
anticipated variability of the data and effect size. Newcombe (2013) provides a useful summary 
of these techniques for the binomial distribution (i.e. applicable for survival assessments; see 
Ssection 12.2.1 for further details about the binomial distribution). In addition, there are several 
packages in R with functions for conducting simple power analysis for binomial data, including: 
“binom”, “pwr”, and “binomSamSize”. Unfortunately, analytical formulae are rarely available 
when more complex statistical models are required, such as mixed models with binomial errors. 
The analytical formulae are also not flexible with respect to customized research questions. 
Therefore, more complex experimental designs may require a power analysis using a simulation 
model (Section 5.3.2; e.g. Rogers et al., 2013). 

Example:  

“binom.power” (in “binom” package for R) is used to determine the statistical power that a 
sample size of 50 fish will have for demonstrating that the survival of that group (assumed to 
be 0.85) is significantly greater than a threshold of 0.75 [at significance level (α) = 0.05 or 5%]. 

library(binom) 

binom.power(p.alt= 0.85, n = 50, p = 0.75,  

            alpha = 0.05,  # set sig.level to 5% 
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            phi = 1,    # no over-dispersion 

            alternative = "greater", 

            method = "asymp") 

 Power (1-Beta) = 0.4942622 

The power analysis demonstrates that there is not enough statistical power in this experimental 
design (i.e. the predicted power (1- β) of 0.4943 is lower than required level of 0.8). However, by 
repeating this analysis over a range of sample sizes, it is possible to show that a minimum 
sample size of 103 would be needed to demonstrate this assumed effect size is significant (at the 
5% level) at a power of 0.8 (Figure 5.2). 

 
Figure 5.2. An example of a statistical power (1 – β) curve for determining the optimal sample size (n) for a 
simple survival assessment, considering an anticipated survival of 0.85 and a “high survival” threshold of 
0.75. A sample size of at least 103 is required to ensure a power of ≥0.8. 

5.3.2 Simulation-based methods 

Simulations have an important role in quantitative science. They are flexible in handling 
complex experiments and customized research questions. However, correctly programming a 
simulation may require considerable knowledge and experience. Simulations can be used to 
explore the statistical power associated with experimental designs and analysis methods. They 
are increasingly being viewed as the best practice in model development, to ensure that new 
models can reliably recover parameters of interest. In the latter application, data are simulated 
based on known parameter values, and the model of interest is fitted to these data to estimate 
parameters. The distribution of these parameter estimates, obtained over numerous iterations, 
is used to establish the precision and accuracy of the model parameter estimates.  

Survival data can be simulated using at least two approaches: 

• Approach 1 generates only cross-sectional survival data (Section 12.2). The random 
variation in the fate of individual fish is simulated by drawing observations from a 
binomial distribution, Bin (n, p) with a number of trials (n) equal to 1, and a probability 
of “success” (p) equal to the simulated survival rate (Section 12.2.1; e.g. Rogers et al., 
2013; note: since n = 1, the binomial distribution, Bin (1, p), can also be referred to as a 
Bernoulli distribution). Different conditions can be simulated, for example, by varying 
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n and p across groups of fish and, where appropriate, including random effects (see 
example below). 

• Approach 2 generates longitudinal survival data (Section 12.3), which can then be 
reduced to binomial outcomes. The goal is to generate times of mortality (or 
censoring; Section 12.3.1.1) for individual fish. Survivorship over time is simulated 
according to a chosen semi-parametric or parametric survivor function (e.g. Bender et 
al., 2005). The method begins by selecting a survival time for each individual by first 
drawing a survival value from a uniform distribution bounded over the interval [0,1,].  
A corresponding survival time is then solved, either analytically or numerically, from 
the chosen survivor function, S(t) (sections 12.3.1.3 and 13.2.1). A censoring time is 
then randomly selected from a user-defined cumulative distribution function. The 
survival time and censoring time are compared, and whichever is smaller , is then 
selected as the observation time for the individual. This second approach to 
simulation is commonly used in the medical sciences (e.g. Bender et al., 2005) and was 
found to reliably replicate variability patterns in discard mortality data (Benoît et al., 
2015). 

Procedure of for a simulation-based power analysis: 

1. Determine the statistical model based on the experimental design. 
2. Define the “true” effect, the expected value for the variance (including random effects, 

where appropriate) and the significance level of the test (e.g. 0.05). 
3. Simulate the data with J replicates (e.g. tanks) per treatment and n subjects (e.g. fish) 

per replicate according to the parameters and model. 
4. Fit the statistical model, conduct the statistical test on the treatment effect [e.g. using 

a likelihood ratio (LR) test] and extract the p-value. 
5. Repeat steps 3–4, Nsim times (typically Nsim > 1000). 
6. Compute the statistical power as the proportion of the Nsim simulations that received 

a significant p-value relative to the chosen significance level. This gives the statistical 
power of the test at sample size (J.n). 

7. Similarly, by repeating the above process with varying values of (J.n), we could find 
the minimum (J.n) that gives a desired power (e.g. 0.8).  

To test the simulation for errors, as well as establish estimates of true (rather than nominal) 
type I error, it is good practice to compute the power (or true type I error) when the effect size 
is set to zero. In our simulation example, by setting the treatment effect to zero, we obtained a 
true type I error of 0.05, which equals the nominal type I error. This implies that the statistical 
tests in the power analysis are accurate (Mooney, 1997). 

Note – In step 4 of this simulation, a two-side LR test was performed to estimate power, which 
was appropriate for this experimental design.  However, in some survival assessments, the 
researcher may have an apriori hypothesis as to the sign of the effect.  In such cases, it would be 
more appropriate to apply a one-side test to correctly estimate power.   

Simulation power analysis for cross-sectional survival study: a worked example 

In this example, a simplified experiment based on a Dutch study is presented (van Marlen et al., 
2013; Ullmann et al., 2014; van der Reijden et al., 2017), which aimed to estimate the survival of 
juvenile flatfish (e.g. plaice – Pleuronectes platessa) discarded from a beam trawl. The objective 
was to compare survival for fish sampled at different stages of a fishing operation, i.e. no fishing 
operation (control), in the hopper, beginning of discarding, and end of discarding at the discard 
belt (typically 15 min later than the beginning). In the experiment, a random selection of fish 

https://www.google.nl/search?tbo=p&tbm=bks&q=inauthor:%22Christopher+Z.+Mooney%22&source=gbs_metadata_r&cad=10
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from each treatment, including a control, were kept in survival tanks for over 20 days (3 days 
on board and > 2 weeks on shore; Figure 5.3).  

The experiment contained four treatments (including a control), while the containment system 
had a maximum of 48 tanks. This limited the number of tanks per treatment (J) to 12 (i.e. J = 
48 / 4). The number of fish per tank (n) was limited to 10 to avoid overcrowding, bringing the 
total number of fish to 480 (i.e. J × n × 4), with 120 in each treatment (i.e. J × n). 

 
Figure 5.3. A schematic experimental design for a discard survival assessment (based on van Marlen et al., 
2013; Ullmann et al., 2014; van der Reijden et al., 2017). The experiment aimed to estimate survival at different 
stages through the sorting of the catch: (1) hopper, (2) start discarding, (3) end discarding (~15 min after start 
discarding); and in a control group (c). 

Due to this experimental setup, the survival of fish in the same tank was more likely to be 
correlated with each other than with fish from other holding tanks. Therefore, the statistical 
model needed to include the variations among tanks as a random effect, aj. A generalized linear 
mixed model (GLMM) was suitable for this analysis (Section 13). The model can be expressed 
as: 

𝑌𝑌𝑖𝑖𝑖𝑖~𝐵𝐵𝑖𝑖𝐵𝐵�1,  𝑝𝑝𝑖𝑖𝑖𝑖�,  logit�𝑝𝑝𝑖𝑖𝑖𝑖� = 𝑏𝑏0 + 𝑏𝑏𝑖𝑖 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡𝑖𝑖 + 𝑡𝑡𝑖𝑖,  𝑡𝑡𝑖𝑖~𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡(0,𝜎𝜎𝑎𝑎2)                                 (1) 

where Yij = 1 if fish i in tank j is alive, and 0 otherwise. Yij follows a binomial (or Bernoulli) 
distribution Bin(1, pij). Parameter b0 refers to the intercept of the model, and is associated with 
the average survival probability of the control (reference) group; bj indicates the coefficient of 
treatment assigned to tank j (e.g. hopper, begin discard, end discard), aj refers to the random 
intercept for tank j; and the random variable aj follows a normal distribution with mean 0 and 
variance 𝜎𝜎𝑎𝑎2. In a GLMM with binomial distribution, the treatment effect is often expressed as 
exp(bj), representing the odds ratio (OR) between the treatment in tank j (numerator) and 
control tank (denominator). An OR > 1 indicates a positive effect, with higher survival rate in 
the treatment, while OR < 1 indicates a negative effect with a lower survival rate (see 
Section 13.1 for more details). 

A small pilot study of three tanks (i.e. J = 3) per treatment (with n = 10) gave preliminary 
estimates of the effect size (or Odds Ratio; OR) for each treatment of exp(𝑏𝑏hopper) = 0.8, 
exp(𝑏𝑏begindiscard) = 0.5 and exp(𝑏𝑏enddiscard) = 0.2, with a variation among tanks of ca. σa = 0.1 (i.e. 
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expressed as a standard deviation; �𝜎𝜎𝑎𝑎2). These values compared well with results in the 
literature for studies on similar species in comparable fisheries.  

In this example, a Monte Carlo simulation technique was used to generate “synthetic samples”, 
with given sample size (J, n), from a population of hypothesized parameters (e.g. effect size, 
model coefficients). The large number of simulated “synthetic samples” were treated as 
observations, simulating an experiment repeated many times on randomly selected samples. 
The GLMM (Equation 1) was applied to each “synthetic sample”. The model parameters were 
estimated, and the effect of each treatment tested using likelihood ratio test (null hypothesis of 
no treatment effect: 𝑏𝑏hopper = 𝑏𝑏begindiscard = 𝑏𝑏enddiscard = 𝑏𝑏control). The outputs of the statistical 
tests from the large number of “synthetic samples” were then used to derive the power with 
respect to the predefined sample size (J, n). 

In addition to testing an equal effect from all treatments (bhopper = bbegindiscard = benddiscard = bcontrol), it 
is also useful to compute the power of comparing pairwise treatments (e.g. bhopper = bcontrol). In 
practice, the number of treatments being compared determines the type of statistical tests 
conducted in the power analysis. That is, when comparing just two treatments, a two-sample 
comparison test is performed. While for multiple treatments, for instance, comparing four 
treatments at the same time, one can either conduct power analysis on each treatment vs. control 
(as above) or use an ANOVA-like test to compare that all treatments are equal. Note: if multiple 
treatments are compared and the null hypothesis is rejected, a post hoc test (or multiple 
comparisons test) is often applied to identify treatments that differ. Thus, the power analysis 
should also include this test, and should be accompanied by a multiple comparison adjustment 
(e.g. Bernoulli correction). For simplicity, these steps are not shown for this example, and the 
results below (Figure 5.4) mainly discuss the results of two-treatment comparisons. 

The results of the power analysis in Figure 5.4 show that at least five tanks per treatment were 
needed to obtain a power of 0.8 when comparing “enddiscard” and “control” with an effect size 
exp(benddiscard) = 0.2. Similarly, around 15 tanks were required to obtain a power of 0.8, given 
effect size exp (𝑏𝑏begindiscard) = 0.5. Unfortunately, for effect size exp (𝑏𝑏hopper) = 0.8, the required 
number of tanks was greater than 80 (not shown in the figure). In general, the larger the absolute 
value of b [or the further away the exp(b) is from 1], the fewer the tanks required per treatment. 
With the 12 tanks per treatment restriction on the experimental design, this means that only the 
“enddiscard” treatment, would likely be distinguishable from the control, which severely 
undermined the value of the work. As there was no realistic way of having sufficient power to 
distinguish any effect in the “hopper” treatment [effect size exp (𝑏𝑏hopper) = 0.8], it was decided 
to drop this treatment. This allowed more tanks to be assigned to the other treatments. 

However, for illustration, what if the researchers had concerns that inter-tank variation may be 
higher than the pilot study and literature suggest?  A higher inter-tank variation, 𝜎𝜎𝑎𝑎2 (or a higher 
intra-tank correlation), indicates that the survival rates of fish within a tank are more similar to 
each other than to that of fish from a different tank. As a result, the 10 fish within one tank 
would provide less useful information than a sample of 10 independent fish. However, as 𝜎𝜎𝑎𝑎2 
increases, the amount of information per tank decreases. Therefore, a larger number of tanks 
will be required when 𝜎𝜎𝑎𝑎2 is increasing. To address this, a simulation was run for the 
“begindiscard” treatment (i.e. the smaller of the effect sizes) with two different inter-tank 
variations, σa = 0.1 and 0.5. 
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Figure 5.4. Simulation results of power vs. number of tanks per treatment. The true effect size of 𝐞𝐞𝐞𝐞𝐞𝐞 (𝒃𝒃𝐡𝐡𝐡𝐡𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡), 
𝐞𝐞𝐞𝐞𝐞𝐞 (𝒃𝒃𝐛𝐛𝐞𝐞𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐡𝐡𝐛𝐛), and 𝐞𝐞𝐞𝐞𝐞𝐞 (𝒃𝒃𝐞𝐞𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐡𝐡𝐛𝐛) are 0.8, 0.5, and 0.2, respectively. The standard deviation among tanks 
𝝈𝝈𝒂𝒂𝟐𝟐 is set as 0.1, and the number of fish per tank is set as 10. The black line refers to the power of comparing 
multiple treatments. 

The result from this simulation is illustrated in Figure 5.5 as the power vs. the number of tanks 
per treatment, where the effect size of exp (𝑏𝑏begindiscard) = 0.5 and the number of fish per tank 
was set as 10. In this case, 23 tanks were required to obtain an adequate power of 0.8 . In practical 
terms, this means that the researchers were limited to only two treatments (i.e. 48 tanks / 2 = 24), 
i.e. the control and one treatment. Selecting either the “begindiscard” or the “enddiscard” was 
not very meaningful in the context of the fishery, as they only represent either the best- or worse-
case scenarios. As a solution, the researchers considered redesigning the experiment to provide 
a median treatment [i.e. effect size exp (𝑏𝑏MEDIANdiscard) = 0.3] by randomly selecting from 
approximately the middle of the sorting process or alternatively randomly selecting throughout 
the entire sorting process and include sorting time as an covariate in the model. This provided 
a more representative estimate of discard survival for the fishery, with sufficient statistical 
power to demonstrate the effect relative to baseline (i.e. controls).This example refers solely to 
the use of simulation-based power analysis for the design of a survival experiment based on an 
analysis with a GLMM. Depending on the type of study and data format, the appropriate 
statistical models are likely to differ (sections 12 and 13). For instance, for longitudinal survival 
data (i.e. time-dependent), the shape of the hazard function needs to be specified, perhaps using 
a parametric model. In these cases, the synthetic samples will be generated based on the 
corresponding survival model. Furthermore, be aware of the assumptions of the statistical 
models applied. If the assumptions are not correct, the power is also likely to be incorrect. 
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Figure 5.5. Simulation results for power vs. number of tanks per treatment, illustrating the effect of varying 
inter-replicate (i.e. between tank) variation, by using two different standard deviation σa values. A higher σa 

indicates a higher variation between tanks (or correlation within tanks), meaning a larger number of tanks 
are required. The effect size is 𝐞𝐞𝐞𝐞𝐞𝐞 (𝒃𝒃𝐛𝐛𝐞𝐞𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐡𝐡𝐛𝐛) = 0.5 and the number of fish per tank is set at 10. 

5.3.3 Online tutorial 

UCLA (2015): Introduction to Power Analysis.  

https://stats.idre.ucla.edu/other/mult-pkg/seminars/intro-power/ 

 

 

 

 

 

https://stats.idre.ucla.edu/other/mult-pkg/seminars/intro-power/
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6 Using controls in discard survival assessments 

Mike Breen and Tom Catchpole 

6.1 Principles of experimental controls 

A control, for the purposes of scientific observation or experimentation, allows the observer to 
isolate and compare effects of a specific variable upon the experimental units or subjects 
(Johnson and Besselsen, 2002). It typically consists of a subset of experimental subjects that are, 
ideally, treated in an identical way to the test subjects with the exception of the test variable.  

There are two fundamental types of controls: 

• Negative controls where no observable response is expected in the control subjects. It 
demonstrates that there is no effect when there should be no effect.  

• Positive controls where an observable response is expected in the control subjects. It 
demonstrates that there is an effect when there should be an effect. 

6.2 Controls in survival assessments 

The precise use of controls within an experiment investigating mortality will be dependent 
upon the objective of the experiment (Section 4.7 and Table 4.1). For example, these 
experimental objectives may include: 

1. providing empirical estimates of survival; 
2. identifying suitable surrogate or indirect indices of mortality (e.g. vitality, 

physiological parameters); 
3. conducting comparative trials to assess efficacy of mitigation measures (e.g. 

experiments with modified gear or operational fishing practices);  
4. identifying variables that correlate with observed mortality; and 
5. understanding the fundamental fatal mechanisms causing mortality. 

There are two principle uses of controls for the types of experiment listed above: method 
controls and comparative controls. 

6.2.1 Method controls 

Method controls are negative controls employed to demonstrate that the methods (e.g. captive 
observation or tagging) used to observe the experimental subjects are not inducing any of the 
observed mortality. As such, they will often also be referred to as “captivity” or “tagging” 
controls to reflect the nature of the experiment. The aim of these controls is to isolate the 
stressors associated with the observation technique, and demonstrate that there are no 
observable, fatal, observation-related effects. It is applicable to all of the above examples of 
experimental objectives. Method controls are arguably the most important application of a 
control in a survival assessment. They validate the observation technique, proving it capable of 
determining the effect of different variables on mortality without bias.  
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The interpretation of experimental results when method (negative) controls are used is as 
follows: 

Control Treatment Conclusion 
0 1 Significant treatment effect 

0 0 No significant treatment effect 

1 1 or 0 Inconclusive - confounding effects 

Effect observed = 1           No effect observed = 0 

Method controls provide a measure of uncertainty, indicating potential for bias or error in the 
treatment-survival estimate (Figure 6.1). First, the lower the method control survival, the less 
resolution the assessment has in differentiating any true biological effects within the treatments 
from the underlying background noise due to the observation technique (Section 5.3). Second, 
the higher the observed method-control mortality, the more likely it is that the observed 
mortality in the treatment cases has some component that is due to the observation technique. 
However, currently no knowledge exists on the interaction between observation-induced and 
treatment-induced effects. Therefore, it cannot be assumed that there is a simple, predictable 
relationship between the two (Pollock and Pine, 2007; ICES, 2014). Therefore, it is not good 
practice to arbitrarily “adjust” or “correct” observed mortality in treatments by subtracting or 
dividing by the observed method control mortality. This may introduce bias and disguise 
inherent limitations in the data (see Section 12.4.2.6 for further discussion).  

 
Figure 6.1. Method-control mortality as a measure of uncertainty. As method-control survival decreases, the 
potential for uncertainty due to bias increases (indicated by “?”), and the capacity to resolve meaningful 
biological effects in treatments decreases (i.e. the relative area of blue rectangle). 

It is unrealistic to expect zero mortality in a method control because it will inevitability include 
some degree of natural mortality, particularly over long observation periods (e.g. during 
tagging studies). Therefore, to make any inferences about the presence or absence of a method-
related mortality, it is informative to compare the observed method-control mortality with 
known natural mortality rates.  

As part of the prioritization process (Section 4.6), it would be useful to collect experimental 
subjects for preliminary tests as method (negative) controls. This process will allow the 
experimenter to test appropriate techniques for acquiring and holding or tagging subjects, and 
to determine the effects of these methods upon survival. It is likely that such results would be 
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very informative as an assessment of the feasibility of a survival assessment, particularly in 
cases where it proves difficult to collect and observe specimens without substantial mortality. 

6.2.2 Comparative controls 

Comparative controls are positive controls, used to isolate or compare the effects of specific 
experimental treatments. This approach is applicable to example objectives 3–5 outlined in the 
introduction to Section 6.2. Practically, in survival assessments, it is generally easier to obtain a 
valid comparative (positive) control, compared to a method (negative) control, because the 
control subjects can be caught using the same technique as the test subjects. However, it is 
implicitly accepted that there may be an undetermined method effect in both the comparative 
control and test subjects. This presents an important limitation of comparative controls, in that 
they only allow relative comparisons, unless the relationship between the stressors and 
mortality is precisely understood and predictable. That is, comparative controls generally allow 
us to conclude whether the treatment has a significantly greater or lesser effect than the control 
(or alternative treatment), but we cannot make any inferences about what the experimental 
treatment mortality would be in the absence of a method effect. 

The interpretation of experimental results when comparative (positive) controls are used is as 
follows: 

Control  Treatment Conclusion 

Control     > Treatment Significant treatment effect < control 

Control      < Treatment Significant treatment effect > control 

0  0 No significant treatment effect 

Control       ≈ Treatment No significant treatment effect, if positive control shows no 
confounding effects; otherwise, inconclusive 

6.3 Properties of effective controls 

When using controls within an experiment, there are a number of general properties that 
experimenters should strive to attain: measurability, predictability, representative experimental 
conditions, representative subject populations and blind controls. 

Measurability 

There should be a clearly defined response that can be reproducibly measured, as with any 
experimental variable. Survival experiments measure effects upon mortality, so the measurable 
endpoint is clearly “death”. However, for some species and in some situations, “death” can be 
challenging to define or observe, which can easily lead to random error and biases within the 
experimental results. This can be avoided by using clear, unambiguous criteria to assess the 
status of the individual (e.g. Davis, 2007; Benoît et al., 2012). These criteria should preferably be 
binary, e.g. reflexes, which can be measured as present or absent (Section 8; Davis and Ottmar, 
2006). 

Predictability 

The type of control (i.e. whether it is positive or negative) should ideally be defined before the 
experiment (post hoc experimental design can lead to subjective interpretation). If it is a positive 
control, the experimenter should be able to predict the likely resultant mortality, or at least 
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whether it will be larger or smaller than in the treatment. Without this premise, it is difficult to 
define testable hypotheses for the experiment. 

Representative experimental conditions 

The treatment and control subjects should experience identical experimental conditions, with 
the exception of the treatment effect. Typical examples are identical monitoring periods and 
holding conditions (cages, temperature, water quality, season). This requires a full control over 
all aspects of the experimental design and protocol that in reality is difficult to achieve, 
particularly outside the laboratory where natural in situ conditions often introduce random 
effects. In captive observation, this can be achieved by mixing control and treatment fish in the 
same tank, with a marking/tagging system to distinguish between the groups. 

Representative subject populations 

The test and control subjects should ideally be identical or at least comparable with respect to 
key biological variables that could affect mortality, e.g. length, age, physical condition 
(condition factors or indices, length/weight), sexual maturity, feeding status, parasite/disease 
loading and genotype. In reality, however, it is very difficult to select two identical groups of 
experimental subjects. Therefore, to minimize the potential for any biases or systematic errors, 
experimental treatment and control subjects should be randomized by selecting the test and 
control subjects randomly from the same “population”, e.g. from the same localized area, depth, 
time-frame, and species (Section 9.2.1). 

Blind controls 

An effective method for avoiding non-representative conditions and observer bias in 
experiments is to use double blind controls, where neither the test subject nor the experimenter 
is cognizant of whether a particular experimental unit is a test or control subject until the 
experiment is completed. This has clear benefits in avoiding systematic errors or biases resulting 
from the experimenter’s preconceived expectations and differential behaviour towards the 
experimental subjects. However, in practice, this can be a challenging ideal to achieve. For 
example, in a captive observation where the control and treatment fish are mixed in the same 
tank, it will require all fish to be marked in some way that is indistinguishable to the researcher 
until the end of the monitoring period. The associated handling and tagging could introduce 
additional stressors that may bias the results. Alternatively, the controls could be held in 
separate tanks, but this means that holding conditions may differ from the treatment fish, and 
it becomes difficult to disguise the origins of the specimens from the researcher monitoring 
them. 

6.4 Acquiring controls 

When acquiring controls, the aim should be to use specimens that are as representative of the 
treatment group as possible, but that have not undergone the catch and discard process.  

In reality, the acquisition of good controls is one of the most challenging aspects of a survival 
assessment, and there are few examples of effective controls for wild fish populations in the 
scientific literature. However, an appropriate investment in this aspect of the assessment will 
contribute substantially to the effective selection of appropriate candidate species and fisheries, 
as well as the utility of resultant survival estimates. A cost-effective approach is to conduct 
preliminary trials to determine the method effects prior to conducting large-scale experiments. 
This provides an opportunity to reduce any levels of method related mortality. 
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There are several possible sources to acquire controls for survival assessments. 

Wild-caught using “benign” capture 

Commonly used methods are barbless hooks and traps or pots (e.g. Breen et al., 2007; Lundin et 
al., 2012). It may also be possible to collect viable specimens using demersal seines or even trawls 
with short hauls, at low towing speeds, and/or lined codends (e.g. Breen et al., 2007). However, 
in practice few capture methods are truly benign. It is also important to realize that different 
gears have different selective properties, which undermines randomization of the subject 
population. 

Wild-caught and quarantined 

This includes fish stored in captivity until the primary mortality after capture stabilizes. This 
quarantine period should last long enough to ensure that secondary infections are also not 
affecting the fish. It is recommended to maintain the control fish in captivity under conditions 
comparable to their natural situation (i.e. temperature, food) to try and ensure that they will 
remain representative of the treatment population. However, this method selects the fittest fish, 
which again undermines randomization. 

Hatchery-reared or domesticated fish  

This source of control fish should be avoided if possible as domesticated fish may have different 
stress responses in captivity and may react differently to stimuli and stressors when compared 
to wild fish. 

Vitality or “Psuedo-“controls 

If the survival assessment has included a “vitality assessment” (Section 8), the animals sampled 
from the catch and shown either to be in “excellent” condition or to have no impaired reflexes, 
could be used as “vitality or pseudo-controls”. A high survival among these animals is a useful 
indicator that the observation method is unlikely to be a major source of bias when observing 
mortality in the treatment animals. However, significant mortality among the vitality controls 
does not necessarily mean that the observation is flawed, since the mortality may still be the 
result of capture and handling effects. 

6.5 Do we really need controls? 

“No controls, no conclusions” (Crawley, 2005). While inspiring, this thought-provoking 
statement is not strictly true. Conducting assessments without a method control may be an 
option where there is high confidence that all or most test subjects will survive, and the levels 
of method-related mortality are not a concern. Alternatively, when the acquisition of control 
subjects is challenging, it may be more cost-effective to run some initial experiments to ascertain 
survival rates that are inclusive of method effects. In the absence of controls, valid conclusions 
can still be reached, but these studies must be explicit about the uncertainty existing in the level 
of method-related mortality.  

However, including controls within the survival assessment does inform the researcher about 
the sources of variability of any observed mortality. Comparative controls can be used to 
investigate potential benefits of any changes in the treatment of the experimental subjects (e.g. 
testing mitigation measures, including better handling of discarded animals). Where survival is 
< 100%, a method control allows the researcher to determine whether it was the treatment 
(having gone through the catch and discard process) or the method (e.g. having been contained 
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or tagged) which was associated with those deaths. The lower the observed survival rate, the 
higher the potential for method-related mortality. Therefore, before investing in a full-scale 
survival assessment, the researcher should determine whether test subjects can be monitored 
using the selected method (e.g. captive observation or tagging) without killing a substantial 
proportion of them. 

6.6 Summary and recommendations 

This section has explained the scientific principles of using controls in experiments and 
discussed how controls can be most appropriately used in survival assessments. A control 
enables the observer to isolate and compare effects of a specific variable on the experimental 
units or subjects. In survival assessments, two approaches exist: comparative and method 
controls. Comparative controls can be used to investigate the potential benefits for the 
experimental subjects of implementing any changes to the treatment (e.g. testing mitigation 
measures, including better handling of discarded animals). Method controls allow the 
researcher to determine whether it was the treatment (i.e. having gone through the catch and 
discard process) or the method (e.g. having been contained or tagged) which was associated 
with any observed mortality. The lower the observed survival rate, the higher the potential for 
method-related mortality. It is therefore recommended that before investing in a full survival 
assessment, the researcher should determine whether test subjects can be monitored using the 
selected method (e.g. captive observation or tagging) without killing a substantial proportion 
of them.  

 
 

Recommendations 

• Use clear, unambiguous criteria to assess the survival status of test subjects. 
• Well-applied controls should be measurable, predictable, and representative of the 

experimental population and monitoring methods. 
• Where practical, “blind controls” should be used to avoid observation bias. 
• Before investing in a full survival assessment, determine whether test subjects can 

be monitored using the selected method (e.g. captive observation or tagging) 
without killing a substantial proportion of them. 
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7 Explanatory variables 

Sebastian Uhlmann, Floor Quirijns, Jochen Depestele, Harry Strehlow, Keno 
Ferter, Simon Weltersbach, Hans Nilsson, and Sonia Mehault  

The fish capture processes can disturb, stress, and damage an organism which can result in its 
death. Thereby, any mortality of discards may be influenced by a range of biological (e.g. 
species, physiology, size, and catch composition), technical (e.g. gear design, deployment 
duration and speed), and environmental (e.g. temperature, hypoxia, sea state, and availability 
of light) stressor factors (Figure 2.1; Davis, 2002; Broadhurst et al., 2006; Broadhurst and 
Uhlmann, 2007). In other words, these factors determine conditions during fishing and 
influence/affect the stress, injury, and possibly survival of captured and discarded individuals 
(Davis, 2002). Mortality associated with capture can occur prior to the point of discarding 
(immediate discard mortality; Braccini et al., 2012) or after the point at which the subject is 
discarded (delayed discard mortality). 

When designing experiments to estimate discard survival, it is important to measure the main 
factors influencing the stress, injury, and ultimately survival of discards in order to attribute 
sources of variability. Some of the relevant technical, environmental, and biological variables 
can be identified by conceptually tracing an organism’s pathway from capture, to handling 
above the water surface, and to the release overboard and, eventual return to its habitat, (path 
analysis, Figure 2.1). This will include variables which describe an organism’s sensitivity to 
capture and handling, since the ability of an organism to survive the capture and discard 
pathway will be dependent on its innate capability to tolerate changes in conditions (Davis, 
2002; Broadhurst et al., 2006). Individuals which may be able to tolerate certain changes, could 
be “pushed over the edge” through a combination of stressors. It is also relevant to consider 
potential stressors caused by the experimental method that was chosen to assess discard 
mortality. The a priori choice of potential and quantifiable explanatory factors will benefit from 
an organism’s “path analysis” (Figure 2.1), and the drafting of data recording sheets (Annex 5). 
The latter step will assist the process of “thinking through” all relevant stages of data collection, 
its replicability, and feasibility under experimental conditions. The following section (i) 
conceptualizes key stressors potentially affecting a captured-and-discarded animal and (ii) 
reviews the primary literature of experiments that have demonstrated predominant effects. 

7.1 Stressor 

A stressor can be defined as a factor which induces a stress response. Isolating a single stressor 
variable is difficult, particularly in field environments, due to the need to control for effects 
caused by all other variables. Laboratory experiments may be useful for this aim (Section 9; 
Kennelly et al., 1990; Uhlmann et al., 2009).  

There is an array of different stressors experienced by a discarded fish, and these will compound 
with each other. The compounded effects can lead to the death of the subject. However, the way 
in which the stressors interact may not be simply additive or multiplicative, but rather 
synergistic or antagonistic. Unravelling the precise individual and combined influences of 
multiple stressors is challenging, but as long as survival estimates are based on a range of 
stressors that reflect the fishery, they can be considered representative. Monitoring the different 
stressors is therefore essential to determine the representativeness of the discard survival 
estimates, but they can also be used to inform on potential mitigation measures that may 
increase survival. The first step in a framework to assess, and potentially mitigate discard  
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Table 7.1. Count of primary literature (n = number of reviewed studies per gear type) that demonstrated 
significant effects associated with discard mortality of technical, environmental, and biological factors during 
demersal trawling and dredging, gillnetting and trapping, hook and line fishing, longlining and jigging, and 
pelagic purse-seining. The factors are sorted by relevance in descending order. 

Effect 

Demersal 
trawls and 
dredges 

(n1 = 60) 

Gillnets 
and traps 

(n2 = 85) 

Hook and 
lines 

(n3 = 102 

Longlines 
and jigging 

(n4 = 22) 

Purse-
seines  

(n5 = 6) Count ns 

Gear configuration 1 40 29 20 - 69 21 

Handling 8 8 29 6 - 45 6 

Deployment 
duration 

17 8 13 9 - 36 11 

Body size 10 10 15 12 2 35 14 

Water temperature 11 4 22 7 1 35 10 

Air exposure 23 5 12 - - 34 6 

Injury 8 9 13 - 3 30 3 

Depth 1 6 9 4 - 17 3 

Air temperature 14 1 - 1 - 15 1 

Gear operation - 1 6 - 7 13 1 

Gear type  - 5 12 - - 11 6 

Physical condition 2 2 3 - 4 10 1 

Season 4 3 3 1 - 9 2 

Catch volume 8 - - - 1 8 1 

Depredation - 10 - - - 8 2 

Predation 4 - 1 - 1 6 0 

Crowding Density - - - - 4 4 0 

Sex 4 1 - 2 1 4 4 

Behaviour 1 2 - - - 3 0 

Dissolved oxygen - 1 2 - - 3 0 

Light 2 1 - - 1 3 1 

Catch composition - 1 - - 1 2 0 

Infection - 2 - - - 2 0 

Location - 1 - 1 - 2 0 

Catch density - 1 - - - 1 0 

Recapture - - 1 - - 1 0 

Salinity 1 - - - - 1 0 

Sediment type 1 - - - - 1 0 

Species - 1 - - - 1 0 

Stress 1 1 - - - 1 1 

Weather - - 1 1 - 1 1 

Year - 1 - - - 1 0 
. - = not available; ns = not significant; 1 Broadhurst et al. (2006); Revill et al. (2013); Suuronen and Erickson (2010); 2 Uhlmann and 
Broadhurst (2015); 3Arlinghaus et al. (2007) (pp. 115–125); Bartholomew and Bohnsack (2005) (pp. 134–136): 4 Web of Science search; 5 
Hall and Roman (2013); Marçalo et al. (2008, 2010, 2013); Huse and Vold (2010); Tenningen et al. (2012); Olsen et al. (2012). 
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mortality, is to describe in detail for the particular fishery and discarded species of interest the 
pertinent ranges of technical, environmental, and biological conditions and characteristics. 

7.2 Literature review identifying key explanatory variables 

As part of the development of this guidance, known literature were searched and reviewed to 
identify explanatory variables that have been linked with a measurable stress, injury, or death 
of discarded animals. The output from this rapid review is categorized by conventional gear 
types: (i) trawls and dredges; (ii) gillnets and traps; (iii) hook and line; (iv) longlines and jigging, 
or (v) pelagic seines and trawls. For each of these gear groups both marine and freshwater 
fisheries were scanned for cases where a stressor effect was demonstrated or not detected. 
Primary literature studies for each demonstrable effect indicated their potential relevance across 
or within gear groups (Table 7.1). For trawls and dredges, existing reviews by Broadhurst et al. 
(2006), Revill et al. (2013), and Suuronen and Erickson (2010) were used. For gillnets and traps, 
the recent review by Uhlmann and Broadhurst (2015) was used. The factors which have been 
studied for hook-and-line angling gear are based on two reviews that covered both freshwater 
and marine fisheries, i.e. Bartholomew and Bohnsack (2005, pp. 134–136) and Arlinghaus et al. 
(2007, pp. 115–125), thus excluding studies published after 2007. The factors which have been 
studied for longlines and jigging machines are based on an online database search (Web of 
Science). For pelagic seines and trawls, no review existed; therefore, available primary literature 
studies, mainly on purse-seines, were scanned for relevant factors (Marçalo et al., 2008, 2010, 
2013; Huse and Vold, 2010; Olsen et al., 2012; Tenningen et al., 2012; Hall and Roman, 2013).  

This rapid review incorporated the findings of published comprehensive reviews but is not 
considered exhaustive or systematic (Table 7.1, Annex 4 – factors observed to effect discard 
survival grouped by gear type). Also, it does not encompass why certain factors seemed more 
relevant to one gear type than another, due to a potential publication bias and the different 
emphasis of the considered reviews (e.g. mitigation, gear selectivity). This should be addressed 
in a more critical or systematic review, which was beyond the scope of this exercise. Such a 
critical and systematic analysis could also identify compounding interactions between factors 
(as described above) and whether they were appropriately addressed by the design of each 
study.  To this end, and for further reading, the reader is directed to some recent reviews on the 
mortality, stress and welfare of aquatic animals encountering commercial fishing operations 
(Veldhuizen, 2017; Cook et al, 2018; Veldhuizen et al, 2018; Breen et al, 2020). 

7.2.1 Selection of variables 

The rapid review identified that gear configuration, handling, deployment duration, water 
temperature, and air exposure, were the technical and environmental factors which were most 
studied and most frequently associated, with discard survival (Table 7.1). Body size was also 
very important (Table 7.1). For active gears, increasing deployment duration, air exposure, and 
air temperature reduced survival of many species (Table 7.1). For passive gears, gear materials, 
gear configuration (i.e. use of selective devices), and physical injury in the organisms were 
relevant in explaining variation among discard mortality.  

Several factors were rarely associated with discard mortality, such as sediment type and salinity 
(Table 7.1). This could be either because they were measured, but not relevant, or because they 
were rarely measured or mentioned. Factors such as predation, catch composition, and 
behaviour fall in the latter category. 
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7.3 Measurement of variables 

The majority of the factors listed in Table 7.1 and Annex 4 can be measured by simple means. 
This includes observations, time recording, or electronic data logging of water quality 
parameters such as temperature, dissolved oxygen, or salinity. Different configurations of gear 
and fishing practices often require specific methods. For example, fishing gear deployment 
duration may be measured as the period from when (i) the winch starts (e.g. trawlers), (ii) 
complete submergence of the gear underwater (e.g. gillnets or traps), or (iii) during bottom 
contact (trawls, traps, or gillnets). Load cells can be used to measure pulling force on trawl wires 
(drag force, Broadhurst et al., 2013); while acoustic transmitters and receivers record trawl shape 
and catch size. Remote monitoring may also require specific video technologies to measure and 
document a species’ interaction with specific gear (Bryan et al., 2014; Mallet and Pelletier, 2014). 
Emerging technologies to remotely monitor fishing operations may provide effective means to 
record data automatically (Mangi et al., 2013). 

The measurement of relevant factors is not limited to natural conditions. Study organisms may 
also be stressed from research-related handling (e.g. measurement, tagging, or holding in 
captivity). Thus, animal sensitivities towards stressors found in their natural environment may 
also extend to artificial conditions. For example, the conditions under which subjects are 
contained will be an important measure for species sensitive to changes in light.  

Once relevant variables have been identified, it will be necessary to consider to what degree of 
accuracy and precision they should and can be measured, as well as how this can be done. For 
example, measuring the air exposure time for individual fish accurately with a stopwatch may 
provide better data than roughly estimating air exposure (as the period between start and end 
of sorting). In contrast, the accuracy gained from measuring catches using expensive scales 
instead of volume-based approximations may not contribute much to explaining the variability 
of mortality. 

 
Figure 7.1. Passive fishing techniques: inshore gillnetter [left; credit: Center for environment, fisheries, and 
aquaculture science (Cefas), UK], Norway lobster creel fishery [right; credit: Swedish university of 
agricultural sciences (SLU), Sweden]. 

A more detailed description of the key factors, their effects, and how some of these can be 
measured are given in Section 7.2 and Annex 4. Factors are discussed in order, according to 
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when they are in association with an organism during the three different phases of capture, 
handling on board, and release (Figure 2.1). Not all factors are pertinent to all fisheries; and 
some may be more important than others for a particular gear type (described in detail 
Section 7.2 and in Annex 4). For example, towing speed does not apply to passive gillnet 
fisheries, while crowding and herding are phenomena pertinent to seines and trawls. 

Factors have been classified individually in Table 7.1, but intercorrelations may exist among 
them. Such relationships between factors are difficult to account for, unless a rigorous, well-
replicated design is chosen in a controlled setting. For example, the way in which catches are 
handled on board may also determine the period of air exposure. A similar correlative 
relationship among factors exists where a given environmental or technical factor provokes a 
measurable response from the organism. One example is the depth of fishing which determines 
the occurrence and severity of barotrauma injuries among species with swimbladders. Another 
example is in pelagic purse-seines, where depleted dissolved oxygen concentrations during 
crowding and herding may trigger an evasion response which causes fatigue. In this example, 
there is a potential to measure either the cause or the effect. 

7.4 Conceptually identifying key variables 

Conceptualizing factors that could affect the survival of a captured and discarded animal is a 
useful method to identify key stressors. Relevant technical, environmental, and biological 
variables can be identified by tracing an organism’s pathway through capture, handling above 
the water surface, release overboard, and eventual return to its habitat. 

7.4.1 Capture phase 

7.4.1.1 Technical stressors 

The configuration of the fishing gear plays an important role in how animals are caught, how 
they interact with gear, with what components they come into contact, and the intensity of this 
contact. In trawl fisheries, the interaction starts with a stimulus by the gear, such as otter boards 
and sweeps (Wardle, 1993), tickler chains (van Beek et al., 1990; Kaiser and Spencer, 1995), and 
groundgear (for trawls), which can cause physical contact and possible injury (Chapman, 1981; 
Suuronen and Erikson, 2010; Winger et al., 2010). Next, the animals pass through the gear 
towards the codend. During that process, further physical contact can occur, resulting in injuries 
such as abrasion. The characteristics of the netting material (i.e. stiffness, yarn surface, knot 
thickness, mesh shape) are important in that process (ICES, 1993; Evans et al., 1994). Physical 
barriers in the net, such as guiding panels, can inflict additional injury (Lundin et al., 2012). In 
hook-and-line fisheries, the design of the hook has an effect on survival (Cooke and Suski, 2005; 
Grixti et al., 2007) and the type of lure can be important (Annex 4; Arlinghaus et al., 2008). In 
static-net fisheries, the design of net is important. For example, fish are more likely to get 
entangled in trammelnets than in single layered gillnets (Uhlmann and Broadhurst, 2015). 

A negative relationship typically exists between deployment duration and survival. The longer 
gears are deployed, the longer animals are exposed to the capture process, whereby crushing 
and injury may confound exhaustion effects. It is not necessarily the duration per se, but the 
increasing interactions with the gear and/or other parts of the catch. For example, both 
Wassenberg et al. (2001) and Uhlmann and Broadhurst (2007) showed that in penaeid prawn 
trawls, survival probabilities for discarded organisms decreased with longer tow duration 
(Annex 4). Deleterious effects from beam trawl capture may be exacerbated by adverse weather 
conditions (high waves), causing the heavy gear to lift off the bottom repetitively (Uhlmann et 
al., 2016). In trap fisheries, discard species may be trapped and are not able to feed or move as 
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needed (Barber and Cobb, 2007). For hook-and-line fisheries, longer fighting times have been 
shown to increase the occurrence of sublethal effects and post-release mortalities (Tomasso et 
al., 1996; Meka and McCormick, 2005). 

Towing speed is another technical factor which may influence discard mortality, although not 
identified by any of the reviewed studies (Table 7.1). Higher towing speeds can lead to 
exhaustion and increased risk of injury due to increased likelihood and intensity of contact with 
the gear and other components of the catch. The type and likelihood of injuries to captured 
organisms can be affected by the movement of the fishing gear, as determined by its design, the 
nature of the seabed, depth range (Milliken et al., 2009; Benoît et al., 2013), and currents. 

The process of hauling of fishing gear on board, the movement of parts of the fishing gear 
containing the catch, physical interactions with hard parts of the vessel (which can be 
exacerbated by poor weather conditions), size and composition of the catch, and the time before 
emptying the catch, can all affect animal vitality in the catch. Speed of hauling will also affect 
how quickly gases in the animal’s body expand and how it can cope with this physical change 
(see barotrauma below). 

 
Figure 7.2. Passive fishing techniques: freshwater fyke fishers in the Dutch IJsselmeer (credit: B. Griffioen, 
Wageningen Marine Research, The Netherlands. 

7.4.1.2 Environmental stressors 

The effects of temperature changes from ambient temperature at deeper depth to surface/air 
temperature, are well known for some freshwater and marine fish (Brett, 1970; Fry, 1971; 
Schreck et al., 1997; Davis et al., 2001). A series of experiments on marine fish demonstrated 
species-specific differences in mortality associated with temperature change (Barton and 
Iwama, 1991; Muoneke and Childress, 1994; Ross and Hokenson, 1997). Swimming 
performance and the ability of fish to maintain position in the net can be influenced by 
temperature change, thus influencing the likelihood of physical injury through contact with the 
gear or the catch (Beamish, 1966; He and Wardle, 1988; Winger et al., 1999; Breen et al., 2004). 

Over a longer time-scale, temperature changes may contribute to observed seasonal effects on 
mortality, although few studies have taken seasonality into account (Gale et al., 2013). Other 
more crucial parameters may be “masked” by seasonality, but strongly correlated to it, such as 
ambient temperature and spawning. ICES (2010) demonstrated significant seasonal differences 
in the mortality rates of little skates (Leucoraja erinacea) captured between February and July, 
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mostly associated with variations in surface water temperature. Revill et al. (2013) found 
differences in the survival of plaice in different seasons. Mediterranean swordfish (Xiphias 
gladius) also demonstrated lower vitality during the post-spawning season compared to 
prespawning, a finding attributed to the poor health condition of the spawners (de Metrio et al., 
2001; Damalas and Megalofonou, 2009). 

With increasing depth, natural light levels are reduced through attenuation (Johnsen, 2012), 
which can also influence behaviour during the capture process. Observations and 
measurements of fish behaviour under conditions of low light and darkness have been carried 
out both in the field and in the laboratory, confirming that effects of light are species-specific 
(Batty, 1983; Olla and Davis, 1990; Ryer and Olla, 1998; Olla et al., 2000). In some trawl fisheries, 
certain fish species under low light conditions swam less, passed along the trawl faster, and did 
not orient themselves to the long axis of the trawl resulting in more injury and mortality. At 
very low light intensities, fish do not detect an approaching net (Wardle, 1993). At the other 
extreme, bright surface light may cause disorientation and bleaching of sensory pigments in the 
eye, reducing the animals' ability to make avoidance responses if released at sea (Pascoe, 1990). 
For some species, short-term or permanent blindness may also occur (Frank and Widder, 1994). 

Differences in salinity result in varying osmotic pressures, which require aquatic species to 
regulate their body water. Marine stenohaline species (e.g. Nephrops norvegicus) may suffer 
haemodilution and rapid mass gain, even after a brief exposure to non-preferred salinity ranges 
(Harris and Ulmestrand, 2004). Another relevant environmental factor during the capture phase 
is water depth (Table 7.1). The negative effect of a change in depth on fish vitality is mainly due 
to the rapid decrease of hydrostatic pressure (see next section). 

7.4.1.3 Biological stressors 

Significant variation in discard mortalities for some species has been documented not only 
between studies, but also within studies (Frick et al., 2010; Revill, 2012). In general, sedentary 
species and those lacking a swimbladder (e.g. flatfish, sharks, and rays) have a higher likelihood 
of survival (Benoît et al., 2013). Several crustacean species (crabs, lobsters) and bivalve molluscs 
(scallops) are relatively robust and are likely to survive when discarded (Mesnil, 1996).  

(Round) fish that are captured, brought to the surface, and discarded, experience 
depressurization (barotrauma; Stewart, 2008), which can cause mortality (Nichol and Chilton, 
2006; Campbell et al., 2010a; Hochhalter and Reed, 2011; Rudershausen et al., 2014). The presence 
and type of swimbladder is an important biological determinant for survival (Benoît et al., 2013; 
Rudershausen et al., 2014). The most frequently observed barotrauma symptom in fish is an 
overinflated or ruptured swimbladder, with associated gas release into the body cavity. 
However, swimbladder healing after a short period of time has been described for some species, 
such as the Atlantic cod (Gadus morhua; Midling et al., 2012).  

The size and structure of the swimbladder varies considerably in different teleosts. Some taxa, 
particularly those living in the deep sea or benthic habitats, have lost the swimbladder 
altogether (McCune and Carlson, 2004). Physoclistous (i.e. closed bladder) fish are most 
susceptible to the effects of barotrauma (Broadhurst et al., 2006). Physostomous (i.e. open 
bladder) fish can more readily regulate the amount of gas in their swimbladders by venting it, 
but may be more susceptible to barotraumatic effects than fish lacking a gas bladder (Benoît et 
al., 2013). This may account for the proportionally higher survival frequently observed for 
discarded elasmobranchs and some benthic teleosts that lack closed gas bladders 
(Laptikhovsky, 2004; Enever et al., 2009; Depestele et al., 2014). A list of marine fish with 
physoclistous (closed) or physostomous (open) swimbladders is given in Benoît et al. (2013). 



 46  | Cooperative Research Reports Vol. 351 
 
 

The composition and size of the catch (Robinson et al., 1993) will determine the severity of the 
interaction between different animals in the catch for the duration of the fishing operation. They 
thereby can influence the nature and severity of injuries and the associated mortality (note: there 
can be a potential correlation with gear deployment duration). For example, Mandelmann and 
Farrington (2007) observed that larger catch volumes caused greater mortalities among 
discarded spiny dogfish (Squalus acanthias, Annex 4). Moreover, the crowding density of the 
catch prior to release (e.g. during slipping in purse-seines; Annex 4; Tenningen et al., 2012), and 
the herding effect, that may lead to exhaustion of the fish, can result in lower survival (ICES, 
1975a; Berghahn et al., 1992; Robinson et al., 1993; Wardle, 1993; Colura and Bumguardner, 2001). 
It has been suggested that abrasive objects such as spiny fish may cause scale loss among teleosts 
confined in a codend (Pranovi et al., 2001; Broadhurst et al., 2006), and stinging jellyfish that 
cannot be excluded from the catch can potentially cause harm (Uhlmann and Broadhurst, 2015). 
Catch size and composition can also affect handling practices and duration, which, in turn, 
affects survival (Section 7.4.2). 

Finally, depredation is the killing and total/partial removal of an animal (or bait) from a fishing 
gear by a predator. It has been recognized as an influential factor, especially in gillnets and traps 
(Uhlmann and Broadhurst, 2015). When partial removal of an individual has occurred, the 
remainder will often be discarded. The inclusion of these individuals in estimating a discard 
survival rate will depend on whether they are being classified as discards. 

7.4.2 Handling phase 

7.4.2.1 Technical stressors 

Once the catch is brought on deck, the handling phase will influence discard survival. The path 
of the catch through the infrastructure of the vessel, after removal from the fishing gear, can 
have some effect on the survival of fish (Berghahn et al., 1992). Different methods exist to haul 
individual fish on board. Animal vitality in the catch will be affected by whether the catch is 
released into a hopper, pumped, or gaffed, and the speed, technique, and conditions of 
handling. Since exposure to air affects survival (Castro et al., 2003), a quick sorting of the catch 
generally improves survival (Breen et al, 2020). Therefore, the design of the vessel and the skill 
and number of individual crew members on the processing line will, have an influence. 
Dehooking and removing from static nets is easier and faster for experienced fishers. Discards 
can be temporarily stored on deck and can be released through a tube above or under the water. 
This can affect the exposure time to air, altered temperature, and light as well as exposure to 
seabird predation (Chapman, 1981; Cook et al., 2018; Breen et al., 2020). 

7.4.2.2 Environmental stressors 

Many aquatic organisms suffer from hypoxia during air exposure or during confinement (e.g. 
Chapman, 1981; Cook et al., 2018; Breen et al., 2020). The time of air exposure is typically 
measured as the period between pulling the catch out of the water and discarding back to the 
water (Annex 4). By sorting the catch in water, Macbeth et al. (2006) demonstrated that 
minimizing air exposure reduced discard mortality of undersized prawns (Metapenaeus 
macleayi) (Annex 4). Hypoxia effects can be confounded with temperature changes to negatively 
affect survival (e.g. van Beek et al., 1990; Gamito and Cabral, 2003; Giomi et al., 2008; Hyvärinen 
et al., 2008). Irrespective of gear type, species-specific and size-dependent tolerances to hypoxia 
are important biological factors in determining susceptibility to discard survival (Barber and 
Cobb, 2007; Gisbert and López, 2008; Stewart, 2008). Effects of air exposure may be exacerbated 
by simultaneous exposure to direct sunlight, which can lead to heating and rapid dehydration. 
Exposure to wind or freezing temperatures may also increase dehydration. 
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7.4.2.3 Biological stressors 

Within species, size matters, with larger fish generally showing higher survival (Neilson et al., 
1989; Sangster et al., 1996; Milliken et al., 1999). Increased sensitivity of smaller fish is attributed 
to greater mass-specific respiration demands (Benoît et al., 2013), to fatigue from swimming 
during capture (Wardle, 1993), and to a reduced ability to avoid injurious contact with the gear 
and catch (Suuronen et al., 1995, 1996; Sangster et al., 1996; Wileman et al., 1999; Breen et al., 
2007). In addition, body core temperature increases faster in smaller fish (Davis et al., 2001; Davis 
and Olla, 2001, 2002). An inverse relationship between the rate of body core temperature 
increase and fish size has been documented (Spigarelli et al., 1977). The mechanisms behind the 
sensitivity towards changing temperatures have not yet been resolved for many species. For 
example, while flatfish can tolerate both hypoxia and temperature change; sablefish 
(Anoplopoma fimbria) tolerate hypoxia, but are sensitive towards changes in temperature (M. 
Davis, pers. com.). Salmonids are very sensitive towards temperature changes (Gale et al., 2013), 
as are clupeids (Lundin et al., 2012). 

Injuries will influence survival during the handling phase. For example, removing fish from 
hooks has a high potential of inflicting tears or punctures to mouthparts or the oesophagus.  

 
Figure 7.3. Modifications to catch handling and sorting procedures on board a Dutch beam trawler: hopper 
with different sized opening gates to apportion quantities transfered to the conveyor belt (top left); extra 
aeration of a water-filled hopper (top right); batten with multiple holes to discharge unwanted small-sized 
individuals (bottom left); extra lid to keep the water inside the hopper from spilling over during rough seas 
(bottom right). Credit: Wageningen Marine Research, The Netherlands.  

As discussed above, the extent of physiological responses to air exposure is species-specific 
(Benoît et al., 2013). The lack of gas exchange during hypoxia triggers a cascade of metabolic 
products that can be measured in the haemolymph, blood, and tissue (McMahon, 2001; Davis, 
2002). Owing to different respiratory mechanisms, crustaceans are favourably adapted to 
tolerate anoxic conditions when compared to teleost fish. Benoît et al. (2013) identified some 
biological traits, such as the presence of deciduous scales, mucus production, body softness, 
and presence of sedentary lifestyles, which are indicative of hypoxia sensitivity (Annex 4). The 
degree to which such biological resilience occurs may be very specific and associated with 
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certain biological traits (Table 7.2). To illustrate the relationship between stressors and stress 
responses for discarded organisms, Table 7.2 lists sensitivities and measurable responses 
towards anoxic conditions, and changes in temperature and water depth (here: decompression).  

Table 7.2. List of biological traits and measurable effects associated with sensitivity to hypoxia, changes in 
temperature, and decompression. 

Sensitivity Traits Effect Species Reference 

Hypoxia Presence of 
deciduous 
scales 

Fish with soft scales 
are sensitive towards 
desiccation 

Atlantic 
herring, 
capelin, 
rainbow smelt 

Suuronen et al. (1996); 
Benoît et al. (2012) 

High mucus 
production 

Mechanism to 
prevent desiccation 

Hagfish, eel Benoît et al. (2012) 

Body softness 
or fragility 

Measured with a 
durometer 

Atlantic 
halibut, 
mackerel 

MacDonald et al. 
(1996); Benoît et al. 
(2012) 

Sedentariness Signs of low 
metabolic activity 
(e.g. anaerobic) 

Shorthorn 
sculpin, 
hagfish 

MacCormack and 
Driedzic (2004); Cox 
et al. (2011); Benoît et 
al. (2012) 

Temperature Ventilation 
rate 

Fish under 
temperature stress 
breathe faster 

Salmonids, 
Clupeids, 
Percidae 

Gale et al. (2013); 
Lundin et al. (2012) 

Metabolic rate Fish below thermal 
optimum have a 
reduced metabolism 

  

Decompression Presence and 
type of gas 
bladder 

Fish with a closed gas 
bladder are more 
sensitive towards 
pressure changes 

Ling, redfish 
(Sebastes), 
haddock, 
whiting 

Benoît et al. (2013); 
Breen et al. (2007) 

7.4.3 Release phase 

7.4.3.1 Technical stressors 

The mechanisms by which individuals are released into the water will influence survival. To 
reduce adverse affects from discarding, release chutes or recovery boxes may facilitate a less 
stressful release process (Annex 4). Allowing species to recover prior to being released has been 
shown to reduce predation (Farrell et al., 2001). 

7.4.3.2 Biological stressors 

Successfully evading predation depends on the responsiveness of the prey (Fuiman et al., 2006). 
If reflex responses are impaired (e.g. reduced swimming speed, loss of orientation), then 
responsiveness will be reduced (Ryer, 2004; Raby et al., 2013). Injuries can affect not only a fish`s 
ability to evade predators (see following section), but also its shelter seeking and feeding 
abilities. Open wounds can facilitate infections by pathogens, particularly in fish already 
stressed by their interaction with the fishing gear. This can be a direct cause of mortality or 
result in an increased probability of predation. 
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7.4.3.3 Environmental stressors 

The environment into which individuals are discarded and the distance from their natural 
habitat (displacement) will also affect survival chances. Predation rates of discarded fish also 
depend on variables such as the type of predators present, predator density (Cooke and Philipp, 
2004), and predator avidity (Campbell, 2008). Vulnerability to predators is species- and size-
specific, e.g. large pelagic sharks are shown to have substantial survival rates (> 90%) due to 
their robust nature, their ability to recover quickly from exhaustion, and the low probability of 
being attacked by larger predators (Megalofonou et al., 2005; McLoughlin and Eliason, 2008). 

7.5 Explanatory variables: conclusions 

Once a fishery and species have been selected for survival assessment, it is important to identify 
the relevant stressors to which the organisms will be subjected. This will help ensure that the 
resultant survival estimates are representative of the fishery, and that the main influencing 
factors on survival are identified. The latter point may be useful in developing mitigation tools. 
The stressors can be categorized as either technical, environmental, or biological. 

The rapid review presented here identified that, among the technical and environmental factors, 
gear type and configuration, handling, deployment duration, water temperature, water depth, 
and air exposure, frequently influenced discard survival levels (Table 7.1). Body size and 
physical injury were also relevant in explaining variation among discard survival estimates. It 
should be noted that some important stressors and factors may not have been measured in 
previous studies (or if studied, were not published). For many stressors, taking measurements 
is straightforward. However, some are more difficult to measure and, consequently, have been 
less studied, e.g. physical condition, predator abundance, or distance from suitable habitat. 

There are many variables that can be measured. Therefore, the investigator must make a choice 
as to which variables will be measured and the accuracy to which they need to be measured, 
based on the benefits that will be gained. The frequency with which variables are shown to 
effect discard survival is an indication of their relative importance. However, this approach 
needs to be viewed with caution, given the caveats of a potential publication bias and the lack 
of critical evaluation of potential compounding effects. 

7.6 Summary and recommendations 
Potential explanatory variables of discard survival can be categorized as either technical, 
environmental, or biological. Two approaches are suggested to identify relevant explanatory 
variables or stressors for a survival assessment: (i) conceptually tracing an organism’s pathway 
through capture, handled above the water surface, release overboard and eventually return to 
its habitat; and (ii) conduct a literature search of relevant material. 

Once relevant variables have been identified, the method of measurement, and the required 
degree of accuracy need to be considered. 

The rapid review presented here identified common potential explanatory variables of discard 
survival. As examples:  

• Technical: gear type and configuration, handling, deployment duration,  
• Environmental: water temperature, depth change, air exposure,  
• Biological: body size and physical injury. 
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It is important to remember that intercorrelations may exist between potential explanatory 
variables, which are difficult to account for unless a rigorous, well-replicated design is 
conducted in a more controlled setting. 

 
 

 

 

 

 

 

 

 

 

Recommended questions for practitioners/researchers 

With respect to assessing the effect of explanatory variables, the researcher should ask 
themselves the following questions when planning a discard survival assessment:  

• Have pathway analysis and literature reviews been used to identify the most likely 
potential explanatory variables to be considered in an experimental design? 

• Will the most common potential explanatory variables be considered as part of ex-
perimental design?  
o Technical: gear type and configuration, handling, deployment duration. 
o Environmental: water temperature, depth change, air exposure.  
o Biological: body size and physical injury. 

• To what degree of accuracy and precision should, and can, the potential 
explanatory variable be measured, and how can this be done? 

• Has the potential for intercorrelations between explanatory variables been 
considered?  

• How will the potential explanatory variables, and any inter-correlations, be 
addressed by a well-controlled and replicated design? 
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8 Vitality assessments 

Michael Davis, Hugues Benoît, Mike Breen, Dorothee Kopp, and Jochen 
Depestele 

8.1 Defining and measuring “vitality” 

Vitality is an abstract property that relates to an organism’s survival potential. A vital organism 
will be healthy and unstressed. At the other extreme, mortality occurs when an individual's 
vitality reaches zero. Certain visual signs such as major injuries or impaired responses may 
reflect diminished vitality, which, in turn, reflects an increased risk of mortality (Dawkins, 
2004). 

Measurement of aquatic animal health and welfare has been hampered by a lack of real-time 
field methods that are easy and inexpensive to use (Morgan and Iwama, 1997; Huntingford et 
al., 2006). A direct and economically feasible approach to the problem is to visually assess 
animal status or vitality by measuring characteristics of whole animals, such as activity, 
responsiveness, reflex impairment, and injury. This notion underlies the use of vitality 
assessment in understanding and predicting discard survival and mortality. 

Vitality assessment can be used directly to explain the variations in animal health associated 
with different fishing stressors. Measures of vitality impairment can be used as an indicator for 
discard survival, by calibrating them with the survival likelihood estimates of specimens with 
known levels of vitality obtained either through captive observation studies (Section 9) and/or 
tagging/biotelemetry studies (Section 10). For example, reflex impairment (i.e. RAMP, reflex 
action mortality predictor) has been used to assess vitality, and predict mortality, in a variety of 
taxa, including crabs, prawns (Stoner, 2012), fish (Humborstad et al., 2009; Campbell et al., 2010a; 
Davis, 2010; Barkley and Cadrin, 2012; Raby et al., 2012), and turtles (LeDain et al., 2013). 

8.2 Overview of vitality assessment methods 

This section describes three simple and practical techniques for assessing the vitality of an 
animal discarded from a fishing operation. These techniques all visually assess the subject prior 
to the point of release, but vary in both their approach for describing the effects of the various 
stressors that the subject may experience during the discarding process, and in the resolution 
of their description of vitality. The selection of the most appropriate technique will depend on 
the objectives of the assessment and the intended use of the data. 

i) Coarse mortality indicators (e.g. time to mortality, TTM; Section 8.2.1). These provide 
a coarse measure of the sensitivity of different species, or species subgroups, to specific 
discarding related stressors, most notably air exposure. Differences in the responses 
by different species, or subgroups, exposed to the same stressor can then be used to 
rank them with respect to their relative influence on discard mortality. This approach 
provides a quick and simple method for identifying species which have a greater 
likelihood of surviving discarding, but does not quantify the survival rate. 

ii) Categorical vitality assessment (CVA; Section 8.2.2). This technique uses assessments 
of specific criteria (e.g. injuries, activity) to provide a categorical and ordinal index of 
the subject’s vitality (e.g. excellent, good, poor status). This index can be used to 
describe the variation in vitality for a population over different discarding conditions. 
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Where the different levels of the index have been calibrated to survival likelihood, this 
approach can be used as a predictive tool for estimating discard survival (Section 8.3). 

iii) Aggregated and partitioned vitality assessments (AVA and PVA; Section 8.2.3). 
These are quantitative vitality indices based on the individual scoring (presence or 
absence) of predetermined indicators or metrics of vitality, typically reflexes and 
injuries. With AVA, the scores from these individual vitality metrics are aggregated 
into a single score, while for PVA, they are analysed collectively, but remain separate 
metrics. They can be used in isolation, to collect information about the vitality of 
specimens under varying environmental, technical, and biological conditions. 
However, when calibrated to direct estimates of survival likelihood, the index scores 
can be used as a predictive tool for estimating discard survival. 

8.2.1 Coarse mortality indicators (e.g. time to mortality, TTM) 

The time required to induce mortality, or time-to-mortality (TTM), estimates the time at which 
50% of the individuals in a species are expected to die, based on observations of individual fish 
exposed to fishing-related stressors (Benoît et al., 2013). Individuals are monitored from when 
they are first exposed to the stressor (e.g. exposure to air) to the time when death is confirmed. 
Many observations can rapidly be obtained from experimental subjects. In addition, species or 
subgroups can be ranked by their risk of discard mortality, based on differences in their 
responses to the same stressor. 

The measurable endpoint, “death”, should be clearly defined using unambiguous criteria to 
assess the status of the individual (e.g. Davis, 2007; Benoît et al., 2012). For some species that are 
naturally immobile and/or unresponsive (e.g. “tonic immobility” in some shark species), 
“death” can be challenging to identify quickly. This is true for all survival assessments 
regardless of the method applied. 

The TTM approach has been applied to animals caught during scientific surveys, where 
individuals were monitored from the time the catch was brought aboard to the time when death 
was confirmed (Benoît et al., 2013). The length of time that fish are kept out of water has been 
shown to correlate with discard survival rates from larger field studies (Benoît et al., 2013). This 
is presumably because the time spent on deck exposed to air, and the associated hypoxia, is one 
of the most important factors influencing discard survival (e.g. Davis, 2002; Broadhurst et al., 
2006; Benoît et al., 2010, 2012; Section 7). Consequently, the relative susceptibility of different 
species to discard mortality could be assessed by determining their relative resilience to 
hypoxia. 

In this manner, TTM estimates may provide a useful indicator of the risk that discard mortality 
may pose for a species or species subset (e.g. a specific size class). This simple metric could 
provide useful information when setting priorities for science and management, in what might 
otherwise be a data-limited situation. 

The other principal use of the TTM approach is to study the technical, biological, and 
environmental factors that affect discard mortality (Benoît et al., 2013). TTM studies can be 
designed to include exposure of individuals to factors other than hypoxia that may be important 
stressors in a variety of fisheries (e.g. temperature, injury, or fatigue). 

8.2.2 Categorical vitality assessment (CVA) 

Categorical vitality assessments (CVA) aim to produce observations that can be obtained 
rapidly (within 5–10 s) for individual organism by trained observers during commercial fishing 
operations. CVA frameworks have been applied to various species and fisheries and all are 
based on a notion of quantifying vitality (e.g. Hoag, 1975; van Beek et al., 1990; Kaimmer and 
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Trumble, 1998; Laptikhovsky, 2004; Hueter et al., 2006; Benoît et al., 2010). Most of these 
frameworks are based on ordinal categories (classes) that encompass injury severity, fish 
activity, or a rough evaluation of reflex impairment (Table 8.1). 

Degrees of injury, activity, and reflex impairment have been individually shown to be good 
predictors of eventual survival (Davis and Ottmar, 2006; Humborstad et al., 2009, 2016; Davis, 
2010), as have vitality scores in both tagging (e.g. Hueter et al., 2006; Richards et al., 1995; 
Kaimmer and Trumble, 1998) and captive observation studies (e.g. van Beek et al., 1990; Benoît 
et al., 2010, 2012). 

Table 8.1. Example of the codes used by on-board observers to score the pre-discarding vitality of individual 
fish (from Benoît et al., 2010). 

Vitality Code Description 

Excellent 1 Vigorous body movement; no or only minora external injuries  

Good/fair 2 Weak body movement; responds to touching/prodding; minora external injuries 

Poor 3 No body movement, but fish can move operculum; minora or majorb external 
injuries 

Moribund 4 No body or opercular movements (no response to touching or prodding) 

a Minor injuries are defined as “minor bleeding or minor tear of mouthparts or operculum (≤ 10% of the diameter) or moderate loss of 
scales (i.e. bare patch)”. 
b Major injuries are defined as “major bleeding or major tearing of the mouthparts or operculum or everted stomach or bloated 
swimbladder”. 

8.2.2.1 CVA method 

Typically, CVA frameworks are based on three to five ordinal vitality classes that characterize 
at one extreme uninjured, very lively, and responsive fish, and at the other extreme, severely 
injured (externally) and unresponsive (moribund) individuals. 

Observations in a CVA are made on individual animals. An individual is selected from the catch 
and is briefly monitored. During that interval, the observer looks for obvious external injuries 
in addition to external evidence of barotrauma, the degree of body movements including 
ventilation, and the presence of reflex responses. The process of selecting an individual and 
manipulating it while scanning for injuries is sometimes enough to elicit a reflex response (e.g. 
body movements, flaring of the operculum or fins, gagging). The observer may sometimes 
attempt to elicit a reflex, e.g. by gently depressing the fish’s eye or belly. Given the well-
established relationships between the duration of air exposure and mortality (and, therefore, 
impaired vitality), the timing of CVA observations is paramount, and should be made around 
the time that discarding normally occurs. A method for selecting the fish to be assessed is 
necessary to ensure that a representative sample is collected. 

8.2.2.2 Defining assessment criteria 

By necessity, criteria for CVA must be easy to interpret and apply. However, to be useful, they 
must be responsive, specific to differences in vitality, and should be obtainable in a consistent 
manner between observers and over time. Ideally, the suite of observed characteristics used to 
score vitality should be small, easily memorized, and quickly assessed. For most applications, 
the characteristics used to categorize the degree of injury, fish activity, and reflex impairment 
can be generic to a range of species caught in a range of fisheries (e.g. Benoît et al., 2010; 
Table 4.1). Alternatively, they can be tailored to a specific situation, e.g. there may be specific 
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injuries of hook-caught fish, related to tearing of mouthparts or the alimentary canal, with 
differential effects on mortality. (e.g. Trumble et al., 2000). 

The number of categories used to classify or score vitality constitutes a trade-off. The 
consistency of application by observers is likely to decline as the number of categories increases 
and the differences between categories become subtler, while the precision (but not the 
accuracy) of CVA-derived survival estimates will increase with the number of categories. 
Discard mortality of Pacific halibut (Hippoglossus stenolepis) was initially quantified using a five-
category vitality scheme (Hoag, 1975). However, later analyses indicated that grouping into 
three categories reduced the variance of the vitality data and improved the precision of 
category-specific survival estimates based on tagging (Clark et al., 1993). Other studies have 
found clear survival differences between categories in three- to five-category schemes (e.g. van 
Beek et al., 1990; Laptikhovsky, 2004; Hueter et al., 2006; Benoît et al., 2010), suggesting that the 
optimum number of categories lies in this range (Table 8.2). Consequently, it may be advisable 
to plan a study with a number of vitality categories that is on the upper end of this range and 
to contemplate merging categories at the data analysis stage. 

Table 8.2. Example studies applying CVA and the number of vitality categories selected. 

Species (group) Reference Number of categories 

Nephrops Méhault et al. (2016) 3 

Nephrops Ridgway et al. (2006) 2 

Alaskan crab Stevens (1990) 3 

Shark Manire et al. (2001) 5 

Shark Hueter et al. (2006) 5 

Rays Enever et al. (2009) 3 

Sharks, rays, and chimaeras Braccini et al. (2012) 4 

Fish Benoît et al.( 2010) 4 

Pacific halibut Richards et al. (1995) 3 

Pacific halibut Trumble et al. (2000) 3 

Pacific halibut NOAA Fisheries (2014) 4 

8.2.2.3 CVA applications  

A CVA is readily applied in the field (e.g. on board commercial fishing vessels) along with the 
usual activities of a fisheries observer. An advantage of CVA is that observers aim to collect 
catch data that are commercially representative, therefore the vitality assessments will also be 
representative. In turn, conditional estimates of survival, with respect to a vitality level obtained 
from captive observation or tagging, can be combined with the vitality observations to produce 
a weighted estimate of survival that is representative for that fishery (e.g. Richards et al., 1995; 
Hueter et al., 2006; Benoît et al., 2012; Section 8.5). 

In a unique example, the Pacific halibut CVA vitality scoring and prediction of discard mortality 
has been validated with tagging studies. It is used in active fisheries observer programmes, to 
estimate mortality rates in assessment models and stock management (Richards et al., 1995; 
Trumble et al., 2000; NOAA Fisheries, 2014). This presents a particularly effective method for 
representative discard survival estimation.  
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Outputs from CVA can also inform on how vitality scores are influenced by various factors: 
biological (e.g. size), technical (e.g. handling time), and environmental (e.g. depth, or 
temperature) (e.g. Richards et al., 1994; Benoît et al., 2010). Understanding how various factors 
affect the likelihood that a discarded fish would fall into a particular vitality class, can facilitate 
the planning of management measures aimed at increasing discard survival. 

8.2.3 Aggregated and partitioned vitality assessments (AVA and PVA) 

Aggregated and partitioned vitality assessments are based on the reflex action mortality 
predictor (RAMP) vitality assessment method which was developed to improve the resolution 
and objectivity of vitality impairment observations and mortality prediction in stressed animals, 
based on reflex impairment (Davis, 2010). Further studies have shown the utility of including 
scoring for injury and decompression status in the RAMP assay to make it more inclusive of the 
various sources of vitality impairment (e.g. Campbell et al., 2010a, Humborstad et al, 2016; 
Uhlmann et al., 2016; van der Reijden et al., 2017). AVA/PVA can be used in isolation, just as 
CVA, to collect information about the vitality of specimens under varying environmental, 
technical, and biological conditions. When calibrated with direct estimates of survival 
likelihood, AVA scores can also be used as a predictive tool for discard survival. 

AVA/PVA aim for a more thorough description of vitality than CVA, by capturing as much 
information about the health, reflex impairment, and injury of the animal as is practicable in 
field settings (Davis and Ottmar, 2006). Compared with CVA, it can be argued that AVA and 
PVA are a more objective approach with higher resolution in the vitality assessment. That is, 
AVA/PVA generally test more criteria (reflex actions and injuries) and score using only presence 
or absence. However, this can come at the expense of a longer period of observation per 
individual fish (15–60 s compared to ≤ 10 s in the CVA), depending on the number of vitality 
metrics included in the AVA/PVA. 

8.2.3.1 AVA and PVA methods 

AVA and PVA are based on scoring the presence/absence of behavioural reflexes and injuries. 
Categories within each factor may also be considered, e.g. slight/severe impairment or 
percentage cover for injuries. Reflex responses, which are innate involuntary actions or 
responses to a stimulus (Berube et al., 2001), can be quantified as present/absent after stimulating 
the subject using touch, light, sound, or gravity. Reflex actions are used since they are innate 
fixed-action patterns that are directly related to vitality, without being confounded by the effects 
of other factors (e.g. size, motivation, sex). Some commonly used reflexes from the RAMP 
method that can be used in AVA include tail grab, body flex, head complex, vestibular-ocular 
response, and orientation (Raby et al., 2012).  

Injury is scored because of its direct relationship with trauma and potential infection, and thus 
mortality. Different types of injury can be quantified as simply present/absent, or on a scale of 
severity. Commonly observed injury types include barotrauma (Hannah et al., 2008; 
Humborstad et al., 2009) and wounding from hooking, abrasion, and predation (Trumble et al., 
2000). 

8.2.3.2 Selecting assessment criteria 

Different reflex actions and injuries can be used as assessment criteria (figures 8.1 and 8.2 and 
Annex 3). To select the most appropriate reflexes for the subject species, animals in the best 
possible condition are collected in the field or held in captivity. They are then examined using 
a range of possible reflexes (Annex 3) to determine which reflexes respond most consistently 
from individual to individual to the range of potential stimuli available to the observer (e.g. 
touch, light, sound, and gravity). Reflexes can be tested in unrestrained or restrained animals, 
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although unrestrained animals are more easily assessed on board vessels. As many different 
reflexes and injury types are measured as is practicable and appropriate, in order to describe 
stress effects on a wide variety of neural, muscle, and organ systems.  

 
Figure 8.1. On-board or laboratory-based reflex impairment assessments. Top and bottom: Plaice 
(Pleuronectes platessa); middle: Turbot (Scophthalmus maximus). Credit: Flanders Research Institute for 
Agriculture, Fisheries and Food (ILVO), Belgium. 



 ICES Guidelines on Methods for Estimating Discard Survival |  57 

 

The selection of the most appropriate injury types is highly species- and fishery-dependent 
(Section 8.2.2.1). In situ observations are required to determine the most common and relevant 
injuries occurring for a particular species, under a range of both technical (i.e. gear and handling 
related injuries: abrasion, or hooking/puncture wounds) and environmental (e.g. barotrauma, 
desiccation, or freezing) conditions in the fishery. Moreover, the injuries should be easily 
identifiable. 

 

Figure 8.2. An example of a continuous (as opposed to a binary) presence/absence scale for scoring reflex 
responses. The continuous tagged analogue visual scale (tVAS) consisted of a 10-cm bar split into three equal 
sized 3.3-cm sections, whereby 0 represented absent. Reflexes observed as  present were labelled weak (>0 
and ≤3.3 cm); moderate (>3.3 and ≤6.6 cm); and strong (>6.6 cm). 

8.2.3.3 Collecting and calculating AVA score 

Calculating an AVA score for reflex impairment and injuries follows the “rule of doubt”. A 
reflex action is scored as not impaired (0) when strong or easily observed, and as impaired (1) 
when not present, weak, or there is doubt about its presence. An injury (including barotrauma) 
is scored as absent (0) when not present or there is doubt about its presence, and present (1) 
when clearly observed. Reflex and injury scores for an individual animal are then summed and 
divided by the total number of measured criteria to calculate the proportion of impairment 
(AVA score). No impairment or injury would score zero (0), while maximum impairment and 
injury would score one (1). 

8.2.3.4 Collecting and calculating PVA score 

As with AVA data, each metric of vitality can be scored as a binary response (i.e. presence or 
absence) using the “rule of doubt”. However, with this approach, there is also the option of 
scoring each vitality metric on an ordinal scale (e.g. absent, weak, or strong response). Rather 
than aggregating these vitality scores, they can be fitted as separate parameters within a 
statistical model where the response variable is survival (Section 13.3.2). 

Please note that because the fundamental difference between AVA and PVA is whether the data 
are analysed as an aggregated score or not, both approaches can be applied to the same datasets. 
Even when data for some metrics were collected on an ordinal scale, these can easily be 
converted to binary data to satisfy the AVA scoring approach. 

8.2.3.5 AVA and PVA applications  

AVA and PVA can be used to directly assess vitality impairment for animals captured and 
discarded from commercial fisheries. Vitality impairment values assessed with AVA/PVA can 
be calibrated to predict delayed mortality, and can be in a variety of ways in fishing industries. 
The calibrated AVA score can be used, as RAMP has been used, to monitor performance and 
adjust design of fishing gears (Hammond et al., 2013), for fisheries stock assessments and 
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management (NEFSC, 2012), and in experiments designed to determine the role of stressor 
factors in escapee and discard survival (Raby et al., 2012). 

The influence of recreational fisheries (particularly angling) on marine fish stocks and 
ecosystems has become an increasingly important topic for fisheries management (e.g. Post et 
al., 2002; Cooke and Cowx, 2006; Lewin et al., 2006). Catch-and-release (C and R) angling is a 
common practice in many recreational fisheries (Arlinghaus et al., 2007). Ferter et al. (2013) 
reviewed C and R practices in several European marine recreational fisheries and showed that 
the release rates for several species were > 60% of the total catch in some European countries. 
Only a few studies have used or mentioned the vitality indicator approach for estimating post-
release mortality in the recreational fishery context (e.g. Campbell et al., 2010b; Cooke et al., 
2013). However, the inclusion of mortality indicators in traditional C and R mortality studies 
has the potential to extrapolate survival estimates to different regions and similar fisheries, 
without the need to conduct extensive field experiments. The availability of spatio-temporal 
mortality estimates is important for area-based fish stock assessments and can improve future 
stock management. Furthermore, vitality assessment could be useful for anglers to quickly 
evaluate the condition of a fish and its potential survival, thus acting as a decision-support tool 
for anglers. 

8.3 Predicting survival from vitality assessments 

CVA and AVA/PVA vitality assessment methods give direct measurements of 
unimpaired/impaired state in animals. To calibrate vitality impairment for use as a tool to 
predict discard survival, animals must be: exposed to appropriate stressors, their impairment 
observed, and the likelihood of their survival at each level of the vitality index must be 
estimated using either captive observation (Section 9) or tagging (Section 10) (Davis and Ottmar, 
2006; Davis, 2007). To avoid extrapolation when predicting survival, animals must be exposed 
to the full range of stressors observed in the fishery that produce impairment and survival data. 
Models can then be constructed to show species-specific relationships between fishing 
conditions, impairment, and survival/mortality (e.g. Figure 8.3), termed the “vitality-correlated 
survival” (VCS). Once validated, vitality impairment can be used to indirectly predict species-
specific discard survival from the relevant “vitality-correlated survival” (VCS) relationship. 

 
Figure 8.3. An example relationship between reflex impairment and mortality, with 95% confidence intervals 
and sample size indicated below (redrawn from Humborstad et al., 2016). 

 

 

 
Reflex impairment (proportion) 
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8.3.1 Vitality correlated survival 

The necessary steps to conduct this calibration process are detailed in the following and 
summarized in Figure 8.4. 

1. Choose appropriate vitality measures (Section 8.2): 
• categorical vitality assessment (CVA) used for rapid assessment by fishery 

observers under commercial conditions (Section 8.2.2); or 
• aggregated and partitioned vitality assessment (AVA and PVA) used for 

hypothesis testing with greater impairment resolution (Section 8.2.3). 
2. Identify relevant stressors and injuries: 

• identify likely stressors (Section 7) and injuries; 
• conduct in situ observations to identify actual stressors and injuries; and 
• select most relevant stressors (Section 7) and injuries. 

 
3. Identify consistent reflex responses (if using AVA and PVA): 

• for a particular species, collect a sample of unimpaired animals (i.e. “controls”, 
Section 6); 

• define the reflexes, and other responses and injuries, that can be consistently 
tested and scored; and 

• use reflexes that consistently respond to stimuli. 
4. Conduct experiments to measure impairment and survival over a representative range 

of stressors: 
• design the experiments to include gradients of relevant stressor effects 

(Section 7); 
• observe resulting vitality impairment and injuries over a representative range 

of fishery associated stressors; and 
• observe corresponding vitality related survival, using an appropriate method 

(Section 4). 
5. Model and validate the relationship between vitality impairment and survival: 

• correlate known levels of vitality to survival likelihood estimates using captive 
observation studies (Section 9) and/or tagging studies (Section 10); and 

• use predictive models to provide estimates of discard survival (with confidence 
intervals) from independent measures of vitality impairment for the same 
species and range of fishery associated stressors (Section 13.3.2). 

8.3.2 Selection of appropriate stressors for the correlation 

Two approaches can be used to induce a range of stress and impairment in animals caught in 
fisheries. The first, and most efficient method, is to make observations in real fishing operations 
over a representative range of fishing conditions, and pair vitality assessment from captured 
fish with measurement of their survival rate. Different stressor types should also be investigated 
depending on the “operational system” for which stress and survival is to be modelled, i.e. 
recreational or commercial fishing (e.g. trawling, netting, trapping, longlining). This approach 
ensures that the combination of stressors experienced, and ultimate survival estimate, is 
representative of fishing conditions. 
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Calibrating vitality impairment with survival 

Step 1. Choose appropriate vitality measures  

 

 

 

 

Step 2. Identify Relevant Stressors and Responses  

 

 

 

 

 

 

Step 3.  Identify Consistent Reflex Responses (if using QVA) 

 

 

 

 

 

 

Step 4. Conduct Stress Experiments 

 

 

 

 

 

 

 

Step 5.  Model relationship between Vitality Impairment and Survival 

 

 

 

 

Design experiments to include 
gradients of relevant stressor ef-

fects (sections 5 & 7). 

Observe resulting vitality 
impairment and injuries 

Observe corresponding 
vitality related survival 

Model relationship between 
Vitality score and survival 

(Section 13.3). 

Predict likely survival from 
independent measurements of 

vitality. 

Select appropriate method for as-
sessing survival (sections 8-10). 

Collect unimpaired 
control fish. 

Assess candidate 
reflex responses. 

Score reflexes as 
present or absent 

Use reflexes that 
consistently     

respond to stimuli 

 

Select appropriate 
method for in-

tended use 

Quantitative Vitality 
Assessment (QVA) 

Semi-Quantitative As-
sessment (SQA) 

Use pathway analysis to 
identify likely stressors 
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Select most relevant 
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Figure 8.4. Schematic diagram of the process for correlating vitality with survival, adapted from Davis (2010). 
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A second approach is to design experiments that test for effects of individual stressor types and 
measure the vitality and survival of the experimental subjects. Stressor types may be grouped 
as (i) physical, which influence the subjects through exercise, pressure, temperature, and water 
turbidity, (ii) ecological, which derive from social stress, predation, and food availability; and 
(iii) chemical sources, which result from changes in pH, O2, CO2, and xenobiotics (Davis, 2010). 
Stressors may be acute (short term) or chronic (long term), and their strength can range from 
mild to severe, which can be gauged by the induced stress response and its outcomes (Barton, 
1997; Huntingford et al., 2006). The different stressor types (physical, ecological, chemical) may 
affect reflex responses in different ways. Therefore, testing combinations of reflexes and 
categorised injuries helps to show the effects of multiple stressor types in the calculated 
impairment index. 

8.3.3 Controls 

The baseline controls for calibrating and validating vitality indices in each species of interest are 
animals with unimpaired reflex actions, without injuries, and without mortality, under 
appropriate conditions of captive observation or tagging. In some circumstances, captivity, 
handling, or tagging may induce some level of mortality in unimpaired control fish. This 
mortality generally indicates that holding or tagging conditions could be improved (section 6). 
However, calibration and validation of the relationship between vitality impairment and 
survival can still proceed if the investigator is willing to assume the interpretation uncertainty 
introduced by control mortality (sections 6 and 13). 

8.4 Limitations and uncertainties of vitality assessment 

8.4.1 Coarse mortality indicators 

This method has limited vitality resolution (e.g. time to death) and is restricted to the specific 
stressors observed in an assessment (e.g. hypoxia). As such, this method provides an 
approximate relative measure of vitality between species (or species subgroups) for specific 
stressors. However, unlike CVA and AVA, it cannot be used to define a species-specific measure 
of vitality for a range of fishery associated stressors. 

8.4.2 Categorical vitality assessment (CVA) 

Some degree of subjectivity in CVA among observers is an inherent property of this method. 
There will likely be differences among observers, and even over time from one observer, in 
whether a fish is ascribed to one vitality category vs. an adjacent category. On average, this may 
affect the precision of CVA-derived observations, but will generally not affect the accuracy. 
Such classification subjectivity can be reduced, but not completely eliminated, with effective 
training and a clearly defined protocol. It can additionally be explicitly modelled during data 
analysis (e.g. Benoît et al., 2010). 

8.4.3 Aggregated and partitioned vitality assessment (AVA and PVA) 

The effective use of AVA to score vitality impairment is dependent on the following 
assumptions: 

a) Vitality is inversely related to reflex impairment and injury. 
b) Reflex impairment and injury are directly related to stressor types and intensities. 
c) Reflex impairment occurs rapidly once critical thresholds in stressors are reached. 
d) Vitality correlated survival (VCS) relationships are species-specific. 
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e) The vitality correlated survival (VCS) relationship used for a species is experimentally 
derived by inclusion of representative stressors and animal sizes, ages, and sex. 

f) The vitality correlated survival (VCS) relationship is stable for a species and 
representative conditions. 

g) All reflex actions and injuries in VCS carry equal weight and, therefore, have equal 
effect on vitality and survival.  

h) Observers objectively score presence or absence of reflex action in a replicable manner. 

These assumptions have been tested and validated for several species and stressor contexts, 
with and without scoring for injury types (e.g. Humborstad et al., 2009; Davis, 2010; Campbell 
et al., 2010a; Barkley and Cadrin, 2012; Raby et al., 2012; Stoner, 2012). However, there has been 
some discussion within WKMEDS on the validity of some of these assumptions, particularly 
the simple summation of the reflex/injury scores. This has led to the suggestion that the 
individual vitality metrics should not be aggregated at all, but should be fitted as separate 
parameters within a statistical model. This approach has been referred to as partitioned vitality 
assessment (PVA; see Section 13.3.2 for further discussion). 

The species and stressor specific nature of AVA [i.e. assumptions (d), (e), and (f) above] means 
that care must be taken to ensure that vitality scores are derived from reflex impairment 
observed in a representative sample of animals exposed to a representative range of stressors. 
Failure to account properly for all the critical stressors and combinations of stressors in the 
discarding process, could lead to confounded effects and instability in the vitality scores. 

As with CVA, the precision of AVA is dependent on how consistently the observers score the 
presence or absence of the reflex or injury. However, the more objective approach to scoring 
adopted with AVA (c.f. “rule of doubt”) is likely to reduce uncertainty associated with observer 
bias. 

8.5 Predicting survival from vitality assessments 

Vitality-based predictors of survival are dependent on the observation methods used to 
calibrate vitality to survival. In this respect, any resulting survival estimates will be limited by 
the same factors inherent in estimating survival using either captive observation or tagging. 
Captive observation of animals may introduce captivity related biases (e.g. method-related 
mortality and excluding predation; Section 9), while tagging may introduce statistical artefacts 
(Thorsteinsson, 2002) or sources of mortality unrelated to capture and discarding stressors (e.g. 
natural mortality related to other stressors, predation, disease, or food limitation; Section 10). 

Behavioural impairment, and other indicators of stress associated with vitality, may indicate an 
increased likelihood of predation (e.g. Ryer, 2004; Raby et al., 2013) or immuno-suppression (e.g. 
Ellis, 1981; Lupes et al., 2006; Wedemeyer and Wood, 1974). However, measures of vitality (i.e. 
AVA and CVA) should not be assumed to be reliable predictors of such post-release events. 
Predation and immuno-suppression are also dependent on additional factors that cannot be 
accounted for by a vitality assessment alone, e.g. proximity to potential predators and the 
associated likelihood of encounter, and prevalence of pathogens within a population and/or 
environment.  

Further, current evidence indicates that vitality-dependent survival estimates are largely 
species-specific and likely fishery-specific. Therefore, it is only appropriate to estimate vitality-
dependent survival when the relevant stressors, and range of those stressors, is experienced in 
the fishery. Consequently, until it can be reliably demonstrated that these survival predictors 
are transferable between certain species and gears, it will be necessary to have species- and 
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fishery-specific vitality-survival calibrations. Furthermore, the vitality-survival calibration 
must include the complete range of impairment and mortality, to avoid extrapolation beyond 
empirical evidence. 

Ultimately, there is a need to validate survival estimations based on vitality assessments. This 
is most reliably achieved by comparing the survival estimates derived using vitality 
observations, to those obtained from a large-scale well-planned tagging project for a common 
fishery (Section 10; e.g. Richards et al., 1995; Trumble et al., 2000; NOAA Fisheries, 2014). 

8.6 Summary and recommendations 

Vitality is an abstract property that relates to an organism’s survival potential. A vital organism 
will be healthy and unstressed, whereas mortality occurs when an individual's vitality reaches 
zero. Consequently, vitality metrics are good proxies for the likelihood of discard survival and 
represent an efficient means to collect data on the broad scale of fisheries. Vitality is typically 
quantified by measuring characteristics of individual animals such as activity, responsiveness, 
reflex impairment, and injury. The relationship between vitality metrics and survival can be 
quantified experimentally, and they can be used to estimate a discard survival rate at the scale 
of a fishery, when combined with estimates on the relative frequency of different vitality scores 
within a population. Furthermore, the analysis of factors that affect vitality provides a good 
indication of how these factors affect survival. 

There are two general types of vitality assessments used in discard mortality studies: categorical 
vitality assessments (CVA) and aggregated and partitioned vitality assessments (AVA and 
PVA). CVA uses rapid observations on injuries and reflex impairment to classify individuals 
into a small number of ordinal vitality categories (e.g. excellent condition, poor condition). In 
contrast, AVA and PVA quantify the presence or absence of several individual vitality metrics 
(individual reflexes and injuries) and differ in the way the data are assimilated to predict 
survival. AVA aggregates the responses for the various metrics into a single index that is 
regressed onto survival outcomes from experiments, whereas in PVA the contribution of each 
impairment and injury for predicting survival is estimated individually. 

 

Key questions for practitioners 

• Is there a selection method for the assessed fish? 
• Are the health state (vitality) categories clearly defined? 
• Are the selected protocols effective in assessing health/injury of fish? 
• Were the reflexes that are being scored selected using “unstressed” fish (not exposed 

to capture treatment) and are they consistently observed? 
• Are there established time-limits for responses/reflexes? e.g. operculum movement 

within 5 s. 
• Is the assessment container appropriate for the species and adequate to observe the 

responses? 
• Has the potential for observer bias been considered? 
• Are the vitality assessments consistent across all parts of the study? 
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9 Captive observations 

Bob van Marlen, Rolf Erik Olsen, Aud Vold, Luis Arregi,  Jochen Depestele, 
Keno Ferter, Thomas Noak, Harry Strehlow, Sonia Méhault, and Mike 
Breen  

Captive observation is a common technique, where discarded animals are transferred into 
containment facilities (e.g. tanks or underwater cages) after experiencing in situ representative 
fishing conditions (i.e. capture, handling, and release). However, the experimental subjects are 
not actually discarded, but are retained in captivity for a period of time to monitor their vitality 
and survival. 

This approach facilitates the monitoring of the experimental subjects, and allows both dead and 
surviving animals to be sampled and assessed for injuries, physiological status, and vitality. 
However, it also introduces some potential limitations with respect to the applicability of the 
survival estimates. Firstly, holding wild animals, unaccustomed to captivity, can induce stress 
(Snyder, 1975; Portz et al., 2006), and thereby can potentially induce captivity-related mortality 
in addition to the treatment effect. Controls can be used to determine whether method-induced 
mortality has occurred (Section 6). Also, most examples of this technique will isolate the captive 
population from their natural predators, so it will not account for any predation on discard 
survival (e.g. Raby et al., 2013). 

In this section, the implications for holding and monitoring animals in the field or laboratory 
are discussed, as well as information on designing and the practical considerations of 
conducting captive observation assessments. 

9.1 Field vs. laboratory assessments 

Captive observation can be conducted either in the field, using tanks or cages, or in the 
laboratory under controlled conditions. To provide estimates of discard survival which are 
relevant to real fishing operations, the experimental subjects must experience conditions during 
capture, handling, and release that are representative of the fishing operation under study. This 
is best achieved by sourcing the subjects for monitoring on board commercial fishing vessels, 
and conducting the monitoring either in holding facilitites in the field or in a laboratory. 
Laboratory assessments, which do not contain any element of fieldwork, can be appropriate 
when researchers want to investigate the isolated effects of specific variables on discard 
survival. In these cases, the aim is not to generate a disard survival estimate that is 
representative of a fishery. 

9.1.1 Field assessments 

Captive observation field assessments can be defined as investigations that estimate discard 
survival using experimental subjects collected under realistic and representative fishing 
conditions (e.g. Broadhurst and Uhlmann, 2007; Enever et al., 2008; Raby et al., 2013; Revill et al., 
2013; Depestele et al., 2014). The subjects are then transferred to containment facilities (e.g. tanks 
or cages) that are either field- or laboratory-based. Frequent reporting on this technique 
illustrates the feasibility and acceptable costs associated with this approach. The primary 
advantage of this technique is that the animals under study are collected from authentic fishing 
conditions and have, therefore, been exposed to realistic and combined stressors associated with 
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the capture and discarding processes. For this reason, the results from studies conducted in this 
manner are likely to be trusted by the fishing industry. 

A key consideration with captive observation is that it does not account for predation, and 
therefore potentially overestimates discard survival levels. This factor must be made explicit 
when presenting the results (Raby et al., 2013). Captivity may also exclude stressors that would 
otherwise be experienced by discarded fish. Therefore, survival may also be overestimated if 
subjects survive better in the containment facilities than if released. However, in general, the 
additional stressors associated with being contained are considered to have a stronger effect on 
subjects than any possible benefits, i.e. the method is more likely to induce mortality than to 
increase survival (Portz et al., 2006). 

Captivity in tanks or cages, and transfer of organisms from the fishing operations to holding 
tanks, can induce additional handling and captivity stress and, therefore, requires careful use 
of appropriate controls. When captivity stress is observed, survival estimates observed in the 
treatment subjects may underestimate the true value. In addition, captive observation studies 
can be expensive and consequently suffer from low levels of replication, which can mean that 
the results may not be representative of the management unit, and that the statistical power of 
the data will be reduced. Integration with vitality assessments (Section 8) and 
tagging/biotelemetry assessments (Section 10) can be used to substantially increase the utility 
of the discard estimates derived from captive observation (see Section 4 for further discussion). 

9.1.2 Laboratory assessments 

Captive observation laboratory-based assessments can be defined as those used to investigate 
isolated variables and their effects on the behaviour, physiology, and survival of subjects under 
controlled conditions. Although conditions in laboratory experiments can attempt to emulate 
fishing practices, representative stressors are not usually obtainable. Therefore, laboratory-
based experiments are not usually suitable for generating discard survival estimates per se. 

Laboratory assessments do permit detailed studies into the mechanisms of mortality and 
injuries using untreated controls as a baseline. Such studies also allow the researcher to isolate 
factors, singularly or in combination, and estimate their relative importance for fish vitality and 
their effect on survival. Laboratory assessments also offer the opportunity to undertake post-
mortems and physiological investigations, and allow many replicates, thus providing greater 
statistical power. With increasing focus on animal welfare, laboratory assessments also allow 
smaller numbers of animals to be used in experiments. 

As stated above, the controlled conditions of the laboratory cannot replicate commercial fishing 
conditions and the interaction of stressors experienced by fish. The subjects undergoing 
treatment may also not be representative of commercially caught fish (Section 9.2.1). Subjects 
kept in captivity for longer periods can become acclimatized to captivity and potentially behave 
differently than “wild” specimens. Finally, it is essential to keep the experimental subjects under 
conditions as close as possible to those in nature. 

9.2 Designing a captive observation assessment 

The design of an effective captive observation assessment depends on four key elements: 

i) obtaining a representative subject population; 
ii) transfer into captivity; 
iii) containment in appropriate conditions; and  
iv) monitoring. 
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At each stage of the study, it is important to minimize the effects of captivity on the experimental 
subjects. Captivity should not be detrimental to the vitality of the subjects. This is achieved by 
ensuring that the holding conditions and containment facilities correspond to the subject’s 
biological and behavioural needs as far as possible. In addition, controls can be used to 
determine whether there is any method-induced mortality (Section 6). This section only briefly 
reviews the most pertinent aspects, but there are useful and detailed guidelines available for 
keeping aquatic animals in captivity (e.g. Nickum et al., 2004; Portz et al., 2006; Jacklin and 
Combes, 2007). 

9.2.1 Obtaining a representative subject population 

Experimental subjects should have been exposed in a controlled or measurable way to suitable 
stressors that are representative of normal fishing conditions, based on the key influencing 
factors (technical, environmental, biological; sections 2 and 7). Test subjects will usually have 
been caught in a standard fishing operation, handled according to normal fishing practices, and, 
at the point when they would be released to the water, transferred into captivity. 

9.2.2 Transfer into captivity 

Following treatment, the experimental subjects are transferred to a containment facility (e.g. 
tank or sea cage) for monitoring. Ideally, this transfer should be representative of the conditions 
the discarded fish would normally experience during release. This includes both handling 
protocols, and anticipated changes in environmental conditions between the surface and the 
habitat to which they would normally return (e.g. temperature, depth, and light intensity). For 
example, if fish are released via a chute or pipe from the side of the vessel, this could be 
effectively simulated by fitting the receiving sea cage to the outlet and then sinking the filled 
cage to the seabed. Where this is not practical, the effects of the transfer should be controlled to 
minimize any associated stress and injury (e.g. minimizing air exposure). 

In some instances, the transfer will involve handling individual fish. This may provide an 
opportunity to conduct a vitality assessment, with commercial handling times and conditions, 
still within normal ranges (Section 8). However, sometimes the transfer may involve many fish 
at the same time (e.g. when slipping small pelagic fish from purse-seines; Huse and Vold, 2010; 
Tenningen et al., 2012). In this case a vitality assessment can be conducted for a subsample of 
fish at different stages of the transfer, and any potential influential stressors should be 
monitored (Section 7). 

9.2.3 Containment facilities 

Conditions in the containment facilities should ideally correspond to the biological and 
behavioural needs of the species under investigation (e.g. Breen, 2004; Nickum et al., 2004; 
Broadhurst et al., 2006; Jacklin and Combes, 2007). These needs will often be species-specific. As 
examples: flatfish require a non-abrasive bottom surface area on which to rest, as opposed to a 
large tank volume (van Beek et al., 1990); pelagic schooling species require volumes sufficient 
to maintain normal schooling behaviour (e.g. Misund and Beltestad, 2000); scombrids require a 
high water flow [e.g. bluefin tuna (Thunnus thynnus) in aquaria]; and cannibalistic or aggressive 
species, such as nephrops, may require isolation from each other (e.g. Wileman et al., 1999; 
Castro et al., 2003).  

Containment facilities can be broadly categorized into two forms: 

i) Tanks or ponds: the water holding the subject population is contained by a man-made 
construction. The water mass is isolated, and, therefore, water quality depends on 
treatment or filtration, and a flow-through or recirculation supply. Tank facilities allow 
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the observer to maintain a high degree of control over the subject population, and they 
generally also allow for the subject population to be frequently monitored. However, 
their volume can be restrictive, and providing representative conditions is challenging. 

ii) Cages or pens: the subject population is contained in a volume of water, generally within 
a larger natural water mass, using a man-made construction (typically netting). Water 
quality is determined by the surrounding water mass and depends on having sufficient 
exchange through the cage structure. Using cages in the field makes it simpler to provide 
representative environmental conditions. However, finding a suitable location for the 
cages can be challenging, and their isolation from the observer, and their large size, can 
make effective monitoring of the subjects difficult. 

The development of appropriate containment facilities will often require preliminary 
investigations to assess their effectiveness. These are best undertaken in association with the 
development of captivity (method) controls (Section 6). A pilot study prior to the main 
experiment, assessing the suitability of the cages or tanks, is often valuable and may prevent 
costly investments in unsuitable equipment. 

Examples of tanks, cages and pens are shown in figures 9.1–9.7. When designing containment 
facilities for a given species, key considerations include: 

• non-injurious, non-toxic construction and materials (Section 9.2.3.1); 
• volume/surface area (Section 9.2.3.2); 
• stocking density (Section 9.2.3.3) 
• stable and appropriate environmental conditions (Section 9.2.3.4); 
• sufficient water quality and exchange (Section 9.2.3.5); 
• water movement (Section 9.2.3.6); 
• lighting conditions: intensity, spectrum, and periodicity (Section 9.2.3.7); 
• shelter for the subjects (Section 9.2.3.8); 
• feeding requirements of the subjects (Section 9.2.3.9); 
• exclusion of predators (Section 9.2.3.10); and 
• methods to facilitate monitoring with minimal disturbance (Section 9.2.3.11). 

9.2.3.1 Construction and materials 

The design and materials used to construct the cage or tank (and associated handling 
equipment) should minimize the risk of injury and physiological distress. For example, there 
should be no sharp edges or abrasive materials (e.g. knotless netting is preferred over knotted). 
Where it is anticipated that subjects may strike tank walls because of either their own activity 
or the movement of the vessel on which the tanks are kept, it may useful to install cushioning 
materials on the tank walls and/or use circular tanks. Care should be taken to ensure that the 
construction materials are non-toxic (see example in Table 9.1). 

Where subjects come into contact with surfaces in the containment facility (e.g. flatfish), the risk 
of injury from contacting those surfaces should be minimized. In some cases, access to familiar 
substrata can be provided (e.g. sand, gravel), to minimize captive effects (e.g. Sangster et al., 
1996; Wileman et al., 1999). Tank or cage shape is also important. For example, pelagic fish need 
cylindrical or circular cages for schooling; while elongated tanks may exacerbate water 
movement induced by vessel motion (Section 9.2.3.6). 

 



 68  | Cooperative Research Reports Vol. 351 
 
 

 

 

 
Figure 9.1. Tank arrangement used in the UK (manufactured by Precision Pipework Ltd., Lowestoft UK). Top: 
tank array; middle: pump unit; bottom: individual tank. Credit: Centre for environment, fisheries and 
aquaculture science (Cefas), UK. 
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Figure 9.2. Cages used for studying Nephrops survival [reproduced from Méhault et al. (2016), and Wileman 
et al. (1999)]. 
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Figure 9.3. Cages and holding tanks used in Dutch experiments (reproduced from van Marlen et al., 2013). 

 



 ICES Guidelines on Methods for Estimating Discard Survival |  71 

 

 

Figure 9.4. Top: on-board monitoring rack (152 cm L × 59 cm W × 160 cm H) with 16 independently-mounted, 
flow-through, 30-l monitoring containers (60 cm L × 40 cm W × 12 cm H. [Credit: Flanders research institute 
for agricultural, fisheries and food research (ILVO)]. Bottom: similar racks used in the UK [Credit: Centre for 
environment, fisheries and aquaculture science (Cefas)]. 

 

Figure 9.5. In situ sea cages for monitoring discarded catches out at sea on the seabed (Credit: Wageningen 
marine research, The Netherlands). 
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Figure 9.6. Captive holding facility to monitor survival of discarded Norway lobster [Credit: Swedish 
university of agricultural sciences (SLU), Sweden]. 

 

Figure 9.7. Cage setup used in Norwegian purse-seine survival studies (reproduced from Huse and Vold, 
2010). 
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Table 9.1. Properties of the materials used in the construction of holding tanks for crustaceans (reproduced 
from Jacklin and Combes, 2007). 

Material Suitability Comments 

Glass Yes Ensure that sealants are non-toxic. Use ones made for aquaria – 
others are toxic. 

Aluminium Yes Can be expensive. Needs to be suitable grade for seawater. Will 
it have electrolytic action with any other parts in the system? 

Copper, bronze, brass, 
lead zinc ie. sacrificial 
anode 

No Heavy metal issue with seawater and foodstuffs. 

Fibreglass and epoxy 
resins 

Yes Caution is needed with polyester resin as it may leak styrene into 
the holding system. If it is a recirculating system, styrene can 
accumulate to toxic levels. Epoxy resin leaches fewer chemicals, 
but is more expensive than polyester. In either case, the tank 
system should be thoroughly flushed to ensure removal of all 
toxic lactates from the resin. 

Wood, bare natural 
and plywood 

Yes Wood is a good material for making a cheap tank for a trial. 
Marine plywood products are ideal. Ensure that glues are non 
toxic. 

Wood treated with 
preservative 

No Could be used to provide structure, but not suited for containing 
water due to preservatives. 

Paints Some Talk to paint manufacturers to ensure that the product is suited 
to the application, that it is non-toxic, and if possible food grade. 

Plastics, often used for 
pipework 

Some Ensure that any plastic cements/glues are non-toxic. Food-grade 
vinyl tubing or PVC pipe. Ensure that glue does not collect 
inside the pipe joints and after drying flush with freshwater. 

Cement/concrete/block 
work 

Yes Suitable for open through-flow systems. Cheap and readily 
modified, but will need to be lined for closed recirculating 
systems due to potential bleaching of aluminium and other 
metals that may be in the sand used to make the concrete. 

Netting Yes Rigid plastic netting or fishing netting taut over a frame can be 
used to provide “shelving” within a tank to increase the floor 
space for crustaceans, while still allowing water to circulate. 
Check for toxicity. 

9.2.3.2 Volume/surface area 

An appropriate space for the experimental subjects should be provided, both with respect to 
the needs of the individual subjects, and to the size of the population to be accommodated (i.e. 
stocking density; Section 9.2.3.3). For example, schooling, pelagic fish [e.g. herring (Clupea ha-
rengus), mackerel (Scomber scombrus), and tuna] are likely to require large volumes to ensure 
that the containment space does not confine their natural swimming behaviour or school struc-
ture. In contrast, demersal species [e.g. plaice and sole (Solea solea)] require adequate surface 
areas on which to rest, which can be achieved by providing layered shelving within the holding 
tank (e.g. Revill et al., 2013). 



 74  | Cooperative Research Reports Vol. 351 
 
 

9.2.3.3 Stocking density 

Stocking density refers to the number of fish held within the containment facility. It is unlikely 
that a captive observation experiment will be able to provide natural stocking densities for the 
experimental subjects. In most cases, stocking density is likely to be artificially high. However, 
it should not be so high that it is detrimental to the vitality of the subjects. Stocking density 
should also not compromise water quality within the tank or cage, particularly with respect to 
oxygen depletion and the accumulation of waste products (see Section 9.2.3.5. Tolerance to 
crowding varies among species, and even within species depending on their maturity and 
physical status. 

There are few standard recommendations for optimal stocking densities for captive 
observations, since these will be dependent on the species, their status, and the characteristics 
of the containment facilities. Information from aquaculture, sufficient investment in preliminary 
trials, and developing suitable methods for controls will inform researchers on this issue. 

9.2.3.4 Stable and appropriate environmental conditions 

It is important to ensure that environmental conditions within the cage or tanks (e.g. 
temperature and salinity) are representative of the habitat to which the subject should be 
released (i.e. its preferred habitat). Ideally, environmental conditions should also be stable in 
order to minimize any confounding effects on the survival estimates, unless instability is a 
particular feature of the subject’s normal habitat. Moreover, these conditions should be 
replicated and monitored in each cage or tank. 

Where cages are being deployed to the receiving habitat, they should be lowered and recovered 
gently, ensuring that there is no excessive water flow which could stress the animals. Simulating 
the water pressure at the depth to which the subject would return on release can be considered 
for tanks. Changes in key environmental parameters (e.g. depth, temperature, salinity) should 
be monitored throughout the period of captivity (e.g. Breen et al., 2007; Knotek et al. 2015). 

9.2.3.5 Water quality and exchange 

Insufficient oxygen and elevated toxins can kill the experimental subjects. However, even at 
sublethal levels, the stress induced by these factors is likely to affect subsequent survival. There 
should be sufficient water exchange within the cage or tank to ensure that oxygen levels are not 
depleted, and that biowaste products (particularly ammonia) do not accumulate. Moreover, 
where possible there should be regular monitoring of concentrations of oxygen and key 
biowaste products. 

Water exchange in tanks should be designed in such a manner that intertank contamination is 
avoided. Ideally, each tank should receive its own independent water supply. Cages may 
require cleaning to ensure that any growth on netting material does not compromise water 
exchange. 

9.2.3.6 Water movement 

Water movement within the containment facility can be induced naturally by tidal water 
currents through the cage, or artificially via a water-exchange system. While some water 
movement is necessary to ensure water quality (Section 9.2.3.5) and promote natural swimming 
behaviour, excessive movement can induce additional stress. It is recommended that water flow 
within the containment facility is continuously recorded, particularly in cages. 

Stress can be induced by the movement of the vessel on which tanks are installed. This can be 
partly relieved by tank design, such as sealed tanks with no air spaces, small round tanks and/or 
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the use of baffles to restrict water movement. The tanks should also be securely fastened in a 
position on the vessel where the ship’s motion is minimal.  

When using cages, sites should be selected that are sheltered from significant tidal currents and 
the prevailing weather. Floating cages drifting with water currents, as opposed to being 
anchored, can be considered (Huse and Vold, 2010). Cages should be deployed and recovered 
gently, ensuring that any induced water flow does not stress the subjects. 

9.2.3.7 Lighting conditions: intensity, spectrum, and periodicity 

Many aquatic species are adapted to light intensities much lower than those experienced at the 
surface (Johnsen, 2012). Moreover, the subject’s natural light will have a periodicity and 
spectrum that will be specific to its natural habitat (Johnsen, 2012). To minimize captivity stress, 
holding conditions should attempt to simulate natural light levels and patterns. If held in tanks, 
artificial lighting can be used, with appropriately coloured or opaque construction materials, to 
replicate natural lighting conditions. 

9.2.3.8 Shelter for the subjects 

Some species naturally seek and require shelter, and will likely become stressed without them 
(e.g. Nephrops). Provision of a suitable artificial shelter can alleviate this problem (e.g. Wileman 
et al., 1999). 

9.2.3.9 Feeding requirements of the subjects 

Most adult aquatic species can survive several weeks without food, especially at lower 
temperatures. However, when observing the experimental subjects for a prolonged period, it 
may be necessary to provide food to meet the subject’s nutritional requirements. A review of 
the life history of each species will provide the needed information to determine feeding 
requirements. Providing food may also alleviate predation and cannibalism within the captive 
population. The feeding status of a fish can be a useful measure of its vitality and stress status 
(e.g. Breen, 2004). Finally, feeding will increase the subject’s oxygen requirements and the 
production of biowaste products; and, therefore, water quality will need to be maintained 
accordingly.  

9.2.3.10 Exclusion of predators 

Where there are likely to be intra- or interspecific interactions (e.g. cannibalism, competition, 
and predation), it may be necessary to exclude some species or larger individuals, or to have 
segregated facilities. Cages deployed in the subject’s natural habitat can attract predators and 
scavengers that can stress the subjects, enter the cage and attack live subjects, or scavenge on 
dead specimens (e.g. seabirds, starfish, crabs, and sea lice). Efforts should be made to exclude 
these animals (e.g. floating cages should be covered by netting or a lid to avoid predation by 
seabirds.). In addition, regular monitoring and removal of dead animals (e.g. using divers) can 
be used to limit the attraction of scavengers.  

9.2.3.11 Facilitate monitoring with minimal disturbance 

Monitoring of the subjects should be conducted in a way that minimizes stress on them. Remote 
monitoring technologies (e.g. video cameras) can be used to monitor mortality and vitality 
without adding to captivity stress by disturbing them (e.g. Ingolfsson et al., 2007). Closed-tank 
facilities allow assessments of the physiological status of the subjects (e.g. measuring excreted 
levels of cortisol). 
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9.2.4 Monitoring 

This section describes the practical aspects of monitoring the fish during the captive observation 
period, including defining when a subject is dead and the frequency of monitoring events. 

9.2.4.1 Characterizing subjects as dead 

Characterizing a subject as dead can be subjective, so a consistent protocol is necessary (e.g. 
Benoît et al., 2013; sections 6 and 8). Clearly defined, measurable, and validated characteristics 
of a “dead” subject should be established prior to the commencement of the survival 
experiments (e.g. lack of respiratory or gill response, swimming activity, onset of rigor mortis, 
lack of reflexes or response to stimuli, or colour of gills).  

9.2.4.2 Removal of dead specimens 

Subjects that are characterized as dead should be removed as quickly as possible to reduce the 
risk of disease and/or the attraction of predators and scavengers; and their time of removal 
should be noted. In tanks, dead subjects can typically be removed with properly designed 
landing nets (i.e. those used by aquarists or anglers). Additional stress to the remaining living 
subjects should be minimized. When storing fish in cages, various solutions designed for 
removing dead fish in aquaculture are available (e.g. Sangster, 1991; Piggott, 2013). For 
underwater cages, divers or ROVs may be deployed. 

9.2.4.3 Observations 

Observation of the captive subjects should be a compromise between obtaining accurate data 
on the occurrence of death, with timely removal of dead specimens, and the disturbance and 
stress caused by the observation. Monitoring should be done with minimal disturbance (see 
Section 9.2.3.11.  

Regular monitoring is required to generate a cumulative mortality profile. Monitoring should 
ideally continue until mortalities cease and the cumulative mortality profile reaches a plateau 
or symptote (see following text). Mortality rates may stabilize only to increase after a lag period. 
Mortalities closer to the time of discarding are likely due to the capture-and-discarding process, 
whereas mortalities towards the end of monitoring might be due to containment. Controls 
should be used to establish any method-induced mortality (Section 6). 

Monitoring should ideally be carried out for as long as it takes to explicitly observe the 
treatment-induced mortality. A typical cumulative mortality curve has an asymptotic shape 
(Benoît et al., 2013). The experiments should therefore continue until the mortality approaches 
the asymptote (see also Asymptotic Survival, Information Box 12.1). This may take days or 
weeks, depending on the species and treatment. In practice, however, the duration of the 
monitoring often has to be a trade-off between scientific needs, available resources (sea time, 
budgets, available tank time), and occurrence of confounding mortality not associated with the 
initial treatments.  

A bimodal mortality may occur in some cases, such as in herring (A. Vold and R. E. Olsen, pers. 
comm.). In such cases, untreated controls are needed to determine whether a second peak of 
mortality is caused by the initial treatment, or is attributable to a captivity effect. Furthermore, 
there may be cases when the mortality rate does not stabilize. In such cases, it is difficult to 
deduce if the mortality is related to the treatment or to captivity. 

In previous captive survival assessments, monitoring has typically been done every 24 h. This 
provided a balance between the level of disturbance, resource requirements, and data 
generation. This guidance recommends that more frequent monitoring is conducted in the first 
24 or 48 h after discarding, since this is the period during which the highest mortality rates are 
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often seen. In some experiments, only endpoint mortality can be monitored, since daily 
sampling of mortalities is logistically difficult or even impossible, (e.g. Ingólfsson et al., 2007; 
Huse and Vold, 2010). 

9.2.4.4 Variables to be measured 

The variables to be measured will depend on the study and the ability to sample specimens 
during the assessment. Length, weight, and sexual maturation of the subjects are important 
variables to understand the susceptibility to mortality of the population. External injuries may 
also be recorded, keeping in mind that handling of the fish and post-mortem processes may 
cause damage. Details on methods to visually assess the vitality of fish are given in Section 8. 
Laboratory studies can utilize a much wider range of analytical techniques [e.g. analysis of 
stress axis components (cortisol, plasma ions, catecholamines, and glucose) and hypoxia 
indicators (lactate)]. In tank studies, non-invasive techniques like measuring levels of cortisol 
and ammonia in the water are well suited. Measurements of water quality variables like oxygen 
content, ammonia, salinity, temperature, and current velocity are useful for establishing how 
well the containment reflects the natural environment, and to correlate changes in conditions 
with mortality rates. 

9.3 Summary 

In captive observation, experimental subjects are retained in captivity for a period of time to 
monitor their survival. Captive observation can be conducted in field assessments or in the 
laboratory. Laboratory-based assessments can be used to investigate the effects of isolated 
variables on the behaviour, physiology, and survival of subjects under controlled conditions. 
Stressors representative of normal fishing conditions are usually not reproducible in the 
laboratory and, therefore, these assessments are considered less suitable for generating fishery-
specific discard survival estimates. In field assessments, experimental subjects are collected 
under representative fishing conditions and then transferred to containment facilities for 
captive observation. 

Captive-observation techniques may introduce biases to survival estimates. They do not include 
predation effects on survival of discards, nor some stressors that would otherwise have been 
experienced by the fish had they been discarded back into the sea, and so may overestimate the 
true survival rate. In addition, they may add handling and captivity stressors and, therefore, 
can underestimate the true survival rate.  

 

The design of an effective captive-observation assessment depends on six key elements: 

1. Obtaining a subject population that is representative of normal fishing conditions. 
2. Transfer into captivity under conditions ideally representative of those the 

discarded fish would normally experience during release. 
3. Containment in appropriate conditions in tanks, ponds, or cages, which ideally 

suit the species-specific biological and behavioural needs. Key characteristics to be 
considered include: 

• Construction and materials 
• Volume/surface area/stocking density 
• Stable and appropriate environmental conditions 
• Sufficient water quality and exchange 
• Water movement 
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• Shelter 
• Nutrition 
• Exclusion of predators 
• Facilitate monitoring with minimal disturbance 
• Dead subjects should be removed as quickly as possible. 

4. Monitoring for ideally as long as it takes to explicitly observe the treatment-
induced mortality, and at sufficiently regularity to generate a cumulative mortality 
profile for estimating asymptotic survival (SA). 

5. Clearly defined, measurable, and validated characteristics of a “dead” subject.  
6. Controls should be used to establish any method-induced mortality. 
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10 Tagging 

Tom Catchpole, Connor Capizzano, Graham Raby, Keno Ferter, Nils Jespen, 
and Ruben Theunynck  

Three tagging approaches can be used to assess discard survival: mark–recapture, acoustic 
telemetry tagging (including radio tagging), and data storage tags (DST) or archival tags. These 
three methods are described in more detail in the following text, with a specific focus on how 
they can be applied to estimate discard survival. In all cases, the tagging methods are applied 
in the field and, therefore, the study area should preferably be the location where specimens 
would normally be discarded, or have characteristics comparable to these locations, including 
shelter possibilities, food availability, population density, and predator presence.  

10.1 Mark–recapture 

Mark and recapture is a method commonly used in ecology to estimate an animal population's 
size, but it can also be used to estimate discard survival. Mark-recapture studies have been 
widely used in recreational and commercial fisheries to assess the migration, growth, and less 
often, survival rates of fish. Fish are individually tagged after being caught and then released 
back into their natural habitats (ICES, 1965; Parker, 1990). The advantages of mark-and-
recapture studies are the easy application of tags, the relative low costs of tags, the possibility 
to have large sample sizes, and the provision of survival estimates under natural environmental 
conditions that are inclusive of predation. 

External tag types include dangling tags, T-bar anchor tags, thread, ribbon, wire, dart tags, 
spaghetti tags, coloured vinyl tubing, disc tags, Petersen disks, Atkins tags, operculum tags, jaw 
tags, and Carlin tags, among others (Figure 10.1). Internal physical tags include body cavity tags 
and passive integrated transponder (PIT) tags (Figure 10.2). Body cavity tags can be made of 
different materials and are inserted loosely into the body cavity of fish, e.g. metal tags have been 
used on pelagic species so that they may be recovered with a magnet during commercial 
processing. Internal PIT tags act as a unique identifier, which require the fish to be routed 
through a restricted sensing area and, thus, can only be detected after capture. PIT tags are 
inserted either subcutaneously or into a body cavity. Other tagging methods include chemical 
tagging, applying dyes, fin clipping, v-notching (crustaceans), and branding. Mark–recapture 
tags do not log any data or transmit any data relating to an individual’s position or condition. 

 

Figure 10.1. Examples of mark–recapture tag types (left - tagged spurdog, Cefas; right - The Pfleger Institute 
of Environmental Research, PIER. 
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The simplest, and most ideal way to estimate discard survival using mark–recapture, is to use 
both control and treatment fish. Treatment fish are those that have been caught and released. 
The released control fish are assumed to be identical to the treatment fish except that they have 
not been subjected to the fishing process. All fish are monitored for one period (Pollock and 
Pine, 2007). As discussed in Section 6, it is very difficult to find a true control in this setting, 
which this is the main challenge when using this technique. In the absence of genuine control 
fish, absolute estimates of discard survival cannot be directly derived using the mark–recapture 
method, unlike with the captive-observation method or the other tagging methods detailed 
below. 

Several discard-survival studies without control animals have used marker tags to address 
research objectives other than generating an absolute survival estimate. For example, some 
tagging studies provide immediate mortality estimates or survival-potential estimates 
(Table 4.1), i.e. recording proportions of fish that were alive or dead at the point of discarding 
in combination with applying  marker tags to discarded live fish (Bendall et al., 2012; McCully 
et al., 2013). Based on the rate of tag return from such studies, it is possible to estimate a survival 
potential or maximum survival. This maximum survival rate can be adjusted to the 
proportionate differences in return rates between fish of different vitalities. In addition, large-
scale mark–recapture experiments can be used to compare relative survival rates among 
treatment groups (e.g. different capture techniques or different vitality scores from the same 
capture technique; Trumble et al., 2000). 

 

Figure 10.2. Spaghetti (top) and passive integrated transponder (PIT) tags (bottom). Photo credit: Thünen-
Institut. 
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In the absence of adequate controls, estimating absolute discard survival using mark–recapture 
is extremely difficult. However, it is possible with enough tags and sufficient life history 
information on the fish population. If a sufficient proportion of the population is tagged, over a 
sufficiently long period, from a population with available estimates for fishing mortality, 
natural mortality, discard rates, and stock size, then the discard-survival rates may be 
estimated. However, most of these parameters are rarely known, and this type of large mark–
recapture tagging programme is conventionally used to estimate natural mortality rather than 
discard survival. Therefore, unless adequate controls can be sourced, we recommend that 
mark–recapture methods are not used if the primary goal is to estimate post-release survival 
rates. 

10.2 Acoustic telemetry tagging (including radio tagging) 

Telemetry, in the context of research on wild animals, is the remote monitoring of physiological, 
behavioural, or energetic data (Cooke et al., 2004a). Acoustic telemetry specifically involves 
transmitters (tags) emitting acoustic “barcodes” (pings) that are unique to each transmitter, and 
can be detected by underwater receivers (listening stations). Releasing animals equipped with 
transmitters (tagged) into an area with underwater acoustic receivers allows the remote 
collection of movement data for animals in the wild, without the need for direct observation or 
recapture of the animals (Figure 10.3). In addition to identifying themselves to receivers, 
acoustic tags can be designed to transmit information on depth (e.g. Ferter et al., 2014), 
acceleration (e.g. Wilson et al., 2014), temperature (e.g. Gutowsky et al., 2013), or other 
information (e.g. Cooke et al., 2004b).  

Acoustic telemetry data can be used to infer whether an animal is alive or dead, thus making it 
a useful tool for estimating discard survival. A study designed to estimate discard survival 
would normally involve attaching transmitters to subjects, and subsequently collecting 
movement data for those animals using an array of acoustic receivers. An animal can be 
classified as dead when data from receivers indicate it has stopped actively moving. 
Quantitative approaches can distinguish true active animal movement from the passive 
movement of dead individuals (Yergey et al., 2012; Capizzano et al., 2016; 2019). Statistical 
approaches can be used to generate survival estimates in scenarios where monitoring periods 
differ among the animals included in the study (i.e. because some animals move outside the 
effective perimeter of the receiver array; Section 13 and Benoît et al., 2015). In some cases, it is 
possible to capture and release animals equipped with tags, permitting a “before-and-after” 
assessment of behaviour relative to the time of capture (Neat et al., 2009; Ferter et al., 2014). 

Radio telemetry works in the same way as acoustic telemetry except that the tags emit radio 
signals that are detected and registered by land-based receiving stations equipped with 
listening antennae. Radio signals propagate well through air, but poorly through water, and 
especially salt water. Therefore, radio telemetry can be useful in some freshwater applications 
(see Colotelo et al., 2013), but is rarely used in the marine environment (see Thiem et al., 2013). 
Satellite-based transmitters can also be used to monitor animal movement, but can only be used 
with animals that regularly surface and remain surfaced long enough for GPS-triangulation 
(e.g. turtles, or seals; Hays et al., 2003), or by using pop-up satellite tags that surface after 
detachment. 

10.2.1 Acoustic tagging methods to estimate discard survival 

The use of telemetry technology in fisheries science has been reviewed previously (Bridger and 
Booth, 2003; Heupel et al., 2006; DeCelles and Zemeckis, 2014; Kessel et al., 2014; Crossin et al. 
2017). Instead, the text here focuses specifically on the use of acoustic telemetry to generate 
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discard survival estimates in marine commercial fisheries (see Donaldson et al., 2008 for a 
review for recreational fisheries). Acoustic tags are manufactured in a range of sizes, which 
allows for the study of movement patterns for a range of animals including juvenile fish 
(Voegeli et al., 1998), popular sportfish, and large marine pelagic fish (Jolley and Irby, 1979; 
Bettoli and Osborne, 1998; Skomal and Chase, 2002; Govinden et al., 2013). Triaxial acceleration 
tags, which assess orientation and activity levels, have been used with Pacific salmon 
(Oncorhynchus keta; Tanaka et al., 2001) and nurse sharks (Ginglymostoma cirratum; Whitney et 
al., 2010), and have been used to identify mortalities in discarded fish (e.g. Curtis et al. 2015) . 
Discard survival has been estimated using a variety of tags and sensors (Jolley and Irby, 1979; 
Donaldson et al., 2008) based on presence/absence of detection at receivers (Heupel and 
Simpfendorfer, 2002), a lack of evidence of movement (Hightower et al., 2001), use of depth 
profile data (Thorstad et al., 2011), or a combination of orientation and depth (Stuntz and Curtis, 
2012). 

 

 

Figure 10.3. Top left: An acoustic transmitter externally attached to an Atlantic cod (Gadus morhua). Top right: 
The transmitters signal is detected by an acoustic receiver. Bottom: Map depicting locations of acoustic 
receivers to passively monitor study area for tagged individual (reproduced from Capizzano et al. 2016). 
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Fish can be equipped (and released) with telemetry tags either by external attachment or by 
gastric or surgical implantation. External tagging usually involves fixing the tag directly to 
either the dorsal or ventral body surfaces, and is used when internal tagging is not possible due 
to biological restrictions (e.g. stomach and/or cavity volume; Bridger and Booth, 2003), or 
because a rapid and minimally invasive tagging procedure is needed. The later scenario is 
typically the case when the primary objective is to generate a survival estimate. External 
attachment methods are usually rapid (e.g. requiring ca. 20–30 s) and are the preferred option 
for studies aimed at assessing survival in environments without structures that could cause tag 
entanglement (e.g. corals, kelp forests). When a fish’s stomach and cavity volume are adequate, 
a tag can be pushed down the fish’s gastrointestinal tract until it rests in the stomach. Gastric 
implantation removes the shortcomings of external tagging (e.g. hydrodynamic drag, risk of 
snagging, piercing injury). However, the tags can be regurgitated after release and, therefore, 
may only be feasible in some species (e.g. non-feeding migratory Pacific salmon; Cooke et al., 
2005). Surgical implantation usually requires deep anaesthesia, longer handling times during a 
critical period of recovery, and an incision with sutures.  Therefore, it could have a profound 
effect on mortality, making it less suited to discard survival estimates. Among the few studies 
that have used acoustic telemetry to assess discard survival, only external attachment and 
gastric tagging have been used (e.g. Donaldson et al., 2012; Yergey et al., 2012; Raby et al., 2012). 

Once released, fish equipped with transmitters can be tracked actively, or using an automated 
passive approach. Active tracking involves a directional hydrophone to manually track the 
animal (i.e. following it by boat). Such an approach is useful for assessing short-term survival 
because high-resolution movement data can be obtained. However, active tracking inherently 
limits study sample sizes because the researchers (and the boat) often need to be dedicated to 
tracking a single animal for some period of time (e.g. 12–24 h). In small, semi-closed systems, 
where the study animals are expected to remain near the release site, active tracking may be 
more viable. Danlychuk et al. (2007) relocated gastrically tagged and released bonefish (Albula 
vulpes) with active tracking and confirmed mortality events through visual observation. Passive 
tracking involves using receivers, which are deployed underwater at fixed locations across a 
study area, to monitor transmissions from tagged animals in the area (Heupel and Webber, 
2012). Much larger sample sizes are usually possible with an array of fixed receivers. Passive 
telemetry is currently developing from low-precision positioning systems, to include high-
resolution, three-dimensional monitoring of fish for extended periods (VRAP, Klimely et al., 
2001; VPS, Espinoza et al., 2011), which allow spatial precision, automatic monitoring, long time-
series, and large sample sizes. Despite their application in recent studies (e.g. Bohaboy et al., 
2020; Capizzano, 2020), these newer positioning systems have yet to be harnessed fully when 
estimating discard survival (Espinoza et al., 2011). 

10.2.2 Principle advantages, challenges, and assumptions of acoustic tagging 

Acoustic telemetry allows the study of movement and behaviour of tagged animals in their 
natural environment. Assessments of the behaviour and fate of discarded animals can be carried 
out without the potential biases associated with captive observation. Fish released with acoustic 
tags can engage in natural behaviour, e.g. diel vertical migrations (Gutowsky et al., 2013) and 
spawning migrations (Donaldson et al., 2012; Zemeckis et al., 2020). Moreover, with telemetry 
techniques, post-release predation can be documented and incorporated into discard survival 
estimates (Raby et al., 2014a). In contrast to mark–recapture studies, biotelemetry studies are 
fisheries-independent, i.e. physical tag recovery is not necessary to obtain data. As long as the 
tag is within range of a compatible acoustic receiver, movement data for the fish will be 
collected. 

Despite the obvious strengths of acoustic telemetry, there are several challenges which have 
limited its application in discard survival studies. One of the main challenges is the potential 
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for the tagging procedure, or the tag, to directly affect survival. Most tagging procedures require 
either some form of additional injury (e.g. incision, tissue puncture), handling, or external drag. 
Moreover, minimum tag sizes prevent using this method in all life stages of a fish (DeCelles and 
Zemeckis, 2014). One of the most important challenges to be considered is that the signals 
emitted by acoustic tags need to be registered (“heard”) by acoustic receivers (Heupel et al., 
2006). There is usually a risk that tagged fish emigrate from the acoustic array, and are thus lost 
from the study (Cooke et al., 2002; Benoit et al. 2015; section 13). This can be a major challenge if 
the sample size is already small due to cost constraints. Since current costs for acoustic tags are 
high (e.g. ca. 300–800 USD per tag), this is often the case, and financial resources are often the 
main factor limiting sample sizes (DeCelles and Zemeckis, 2014). Receiver array setup and 
maintenance represents an additional and substantial cost (Domeier, 2005). Successful telemetry 
studies often generate daunting amounts of data in the order of millions of lines, which creates 
further difficulties in the form of data management, analysis, and interpretation (Hartog et al., 
2009). Interpretation of movement data is not always straightforward with respect to assessing 
survival. For example, tag loss or minimal movements of a fish may be interpreted as mortalities 
although the fish is still be alive; while a fish may be interpreted as alive when in reality it has 
died and is being moved either by ocean currents or a predator (e.g. Yergey et al., 2012; 
Capizzano et al., 2016). 

An important assumption necessary with telemetry studies, especially if the focus is on 
assessing discard survival, is that the tagging effects are minimal. This is particularly important 
if no control group is available. Furthermore, using tagging to assess discard survival assumes 
that the additive or synergistic effects of the tagging procedure and the tag are negligible. There 
may also be an assumption that the behaviour of a tagged fish represents its natural behaviour, 
and is not significantly affected by the tagging procedure or the tag itself. In the absence of 
control experiments, it is necessary to assume minimal tag loss and tag failure. 

10.2.3 Best practices for the use of acoustic tagging in discard survival studies 

Like any tagging method, acoustic telemetry should be evaluated against the study objectives 
and design before it is used in discard survival studies. Koehn (2012) and DeCelles and 
Zemeckis (2014) both provide detailed discussions on acoustic telemetry and assessing its utility 
in fisheries science. 

Not all fish are suitable for acoustic telemetry. The success of telemetry studies depends on the 
ability to attach transmitters to animals without negatively affecting survival after release 
(Bridger and Booth, 2003). Tag size and attachment technique need to be suited to the study 
species, life stage, and research objectives (Daniel et al., 2009). For discard survival studies, more 
so than in other telemetry research, tagging effects need to be minimized. Winter (1996) 
suggested using the non-experimental “2% rule”, where a tag does not weigh more than 2% of 
the fish’s weight. Yet, due to the lack of experimental trials, the “2% rule” was challenged in 
recent years with tag/body weight percentages as high as 12% (Brown et al., 1999; Jepsen et al., 
2005). Since the tag’s overall size is directly proportional to its battery size and power (and, 
therefore, its likelihood of detection), tag size is often a compromise between minimizing 
tagging effects and ensuring sufficient detection efficiency.  

Choice of study area is among the most important factors in acoustic telemetry marine research 
on discard survival. Ideally, a site should be chosen that is partially or fully isolated, to prevent 
or minimize emigration from the receiver array. Area features can each have important effects 
on field sampling logistics, transmitter detection efficiency, and receiver array maintenance 
(Medwin and Clay, 1997; DeCelles and Zemeckis, 2014). These area feature include water 
properties (e.g. type, dimensions, and characteristics), coastal and bathymetric features, habitat 
composition, ambient noise, climate variations (e.g. temperature, ice formation, and storm 
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intensity and frequency), and anthropogenic activity (e.g. vessel traffic and fishing gear). 
Moreover, the study area needs to be accessible throughout the study period to allow receiver 
maintenance and downloads. Ideally, fishing operations should be conducted so that fish are 
landed, tagged, and released in roughly the same location relative to the receiver array (e.g. in 
the middle of a grid-style receiver array). 

The type of data needed to assess survival is relevant to logistical decisions relating to 
monitoring duration, sample sizes, range testing, and tag retention rates (Koehn, 2012). 
Preliminary pilot studies should ideally be conducted to provide validation and refinement to 
the tagging procedure, and to clarify optimal tagging and tracking approaches (e.g. tagging 
effects studies, range testing; Kessel et al., 2014). Detection-range trials are required to assess the 
effective detection distance for a fixed receiver, since the tag’s acoustic transmissions will be 
affected by spreading losses, refraction, attenuation (Singh et al., 2009) and variable 
environmental factors. Although most studies have inferred mortalities through lack of activity 
(e.g. Espeland et al., 2010; Thorstad et al., 2011; Stunz and Curtis, 2012), mortality estimates can 
be artificially inflated or deflated due to reader bias from lack of sufficient controls. Data from 
released sacrificed telemetry-tagged fish can be used to define a mortality-event profile, either 
qualitatively or quantitatively, in order to allow mortalities to be identified in tagged 
experimental fish (e.g. Yergey et al., 2012; Capizzano et al. 2016, 2019).  

Active telemetry tracking with the use of mobile directional hydrophones provides continuous 
monitoring of tagged fish and no spatial limits. However, it inherently limits sample sizes since 
the tracking is labour-intensive (Kessel et al., 2014). Thus, passive automated tracking is likely 
to be the best option for most discard survival studies, because it allows autonomous 
monitoring by fixed receivers, larger sample sizes, and flexible applications in most 
environments (Heupel et al., 2006). However, passive telemetry is limited by higher initial 
capital costs, and it requires careful consideration related to array design and placement (see 
Heupel et al., 2006, and Kessel et al., 2014 for best practices on receiver-array setup and testing). 
Overlapping arrays are generally used to maintain constant communication with tagged 
animals and investigate fine-scale behaviours (e.g. Dean et al., 2014; Capizzano, 2020), habitat-
use (e.g. Cote et al., 2003), or emigration events (e.g. Kocik et al., 2009). Non-overlapping designs 
are more suitable for confirming survival through occasional acoustic detections that suggest 
active movement (Heupel et al., 2006). With the increasing prevalence of large, collaboratively 
run acoustic receiver arrays (Cooke et al., 2011), discard survival assessments should in many 
cases be able to take advantage of, and potentially add receivers to, existing receiver arrays. 

10.3 Data storage tags 

Data storage tags (DST) or archival tags are electronic devices with on-board computers that 
record and store a variety of data (Seitz, 2012). In contrast to radio or acoustic tags, these tags 
do not transmit signals in the water (Thorstad et al., 2013a). Like the data from acoustic tagging, 
the data stored in DSTs can be used to estimate discard survival. After attachment of the tags to 
organisms before discarding, movement data and other parameters are recorded and stored by 
the tag (figures 10.4 and 10.5). There are different ways to retrieve the stored data.  

There are three DST tagging methods that can be applied to estimate discard survival: 

i) Non pop-up archival tags: To acquire information on discard survival, the tags on 
fish must be retrieved. Because the tags are attached to the fish, dead fish need to be 
recaptured to retrieve the stored data from the tag (Thorstad et al., 2013a). For this 
reason, other types of DSTs are more appropriate to estimate discard survival. 
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ii) Pop-up (off) archival tags (not satellite): These are a special type of DST, designed to 
detach from the tagged individual and float to the surface. Through pre-programming 
or design, the tag detaches and rises to the surface. The tag may drift to shore and be 
found and returned (Thorstad et al., 2013b). If no mortality occurs, the tag will ideally 
detach on the preprogrammed date. Several options can be programmed into the tag 
to instruct it to detach before the end of the preprogrammed monitoring period if 
mortality occurs (Moyes et al., 2006). Additionally, a certain depth can be used to 
activate the corrosion link of the tag when a dead fish sinks, which allows the tag to 
detach and float to the surface. Another option is to preprogram a constant pressure 
release, i.e. if the tag does not experience any significant pressure change within a 
preprogrammed period of time, it will detach. Because of these programming options, 
these tags are useful to estimate discard survival (Moyes et al., 2006; Musyl et al., 2011a; 
Marcek and Graves, 2014). 

iii) Pop-up satellite archival tags (PSATs): PSATs can collect and store data on different 
parameters, and can then transmit these data via the Argos satellite system when at 
the water surface (Block, 2005; Thorstad et al., 2013a). The Argos satellite system 
consists of modules attached to the NOAA low-orbiting weather satellites. These 
modules record the transmissions from satellite tags and transmit these data back to 
earth (Block, 2005). As these are polar-orbiting satellites, coverage is greatest at high 
altitudes and poorest at the equator (Argos, 2006). Like the pop-up archival tags, 
PSATs are positively buoyant and have preprogramming options to release from the 
tagged animal, which makes them useful to estimate discard survival 
(Brunnschweiler and Sims, 2012; Poisson et al., 2014). 

 

Figure 10.4. Cefas data storage tags [DST;  Data Storage Tags — Cefas Technology Limited | Specialists in 
wildlife loggers and data capture systems (https://www.cefastechnology.co.uk/products/data-storage-tags)] 

10.3.1 Principle advantages, challenges, and assumptions of DST tagging methods 

Many of the advantages of DSTs are similar to those of acoustic tags (Section 10.1). They do not 
require recapture of the subject, do not exert confinement stress from captive observation, and 
the derived survival estimates can account for predation mortality. In addition, these techniques 
allow for the assessment of movements and behaviour of tagged individuals in their natural 
environment. Where these techniques differ is that DSTs are independent of acoustic receivers. 

https://www.cefastechnology.co.uk/products/data-storage-tags
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Since there is no limitation from the acoustic detection range, these tags can be used on highly 
migratory species. In addition, whereas acoustic tags directly identify the location of a subject, 
for DSTs, algorithms can instead be used to derive positional information using light data or 
depth and temperature data (Gunn and Block, 2001; Block, 2005; Chittenden et al., 2013).  

Unlike acoustic tags, to obtain the data from pop-up archival tags, they must be recovered. Thus, 
before using pop-up tags, the likelihood of recovering the tags must be assessed. In contrast, 
PSATs do not need to be recovered to retrieve data because they transfer the recorded data via 
satellite. A challenge of the PSATs is the transmission success, which depends on weather 
conditions, location, surrounding topography, and the technology (Musyl et al., 2011b). 

Most pop-up tags have an erosion-release mechanism. Since this depends on salt water; the 
pop-off mechansism may affected if the fish enters freshwater (Thorstad et al., 2013a). Other 
causes for blocked or early detachment include mechanical failure, battery failure, antenna 
damage, increased drag as a result of biofouling, infection and tissue necrosis at the tagging site, 
entanglement, and social and sexual behaviours of tagged fish (Thorsteinsson, 2002; Kerstetter 
et al., 2004; de Metrio et al., 2005; Musyl et al., 2011b).  

Externally attached tags may impair the swimming capacity of many species (Methling et al., 
2011). The size and form of the DSTs depend on the size of battery used and the size and form 
of the swimming device that ensures enough positive buoyancy to rise to the surface. Other 
challenges such as the large volume of data produced, tagging effects, and inherent 
assumptions (minimal tag effects, tag loss) are discussed in the acoustic tagging Section 10.2. 
This technology is advancing rapidly with the development of smaller tags that can be deployed 
on a wider variety of species at lower costs. At present, battery life and the physical size of the 
tags are the factors limiting the utility of DSTs in discard-survival research. 

 
Figure 10.5. Thornback ray (Raja clavata) tagged with a “fixed” buoyant Cefas G5 DST (left) and a ‘pop-off’ 
buoyant Cefas G5 DST (right). 

10.3.2 Best practice for DST tagging to estimate discard survival 

When using a DST tag design that does not transmit data, it must first be established that there 
is a sufficient proportion of the tags that are likely to be recovered. In the case of non-pop-up 
tags, this requires a high likelihood of recapture of tagged individuals; whereas for pop-up 
archival tags, the tags need to be found on the shore. Thus, the latter approach should only be 
used close to coastlines with sufficient human activity along the coast. Tag recovery can be 
tested in a pilot study, where fish are tagged with dummies (fake, inexpensive replicas of the 
real tags), before the real DST tags are deployed. When using satellite tags, sufficient satellite 
coverage is required in the area where the tag is expected to come to the surface (Block, 2005; 
Argos, 2006). A pop-up mechanism needs to be included with satellite DSTs so that the data 
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from individuals that die can be retrieved, e.g. a constant-pressure-release mechanism. The tag 
will start sending data to a satellite if it pops up or gets detached from the tagged fish (Moyes 
et al., 2006; Musyl et al., 2011a; Marcek and Graves, 2014). 

When tagging the fish, minimal tag loss (i.e. post-release unintended detachment of the tag) 
needs to be ensured. This can be done by using pilot studies to evaluate different attachment 
methods. Moreover, the effects of the tag on swimming performance should be considered as it 
may lead to abnormal behaviour. 

10.4 Summary and recommendations 

Three tagging approaches are described that can be used to assess discard survival: 

i) Mark–recapture tagging requires the marking of a subject with an identifier, most 
commonly an external tag, then releasing the subject and recording any recaptures. 
This method, sometimes referred to as conventional tagging, has several applications 
in fisheries science and has been most widely used to investigate population 
distributions, growth rates, and estimates of natural mortality. It is less commonly 
applied to provide estimates of discard survival as it is difficult to source sufficient 
numbers of control fish. 

ii) Acoustic telemetry tagging (including radio tagging) uses transmitters (tags) 
emitting acoustic signals (pings) that are unique to each transmitter and can be 
detected by underwater receivers. Releasing animals equipped with transmitters into 
an area with underwater acoustic receivers allows for the remote collection of 
movement data for tagged subjects without the need for direct observation or 
recapture of the animals. 

iii) Data storage tags (DST) or archival tags are electronic fish-marking devices with on-
board computers that record and store a variety of data (Seitz, 2012). In contrast to 
radio or acoustic tags, these tags do not transmit signals in the water. Like the data 
from acoustic tagging, the data stored in DSTs can be used to estimate discard 
survival. There are different ways to retrieve the stored data. 

 

Key questions for practitioners 

• Has the potential for tagging-induced mortality been considered and quantified? 
• Are fish being released in the same area as they were caught? 
• Are any tag losses being accounted for? 
• Can discard-related mortality be distinguished from natural mortality, fishing 

mortality, and emigration? 
• Is the duration of the at-liberty tagged period sufficiently long to estimate discard 

survival? 
• Mark–recapture tags only: Are catches in the fishery sufficiently large to provide 

the required tag return rate to estimate discard survival? 
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Key questions for practitioners (continued) 

• Acoustic, DST tags only: Can the death of an individual be accurately determined 
from the data? 

• Acoustic tags only: Does the acoustic receiver array provide full coverage of the 
area? 

• Pop-off DST-tags only: Is there a similar likelihood of tag recovery for both 
survivors and non-survivors? 
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11 Methods for assessing avian predation on discards 

Tom Catchpole, Jochen Depestele, Stephen Votier, and Julio Valeiras   

A wide variety of species may be important as consumers of discards, including birds, marine 
mammals, fish (e.g. elasmobranchs and large teleosts), and even benthic invertebrates. They 
may be consuming discards as predators or as scavengers, i.e. consuming already-dead 
discards. This section deals with predator-induced mortality. Although scavenging is a related 
behaviour, it is not considered here, as it does not directly influence discard survival. The focus 
of this section will be on seabirds and methods for assessing avian predation of discarded fish. 
Approaches to account for other predation-related mortality in discard survival estimates, using 
tagging methods, have been discussed in sections 4 and 10. The reasons to consider seabird 
predation in particular include: (i) seabirds forage at or just below the sea surface and, therefore, 
they are one of the first predatory threats to discarded fish, and can be visually observed with 
relative ease, (ii) they are arguably the most abundant discard scavengers in many fisheries, and 
(iii) there is a large body of research investigating seabird–fishery interactions, particularly with 
respect to the importance of discards as food for avian fauna (Garthe et al., 1996; Furness and 
Camphuysen, 1997; Votier et al., 2004; Depestele et al., 2016).  

Seabird predation studies have historically focused on discards as a food resource for seabirds, 
rather than considering seabirds as predators that cause mortality of discarded fish. In other 
words, the current estimates of seabird predation do not discriminate between the consumption 
of discards that are already dead and others that may have otherwise survived if not predated 
by seabirds. Hence, the methodologies require revisiting to explicitly assess seabird predation 
on discarded fish taking into account the vitality of discarded individuals. Such studies have, 
to the best of our knowledge, not been conducted until now.  

A two-tier approach that makes the best use of the understanding of seabird and discard 
interactions is proposed to assess the contribution of avian predation to discard survival: 

i) estimating the risk of seabird predation in a fishery, and 

ii) direct observation of discard mortality from ship-based research. 

The risk of seabird predation in a fishery is determined by (i) the association of seabird 
populations with a fishery and (ii) the dietary preferences of fishery-related seabirds. When a 
large number of seabirds are associated with a fishery, and the investigated discard species is a 
favourable food item for them, seabird predation may influence discard survival. In this case, 
ship-based research is required to estimate whether seabird predation is random in relation to 
fishery discards, or directed towards discarded individuals that are already dead, have low 
survival chances, or were assessed as vital survivors (sections 8 and 9). Guidance on how best 
to conduct assessments of avian predation using this two-tier approach is provided here. 

11.1 Estimating the risk of seabird predation in a fishery 

The risk of seabird predation is defined by the number of seabirds that may encounter fishing 
vessels in a fishery and, more precisely, their discards. The association depends on the spatial 
and temporal distribution of the seabirds and the fishery. When seabird associations with the 
investigated fishery are high, dietary preferences of the ship-following seabirds will determine 
whether additional discard mortality may be imposed onto the investigated discard species. 
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Here, we touch upon methodologies to (i) estimate seabird–fishery associations, and (ii) dietary 
preferences of seabirds. 

11.1.1 The association of seabird populations and a fishery 

It is possible to determine the distribution of scavenging seabirds in several ways, a detailed 
description of which is outside the scope of this report. Mapping seabird distributions on 
different spatio-temporal scales allows inferences to be drawn on the possible effect of seabird 
predation on discards. Presented here are five approaches. Some are established approaches 
(e.g. boat-based and aerial surveys) while others are state-of-the-art approaches with more 
limited evidence for their efficacy (e.g. use of autonomous vehicles). 

11.1.1.1 Boat-based and aerial surveys 
Seabird density estimates have been used to provide information on the distribution of a wide 
range of seabirds using standard techniques (Tasker et al., 1984). These estimates have been 
derived from vessels of opportunity (McClellan et al., 2014), via directed boat-based surveys 
(e.g. the European Seabirds at Sea, Tasker et al.,1984), or a combination of research vessel based 
and aerial surveys (Bradbury et al., 2014). When used in conjunction with information on the 
foraging behaviour of different species, it is possible to derive spatial layers depicting the 
distribution of seabirds. It is clear, however, that there is much intra- and interpopulation 
variation in feeding behaviour. As a consequence, assuming that all individuals are equally 
likely to follow fishing vessels is not appropriate. Knowledge on the variations in foraging 
behaviour to derive accurate estimates of the number of seabirds in a given region at a given 
time is necessary, but not straightforward. It requires that data on individual behaviours, 
including foraging specializations, be combined with data on the distribution, behaviour, and 
assemblage composition of seabirds attending fishing vessels.  

11.1.1.2 Land-based studies 
It is also possible to derive estimates of the distribution of seabirds from land. These studies 
allow access to information on seabird–fishery interactions for vessels of a variety of sizes 
including small vessels, and not just the larger vessels that tend to be the focus of on-board 
research. This approach does not provide information on the distribution of seabirds that are 
not within sight of land, or those that are not active during daylight hours. 

11.1.1.3 Biologging 
For a relatively small subset of seabirds, tracking studies have provided information on at-sea 
distribution. They have a key advantage over boat-based approaches, given that they provide 
important individual-level information. For example, it is possible to examine how predation 
behaviour varies by sex, reproductive status, colony of origin, body condition, or fitness proxies 
(e.g. Votier et al., 2010). Here, we divide the tracking of seabirds into two groups: (i) coarse scale 
and (ii) fine scale.  

Coarse-scale information on movement and behaviour of seabirds can be investigated using 
global location sensing (GLS). This allows the estimation of distribution (latitude and longitude) 
and at-sea behaviour, based on inferences from changes in temperature and salinity. Large 
numbers of seabirds have been tracked using GLS (Table 11.1). We are not aware of any study 
that has explicitly investigated interactions with fisheries using this technique in European 
waters, although it has been achieved in the South Atlantic (Phillips et al., 2006). Tracking can 
also provide fine-scale distribution of seabird species. There is a range of different techniques 
including archival GPS loggers, remotely downloadable GPS loggers, and devices that transmit 
data directly via, for example, the Argos satellite system. There have been several studies using 
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these devices to reconstruct the fine-scale distribution and behaviour of seabirds, and to relate 
this to fishing activity in European waters (Bartumeus et al., 2010; Votier et al., 2010; Bodey et al., 
2014).  

Table 11.1. Examples of European scavenging (predatory) seabirds tracked during the non-breeding period 
using geolocation sensors (GLS). 

Species Source 

Northern gannet (Morus bassanus) Kubetzki et al. (2009); Montevecchi et al. (2011); Fort et al. 
(2012)  

Great skua (Stercorarius skua) Furness et al. (2007); Magnusdottir et al. (2012) 

Northern fulmar (Fulmarus glacialis) Quinn (2014) 

Lesser black-backed gull (Larus fuscus) Grecian (2011) 

Black-legged kittiwake (Rissa tridactyla) Gonzalez-Solis et al. (2011) 

Balearic shearwater (Puffinus 
mauretanicus) 

Guilford et al. (2012) 

Cory’s shearwater (Calonectris borealis) González-Solís et al. (2007) 

Scopoli’s shearwater (Calonectris 
diomedea) 

Grémillet et al. (2014) 

11.1.1.4 Autonomous vehicles 
The use of autonomous vehicles has the potential to contribute to ecological research (Anderson 
and Gaston, 2013). Evidence suggests that unmanned surface vehicles (USVs) can be used as 
observation platforms in marine ecosystems (Suberg et al., 2014). These vehicles can be fitted 
with a range of sensors including automated, waterproof cameras, to capture still and moving 
images throughout extended at-sea deployments. This generates data-rich information on the 
distribution and behaviour of seabirds, as revealed by multivehicle deployments in UK waters1. 

11.1.1.5 Distribution of fisheries 
Information on the distribution and behaviour of fisheries can be obtained in several different 
ways. However, this information is readily available elsewhere and will not be provided in 
detail here. In summary, spatial information can be derived from vessel operator’s self-reported 
logbooks, or in real time via satellite monitoring systems such as vessel monitoring system 
(VMS), automatic identification system (AIS), an automatic vessel tracking system, or remote 
electronic monitoring systems (REM). Catch and discard information can be derived from self-
reported logbooks, scientific observer programmes, or on-board REM. 

11.1.1.6 Association between seabirds and fishing vessels 

It is necessary to understand the extent of convergence in the distribution of seabirds and 
fisheries. At one level, it is possible to obtain a global assessment for the extent of interactions 
by overlaying the distribution of birds with the distribution of fishing activity (Phillips et al., 
2006; Depestele et al., 2016). This approach may be especially helpful for large-scale risk analysis, 
since management measures tend to operate across all vessels within a biogeographical region, 

                                                           

1 https://projects.noc.ac.uk/massmo/noc-and-wwf-partnership-phase-three 

https://projects.noc.ac.uk/massmo/noc-and-wwf-partnership-phase-three
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and therefore, data are available at this scale. However, fisheries and seabirds are highly 
dynamic, and large-scale overlap based on static data layers can mask or over-represent 
complex interactions at fine spatio-temporal scales (Torres et al., 2013). Therefore, it may be 
important to investigate at much finer resolution the nature of interactions at fine scales.  

11.1.2 Dietary preferences of seabirds 

Seabirds are major predators of discarded fish in many commercial fisheries, but they will 
favour species and size classes that are easy to ingest. Estimates of the proportion of discarded 
fish eaten by seabirds can be derived from at-sea discarding experiments. There are a variety of 
factors influencing avian predation of discarded fish. To extrapolate from on-board 
observations to fishery-level avian predation-induced mortality it is necessary to understand 
the interactions among seabirds, fishing, and discarding practices. 

The rate at which discarded fish are consumed by seabirds can be affected by several factors, 
including: 

• fish size, 
• fish shape, 
• fish condition (vitality), 
• the sinking rate of fish, 
• weather conditions, 
• discarding practice on-board the vessel, 
• vessel wake, 
• competition with other scavengers, 
• composition of the scavenging flock, 
• season, 

• availability of alternative foods for scavenging seabirds. 
Of these, key factors are fish size and shape.  Bill morphology and gape size dictates the size of 
the fish that can be consumed (e.g. Hudson and Furness, 1988).  

Factors that determine seabird preferences for discards are discussed here. However, we 
reiterate that fish condition (vitality) has not historically been considered. Hence previous work 
has not discriminated between the consumption of dead discards and discards with survival 
potential. Methodologies to assess the vitality of discarded fish are discussed in Section 8.2. 

11.1.2.1 Discard consumption by seabirds  

11.1.2.1.1 Conventional dietary assessment tools 

Estimating discard consumption by scavenging (predatory) species can be achieved using a 
range of conventional dietary assessment techniques, including pellets of indigestible material, 
spontaneous regurgitates, observed feeds, water offloading, and direct observation (Votier et 
al., 2003; Barrett et al., 2007). Such approaches allow long-term diet reconstruction and may 
derive estimates of high taxonomic resolution, including size-specific estimates for determining 
the wide variety of fish consumed by seabirds (Table 11.2). Challenges of this technique include 
the requirement for additional information on fishery interaction (although not in all instances). 
There additionally must be some confidence that the prey items originated as discards. 
Moreover, it is not possible to determine whether the prey item was alive at the point of 
consumption and, therefore, influenced the survival rate of the discarded fish. 

 



 94  | Cooperative Research Reports Vol. 351 
 
 

 

Table 11.2. Species of discarded fish predated by seabirds. While it is not always possible to differentiate 
between fish caught naturally, and fish scavenged from fishing boats, in many instances the latter can be 
assumed either because birds are feeding on demersal species that live deeper than the diving range of 
seabirds or because birds are observed taking fish from vessels. 

Fish species Morphological 
descriptor 

Seabird consumer 

Haddock (Melanogrammus aeglefinus) Roundfish Great skua1, northern gannet2  

Whiting (Merlangius merlangus) Roundfish Great skua1, northern gannet2 

Blue whiting (Micromesistus potassou) Roundfish Great skua1 

Norway pout (Trisopterus esmarki) Roundfish Great skua1 

Black sea bream (Acanthopagarus schlegeli) Roundfish Great skua1 

Cod (Gadus morhua) Roundfish Great skua1 

Northern hake (Merluccius merluccius) Roundfish Great skua1 

Lesser argentine (Argentina sphyraena) Roundfish Great skua1 

Long rough dab (Hippoglossoides 
platessoides) 

Flatfish Great skua1 

Redfish (Sebastes spp.) Roundfish Great skua1 

Tusk (Brosme brosme) Roundfish Great skua1 

1Votier et al. (2008); 2Votier et al. (2010) 

11.1.2.1.2 Species of discarded fish eaten by seabirds 

Using conventional dietary assessment tools, seabirds are known to eat a wide variety of 
discarded fish (Table 11.2). Seabirds favour discarded fish that are easy to swallow, such as 
roundfish, and generally avoid species that are difficult to swallow, such as flatfish, or discards 
with protrusions, such as benthic invertebrates (e.g. Hudson and Furness, 1988). It is not 
possible however, to determine whether the prey item was alive at the point of consumption. 

11.1.2.1.3 Stable isotopes and fatty acids 

Naturally occurring variation in the ratio of stable isotopes and fatty acids can be used as trophic 
markers. However, it provides poor taxonomic resolution. Invasive sampling is necessary, and, 
critically, it is not known whether the fish were alive at the point of consumption and influenced 
discard survival. 

11.1.2.1.4 Biologging 

The use of miniaturized animal-borne devices to study the distribution and behaviour of free-
living animals, termed biologging, is one of the most rapidly expanding fields of ecology. 
Although currently untested, there is potential to use biologging tools to directly estimate 
discard consumption. Bird-borne cameras are effective at recording seabird–fishery interactions 
(Votier et al., 2013) and, depending on camera positioning, may also be able to record prey 
capture events. Moreover, the use of stomach temperature loggers may make it possible to 
compare prey capture rates of birds attending fishing vessels with those of birds feeding on 
natural prey.  
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11.2 Discard mortality by ship-following seabirds: experimental discarding 

Ship-based discard experiments can be used to assess the rates of avian predation mortality on 
discarded fish. Organisms are collected from the catch, returned to the sea, and their fate is 
monitored with respect to seabird predation. On-board observers typically conduct this type of 
research (e.g. Hudson and Furness, 1988; Camphuysen et al., 1995; Depestele et al., 2014), but it 
may also be achieved using ship-based cameras. 

The main objective of the ship-based approach has been to quantify the number or proportion 
of discarded items that are consumed by scavenging seabirds. A significant amount of ship-
based research on discard consumption by European seabirds was conducted during the 1980s 
and 1990s (e.g. Hudson and Furness, 1988; Furness et al., 1992; Garthe et al., 1996; Furness and 
Camphuysen et al., 1997), and  similar discard experiments have  also been conducted in more 
recent years (e.g. Gonzalez-Zevallos and Yorio, 2011; Depestele et al., 2016). These experiments 
have tended to focus on consumption rate of discards by seabirds and examining the patterns 
of variability due to the number of seabirds, the composition of mixed-species flocks, and the 
number, type, and size of discarded items.  

While discarding experiments on board commercial vessels reflect commercial fishing practices 
and may, therefore, be more relevant from a management perspective; research-vessel-based 
experiments have been significant for exploring the range of factors that influence avian 
predation of discarded fish (Garthe and Hüppop, 1998). Procedures for this type of investigation 
have been similar across studies and are relevant for designing experiments focusing on 
assessing the survival of discarded fish. 

11.2.1 Recording the fate of fish in ship-borne discard experiments 

On-board observers can record the fate of discarded fish. Typically, the outcome of individual 
fish are: (i) picked up and dropped; (ii) picked up and swallowed; (iii) picked up and stolen by 
another species; (iv) ignored; (v) lost from view when on surface with unknown fate; (vi) sank 
out of view; or (vii) observed actively swimming out of view. For fish taken by seabirds, it is 
good practice to follow the individual seabird until the fate of the fish is better known. For 
instance, some discarded fish may be picked up and swallowed immediately, while in other 
cases, the fish was later dropped or stolen via kleptoparasitism. The nature of these outcomes 
will greatly influence the mortality estimates of discarded fish. 

In order to effectively estimate discard mortality by seabird predation, an assessment of the 
vitality of discarded individuals (Section 8) must be coupled to estimates of the fate of the 
discards. Predators will preferentially target sick or weakened individuals (Miller et al., 2014 
and references therein), and this should be expected in the context of discards. Thus, the vitality 
of discarded fish would be expected to influence the likelihood of predation. However, there is 
currently no published research specifically addressing this question. This knowledge gap is an 
important obstacle to integrating estimates of predation rates, including avian predation, into 
overall estimates of discard survival, since many of the discards consumed may have ultimately 
succumbed to their injuries in the absence of predators. If seabirds preferentially target dead 
fish or fish with poor vitality, the influence of seabirds on mortality rates may be low. If, in 
contrast, seabirds preferentially target lively fish, mortality rates may be strongly affected by 
seabird predation. Furthermore, additional detailed discard experiments are required to 
establish whether the presence of dead fish will alter the predation chances of live discarded 
fish. Therefore, understanding the relative probabilities of avian predation on fish discards with 
different vitality scores is critical if estimates of avian predation are to be integrated into survival 
assessments. 
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The following sections describe issues that should be considered when aiming to record the fate 
of fish in ship-borne discard experiments, including the composition of the catch, the different 
phases of the fishing operation, simulated discarding, and the types of seabirds present. 

11.2.1.1 Monitoring composition of discarded portion of the catch 

Discarding experiments should be conducted at the point when discarding would occur under 
normal commercial practice. Details of discard composition should be recorded including 
number, length, vitality, and species of discarded fish. Feeding preferences of seabirds are 
related to their physical ability to swallow discarded items (Furness et al., 1992; Camphuysen et 
al., 1995; Garthe et al., 1996).  

11.2.1.2 Predation during hauling 

Some fish are made available to seabirds during hauling of the fishing gear (Madsen et al., 2008; 
Grimaldo et al., 2009). However, these are not considered discards and should, therefore, not be 
included in estimates of discard survival. Seabirds that are potential consumers of discards are 
attracted when the catch is hauled on board (Valeiras, 2003; Votier et al., 2013; Bodey et al., 2014). 
During this process, fish may escape the gear and be vulnerable to seabird predation 
(Figure 11.1; Madsen et al., 2008; Grimaldo et al., 2009). This is mostly a feature of trawl fisheries, 
and there are few studies of fish mortality during this escape phase (e.g., Breen et al, 2007).  

 
Figure 11.1. Northern gannets (Morus bassanus) targeting fish during net hauling. Such fish obtained prior 
to landing are not considered discards and, therefore, are not included in estimates of fish mortality by birds. 
However, they reveal that most estimates of fish mortality during discarding are likely to be underestimates. 
Photo © Jochen Depestele, ILVO. 

11.2.1.3 Effects of the seabird assemblage on fish mortality 

Fishing operations may attract large numbers of seabirds that often form mixed-species 
aggregations. The composition of scavenging flocks may influence discard predation. For 
instance, larger seabird species tend to be more selective than smaller species, since they are 
able to dominate during competitive interactions or steal from smaller subordinate species or 
individuals (Table 11.3; Hudson and Furness, 1988, 1989; Garthe et al., 1999). For example, 
discard consumption by large gulls was threefold lower when northern gannets were present 
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in the flock of ship-following seabirds (Depestele et al., 2016). As another example, gannets have 
a preference for larger roundfish (Garthe and Hüppop, 1998); therefore, the risk of predation on 
discarded roundfish increases with larger numbers of gannets. The presence of seabirds that 
steal prey from conspecifics or heterospecifics via kleptoparasitism (e.g. skuas and gulls) will 
also have both direct and indirect influence on discard consumption (Garthe and Hüppop, 
1998). Moreover, species with greater diving abilities may be able to capture fish as they sink 
through the water column (e.g. gannets and shearwaters), which is not the case for surface 
gleaners (e.g. gulls). 

Table 11.3. Foraging success index (experimentally discarded fish swallowed on average per bird of each 
species present  over all fishing trips) for different seabirds feeding on fish discarded from trawling fishing 
boats in Shetland during the summers of 1984 and1985 (Furness et al., 1992). These results reveal that larger 
species have a higher success index, highlighting the importance of quantifying the composition of the 
scavenging seabird assemblage. 

Species 
Mean number at 
boat 

Total number of fish 
swallowed Success index 

Gannet 9 452 50 

Great skua 12 347 29 

Great black-backed gull 234 2 753 12 

Lesser black-backed gull 6 32 5.3 

Herring gull 30 107 3.6 

Fulmar 485 85 0.2 

Kittiwake 3 0 0 

11.2.1.4 Effects of the availability of alternative seabird food on fish mortality 

While many seabirds have become specialized discard consumers (Votier et al., 2010; Patrick et 
al., 2015), the predation rates of discarded fish may vary as a function of their availability or the 
season of the year (Votier et al., 2004, 2008). For example, non-breeding gannets feed extensively 
on fishery waste, but they will double their diving efforts to provide their chicks with higher 
quality, live pelagic fish (Grémillet et al., 2008). 

11.2.1.5 Discharge rates and methodology 

The most common general approach to seabird discard predation assessments is the manual 
selection of fish, that are then discarded by observers and their fate recorded. However, specific 
methodologies of discard experiments can vary, and may have profound consequences for 
estimating fish morality rates. 

The discarded items are either returned to the sea during single-item simulated discard 
experiments (Camphuysen et al., 1995; Walter and Becker, 1997; Sotillo et al., 2014) or during 
multi-item experiments (Arcos et al., 2001; Catchpole et al., 2006; Gonzalez-Zevallos and Yorio, 
2011; Jodice et al., 2011). The advantage of single-item discard experiments is the ability to 
accurately determine the fate of each item, but a disadvantage is that this can be 
unrepresentative of normal commercial practices.  

It is not known whether different simulated discard patterns significantly alter fish mortality 
estimates. One study found no clear difference in fish predation by seabirds between single- 
and multi-item discard experiments (Garthe et al., 1998). In contrast, another found that the 
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consumption by birds of discarded compressiforme fish was lower when 50 fish were discarded 
at once, than when fish were discarded at a rate of 2.4 fish per s (Figure 11.2; Depestele et al., 
2016). Best practice should favour experiments with realistic discarding rates, which simulate 
commercial practice as far as possible.  

Knowing the vitality of the fish that are being discarded is the key element to for quantifying 
the effect of seabird predation on the survival of discarded fish. It is essential to apply the same 
vitality assessments to the fish subject to discard simulations, as those used for other parts of 
the study (tagging, captive observation). Only with this information is it possible to apply 
seabird predation survival rates to the health profile of the discarded catch. At present, tagging 
is more suited to larger fish (skates, rays, large gadoids) which are unlikely to be affected by 
seabird predation, owing to the limits of miniaturization of the technology. Captive observation 
studies are applied to smaller fish, but these studies do not include estimates of predation. 
However, quantified seabird predation estimates by vitality category (and other factors e.g. 
size) can be used to adjust captive observation estimates to include seabird predation levels. 
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Figure 11.2. Experimental discard consumption by northern gannets in the Bay of Biscay. These data reveal 
that the rate of discarding influences fish mortality for some fish (roundfish), but not for others (boarfish). 
Therefore, in some cases, fish mortality estimates based on slow rates of discarding will not be reliable. 
Roundfish species include Argentina spp, Melanogrammus aeglefinus, Merluccius merluccius, Micromesistius 
poutassou, Scomber scombrus, Trachurus trachurus, Trisopterus spp, Sebastes spp. (Depestele et al., 2015, © 
Ghent University, Belgium). 

11.2.1.6 Selection of fish for simulated discarding 

The selection of fish for discard simulations will greatly influence the seabird predation levels 
observed. As mentioned, feeding preferences of seabirds are related to their ability to swallow 
discarded items. 

11.2.1.7 Effect of discarding practices 

Different gear types, fishing operations, and behaviour of fishers will lead to variation in the 
manner of discarding practices, with consequences for fish predation by seabirds. Discard 
consumption may be affected by the location of discarding, vessel movements and the 
turbulence generated by the engines (Hudson and Furness, 1988). Therefore, there may be 
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different levels of avian predation even within fishing métiers that have comparable vessels and 
discarding practices. As a consequence, reliable estimates of fish mortality are likely to only be 
available for specific fisheries. Confidence in extrapolating estimates of seabird predation will 
require information on the range of vessel operations, including deck layout and sorting 
practices, and the catch composition. These potentially confounding factors indicate that fish 
mortality estimates may be highly specific to location, métier, vessel, and date. Conducting 
targeted experiments to better understand how to control for this wide variety of factors would 
be advantageous. 

11.3 Analysis of avian predation data and estimating survival 

Seabird predation represents the first life-threatening challenge that discarded fish face 
immediately post-release. As such, it has the potential to be a significant modifier of the survival 
rates obtained from captive observation and tagging methods, both of which are likely to 
implicitly exclude avian predation from their studies effects. Captive observation typically 
gives the test subject protection from most forms of predation (Section 9). Tagging can be 
informative about post-release predation once the subject has left the surface, but it would be a 
wasteful use of resources to allow tagged fish to be taken by seabirds as they are released back 
to the sea (Section 10). 

To account for avian predation in an integrated estimate of post-release survival (Section 13.6), 
the minimum information required about avian predation is the likelihood of escape. This 
information is available from discard consumption studies, which provide categorical data on 
the fates of individual fish (Table 11.4). It is possible to make clear inferences from some of these 
observed fates that the fish did not escape, particularly if the fish (or its viscera) is eaten and not 
regurgitated. However, with regard to successful escapes, there is some degree of uncertainty 
in most cases. Even where fish are observed to have actively swum away, there will be some 
doubt as to whether it was caught out of sight by a diving bird. Furthermore, it is likely that a 
fish which directly encountered a seabird but successfully escaped, may have its vitality and, 
likely, its survival compromised due to injuries and/or stress; thus potentially biasing assumed 
post-release survival rates. However, at the very least, it will be possible to provide a “best case” 
minimum estimate for the proportion of the population that did not escape.  

Table 11.4. Inferences relating to avian predation on discard fish that can be made from vessel-based 
observations (see 11.2.1). 

Fate recorded by observer Inference about escape status 

Picked up and swallowed Dead, unless regurgitated  

Picked up and stolen by another species Dead, unless regurgitated  

Viscera consumed, fish left in water Dead 

Picked up and dropped Unknown, vitality status may have been modified 

Ignored; lost to view on surface with unknown fate Unknown, fate likely linked to vitality status 

Fish sank out of view Possible escape, depending on vitality status 

Fish observed actively swimming from view Probable escape, depending on vitality status 

The escape likelihood data should be provided in context with significant explanatory variables 
that are relevant to survival, e.g. species, size, and vitality. To this end, it would be informative 
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to model predation-fate data with respect to these and other important explanatory variables, 
e.g. fish shape, discarding practices, composition of the scavenging flock. As these predation-
fate data are ordinarily categorical, an appropriate approach would be to fit using the 
proportional-odds multinomial linear model described in Section 13.3.1. 

11.4 Summary  

A wide variety of species may be important as consumers of discards, and they may be eating 
discards as predators and as scavengers, i.e. consuming already dead discards. Seabird 
predation is specifically included here because (i) seabirds forage at or near the sea surface, are 
one of the first predatory threats to discards, and can be visually observed with relative ease; 
(ii) they are the most abundant discard scavengers in some fisheries, and (iii) other approaches 
to estimating discard survival do not account for avian predation. 

Current estimates of seabird predation do not discriminate between discards that are already 
dead and others that may survive. The methods, therefore, require revisiting to explicitly assess 
seabird predation of discarded fish in relation to the influence on discard survival. A two-tier 
approach is proposed to (i) estimate the risk of seabird predation in a fishery and (ii) make direct 
observations of discard predation mortality from ship-based research. 

The risk of seabird predation in a fishery is determined by (i) the association of seabirds with a 
fishery and (ii) the dietary preferences of the seabirds. When a high number of seabirds are 
associated with a fishery and discard species are favourable food items, seabird predation may 
influence discard survival. The distribution of scavenging seabirds can be established by boat-
based and aerial surveys, land-based studies, biologging, and autonomous vehicles, while data 
on the distribution of fisheries is collected as part of fisheries management.  

The dietary preferences of seabirds can be determined from methods using stable isotopes and 
fatty acids, biologging, or conventional dietary assessment tools. In cases where seabird and 
fishery distributions overlap and dietary preferences are relevant to the discard composition, 
ship-based research should be applied to estimate whether seabird predation is on dead 
discards or live discards and if it is influenced by the health (vitality) of the fish (sections 8, 9, 
and 10).  

On-board observers can record the fate of discarded fish. This will be (i) picked up and dropped; 
(ii) picked up and swallowed; (iii) picked up and stolen by another species; (iv) ignored; (v) lost 
from view at the surface with unknown fate; (vi) sank out of view; or (vii) observed actively 
swimming out of view. To estimate discard mortality by seabird predation, an assessment of 
the vitality of discarded individuals (Section 8) must be coupled to estimates on the fate of the 
discards. This is due to the likelihood that seabirds will preferentially predate on the least vital 
discards. Similarly, the assemblage of seabirds should be recorded as predation success will also 
be influenced by interspecies competition for discards. 

Simulated discard experiments should try to replicate normal discarding practice as far as 
possible, i.e. the composition of discards and how the discards are jettisoned from the vessel, 
since this may affect avian predation on the discard. For example, single-discard-item tracking 
can be achieved more easily by an observer, but may not generate representative levels of 
predation if normal discarding is of multiple items simultaneously.  Details on all of these 
aspects of avian predation assessments have been provided in this section. 
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12 Survival data: format, structure, and simple summary analysis 

Mike Breen and Hugues Benoît 

Survival assessments produce data in a range of different formats that can be used to answer 
several objectives (see sections 3 and 4), including:  

• providing a simple estimate (with a confidence interval) of the discard survival 
potential of a species; 

• demonstrating a species has a discard survival potential significantly above a 
specified threshold (e.g. for the “High Survival” exemption to the EU Landing 
Obligation; Rihan et al, 2019);  

• comparing the effectiveness of different mitigation measures for improving discard 
survival; and/or 

• investigating the likely causes of discard mortality by modelling survival data with 
explanatory variables. 

To address these objectives, sections 12 and 13 provide an introduction to survival data and 
their analysis: 

• Section 12 introduces the reader to survival data, the different forms they take, their 
properties, and important considerations for data summary and presentation. It is 
recognized that many of the readers of the guidance notes may have limited 
knowledge of statistical techniques. To accommodate this, Section 12 has been written 
as “user-friendly” introduction.   Consequently, the methods and examples it presents 
are relatively simple and may only have limited application in the more complex 
experimental designs seen in many real survival assessments.  Nonetheless, these 
“simple” techniques, as well as the form and properties of survival data, are important 
to understand when using more advanced techniques (as described in Section 13). 

• Section 13 provides a more in-depth overview of the statistical modelling techniques 
used to investigate the influence of potential explanatory variables on survival. The 
text in section 13 is intended for readers with a more advanced statistical knowledge. 
However, it will hopefully also provide less-experienced users with a useful insight 
into these statistical techniques, along with references to additional detailed resources 
to learn more about them. 

• In addition, Section 5 - Experimental Design - draws on information from both 
sections 12 and 13 to provide examples of sound approaches to good experimental 
design.   

These sections all provide worked examples, many of which use the statistical computing and 
programming language R (R Core Team, 2017).  The “R” software and supporting packages are 
free and are continuously developed and updated by a large and supportive online community.  
Code for these examples is provided in the text, as well as in the Online Support Materials 
(OSM2).  In addition, all mathematical notation is summarised and defined in Annex 1. 

In drafting these sections, the aim was not to write a statistical textbook, but to provide the 
reader with a useful starting reference to sources of information on the most appropriate 
analytical methods for their data. It is recommended that at all stages of the analysis process, 

                                                           

2 https://github.com/ices-publications/CRR351-OSM 

https://github.com/ices-publications/CRR351-OSM
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including the initial experimental design, users of this manual should consult with a statistician 
for further and more specific guidance. 

12.1 Survival data: types and properties 
The main objective of survival assessments is to describe the proportion of the population that 
can survive capture and release from fishing gear. For every subject (e.g. fish) being monitored 
in a sample from a population, there are two possible outcomes when an observation is made: 
they may either be “dead” or “alive”. This type of data is called “binary”, “binomial”, or 
“dichotomous” data. 

Depending on how survival is being described with respect to time, data can take one of two 
forms: “cross-sectional” and “longitudinal”. Cross-sectional data describes the proportion of 
surviving animals at one or more specific points in time. At their most basic, longitudinal data 
comprise mortality times for individual fish. Longitudinal data are used to estimate a 
survivorship function that effectively describes the proportion of surviving animals as a 
continuous function of time. Further details on each type of data are given in the following 
subsections. 

12.2 Cross-sectional data 

The true proportion of surviving (p) and dying (q) animals in a population of animals released 
from fishing gear are the “measures of interest” in survival assessments. However, they can be 
difficult to determine in absolute terms because it is simply not possible to observe every fish 
released from fishing gear. Instead estimates of survival (p̂) and mortality (q̂) can be generated 
from representative samples of the released population (Section 5.1). 

Binomial data can be defined as the result of an event (e.g. the survival of a discarded fish) that 
can be summarized by one of two outcomes: success or failure, or, in this case, alive or dead. 
For a sample taken from a population, the number of subjects still alive (s) or dead (r) at any 
point in time (t) can be used to define an estimator of the survival probability (p̂) or mortality 
probability (q̂): 

�̂�𝑝𝑡𝑡 = 𝑠𝑠𝑡𝑡
𝑛𝑛𝑡𝑡

        𝑞𝑞�𝑡𝑡 = 𝑟𝑟𝑡𝑡
𝑛𝑛𝑡𝑡

     (2) 

where p̂ = 1 – q̂ and n = s + r. 

This form of summary statistic is very common in survival studies. It will be familiar to many 
readers as estimators of probabilities (0 ≤ p ≤ 1), which can also be expressed as percentages. It 
is important to remember that these statistics refer to observations at a specific point in time (t), 
typically the end of the monitoring period. 

As discussed in Section 2.3, mortality associated with the stress of being caught and released 
from a fishing gear is not instantaneous. Therefore, to accurately reflect overall mortality 
resulting from that stress, the final observation should be made at a point in time when the 
resultant mortality has ended, or when the survival curve has reached its asymptote, i.e. the 
asymptotic survival estimate (SA; Information Box 12.1). This emphasizes the importance of 
monitoring survival repeatedly over a period of time (i.e. longitudinal data). However, a single 
point observation (i.e. cross-sectional data) can still be valuable, ideally as long as it is collected 
once SA has been reached, or a suitable correction can be made to account for the difference 
between the estimate and SA.  In reality, many survival assessments do not achieve this ideal, 
so the following text will simply refer generally to “survival estimates”, unless specified 
otherwise. 
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This section will continue by exploring the properties of cross-sectional binomial data and the 
binomial distribution, and how these can be used to define a meaningful measure of uncertainty 
in the data, the confidence interval. 

 
 

Information Box 12.1. Asymptotic survival (SA) 

The observed survival at asymptote or “asymptotic survival” (SA) defines an observable 
endpoint where it is assumed that all study subject mortality associated with the 
treatments has already occurred. As such, it is an important concept in survival 
assessments.  

Any experiment that is terminated before asymptotic survival has been observed or 
inferred will likely lead to an overestimation of discard survival, unless an appropriate 
correction can be made. For example, Figure 12.1 illustrates that a cross-sectional 
mortality estimate taken at time-point 1 (t1) would overestimate SA, whereas an estimate 
taken at a second time point (t2) would not. This helps define how long experimental 
subjects should be observed in an assessment to ensure that the overall discard survival 
is not overestimated.  

 
Figure 12.1. An example of survival probability over time (longitudinal survival data) illustrating 
asymptotic survival (SA). A cross-sectional estimate of survival taken at time point 1 (t1) would over-
estimate SA, whereas an estimate taken at time point 2 (t2) would accurately reflect the SA. 

SA can be defined mathematically (from the shape of the survival curve or function). 
Consequently, where assessments have knowingly not been able to monitor to the 
asymptote, SA may still be estimated, along with the associated uncertainty, by applying 
a suitable mathematical model (Section 13.2). 

A valid SA estimate may not be attainable in all cases. For example, a treatment can induce 
chronic fatal mechanisms that kill affected subjects over a prolonged period of time. In 
this case, estimated discard survival would be zero. Finally, it should be noted that it is 
unrealistic to assume that mortality will end completely, as there will always be an 
underlying natural mortality in any population (Section 6). However, over the time-scales 
that most survival assessments are conducted, it is likely that any underlying natural 
mortality will be indistinguishable from zero. 
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12.2.1 The binomial distribution 

The likelihood of survival events in a population can be modelled using a discrete probability 
distribution: the binomial distribution. This describes the probability of observing a particular 
number of survivors in a sample (s), given that you know the probability of an individual 
surviving (p) and the size of the sample (n):    

Pr(𝑋𝑋 = 𝑠𝑠) = �𝑛𝑛𝑠𝑠� 𝑝𝑝𝑠𝑠(1 − 𝑝𝑝)𝑛𝑛−𝑠𝑠      (3) 

For s = 0, 1, 2, … , n, where: 

�𝑛𝑛𝑠𝑠� =  𝑛𝑛!
𝑠𝑠!(𝑛𝑛−𝑠𝑠)!

  ; the binomial coefficient.    (4) 

Figure 12.2 shows the distribution of probabilities for a sample size (n) of 20, where p = 0.5. Here, 
it can be seen that the most likely number of survivors would be 10. However, it can also be 
seen that it is possible to have observations with either larger or smaller numbers of survivors, 
but these decrease in likelihood the farther we deviate from 10. 

 
Figure 12.2. An example of a binomial discrete probability distribution (grey bars) where n = 20 and p = 0.5. 
When n is large and p is ca. 0.5, the binomial distribution approximates the normal distribution (blue line). 
Mean = n.p. Variance = n.p.q = n.p. (1–p). 

For any binomial distribution, the mean and variance can be estimated as simple functions of n 
and p̂ (Figure 12.2). Furthermore, the standard error for the estimator p̂ (equation 2) can be 
estimated as  ��̂�𝑝(1 − �̂�𝑝) 𝐵𝐵⁄ . A closer examination of these estimators reveals that binomial data 
have some important properties preventing the use of methods that have been developed for 
normally distributed data: 

• The estimator for the mean is bounded (i.e. 0 ≤ p̂ ≤1). That is, for binomial data, no 
value of p̂ can be < 0 or > 1. Conversely, normally distributed data can take any value 
between ₋∞ (minus infinity) and ∞ (infinity). This becomes important when trying to 
model binomial data. A simple linear model (i.e. a straight line) should not be used to 
describe the relationship between the observed survival and any explanatory 
variables. Such a linear model could start predicting impossible survival estimates 
(i.e. < 0 and > 1). This issue can be addressed by (i) transforming the data (e.g. arcsin), 
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which is an ad hoc approach, or (ii) by using models that are adapted for binomial 
responses, which is the preferred approach (i.e. 0 ≤ p̂ ≤ 1; Section 13.1). 

• The variance and standard error are not constant. For binomial data, variance and 
standard error are a function of, and, therefore, vary with, different values of p̂ and n. 
Figure 12.3 shows that the standard error is highest when p̂ is 0.5, and decreases as p̂ 
approaches 0 or 1. This relative change in standard error is scaled by the sample size 
(n), and is smaller as n increases (Figure 12.3). 

• The distribution is generally not symmetrical. Figure 12.4 shows that when p is close 
to 0.5, and n is large (≥ 25) the distribution of the number of survivors is approximately 
bell-shaped and symmetrical. However, as p approaches 0 or 1 the distributed 
becomes limited by the boundary values and becomes asymmetrical. This again has 
important implications when modelling binomial data, in particular with respect to 
how the residuals are distributed around the fitted values in a model. Interestingly, 
when p is close to 0.5 and/or n is large, the binomial distribution approximates the 
Normal (Gaussian) distribution, which has been used to simplify analysis of binomial 
data by using normal approximations, for example the Wald’s statistic (Newcombe, 
2013).   

 
Figure 12.3. The standard error (s.e.) of the estimated probability of survival (p̂) is estimated as �𝒑𝒑�(𝟏𝟏 − 𝒑𝒑�) 𝒏𝒏⁄  
and varies with p̂, where s.e. is greatest when p̂ = 0.5. Increasing sample size (n) reduces the scale of this effect 
across the range of p̂. 

12.2.2 Confidence Intervals: a measure of uncertainty. 

Survival assessments aim to produce an overall estimate of discard survival for a population 
based on measurements from a representative sample of the population. However, how 
precisely does this sample estimate reflect the “true” (unknown) survival probability for the 
wider population in general? Confidence intervals (CI) provide information on the uncertainty 
around an estimated parameter from a sample, and are fundamental elements in hypothesis 
testing (Section 12.2.2.4), interpreting survival (binomial) results (Section 12.4) and making 
inferences from models of observed data (Section 13).  The CI gives a range of values for the 
estimated parameter (e.g. sample mean, �̅�𝑥), with some level of “confidence” on how accurately 
it reflects the true population parameter (e.g. population mean, X).  The confidence level is 
typically expressed as a percentage (e.g. 95%) and, as a frequentist concept, should be 
interpreted as the percentage of times that the true population parameter (e.g. population mean, 
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X) would lie within the CI around the sample estimate (e.g. sample mean, �̅�𝑥), if the sampling 
was repeated in the same way a large number of times.  This is often misinterpreted as meaning 
there is a 95% probability that the true population survival will be within the sample’s 
confidence interval. However, for any one CI, the true value either is or is not contained in the 
interval and, therefore, the interval cannot contain the true value with some probability (Trkulja 
& Hrabač, 2019). Thus, it follows that sampling theory states that multiple observations (i.e. 
large sample sizes and numbers of replicates) are important for obtaining accurate and precise 
parameter estimates. Though it is not expanded upon here, the Bayesian paradigm includes the 
“credibility interval” (Crl) which is interpreted as having some probability of containing the 
true value, in contrast to the confidence interval above (Newcombe, 2013).   

 
Figure 12.4. Binomial probability mass functions for increasing sample size (n = 5, 25, or 125) and for two 
probability values (p = 0.5 or 0.8). Note that the distribution is always skewed unless p = 0.5, but it 
approximates a normal distribution as n increases. 

For binomial proportions, the simplest forms of CI are those where the data distribution can be 
approximated to a normal distribution, and, thus, the corresponding theory can be applied 
(Hazewinkel, 2001; Crawley, 2013; Section 12.2.2.1).  However, because the binomial 
distribution only approximates the normal distribution under specific circumstances, 
alternative methods are required for the general application of binomial confidence intervals 
(Section 12.2.2.2). 

The following subsections will describe how a confidence interval can be estimated with respect 
to normally distributed data, and explain the fundamentals of the approach (Section 12.2.2.1).  
Building on this, Section 12.2.2.2 explains the calculation of the normal approximation for the 
Binomial CI .  Finally, alternative methods for estimating binomial CIs will are introduced in 
sections 12.2.2.3 and12.2.2.4. Worked examples are provided throughout. 

12.2.2.1 Confidence intervals and their application to normally distributed data 

Key characteristics of the normal distribution are: 

i) values are symmetrically distributed on either side of the mean (to ± ∞); and 

ii) the majority of values are centred close to the mean (ca. 95% within 1.96 standard 
deviations (s.d.) of the mean, ca. 90% within 1.645 s.d., and ca. 99% within 2.57 s.d.).  

Figure 12.5 shows the probability density distribution for a normal distribution (with mean = 0 
and standard deviation = 1). The area under this curve represents the probability of finding a 
value in a normally distributed population that differs from the mean by a certain amount; in 
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this example, measured in standard deviations. By assuming that this distribution represents 
the very large number of samples imagined in the frequentist sampling theory (described 
above), it is possible to define a threshold on the x-axis (a quantile) that partitions a desired 
proportion of the distribution equal to the required confidence level (e.g. 95%).  This can be 
simply done using a “standard normal or Z-table”.  Conveniently, it can also be done using the 
R function qnorm. 

That is, using the one-tailed quantile (Z1 – α) for a particular confidence level (1 – α; where 
α = significance level; see Section 5.3) and the standard error of the estimate (s.e.), a “one-sided 
confidence interval” (CI) can be defined with respect to the population mean (i.e. the sample 
mean, �̅�𝑥): 

𝐶𝐶𝑁𝑁𝐵𝐵𝑜𝑜𝑖𝑖𝑜𝑜𝑡𝑡𝐵𝐵𝑜𝑜𝑡𝑡 𝑖𝑖𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 (𝑁𝑁𝐵𝐵𝑡𝑡 𝑠𝑠𝑖𝑖𝑜𝑜𝑡𝑡𝑜𝑜, 𝑖𝑖𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡)(1 − 𝛼𝛼): �̅�𝑥 − 𝑍𝑍1−𝛼𝛼 ∙ 𝑠𝑠𝑡𝑡 ↔ +∞            (5) 

𝐶𝐶𝑁𝑁𝐵𝐵𝑜𝑜𝑖𝑖𝑜𝑜𝑡𝑡𝐵𝐵𝑜𝑜𝑡𝑡 𝑖𝑖𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 (𝑁𝑁𝐵𝐵𝑡𝑡 𝑠𝑠𝑖𝑖𝑜𝑜𝑡𝑡𝑜𝑜,𝑢𝑢𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡)(1 − 𝛼𝛼) : − ∞ ↔ �̅�𝑥 + 𝑍𝑍1−𝛼𝛼 ∙ 𝑠𝑠𝑡𝑡            (6) 

For 90% confidence, Z1 – α = 1.28 

For 95% confidence, Z1 – α = 1.64 

For 99% confidence, Z1 – α = 2.33 

For example, -qnorm(1–0.05) gives a one-sided lower quantile (Z1 – α) value of –1.64, where there 
is a 5% probability of finding a lower value, and a 95% probability of finding a higher value 
(Figure 12.5 a). By applying these to equation 5, for a sample mean of 1.86, with a s.e. of 0.2, the 
one-sided lower 95% confidence interval is estimated to be:  1.86 – (1.64 ∙ 0.2) = 1.532. 

Alternatively, by defining outer tails of the distribution above and below which 2.5% (i.e. 5%/2) 
of the values lie [± qnorm(1-0.025)], it is possible to define the thresholds within which 95% of 
the values lie symmetrically about the mean.  A “confidence interval” (CI) can be then defined 
around an estimate of the population mean (i.e. the sample mean, �̅�𝑥) using the standard error 
of the estimate (s.e.) and the appropriate two-sided normal quantiles (Z1 – α/2) for a particular 
confidence level (1 – α): 

𝐶𝐶𝑁𝑁𝐵𝐵𝑜𝑜𝑖𝑖𝑜𝑜𝑡𝑡𝐵𝐵𝑜𝑜𝑡𝑡 𝑖𝑖𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 (𝑡𝑡𝑙𝑙𝑁𝑁 𝑠𝑠𝑖𝑖𝑜𝑜𝑡𝑡𝑜𝑜) (1 − 𝛼𝛼): �̅�𝑥  ± 𝑍𝑍1−𝛼𝛼/2 ∙ 𝑠𝑠𝑡𝑡                 (7) 

For 90% confidence, Z1 – α/2  = 1.64 

For 95% confidence, Z1 – α/2  = 1.96 

For 99% confidence, Z1 – α/2  = 2.57 

Applying the example values above (mean 1.86 and  s.e. 0.2) and Z1 – α/2  = 1.96 to equation 7, the 
two-sided lower 95% confidence interval is estimated to be:  1.86 ± (1.96 ∙ 0.2) = 1.468 to 2.252.  
Alternatively, if a higher level of confidence was required (e.g. 99%), the outer tails of the 
distribution above and below which 0.5% (i.e. 1%/2) of the values lie [± qnorm(1-0.005)] gives 
Z1  – α/2  = 2.57.  Applying to equation 7, the two-sided lower 99% confidence interval is estimated 
to be: 1.86 ± (2.57 ∙ 0.2) = 1.346 to 2.374. 

From these examples, it is clear that the width of the interval increases for greater levels of 
confidence (1 – α), because a greater range of values must be included to ensure greater 
confidence. Likewise, the CI for a given confidence level will be wider, with increasing standard 
error in the sample, because there is less certainty in the accuracy of the estimate. 
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a) 

b) 

Figure 12.5. Normal probability density distribution, Norm(mean = 0, s.d. = 1), showing a) one-sided and b) 
two-sided 95% quantiles. 

12.2.2.2 Binomial Confidence intervals 

From equation 4, it follows that it is possible to define a synonymous confidence interval for the 
estimated survival probability (p̂, equation 2) in the binomial distribution. This is commonly 
known as the Wald interval or normal approximation of the binomial CI (Newcombe, 2013): 

�̂�𝑝  ± 𝑍𝑍1−𝛼𝛼/2 ∙ �
𝑝𝑝�(1−𝑝𝑝�)

𝑛𝑛
    (8) 

However, as discussed in Section 12.2.1, the binomial distribution only approximates the 
normal distribution in limited circumstances (i.e. when n is large and/or p̂ is ca. 0.5). 
Furthermore, because the binomial distribution is discrete and the probability p is bounded (by 
0 and 1), as opposed to the normal distribution (which is continuous and has support over 
positive and negative infinity), this approach generally produces inadequate confidence 
intervals, particularly when n.p̂ <10 and n(1 –p̂)<10 (Newcombe, 2013, p. 56). 

Defining appropriate confidence intervals for the binomial distribution when the normal 
approximation is not applicable, has been a considerable challenge in statistics (Newcombe, 
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2013). Numerous alternative methods to the Wald interval have been published, including the 
“adjusted Wald” or Agresti-Coull intervals (Agresti and Coull, 1998), Clopper-Pearson “exact” 
method (Clopper and Pearson, 1934), and Wilson score method (Wilson, 1927). However, no 
ideal solution to suit all circumstances has yet been identified. Several reviews have been 
conducted of the different methods, including “exact” methods, and the general consensus is 
that the Wilson score method is the most reliable, closed-form method (i.e. can be calculated 
analytically; Brown et al., 2001, 2002; Pires and Amado, 2008; Newcombe, 2013; Wallis, 2013): 

𝑊𝑊𝑖𝑖𝑖𝑖𝑠𝑠𝑁𝑁𝐵𝐵 𝑠𝑠𝑜𝑜𝑁𝑁𝑡𝑡𝑡𝑡 𝑖𝑖𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 (𝑙𝑙−,𝑙𝑙+) =  ��̂�𝑝 +  𝑍𝑍
2

2𝑛𝑛
 ± 𝑍𝑍 ∙ �𝑝𝑝�(1−𝑝𝑝�)

𝑛𝑛
+ 𝑍𝑍2

4𝑛𝑛2
� �1 + 𝑍𝑍2

𝑛𝑛
��                                 (9) 

Bayesian or Beta intervals offer reliable alternatives to the frequentist methods discussed above, 
with several favourable properties. However, they require more advanced techniques to 
calculate them (Newcombe, 2013). For the purposes of this report, and the practical application 
of binomial confidence intervals when reporting the results of survival assessments, the 
frequentist methods are considered perfectly adequate. 

12.2.2.3 Resources for calculating binomial confidence Intervals 

The R package “Binom” (2014) has several useful functions for defining and assessing the 
reliability of binomial confidence intervals, i.e. interval width, coverage, and statistical power 
(see Newcombe, 2013 for information on assessing the properties of confidence intervals). The 
function “binom.confint” provides estimates of binomial confidence intervals with the option 
of using a variety of methods, including the Wilson score, the Wald, the Agresti-Coull and the 
Clopper-Pearson “exact” methods (Table 12.1). 

Table 12.1. Estimated binomial confidence intervals for the proportion 0.7 (70/100) using eleven different 
methods on the R function “binom.confint” [in “Binom”]. [where, s = number of successes or “survivors”; 
n = total number in trial or “sample”; p̂ = estimated proportion or “survival”]. Note: because of the conditional 
nature of Bayesian methods, estimates of p̂ can vary slightly from simple proportions. 

Method s n p̂ Lower Upper 

Agresti-Coull 70 100 0.700 0.604 0.781 

asymptotic 70 100 0.700 0.610 0.790 

Bayes 70 100 0.698 0.608 0.786 

cloglog 70 100 0.700 0.600 0.780 

exact 70 100 0.700 0.600 0.788 

logit 70 100 0.700 0.603 0.782 

probit 70 100 0.700 0.605 0.783 

profile 70 100 0.700 0.606 0.784 

lrt 70 100 0.700 0.606 0.784 

prop.test 70 100 0.700 0.599 0.785 

Wilson 70 100 0.700 0.604 0.781 
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12.2.2.4 Confidence intervals and hypothesis testing 

Users of the data from survival assessments may ask the question, “Is the observed survival 
significantly greater than H?”, where “H” is a threshold defining “high survival”. In this case, 
the researcher may conduct a hypothesis test based on a one-sided CI, to establish whether there 
is a significant difference between the estimated survival and the threshold value.  

For example, using the R function “binom.test”, the user can assess whether an estimated 
survival rate (e.g. based on 65 survivors out of a total of 100) is significantly greater than a 
nominal “high survival” threshold of 60%. (Note: this function is from the “stats” package 
which by default uses the Clopper-Pearson “exact” method to define CIs, which tends to be 
more conservative than the “Wilson score” method because it estimates slightly wider intervals; 
Table 12.1). 

> binom.test(65, 100, p=0.6, alternative = "greater") 

Exact binomial test 

data: 65 and 100 

number of successes = 65, number of trials = 100, p-value = 0.1795 

alternative hypothesis: true probability of success is greater than 
0.6 

95 percent confidence interval:  0.5639164 1.0000000 

sample estimates: probability of success 0.65 

In this example, although the sample proportion estimate (i.e. 0.65) is greater than the threshold 
value (0.60), the confidence interval contains the threshold value and, hence, the result is not 
significant (p = 0.1795). In contrast, if the sample size had been larger (e.g. 650/1000 survivors), 
the same proportion would be produced (0.65), but the CI would not contain the threshold 
value. In this case, the result is significant at the 5% level (i.e. p < 0.05). 

> binom.test(650, 1000, p=0.6, alternative = "greater") 

Exact binomial test 

data:  650 and 1000 

number of successes = 650, number of trials = 1000, p-value = 
0.0006455 

alternative hypothesis: true probability of success is greater than 
0.6 

95 percent confidence interval:  0.624385 1.000000 

sample estimates: probability of success 0.65 

 

Summary - Binomial CIs  

In summary, CIs are important tools for interpreting survival (binomial) results 
(Section 12.4) and making inferences from models of observed data (Section 13).  The 
principles and the application of these tools are well established for normally distributed 
data, and data that approximates a normal distribution.  Establishing reliable confidence 
intervals for binomial data has been an ongoing challenge for statistical science, leading 
to an array of alternative methods for estimating the confidence interval around a 
proportion.  This section recommends the use of the “Wilson Score” method, based on a 
consensus from the scientific literature.   
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12.3 Longitudinal data 

Event times (longitudinal data) constitute the data format that is naturally recorded during 
survival assessments when there is an ongoing/repeated monitoring of experimental subjects. 
This format consists of a list of times within the observation period when different individuals 
were observed to have died, along with the number of survivors at the end of the observation 
period. These data can be expressed as a “life table”, which shows the cumulative total of 
animals that are dead and alive at each observation time point. Building on the previous 
sections, these data in the “life table” can be used as estimates of the proportion of surviving 
animals at different points in time, with the appropriate CI.  

Furthermore, this simple “life table” approach can be used to produce an estimate of asymptotic 
survival (SA; namely, the final survival estimate in the time-series), provided that the post-
treatment monitoring period was sufficiently long and mortality in the sample had ceased 
(Information Box 12.1). However, this “life table” approach does not fully utilize the added 
dimension of time within the data, or, more specifically, the rate at which the animals are dying, 
to better understand the observed mortality. As discussed in Section 2, the rate at which animals 
die can be very informative about the underlying causes of mortality; and where these data 
exist, they should be utilized. 

It can be seen intuitively, and written mathematically, that cross-sectional data are merely a 
special case of longitudinal data, i.e. the summation of mortality observed at a particular point 
in time (t). However, longitudinal data help provide information on patterns in survivorship 
over time (the survivor function), which is a substantial advantage over cross-sectional data. 
The shape of the survivor function can provide information on the mechanisms affecting 
mortality as well as defining an asymptote or endpoint for the observed discard mortality. To 
this end, an analysis method has been developed in medical and engineering science called 
“survival (or failure) analysis”, which addresses this time-dependent survival data directly (e.g. 
Kleinbaum, 1996). The following section provides a brief introduction to survival analysis, the 
required data formats, and how it can be used to describe the probability of survival and, 
conversely, mortality over time. 

12.3.1 Survival/failure analysis: an introduction 

In survival analysis, the measure of interest is the time to mortality (T). Therefore, longitudinal 
survival data can be defined as single-event times for individuals, where the single-events are 
either death or the last observation made of a live individual for which the ultimate time of 
mortality is unknown.  

Finally, the correct interpretation of CIs (95% confidence) is: “if the underlying model is 
correct and the only source of variability is chance (sampling variation; i.e. there is no 
systematic error in the process), then if one is to repeat the entire (valid) process in an 
unlimited number of independent random samples of the same size and from the same 
population – at least 95% of thus generated CIs would cover the true value” (Greenland 
et al, 2016; cited by Trkulja & Hrabač, 2019).  However, if the reader is confused by this 
correct interpretation of CIs, it is worth reflecting on this quote from the medical 
profession: “Little is lost by the common but less pure interpretation of the CI as a range 
of values within which we can be 95% sure the population value lies” (Altman, 2005). 
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In discard survival assessments, the objective is to quantify the survival associated with the 
capture, handling, and release processes. Consequently, the timing of mortality will almost 
always be with respect to a known time when fish were captured or retrieved from the water. 
Time of death cannot be known for any animal surviving past the end of the established 
monitoring period. However, the time of the last observation where the animal was seen to be 
alive is informative and is considered a “censored” observation (see following section for more 
details). 

12.3.1.1 Censoring 

Data censoring occurs when the exact timing of an event is not known, e.g the time of mortality 
with respect to the time of discarding. Observations where this is the case are called censored 
observations. Despite not knowing the exact post-release longevity for these censored 
observations, they nonetheless provide information that can help characterize the survival 
function. Three types of censoring can occur and can be appropriately modelled in survival 
analysis (see also Figure 12.6): 

i) Right censoring: This pertains to individuals that were alive at the time of the last 
observation (censoring time, tc) or were removed from the study early (e.g. for blood 
sampling). Under both circumstances, the individuals give right-censored observations, 
where their time of mortality (T) is known only to be greater than the censoring time (T> 
tc), and provide information on the shape of the survival function for times t < tc 
(Figure 12.6). 

ii) Left censoring: Individuals that are dead when first observed, and for which the time of 
death is not known, generate left-censored observations (Figure 12.6). The longevity for 
these observations is known only to be T < tc. Left-censored observations provide 
information on the shape of the survival function for t > tc because they help specify the 
cumulative probability of mortality after that point.  Left-censored observations are less 
likely to occur in discard-survival assessments than right-censored observations because 
the time of mortality is usually known, although perhaps imprecisely depending on the 
observation frequency. An example where left-censored data may be evident is in cases 
where the analyst has relevant longitudinal and cross-sectional (i.e. left-censored) data 
and wishes to utilize both sources of data to estimate survival parameters (e.g. Benoît et 
al., 2013).  

iii) Interval (or truncated) censoring: An individual will provide an interval-censored 
observation if its mortality is known to occur between two times, ta < T < tb, but the exact 
time of mortality is not known. In practice, if the elapsed time between ta and tb is short 
relative to the total observation period, T can be assumed to provide an approximately 
exact (non-censored) value (Figure 12.6). 

Note: cross-sectional data are a special case of longitudinal data, i.e. the summation of mortality 
observed at a particular point in time (t). Individuals that are alive at t are right-censored 
observations, while dead ones are left-censored observations for which the time of death is only 
known to have occurred before t. 

All survival analysis methods can accommodate censored observations. However, to avoid 
estimation bias, it is important that censoring be non-informative, i.e. independent of survival 
time.  This assumes that distribution of survival times for censored and uncensored individuals 
are the same, so the removal of censored individuals will not bias the estimate of survival time 
or time to event (Prinja et al, 2010). Censoring should be random with respect to any factors or 
covariates of interest in the analysis, that is, the reason an observation is censored is unrelated 
to the cause of mortality. 
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The consequences of informative censoring in a discard-mortality study are perhaps best 
illustrated with an example. Suppose that an investigator is studying the post-release survival 
of two groups of fish using acoustic or pop-up tags: an uninjured group with a high probability 
of survival and a severely injured group with a low probability. Further, suppose that 
individuals in the uninjured group tend to swim more vigorously and are, therefore, more likely 
to exit the acoustic array (in the case of acoustic tagging) or to shed their tag, thereby being more 
likely to generate right-censored observations. Unless such a pattern can adequately be 
addressed using a model, the mortality estimates for the uninjured group are at greater risk of 
a biased underestimation of the true mortality probability, when compared to the severely 
injured group. Unfortunately, there are no standard methods to account for this bias. However, 
sensitivity analysis can be used to provide a rough limit on the magnitude of the bias, e.g. by 
assuming at one extreme that all censored individuals died immediately after censoring and, at 
the other extreme, that they all lived longer than the longest event time in the sample (Allison, 
2010). 

 
Figure 12.6. Examples of events and censored data in survival analysis, with “tend” representing the time of 
the last observation. A red cross is the time when a subject was observed to be dead. Continuous bands (red 
or green) are periods of uninterrupted monitoring. Green arrows are the periods when a surviving subject 
was alive. 

12.3.1.2 Data formats for survival analysis 

There are two possible data formats for longitudinal data that are to be used in a survival 
analysis: Type 1 and Type 2.  

Type 1 is the format that is generally used for input data in survival analysis packages in R 
(Table 12.2). Essentially, it is a list of data for individual subjects itemizing (i) subject ID; (ii) time 
(t) to event (i.e. death or censoring); (iii) censoring status (C; 1 = censored and 0 = dead); and (iv) 
any relevant explanatory variables (X1 … Xz) .  

The Type 2 format is also known as a “life table”, and it summaries the data with respect to each 
relevant time-interval. It shows  the number of dead (rj), censored (cj), and “at risk” subjects (i.e. 
number of animals being monitored; nj; see following text), relevant to that time interval (tj) 
(Table 12.3). The number of subjects at risk at time tj (nj) is the number of subjects at risk from 
the previous time interval (nj–1) minus the number of subjects that died (rj–1) and the number of 
censored subjects (cj–1) from the previous time interval (tj-1). This format is useful for 
understanding how time-dependent survival functions can be estimated non-parametrically, 
e.g. Kaplan-Meier (Section 12.3.1.3). 
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Table 12.2. An example of the longitudinal data format for input to survival analysis, including a subject ID; 
time to event (t; i.e. death or censoring); censoring status (C; 1 = censored and 0 = dead); followed by any 
relevant explanatory variables (X1…Xz). 

ID t C X1 … XZ 

1 1 0 X1.1 … XZ.1 

- - - - - - 

10 1 0 X1.10 … XZ.10 

11 2 0 X1.11 … XZ.11 

- - - - - - 

13 2 0 X1.13 … XZ.13 

14 2 1 X1.14 … XZ.14 

15 2 1 X1.15 … XZ.15 

16 3 0 X1.16 … XZ.16 

- - - - - - 

20 3 0 X1.20 … XZ.20 

21 3 1 X1.21 … XZ.21 

- - - - - - 

24 3 1 X1.24 … XZ.24 

- - - - - - 

100 10 1 X1.100 … XZ.100 

 

12.3.1.3 Describing survival over time: the Kaplan-Meier survival function. 

In survival analysis, time-dependent survival data are typically summarized and displayed 
using the survival function S(t), which is the probability of surviving beyond time t, i.e. Pr(T > t). 
As t ranges between 0 and ∞, S(t) will decrease from S(t) = 1 at t = 0 towards 0 as t approaches ∞. 
In theory, this is a smooth probability function. However, in practice, empirical estimates are 
“step functions”, because observations are generally made at intervals (Figure 12.7). 

The Kaplan-Meier estimator, also known as the product limit estimator, is a simple non-
parametric statistic used to estimate the survival function Ŝ(tj) from longitudinal survival data.  
Alternative models for estimating the survival function Ŝ(tj), including parametric and semi-
parametric methods, are also available and are discussed in detail in Section 13.2.  The Kaplan 
Meier estimator uses conditional probability to give stepwise estimates for the probability of 
surviving beyond tj. This is achieved by multiplying the probability of surviving to the previous 
period Ŝ(tj-1) by the probability of surviving beyond tj, given survival to at least tj. 

�̂�𝑆�𝑡𝑡𝑖𝑖� =  �̂�𝑆�𝑡𝑡𝑖𝑖−1� ∙ 𝑃𝑃𝑡𝑡��𝑇𝑇 > 𝑡𝑡𝑖𝑖  � 𝑇𝑇 ≥ 𝑡𝑡𝑖𝑖)                            (10) 

where: 

𝑃𝑃𝑡𝑡��𝑇𝑇 > 𝑡𝑡𝑖𝑖 � 𝑇𝑇 ≥ 𝑡𝑡𝑖𝑖) = (1 − 𝑞𝑞�𝑖𝑖) = (1 −
𝑑𝑑𝑗𝑗
𝑛𝑛𝑗𝑗

)    
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The probability of surviving beyond tj (given survival to at least tj) is estimated from the 
observed survival (i.e. the inverse of the estimated mortality, 1–q̂j) at tj.  

 

 
Figure 12.7. The survival function S(t) as a theoretical curve and as the step function typically seen in practice. 
Note: if the monitoring ended before all of the treatment-related mortality had been expressed in the 
population, then the asymptotic survival (SA ; see Information box 12.1) may be overestimated, as indicated 
by 𝑺𝑺�(𝒕𝒕𝒆𝒆𝒏𝒏𝒆𝒆) being higher than 𝑺𝑺�𝑨𝑨 (where the dotted line indicates unobserved mortality; redrawn from 
Kleinbaum, 1996). 

This process can be more simply explained using the data in Table 12.3. For example, in period 
tj = 2, 3 animals died out of 90 animals at risk, giving an estimated mortality q̂j of 0.033. From 
this, the probability of surviving beyond tj (given survival to at least tj) is estimated to be 1–0.033 
= 0.967. Multiplying this by the survival function estimate for tj = 1 gives the survival function 
estimate for tj = 2: i.e.  0.900 × 0.967 = 0.870 (Table 12.3).  

The generalized formulation of the Kaplan-Meier estimate of the survival function Ŝ(tj), which 
is used in section 13.2 of this report, utilizes the product-limit formula: 

�̂�𝑆�𝑡𝑡𝑖𝑖� =  ∏ 𝑃𝑃𝑡𝑡��𝑇𝑇 > 𝑡𝑡𝑖𝑖 � 𝑇𝑇 ≥ 𝑡𝑡𝑖𝑖)𝑖𝑖
1                          (11) 
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The product-limit formula is simply the product of all the probabilities of surviving beyond t1..j 
(given survival to at least t1..j) up to and including time tj. For example, for period tj = 3, (1₋0) × 
(1–0.1) × (1–0.033) × (1–0.059) = 0.819 (Table 12.3). 

Table 12.3. An example of a “life table” format for longitudinal data using the same data as in Table 12.2. The 
calculation of “number at risk” (nj), the mortality function q̂(tj) and the survival function Ŝ(tj) is detailed for 
observations (j) at time periods (tj) 1–4. 

Time 
(tj) 

No. at risk 
(nj) 

No. dead 
(rj) 

No. censored 
(Cj) 

Mortality  
q̂(tj) 

Survival function 
Ŝ(tj) 

0 100 0 0 0 1 

1 100−0−0 = 100 10 0 10/100 = 0.1 1.000*(1−0.100) = 0.900 

2 100−10−0 = 90 3 2 3/90 = 0.033 0.900*(1−0.033) = 0.870 

3 90−3−2 = 85 5 4 5/85 = 0.059 0.870*(1−0.059) = 0.819 

4 85−5−4 = 76 4 1 4/76 = 0.053 0.819*(1−0.053) = 0.776 

5 71 3 2 0.042 0.743 

6 66 2 1 0.030 0.720 

7 63 1 2 0.016 0.709 

8 60 0 1 0.000 0.709 

9 59 1 0 0.017 0.697 

10 58 0 1 0.000 0.697 

12.3.1.4 Using R to estimate and plot a Kaplan-Meier survival function 

The Kaplan-Meier estimate of the survival function Ŝ(tj) can be estimated and plotted, with 95% 
CIs,) using the R package Survival. It is worth noting that the default confidence bands for this 
package use the Wald’s interval. The Kaplan-Meier estimate of the survival function Ŝ(tj) for the 
data in Tables 12.2 and 12.3 can be estimated and plotted (Figure 12.8) as follows: 

# Surv() creates a survival object from the vectors “t” and “Censored” 

my.surv <- Surv(t, Status)   

# survfit() fits a KM Survival Function to the data 

my.fit <- survfit(my.surv ~ 1)   

# Plotted the KM Survival Function with 95% confidence bands  

plot(my.fit, main="KM Survival Function with 95% confidence 
band", 

    xlab="time", ylab="survival function", 

      conf.int = TRUE, 

      bty = "l") 

Note - the surv() function uses an indicator for survival status, where dead = 1 and alive = 0. 
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Figure 12.8. Example of a Kaplan-Meier (KM) survival function, with a 95% confidence band (dashed lines) 
using the data in tables 12.2 and 12.3. 

12.3.2 Time-varying covariates (TVC) 

Time-varying covariates (TVC), or time dependent covariates, are variables that change through 
the lifetime of a survival assessment and may affect the survival of the experimental subjects.  
For example, vitality indicators that are quantified before releasing a fish, and one or more times 
subsequently, could determine whether an improved probability of survival can be seen for 
individuals for which vitality has improved (e.g. recovery of certain reflexes; Section 8).   

Therefore, analysis of longitudinal data should address the influence of TVC on the estimated 
survival function (S(t)) and appropriate methods do exist for this (e.g. Kleinbaum, 1996).  
However, the analytical treatment of TVC is not explicitly covered in this report because: (i) 
understanding discard mortality is a secondary objective for the present framework, (ii) not all 
methods for analysing longitudinal data can accommodate TVC, (iii) it is easy to make mistakes 
that can influence analysis results when using survival analysis with TVC (Allison, 2010), and 
(iv) this report is meant to provide a general overview for practitioners. Interested readers can 
find the information in existing textbooks on survival analysis methods (e.g. Cox and Oakes, 
1984; Ibrahim et al., 2001; Allison, 2010). 

12.4 Summarizing survival data 
When presenting results from a survival assessment, it will frequently be relevant to compare 
them to something else: a “high survival” threshold, another treatment or control, or another 
study. As discussed in Section 12.1, ideally, the asymptotic survival estimate (SA) is the 
fundamental value summarizing the result of a survival assessment. However, before 
presenting or comparing any survival estimate, it is necessary to address two questions: (i) what 
is the level of confidence in the survival estimates?; and (ii) how can survival estimates be 
compared? This section will attempt to address these questions by introducing appropriate 
measures of effect size (i.e. the difference between survival estimates from different treatments), 
and discussing how they can be applied, with the appropriate confidence intervals, to provide 
an informative summary of the data and any associated uncertainty. 

12.4.1 The importance of presenting effect size, confidence intervals and p-values 

Section 12.2 introduced the concept of confidence intervals (CI) and explained how they 
describe the uncertainty associated with survival estimates (including SA).  Section 12.2 also 
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introduced how CIs can be applied to make inferences about survival results using hypothesis 
tests and their associated p-values. There has been considerable discussion in recent years in 
the statistical community over the relative merits of hypothesis testing and CIs (e.g. Altman et 
al., 2000; Gardner and Altman, 2000; Cumming, 2011; Newcombe, 2013). It is now generally 
advised that CIs provide a more informative summary of data and effect sizes, particularly 
when comparing different treatments/groups. Furthermore, if performing a hypothesis test, the 
resulting “p-value” should not be presented in isolation. The “p-value” from a hypothesis test 
merely relates to the amount of evidence that a difference (or effect) exists; but does not give 
any information on the size or consistency of that effect. In contrast, presenting the results of an 
experiment combined with reliable CIs, gives a clear summary of the size of any effect on a 
relevant scale, and of the uncertainty associated with the results (Newcombe, 2013).  

This advice is particularly pertinent for the results of survival assessments, since many 
investigations may be limited by sample size. In these cases, a simplistic interpretation of 
“p-values” may suggest “no significant effect”, when a review of the appropriate CIs would 
reveal a lack of statistical power behind the inference (Section 5). Conversely, a study may also 
demonstrate a statistically significant treatment or effect (i.e. p-value <0.0001) due to very large 
sample sizes, but closer examination of the results reveals that the effect is biologically 
unimportant (see Figure 12.9 for examples).   

In summary, it is advised that when presenting survival estimates, including SA, values should 
be presented with CIs to provide an informative summary of data and effect sizes, particularly 
when comparing different treatments and/or groups. Results of a hypothesis test, in the form of 
a “p-value” can be presented alongside in support, but should not be presented in isolation. 

 
Figure 12.9. Four cases demonstrating the importance of presenting effect size and confidence intervals along 
with p-values when describing the results of survival assessments. Survival estimates (p̂) are shown as large 
points, with confidence intervals (Wilson) as horizontal I bars.  The vertical dotted line represents a nominal 
“high survival” threshold at 0.6.  Case A: p̂ = 0.86 [95% CI: 0.757, 0.921], clearly has a high survival which is 
significantly greater than an arbitrary threshold of 0.6. Case B: p̂ = 0.70 [95% CI: 0.585, 0.795], has the same 
sample size as A (n = 70), so comparable statistical power, but is not significantly greater than 0.6. Case C: p̂ = 
0.70 [95% CI: 0.604, 0.781], has exactly the same survival as B, but because of a larger sample size (n = 100), it 
is significantly greater than 0.6. Case D: p̂ = 0.65 [95% CI: 0.626, 0.674], has the lowest survival of all cases, yet 
because of a large sample size (n = 1500), it has a significance as high as case A. But how biologically important 
is an increase of just 5% above the threshold? 

12.4.2 Measures of effect: a measure of difference 

A “measure of effect” is an index used to compare two survival estimates (typically from a 
treatment and a control), or a single survival estimate to a chosen baseline, by describing the 
size of the difference between them on a relevant scale (either relative or absolute). These 
comparisons are usually conducted by subtracting or dividing one survival estimate with the 
other to establish a difference or ratio, respectively. In medical statistics, the most commonly 
encountered measures of effect used for survival estimates are: 

 

 Survival (proportion) 

s =  60,  n =   70 :     Pr(p̂ > 0.6) < 0.0001 

s =  49,  n =   70 :     Pr(p̂ > 0.6) = 0.0546 

s =  70,  n =  100 :    Pr(p̂ > 0.6) = 0.0248 

s = 975, n = 1500 :   Pr(p̂ > 0.6) < 0.0001 
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• risk difference (RD; also called the absolute risk reduction); 
• risk ratio (RR; also called the relative risk or benefit); 
• hazard ratio (HR); and 
• odds ratio (OR). 

The calculation and interpretation of these measures of effect, and their relative downsides and 
merits, are discussed briefly below. For more detailed descriptions and discussion, see 
Hamilton (1979) and Newcombe (2013).  

12.4.2.1 Risk difference (RD or attributable risk) 

Risk difference (RD, also known as attributable risk) is the difference between survival estimates 
(p̂) in two groups 

Risk difference (RD) = p̂1 – p̂2    (12) 

The RD can be calculated for any study, even when there are no events (i.e. deaths or survivors) 
in either group. The RD is an absolute measure of effect and so is straightforward to interpret, 
since it describes the actual difference in the observed survival between experimental 
interventions (typically treatment vs. control).  For an individual, it describes the estimated 
difference in the probability of surviving.  

However, the RD can be misleading when comparing the relative differences of studies with 
different baseline survival rates. For example, is an improvement in survival from 0.5 to 0.6 
(RD = 0.1) as beneficial to the subject population as an improvement from 0.1 to 0.2 (RD = 0.1)?  
In absolute terms, the RD is the same in both cases (RD = 0.1). However, an improvement of 0.1 
from a baseline survival of 0.5 produces only a 20% improvement in survival for the subject 
population, whereas the same absolute change from a baseline survival of 0.1 doubles the 
survival rate. This clearly indicates that there can be merit in comparing different effects using 
relative measures, i.e. relative benefit and relative risk. 

Confidence intervals (Wilson score) for the RD can be obtained using “diffscoreci” in the R 
package “PropCIs”. CIs not containing 0 indicate significant effects at the selected significance 
level. 

12.4.2.2 Risk ratios (RR, or relative risk and relative benefit) 

Risk ratios can be expressed as either relative risk or relative benefit and show the outcome 
(death (q̂) = risk; survival (p̂) = benefit) in one group relative to that in another. The RR (or 
relative risk) is the ratio of the risk of an event in the two groups (e.g. the proportion of deaths 
in the treatment (q̂1) /proportion of deaths in the controls (q̂2)). 

Relative risk (RR) =  𝑞𝑞�1
𝑞𝑞�2

= 1−𝑝𝑝�1
1−𝑝𝑝�2

     (13) 

Relative benefit (RB) =  𝑝𝑝�1
𝑝𝑝�2

     (14) 

For both measures, a value of 1 indicates that the estimated effects are the same for both 
treatments/groups. Risk ratios are relative measures of effect and describe the multiplication in 
risk that occurs with the application of a treatment, when compared to a baseline or alternative 
treatment. For example, a risk ratio of 3 for a treatment implies that an event (e.g. death) is 
threefold more likely after the treatment (e.g. discarding) than without the treatment (i.e. 
control). Alternatively, we can say that the treatment increases the risk of events by 100 × 
(RR – 1)% [in the example: 100 x (3 – 1)  = 200%]. 
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Confidence intervals (Wilson score) for the risk ratio can be obtained using “riskscoreci” in the 
R package “PropCIs”. CIs not containing 1 indicate significant effects at the selected significance 
level. 

12.4.2.3 Odds ratio (OR) 

The odds ratio (OR) is the ratio of the odds of an event in two groups (e.g. the odds of surviving 
in the treatment (q̂1/ p̂1) / odds of surviving in the controls (q̂2/ p̂2)).  

Odds ratio (OR) =  
𝑞𝑞�1

𝑝𝑝�1
�

𝑞𝑞�2
𝑝𝑝�2
�

 = 𝑞𝑞�1∙𝑝𝑝�2
𝑞𝑞�2∙𝑝𝑝�1

    

 (15) 

See Information Box 12.2 for details on how to calculate odds and relate them to risk. 

As with RR, OR is a relative measure of effect which describes the multiplication in odds of an 
outcome that occurs as the result of a treatment. They are more difficult to interpret than RR, 
and it is instructive to see how the two are related (Information Box 12.2). It should be noted 
that ORs are a product of the logistic regressions (Section 13.1), the coefficients of which are 
log(OR). 

Confidence intervals (Wilson score) for the odds ratio can be obtained using “orscoreci” in the 
R package “PropCIs”. CIs not containing 1 indicate significant effects at the selected significance 
level. 

12.4.2.4 Hazard ratio (HR) 

The hazard ratio (HR) is analogous to the risk ratio (RR) and is used in the analysis of 
longitudinal data (Section 13.2). HR is the ratio of the hazard rates corresponding to the 
conditions described by two levels of an explanatory variable. For example, in a survival 
assessment, the discarded population may die at twice the rate per unit of time when compared 
to the control population, conditional on having survived to that time. In this case, the hazard 
ratio would be 2, indicating a higher hazard of death from the treatment. HR differs from RR in 
that HR represents the instantaneous risk at a specific time during the study, while RR is 
cumulative over an entire study since it uses a defined endpoint (e.g. SA). 

12.4.2.5 Which measure of effect? 

When selecting which measure of effect to use for simple proportions (cross-sectional data), 
from a statistical perspective OR has a number of advantages over both RD and RR (Newcombe, 
2013): 

• For nearly all baseline levels of risk (except when p̂2 = 1), it is always possible to 
calculate a meaningful OR. This is not the case for RD and RR, which may encounter 
ceiling effects [e.g. starting at a baseline risk of 0.4, it is not possible to achieve a RD of 
greater than 0.6 (i.e. 1.0 – 0.4) or RR of more than 2.5 (i.e. 1.0 / 0.4)]. 

• The OR has an approximately symmetrical distribution (because it incorporates 
contributions from both the observed deaths and the survivors). In contrast, the other 
relative measure, RR, tends towards infinity at either high or low baseline survival 
levels (depending on the underlying outcome, i.e. death or survival; Figure 12.10). 
This implies that OR, in comparison to RR, is better suited to providing more balanced 
comparisons between studies with a wide range of baseline survival rates.  RD is an 
absolute measure of effect and so has a constant value across the full range of base-
line survival rates (Figure 12.10). 
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• The OR is a direct output from a logistic regression, as its natural logarithm is identical 
to the regression coefficient, while to calculate RR and RD requires back-
transformations from the predicted values from the model. 

However, OR does have some disadvantages, including the difficulty that users may have in 
interpreting the output (Newcombe, 2013). Following the guidance of Schechtman (2002), an 
informative approach may be to compare the output of both an absolute (e.g. RD) and a relative 
(e.g. OR) measure of effect. 

Note – Hazard Ratio (HR) is not considered here because it specifically relates to longitudinal 
data (Section 13.2). 

 

Information Box 12.2. “Risk” vs “odds”. 

Risk describes the probability with which an outcome will occur. Risk is commonly 
expressed as a decimal number between 0 and 1, although it is occasionally converted 
into a percentage. 

Odds is the ratio between the probability that a particular event will occur and the 
probability that it will not occur. It can be any number between zero and infinity. It is 
commonly expressed as the ratio of two integers. For example, an odds of 0.01 is often 
written as 1:100, odds of 0.33 as 1:3, odds of 3 as 3:1, etc. 

 

The interpretation of an odds is more complicated than for a risk. The simplest way to 
ensure that the interpretation is correct is to first convert the odds into a risk.  

Odds = Risk / (1 − Risk) 

Risk = Odds / (1 + Odds) 

For example, when the odds are 1:10, or 0.1, one individual should experience the event 
for every 10 who do not, and the risk of the event is 0.1 / (1 + 0.1) = 0.091. In a sample of 
100 specimens, about 9 individuals will have the event and 91 will not. When the odds is 
equal to 1, one individual should experience the event for everyone who does not; so, in 
a sample of 100, about 100 × 1 / (1 + 1) = 50 will experience the event and around 50 will 
not. 



 122  | Cooperative Research Reports Vol. 351 
 
 

 
Figure 12.10. A comparison of the values from three different measures of effects for binary survival data 
(risk difference, relative risk and odds ratio) based on the same fixed absolute difference in survival 
(i.e. ∆ = 0.1) over a range of baseline survival (0 – 0.9). 

12.4.2.6 Using measures of effect to adjust for method-control mortality 

It is valid to use measures of effect to compare treatments and controls, in order to assess the 
relative effect size within an experiment. However, there has been a trend in recent years of 
using these measures to arbitrarily “adjust” observed survival estimates and “correct for 
method-introduced biases”. This has been done by either (i) subtracting the method-control 
mortality from the observed treatment estimate (c.f. risk difference, RD) or (ii) dividing the 
observed treatment survival estimate by the method-control survival estimate (c.f. relative risk, 
RR). The rationale behind this is to remove any biases introduced by mortality associated with 
the method (e.g. captive observation or tagging; Pollock and Pine, 2007). While, in principle, 
this appears to be a rational “correction”, without any supporting evidence that there is a 
systematic and predicable bias in the data, this unfortunately has the potential to introduce 
errors and biases itself.  Therefore, researchers should evaluate whether control and treatment 
mortalities co-vary, in which case correction may be appropriate because the control survival 
rate effectively caps the treatment survival. However, this should be done cautiously, while 
accounting for the potential issues discussed below. 

As discussed, there are limitations in RD and RR which mean that such corrections could, in 
some cases, lead to impossible survival estimates (i.e. < 0 and > 1). In addition, these approaches 
take the unlikely assumption that there is a simple linear relationship between the treatment 
response and the underlying baseline survival (i.e. no interaction between the treatment and 
observation effects; Pollock and Pine, 2007; ICES, 2014). Critically, by reporting only “corrected” 
estimates of survival, the risk of bias and the loss of capability to resolve any true biological 
effects is disguised. That is, as the method-control mortality increases, the potential for bias in 
the estimate also increases, and the resolution to discern any real biological effect decreases (see 
Section 6.2.1, Figure 6.1). 
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12.5 Are these “simple” methods applicable to “real-world” survival data?  

This section has introduced the different forms of survival data (cross-sectional and 
longitudinal), their properties, and the methods used for summarizing and presenting the data. 
These methods are broadly applicable to simple datasets and the report has introduced some 
fundamental concepts underlying the analysis of survival data, particularly the asymptotic 
survival estimate (SA) and the concept of confidence intervals and measures of effect. However, 
data that are collected in survival assessments are often complex in nature. They may have 
multiple methodological sources (sections 4–9), include various potential explanatory variables 
(Section 7), and/or have a complex hierarchical structure (Information Box 12.3). Therefore, the 
simple techniques presented here may not adequately describe the main effects on survival and 
any associated variability. Indeed, it is a common property of estimators of survival 
probabilities that they typically have standard errors that are far greater than predicted by the 
binomial distribution. The reasons for this are complex, but one source of this additional 
variation can be due to unknown explanatory variables that have not been included in the 
analysis. 

Information Box 12.3. Hierarchical data 

Many kinds of biological data, including survival data, have a hierarchical structure, 
where single units are grouped or clustered at different levels. An example from fisheries 
could be individual fish grouped within a single haul, and hauls grouped according to a 
trip undertaken by a fishing vessel. In this example, individual fish represent units at the 
lowest level, hauls represent units at the second highest level, and the vessel/trip 
represents the unit at the highest level (Figure 12.11). 

Data hierarchies may arise from the experimental design or may form naturally, e.g. due 
to some inherent characteristic of the unit. For example, individual fish within one haul 
may share some characteristics, e.g related to habitat or capture process, and, therefore, 
may be more alike than if sampled randomly from the entire population at large. In 
fisheries science, it is unlikely that this nuisance variation can be avoided. Therefore, it is 
important to choose the most appropriate statistical model to describe the data.  

 
Figure 12.11. An example of hierarchical structure for data collected in a survival assessment. 
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There are solutions to address these limitations. The application of more sophisticated 
modelling techniques can provide a better description of the main effects and their associated 
variability, and provide more precise estimates of discard survival with more reliable CIs. These 
techniques are described, with examples, in Section 13. Furthermore, an approach using 
conditional reasoning to combine survival data from different methodological sources is 
introduced. 

12.6 Summary and recommendations 

This section introduced survival data, the different forms they take, their properties, as well as 
considerations on how to summarize and present the data. The principle points are summarized 
here: 

• There are two general forms of data for directly measuring discard survival: 

i) Longitudinal data comprise event times, i.e. when individuals died or if they 
left the experiment alive. They provide information on survivorship over 
time after discarding, including evidence for an asymptote. 

ii) Cross-sectional data are the summation of known dead and living animals 
at a specific point in time; and, as such, they are a special case of longitudinal 
data.  

• Longitudinal data can be used to define survival at asymptote, or “asymptotic 
survival” (SA). This is an important concept in survival assessments as it defines an 
observable endpoint at which the mortality associated with the treatment (i.e. 
discarding) is assumed to have ceased. Failure to observe or otherwise estimate SA 
risks underestimating discard mortality.  

• When reporting survival estimates, and their measures of effect (risk difference, risk 
ratio, and odds ratio), it is important to present them with their confidence intervals, 
as well as any corresponding p-values in the case of hypothesis testing, to correctly 
frame the estimates with respect to their uncertainty.  

• The different measures of effect are informative for demonstrating differences in 
mortality among groups, including between treatments and controls. However, it is 
recommended that they should not be used for “correcting” survival estimates for 
method bias (i.e. with respect to estimates for method-controls), as this could mask 
any inherent uncertainty regarding the accuracy of the estimates. 

• Finally, due to the complexity of the data collected as part of survival assessments, 
response variability may not be adequately described by the methods discussed in 
this section. More sophisticated modelling techniques may be required to properly 
describe any effects and associated uncertainty (Section 13). 

 

Recommendations 

• Survival assessments should aim to collect sufficiently high-resolution 
longitudinal data to enable reliable estimation of asymptotic survival (SA). 

• Survival estimates and their measures of effect (RD, RR and OD) should be 
reported with their confidence intervals, as well as any corresponding p-values, to 
correctly frame the estimates with respect to their uncertainty. 
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Recommendations (continued) 

• Effect measures should not be used to “correct” survival estimates for method bias 
(i.e. with respect to method-control mortality), unless there is evidence of 
covariance between the method-control and treatment survival estimates.   Any 
correction should be considered with caution, and always be presented with the 
original survival estimates to avoid disguising any inherent risk of bias and loss of 
capability to resolve any true biological effects. 
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13 Analysis and modelling of survival and vitality data 

Hugues Benoît and Mike Breen 

This section provides an overview of the statistical modelling techniques used to investigate the 
influence of potential explanatory variables on survival and related data. This guidance is 
intended for readers with a good working knowledge of statistics. However, it can also provide 
less-experienced users with a useful insight into these techniques and detailed resources to learn 
more about them. To support and illustrate the guidance, worked examples are provided both 
within the section and in the online supplementary materials (OSM3).  

This overview of available methods should provide the reader with a useful starting reference 
to source the best information on the most appropriate analytical methods for their data, but it 
does not constitute a statistics book. It is recommended that at all stages of the analysis process, 
including the initial experimental design, users of this manual should consult with a statistician 
for further and more specific guidance. 

13.1 Analysis of cross-sectional survival data 

13.1.1 Generalized linear model (GLM) for survival data 

When looking at survival data, one can consider that the survival of each individual is 
equivalent to a binomial process observed at a certain moment in time. There are only two 
possible outcomes for individuals, dead or alive, and each observation is likely linked to a set 
of explanatory variables that have been recorded during the experiment. As discussed in 
Section 12, this type of study where the response of interest is reported only once for each 
individual is called “cross-sectional”. 

A fundamental starting point for modelling data is the standard/simple linear model 
(Section 13.1.1). However, the generally used Gaussian linear model is not appropriate to 
analyse binomial data, because such data are not normally distributed, are strictly bounded by 
0 and 1, and are characterized by a variance that depends on the mean. Instead, a generalized 
linear model (GLM), in the form of binomial (often logistic) regression, should generally be 
used. Furthermore, generalized linear mixed models (GLMM) should be used to model data 
possessing a hierarchical structure (e.g. sampled at different levels of grouping), since they 
allow the structure of the dataset to be taken into account in the modelling process and address 
issues of non-independence in the data. 

13.1.1.1 Introduction to the linear model 

Before introducing the generalised linear model (GLM), it is necessary to review the 
assumptions underlying the standard Gaussian linear model.  The Gaussian linear model, i.e. 
for normally distributed data, describes the linear relationship between an observation (yj) and 
a set of k explanatory variables (xkj), which can be written as: 

𝑦𝑦𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1. 𝑥𝑥1𝑖𝑖 + ⋯+ 𝑏𝑏𝑘𝑘. 𝑥𝑥𝑘𝑘𝑖𝑖 + 𝜀𝜀𝑖𝑖    with 𝜀𝜀~𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡(0,𝜎𝜎2)  (16) 

                                                           

3 https://github.com/ices-publications/CRR351-OSM 

https://github.com/ices-publications/CRR351-OSM
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where b0 is the model coefficient for the intercept, b1…bk are the coefficients for each explanatory 
variable (x1…xk), and εj is the random error associated with each observation (yj); where this 
random error is normally distributed, with mean (µ = 0) and variance (σ2). 

There are several underlying assumptions to the model which should be satisfied in order for 
the model to provide a reliable description of the data (Crawley, 2013): 

• Linearity: the relationship between y and x1, x2, …, xk is linear (either constantly 
increasing or constantly decreasing) and is specified correctly. 

• All explanatory variables (xj) are fixed and measured without error. 
• There is a single source of error (𝜀𝜀). 
• Normality of the error term 𝜀𝜀~𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡(0,𝜎𝜎2): the error term is normally distributed, 

centred on zero (i.e. there is no trend in the residuals) and not related to the 
explanatory variables. The error distribution is “Gaussian” or “bell-shaped”. 

• Homoscedasticity of the error: the variance of the error term is constant across all 
values of xj. 

• Independence of the error: errors are independent from each other (no autocorrelation 
exists in the dataset). 

When the linear relationship cannot be achieved directly or when the error is not Gaussian, it is 
common practice to transform the response variable (i.e. using log(y + 1), exp(y), etc…) and to 
apply the linear model to this transformed variable. However, transforming response variables 
can alter their variance properties and can result in incorrect inference in linear models. In 
contrast, generalized linear models (GLM) allow the linear relationship with the response 
variable to be adapted without affecting the variance properties. 

13.1.1.2 Elements of a generalized linear model (GLM) 

GLMs are an extension of the simple linear model, which allow more flexibility in both the 
relationship between the response and explanatory variables, and the random error distribution 
underlying that relationship. GLMs have three basic elements: the linear predictor, the error 
distribution, and the link function (Buckely, 2015).  

The linear predictor (ηj) is the systematic part of the model that describes how explanatory 
variables ultimately contribute to the expected value (prediction) for an observation, yj. It 
therefore does not include a random error term: 

𝜂𝜂𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1. 𝑥𝑥1𝑖𝑖 + ⋯+ 𝑏𝑏𝑘𝑘 . 𝑥𝑥𝑘𝑘𝑖𝑖    (17) 

The error distribution specifies the random error associated with each observation (yj) based 
upon a known distribution. In the case of the simple linear Gaussian model, this is assumed to 
be a normal distribution, with mean µ, and variance σ2, so that: 

𝑦𝑦�𝑖𝑖~ 𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖2)    (18) 

The link function (g) relates the expected (typically mean) value (µ) of the observed values (y) 
to its linear predictor (η): 

𝜂𝜂𝑖𝑖 = 𝑔𝑔�𝜇𝜇𝑖𝑖�      (19) 

Conversely, a predicted mean value (µ) can be obtained from the inverse link function: 

𝜇𝜇𝑖𝑖 = 𝑔𝑔(𝜂𝜂𝑖𝑖)−1     (20) 
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which, in turn, can be inputted to the error distribution (Equation 18) to provide an estimate of 
𝑦𝑦� along with a corresponding estimate of the random error. For example, in the Gaussian case: 

𝑦𝑦�𝑖𝑖 ~ 𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡�𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2� =  𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡�𝑔𝑔(𝜂𝜂𝑖𝑖)−1,𝜎𝜎𝑖𝑖2�    (21) 

This additional linkage allows the linear relationship described in ηi (Equation 17) to be 
transformed to better describe the observed values, while retaining the assumed underlying 
error distribution for the data. In the case of a simple linear model, this relationship is referred 
to as “identity” (i.e. no transformation), so 𝑦𝑦�𝑖𝑖 simply equals ηj. However, for a log 
transformation, the corresponding link and inverse link functions are: 

𝜂𝜂𝑖𝑖 = 𝑔𝑔�𝜇𝜇𝑖𝑖� = log𝑒𝑒  (𝜇𝜇𝑖𝑖)     (22) 

𝜇𝜇𝑖𝑖 = 𝑔𝑔(𝜂𝜂𝑖𝑖)−1 =  e𝜂𝜂𝑗𝑗     (23) 

The chosen link function will depend on the nature of the data. For survival data the logit is the 
most commonly applied link function, since binomial outcomes are used to estimate 
proportions (p) using the binomial distribution Bin(n, p). The logit, i.e. the log of the odds ratio 
(see Section 12.4.2.3), is a suitable link function for binomial data because it transforms values 
into a linear scale (i.e. the linear predictor), between plus and minus infinity, from values on a 
sigmoidal scale between 0 and 1 (i.e. binomial data):   

𝜂𝜂𝑖𝑖 = 𝑔𝑔�𝑝𝑝𝑖𝑖� = log𝑒𝑒  (
𝑝𝑝𝑗𝑗

1−𝑝𝑝𝑗𝑗
)     (24) 

𝑝𝑝𝑖𝑖 = 𝑔𝑔(𝜂𝜂𝑖𝑖)−1 =  e𝜂𝜂𝑗𝑗

1+ e𝜂𝜂𝑗𝑗
    (25) 

The logit is the inverse of the cumulative distribution function for the logistic probability 
distribution; therefore, this type of model is generally referred to as logistic regression. Other 
link functions can be applied to binomial data in GLM, including probit, log and complimentary 
log-log. However, these are much less commonly applied to discard survival data and are not 
discussed here. 

13.1.1.3 The logistic regression: a GLM for binomial data 

The logistic regression is a specific case of the GLM that allows the modelling of a binary 
response variable (e.g. the fate of a discarded animal, alive or dead). It is essentially a weighted 
regression using the individual sample sizes as weights, in which the logit link function ensures 
linearity (Crawley, 2013). The nature of the explanatory variables can be continuous 
(quantitative) or discrete (e.g. factors), as is always the case with GLMs.  

The following equation shows the binomial GLM for a random response variable Y, following 
a binomial distribution characterized by a number of events per observation (nj; e.g. the number 
of fish in haul j at the time of discarding), and the probability of a positive outcome [pj; e.g. the 
probability that discarded fish in haul j are alive; i.e. 𝑌𝑌𝑖𝑖  ~ 𝐵𝐵𝑖𝑖𝐵𝐵(𝐵𝐵𝑖𝑖 , 𝑝𝑝𝑖𝑖), with an expected value 
E(Yj) and variance var(Yj) ]: 

𝑌𝑌𝑖𝑖~𝐵𝐵𝑖𝑖𝐵𝐵(𝐵𝐵𝑖𝑖, 𝑝𝑝𝑖𝑖)  

𝐸𝐸�𝑌𝑌𝑖𝑖� = 𝐵𝐵𝑖𝑖. 𝑝𝑝𝑖𝑖 and 𝑖𝑖𝑡𝑡𝑡𝑡�𝑌𝑌𝑖𝑖� = 𝐵𝐵𝑖𝑖 . 𝑝𝑝𝑖𝑖 . (1 − 𝑝𝑝𝑖𝑖) 

logit�𝑝𝑝𝑖𝑖� = log �
𝑝𝑝𝑗𝑗

1−𝑝𝑝𝑗𝑗
� =  𝑏𝑏0 + 𝑏𝑏1. 𝑥𝑥1𝑖𝑖 + ⋯+ 𝑏𝑏𝑘𝑘 . 𝑥𝑥𝑘𝑘𝑖𝑖   (26) 
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The right side of the equation is then the same as in the linear model, and 𝑝𝑝 is equal to: 

𝑝𝑝𝑖𝑖 =
exp (𝑏𝑏0 + 𝑏𝑏1. 𝑥𝑥1𝑖𝑖 + ⋯+ 𝑏𝑏𝑘𝑘 . 𝑥𝑥𝑘𝑘𝑖𝑖)

1 + exp (𝑏𝑏0 + 𝑏𝑏1. 𝑥𝑥1𝑖𝑖 + ⋯+ 𝑏𝑏𝑘𝑘 . 𝑥𝑥𝑘𝑘𝑖𝑖)
 (27) 

In matrix notation, Equation 26 is equivalent to: 

logit(𝑝𝑝) = log �
𝑝𝑝

1 − 𝑝𝑝
� =  X𝐵𝐵  (28) 

With B, the vector of estimated parameters of dimension (k + 1), and X, the design matrix of 
dimension [N·(k + 1)], where N is the total number of observations. This notation will help in 
understanding the structure of mixed models later in this section. 

13.1.1.4 Fitting a GLM in R 

The tools for implementing generalized linear models are readily available in R and are 
included in the baseline package “stats”, in the function glm(). The model formula (i.e. the 
response variable and its predictors), the dataset, and the chosen link function are specified in 
the glm() function. Details on model formula can be found in the help pages of each function. A 
worked example (case study) is presented in Information Box 13.1. For additional detailed 
worked examples using R, the reader is referred to Buckley (2015) and Zuur et al. (2009b, 2013) 
as well as online tutorials listed at the end of this section. 

 

Information Box 13.1. Fitting a GLM in R – worked example 

The following R code illustrates: (i) how the numbers of dead and surviving animals are 
combined into a survival ratio object and (ii) how this is included in a GLM fitting a 
simple model with a single covariate (Variable_1) and a factor (Factor_A) to the observed 
data. The error distribution and link function to be used are implemented by setting the 
“family” parameter of glm() to the appropriate value [i.e. for logistic regression, set 
family = binomial(logit)]. 

# Generate mortality ratio data-frame 
surv_ratio <- cbind(SurvData$n_surv, SurvData$n_mort ) 
 
# Fit GLM with explanatory variables to survival ratio 
GLM_1 <- glm(surv_ratio ~ Variable_1 + Factor_A, data= SurvData,  
family= binomial(logit) ) 

Equivalently, the fate of individual fish (yjj = 0 for dead fish; yj = 1 for alive) can be 
modelled as a Bernoulli process (a binomial process with a sample size nj = 1): 

GLM_1 <- glm(fate ~ Variable_1 + Factor_A, data= SurvData,  
family= binomial(logit) ) 

This approach was applied to data from the study of Benoît et al. (2012), which examined 
the survival of trawl-caught individual fish for several species. As part of their study, the 
authors held captive in on-board tanks fish that were observed to be moribund (but not 
necessarily dead) following capture and handling, with the aim of determining their fate. 
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Information Box 13.1 (continued) 

Fish that were considered dead within the first hour of captivity were deemed to have 
died during either capture or handling (compared to having died sometime after release 
into the water). The authors used a binomial GLM to model the probability of death 
during capture and handling as a function of the time spent on deck prior to release to 
the water (deck time). The effect of other covariates was not considered, though residual 
variability was propagated to their final discard mortality estimates as part of a larger 
model. Data for American plaice (Hippoglossoides platessoides) are analysed here as a 
worked example, with further details in the online supplementary materials (OSM). 

The R code for the basic model with deck time as the only covariate is: 

#fit the basic binomial GLM to the American plaice data 

glm1 <- glm(dead ~ decktime, family  =binomial(link='logit') ,data 
= pla2) 

and predictions from the model are generated using the following code: 

#generate predicted values and confidence intervals 

df = data.frame( decktime=rep((dt=0:75),times=1))  

preds = predict(glm1, newdata = df, type = "link", se.fit = 
TRUE) 

critval = 1.96 ## approx 95% CI 

upr = preds$fit + (critval * preds$se.fit) 

lwr = preds$fit - (critval * preds$se.fit) 

fit = preds$fit 

fit2 = glm1$family$linkinv(fit) 

upr2 = glm1$family$linkinv(upr) 

lwr2 = glm1$family$linkinv(lwr) 

The parameter estimates and summary of fit for this model are: 

Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -1.51065    0.34996  -4.317 1.58e-05 *** 
decktime     0.09917    0.01061   9.343  < 2e-16 *** 

 
Null deviance: 451.58  on 663  degrees of freedom 
Residual deviance: 333.00  on 662  degrees of freedom 
AIC: 337 

The effect of deck time is positive on the probability of mortality and is highly statistically 
significant. When compared to a summary of the data, predictions from this model 
appear to fit well for deck times of 40 min or more, but less so for shorter deck times 
associated with smaller sample sizes (Figure 13.1). The model predicts that ca. 20% of the 
plaice will die during capture or haulback (i.e. at a deck time of zero) and that all plaice 
will have died before being released to water after ca. 70 min spent on deck. In 
Information Box 13.2, we will consider improvements to this model by adding other 
potentially important covariates. 
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13.1.1.5 Interpreting GLM coefficients 

In the framework of GLM, the effect of each explanatory variable [xj (j = 1 to k)] is additive to the 
base value of the linear predictor b0. Equation 16 associates a parameter b with each of the 
explanatory variables. This parameter represents the effect size of the explanatory variable on 
the overall value of the linear predictor [i.e. the log(odds) of the response variable in the case of 
the logistic regression; see Section 12.2.2.4 for details on interpreting “odds”]. The general form 
of the logistic curve with respect to different values of b is shown in Figure 13.2. The estimation 
of the different b parameters is usually computed using maximum likelihood estimation. The 
parameter b refers to the effect on the linear predictor of a change of 1 unit in the explanatory 
variable. This is important to consider when the explanatory variables have various dimensions 
and types:  

• For continuous predictors (e.g. body length, crowding, and, in the example above, 
deck time), each addition of 1 unit will create an increase equal to b in the linear 
predictor;   

• For binary predictor variables (e.g. gender, species), the effect size corresponds to the 
difference between an individual with the property vs. an individual without (i.e. the 
difference from the base level, defined by the zero value); 

• For categorical predictors (e.g. gear type: trawl, gillnet, or longline), there will be l – 1 
b parameters, where l is the number of categories (or levels) for the variable with one 
of the categories chosen as the baseline case. Note that binary predictor variables are 
merely a special case of categorical predictors with l = 2. 

Information Box 13.1 (continued) 

 

Figure 13.1. The observed (circles) and predicted (line with 95% confidence interval indicated by 
shading) proportion of American plaice that died during capture and handling as a function of deck 
time (min). Observations were summarized in 10-min bins, and sample size in each bin is indicated 
by circle size according to the inset legend. 
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Figure 13.2. General form of the logistic curve, with 𝒑𝒑 → 𝟏𝟏 for 𝒃𝒃 > 𝟎𝟎 and  𝒑𝒑 → 𝟎𝟎 for 𝒃𝒃 < 𝟎𝟎. Redrawn from 
Agresti, 2013. 

13.1.1.6 Important considerations specific to GLM 

Overdispersion 

Ovidispersion occurs when there is more variation in the observed data (or residuals) than is 
predicted by the specified error distribution e.g. binomial distribution, Bin(n,p). Overdispersion 
is indicated when the dispersion parameter (ф; ratio of the residual deviance to the residual 
degrees of freedom in a model) is significantly > 1. It can be the result of real issues in the 
underlying variation in the data (e.g. too many zeros, outliers in the response variable, 
clustering of observations, or correlation between observations), or it can be caused by model 
misspecification (i.e. missing covariates or interactions, non-linear effects of covariates entered 
as linear effects, inappropriate link function; Zuur et al., 2009b; Crawley, 2013). 

Overdispersion can first be addressed by trying to improve the model specification, i.e. by 
adding covariates, interactions, and polynomial terms to the model; or, when the data are 
clustered/hierarchical, using a GLMM (Section 13.1.2). If that does not work, one solution is to 
correct the assumed variance in the model fit using a dispersion parameter (ф), i.e. np(1 – p) as 
defined by the binomial distribution becomes np(1 – p)ф (where ф > 1). In R, this is done by 
using family = quasibinomial in the glm() function rather than family = binomial. However, a better 
option to account for overdispersion is to fit a GLMM with an observation-level random effect 
(Section 13.1.2) or use a beta binomial distribution (not presented here, but see Zuur et al., 2013).  

Overdispersion in the American plaice example is considered in Information Box 13.2, once 
additional potential covariates to the model have been incorporated. 

Hypothesis testing 

p-values generated from the binomial distribution are not exact, due to the non-normal and 
discrete nature of the binomial probability distribution (Newcombe, 2013). As a consequence, 
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any inferences should be made cautiously when hypothesis testing (e.g. using the Wald test to 
assess the significance of parameter estimates) with small sample sizes (n < 30), especially when 
the parameters are marginally significant, or when they explain a very small fraction of the total 
deviance (Agressi, 2013; Crawley, 2013). Where applicable, the use of appropriate likelihood 
ratio tests (LR) and information criteria (e.g. AIC and BIC) are recommended to support any 
inferences. In addition it must be noted note that if the data are overdispersed and a 
quasibinomial distribution was used to fit the model, it is necessary to use the F-test in the LR 
test (as opposed to the standard Chi-squared test), and the modified QAIC should be used 
instead of AIC. 

13.1.1.7 Model selection 

The most appropriate model is generally the one that describes the maximum amount of data 
variability using the smallest set of relevant explanatory variables, i.e. the most parsimonious 
model. To identify such a model, one needs to fit and score several models and then compare 
them. It is important that the number of candidate covariates be restricted to those variables 
that can reasonably be expected to affect mortality, in order to minimize potential problems 
associated with multiple comparisons and type-I error (e.g. introduction of spurious covariates). 
For comprehensive guidance on model selection in GLMs, see McCullagh and Nelder (1999), 
and Zuur et al. (2009b), and Agresti (2013), and the links to tutorials (Section 13.1.1.9). 

When fitting a GLM, it is scored using a likelihood and its associated value, the log-likelihood 
(Fisher, 1925). The aim of the modelling process is to identify the parameter values from the 
regression (bk) which maximize the likelihood or log-likelihood function for the given data. 
These calculations are thoroughly detailed in d McCullagh and Nedler (1999, pp. 114–124) and  
Czepiel (2002). Other scoring indices based on the log-likelihood are the deviance and the 
Akaike Information Criteria (AIC; Akaike, 1998). These are indices arising from the 
“information theory” (Burnham and Anderson, 2002) and are measures of relative model fit to 
the data. Thus, each model has a specific value of log-likelihood, deviance, and AIC, depending 
on the explanatory variables included in the model. To choose the “best” model, one will 
consider which parameters to include, the meaning of these parameters in relation to the 
observed phenomenon, their contribution to the overall model, and how much of the variability 
in the data they account for. The significance of a parameter within a model can be assessed 
using several methods. Wald and Chi-squared tests can be used to identify and sequentially 
remove the least significant parameters from a model, but there are precision issues (see 
Section 13.1.1.6). Alternatively, nested models can be compared using the likelihood ratio (LR) 
and deviance tests, while AIC can be used to compare the relative fit of any model provided the 
response observations do not change. However, AIC does not characterize the statistical 
significance of the different explanatory variables. 

In Information Box 13.2 the worked example from Information Box 13.1 is continued with the 
addition of covariates and considering overdispersion. 

13.1.1.8 Model checking 

Finally, model residuals should be checked to ensure that the model assumptions are not 
violated, i.e. due to bias, heterogeneity, overdispersion, or dependence issues (see Zuur et al., 
2009b for further guidance and OSM for examples).  

Residuals from glm5 of the American plaice data display some important patterns as a function 
of deck time and associated with season (Figure 13.3), suggesting that model assumptions may 
be violated and that the present results should be interpreted with caution. Improvements to 
the model, which may address this problem, are examined in the next section on GLMMs 
(Section 13.1.2). 
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Figure 13.3. Pearson residuals for model glm5. 

 

Information Box 13.2. Fitting a GLM in R – worked example part 2 

Continuing the worked example from Information Box 13.1, two additional covariates 
were considered in modelling the American plaice data: length of individual fish (in cm) 
and season in which they were captured, either summer (late June and July) or autumn 
(October and November). Different models including each covariate singly or in 
combination were compared using AIC (details in the OSM). The most parsimonious 
model (glm5) was one that included the additive effects of deck time and season: 

glm5 <- glm(dead~decktime+season,family=binomial(link='logit') 
,data=pla2) 
summary(glm5) 

 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -6.47116    0.92823  -6.971 3.14e-12 *** 
decktime      0.19745    0.02266   8.713  < 2e-16 *** 
seasonsummer  3.78248    0.58636   6.451 1.11e-10 *** 
 
Null deviance: 451.58  on 663  degrees of freedom 
Residual deviance: 265.39  on 661  degrees of freedom 

AIC: 271.39 

Plaice captured in summer that were moribund prior to release into the water had a lower 
probability of dying during capture and handling as a function of deck time compared to 
ones captured in autumn (Figure 13.3). After 30 min on deck, plaice captured in summer 
had < 50% chance of having died prior to release, whereas nearly 100% of autumn-caught 
plaice were predicted to be dead. There was no evidence of overdispersion associated 
with glm5 (ф = 0.87). 
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13.1.1.9 Further reading on GLMs and online tutorials 

Further reading 

Agresti (2013): a reference for categorical data analysis. Chapters 4 and 5 are dedicated to GLM 
and to the logistic regression. Provides details on model selection, with many study cases. 

Buckley (2015): a non-technical introduction to GLM, with worked examples and R code in 
supplementary online materials. 

Burnham and Anderson (2002): details on information theory. 

Information Box 13.2 (continued) 

 

Figure 13.4. The observed (circles) and predicted (line with 95% confidence interval indicated by 
shading) proportion of American plaice that died during capture and handling as a function of deck 
time (min) and season (colour). Observations were summarized in 10-min bins, and sample size in 
each bin is indicated by circle size according to the inset legend. 

Adding fish length to glm5 (producing glm6) resulted in a higher AIC (273.2), and the 
associated parameter estimate was not statistically significant: 

glm6 <- glm(dead ~ decktime + season + length, 
family=binomial(link='logit') , data=pla2) 
 
anova(glm5,glm6,test='Chi') 
 
 
Analysis of Deviance Table 
 
Model 1: dead ~ decktime + season 
Model 2: dead ~ decktime + season + length 
 
  Resid. Df Resid. Dev Df Deviance Pr(>Chi) 
1       661     265.39 

2       660     265.23  1  0.16325   0.6862 

In Information Box 13.4 the worked example is continued using GLMM. 
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Crawley (2013): a concise introduction to conducting statistical models and GLM in R (see 
Chapters 9, 13, 16, and 17). 

Czepiel (2002): provides details on parameters estimation. 

Hosmer et al. (2013): logistic regression. 

McCullagh and Nelder (1999): the reference for GLMs. It requires some mathematical 
background. 

Zuur et al. 2009b: a non-technical introduction to GLM, with worked examples and R code (see 
Chapters 8 and 10). 

Online tutorials 

http://ww2.coastal.edu/kingw/statistics/R-tutorials/logistic.html: This tutorial provides a step-
by-step introduction to the logistic regression with GLMs. 

https://stats.idre.ucla.edu/r/dae/logit-regression/: This tutorial illustrates the difference in 
interpreting the estimated coefficients for continuous or categorical predictors. The author also 
introduces an interesting graph to visualize the results of the logistic regression for different 
predictors´ levels. 

https://denishaine.wordpress.com/2013/03/19/veterinary-epidemiologic-research-glm-
evaluating-logistic-regression-models-part-3/: A very complete tutorial on nested models for 
logistic regression built in three distinct parts. The link is to the third part, but earlier ones can 
also be easily accessed through the link. 

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqhow-are-the-likelihood-ratio-wald-
and-lagrange-multiplier-score-tests-different-andor-similar/: An insight on the difference 
between a LR test and a Wald test. 

13.1.2 Generalized linear mixed models (GLMM) 

GLMM are an extension to GLM that includes both fixed and random effects. This allows the 
structure of a hierarchical dataset to be taken into account in the modelling process and 
addresses issues of non-independence in the data (i.e. nested data, temporal and spatial 
correlations, and repeated measures). GLMM can make analysis of hierarchical data from 
survival assessments statistically more robust. However, aspects of GLMM are still in 
development, and these approaches are considered challenging even for trained statisticians 
(Bolker et al., 2009; Zuur et al., 2009b; Zhang et al., 2011; Bolker, 2015). As such, these models 
should be used under the guidance of an experienced analyst or statistician. 

As discussed in Section 12 (Information Box 12.3), the observed survival of fish caught in one 
particular haul is likely to be more related to other fish in that haul than to other fish in other 
hauls, due to random differences in unspecified conditions among hauls (e.g. temperature, 
fishing depth, weather conditions). This random variation among data from different hauls can 
be a nuisance when analysing the survival data. However, it can be accommodated in GLMM 
by assigning it as a “random effect” in the model that is allowed to have a different variance 
structure to the fixed effects. Thus, predictions from a GLMM (fitted values with confidence 
intervals) give estimates of survival for fish from a “typical haul” in a generalized population. 
This is a great advantage over a standard GLM. GLM can only give estimates and confidence 
intervals with respect to the observed data, making it unreasonable to extrapolate inferences to 
the wider population unless the data are considered truly representative of that population. 

http://ww2.coastal.edu/kingw/statistics/R-tutorials/logistic.html
https://stats.idre.ucla.edu/r/dae/logit-regression/
https://denishaine.wordpress.com/2013/03/19/veterinary-epidemiologic-research-glm-evaluating-logistic-regression-models-part-3/
https://denishaine.wordpress.com/2013/03/19/veterinary-epidemiologic-research-glm-evaluating-logistic-regression-models-part-3/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqhow-are-the-likelihood-ratio-wald-and-lagrange-multiplier-score-tests-different-andor-similar/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqhow-are-the-likelihood-ratio-wald-and-lagrange-multiplier-score-tests-different-andor-similar/
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13.1.2.1 Fixed and random effects: definitions 

Mixed-effects models are an extension of linear and generalized linear models that allow for 
both fixed and random effects. Unfortunately, there is considerable ambiguity in statistical 
literature with respect to definitions of “fixed” and “random” effects (Gelman, 2004). To help 
clarify, for the analysis of data from survival experiments, here are some relevant definitions 
and examples: 

Fixed effects 

Fixed effects are parameters whose levels are specifically controlled in the design or are 
measured during the course of the experiment. They include effects of covariates, differences 
among treatments, and interactions (e.g. species, capture method, catch sorting method, fishing 
grounds). 

Random effects 

Random effects are essentially the parameters in a model over which the experimenter has little, 
if any, control between replications, or “nuisance” variables that are biologically uninteresting. 
For survival assessments, random effects include factors/variables that may vary among 
replications or other hierarchical levels, e.g. between samples of fish with a haul, from haul to 
haul, and from boat to boat. Their treatment in the model is determined by whether they are 
seen as just a “nuisance” variable or as a potential predictor of the response variable (survival). 

13.1.2.2 The GLMM model 

Using the general form of the model in matrix notation (Equation 28), we can see that GLMM is 
an extension of the GLM: 

logit(𝑝𝑝) =  𝐗𝐗𝑩𝑩 + 𝐔𝐔𝑨𝑨     (29) 

where, as with the GLM, B is the vector of parameters to be estimated of length (k + 1) associated 
with the design matrix of fixed effects 𝐗𝐗 of dimensions: j observations x (k + 1) fixed effects. In 
addition, there is a random-effects matrix 𝐔𝐔 of dimensions: j observations x m random-effect 
subjects.  The matrix U has a corresponding coefficient A vector of the random effects of 
dimension: m x 1; when a single random effect is considered.  Of course, this can be generalised 
to a larger number of random effects. Also, while variance for the overall model is still described 
using the appropriate error distribution [e.g. Bin(n, p)], the random effects have their own 
variance, which is expressed in the linear predictor and generally assumed to be normally 
distributed 𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡(0,𝜎𝜎𝑚𝑚2 ) (Lin, 1997; Zuur et al., 2009b). For example, to include a random effect, 
e.g. for “haul”, with m levels or subjects (each identified as am), the model would be formulated 
as follows: 

𝑌𝑌𝑖𝑖𝑡𝑡~ 𝐵𝐵𝑖𝑖𝐵𝐵(𝐵𝐵𝑖𝑖𝑡𝑡, 𝑝𝑝𝑖𝑖𝑡𝑡) 

𝑖𝑖𝑁𝑁𝑔𝑔𝑖𝑖𝑡𝑡�𝑝𝑝𝑖𝑖𝑚𝑚� = 𝑖𝑖𝑁𝑁𝑔𝑔 �
𝑝𝑝𝑗𝑗𝑗𝑗

1−𝑝𝑝𝑗𝑗𝑗𝑗
� =  𝑏𝑏0 + 𝑏𝑏1. 𝑥𝑥1𝑖𝑖𝑚𝑚 + ⋯+ 𝑏𝑏𝑘𝑘 . 𝑥𝑥𝑘𝑘𝑖𝑖𝑚𝑚 + 𝑡𝑡𝑚𝑚  (30) 

𝑡𝑡𝑚𝑚~ 𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡(0,𝜎𝜎𝑚𝑚2 ) 

13.1.2.3 Important considerations specific to GLMM 

Estimation of parameters 

As with GLM, parameters in the model can be estimated by maximum likelihood (ML). 
However, the estimation of random effects in GLMMs requires special treatment, since these 
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need to be “integrated out” of the likelihood when estimating fixed-effect parameters. Various 
methods have been developed to fit GLMMs, including pseudo- and penalized quasi-likelihood 
(PQL), Laplace approximations, Gauss-Hermite quadrature (GHQ), and Markov chain Monte 
Carlo (MCMC) algorithms (Table 13.1; Bolker et al., 2009; Bolker, 2015). The selection of the most 
appropriate method should consider its respective advantages and disadvantages and will 
depend on the nature of the data (including overdispersion), complexity of the model 
(particularly the number of random parameters), and the computational processing power 
available. For more detailed practical guidance on the selection of likelihood estimation 
methods, see McCulloch and Searle (2001; Chapter 10), Bolker et al. (2009), Zuur et al. (2009b; 
Chapter 13), and Bolker (2015). 

For each of these methods, the standard ML method estimates the standard deviations of the 
random effects, assuming that the fixed-effect estimates are correct. However, it is important to 
recognize that ML generally underestimates random-effect standard deviations, except for very 
large datasets. For standard linear mixed modelling (LMM), a restricted maximum likelihood 
(REML) estimation, which averages over some of the uncertainty in the fixed-effect parameters, 
can be used to address this problem (Zuur et al., 2009b). However, for GLMMs, the application 
of REML has not been properly defined, and has been excluded from many GLMM-related R 
packages. As most survival assessments are unlikely to satisfy the “very large data-set” 
requirement , the only practical solution is to fit the GLMM using ML, but to supplement this 
by using bootstrapping to both generate more reliable estimates of uncertainty, and support 
any inferences made during model selection and/or hypothesis testing. 

Table 13.1. GLMM parameter estimation methods (adapted and updated from Bolker et al., 2009). 

Method Advantages Disadvantages R function 
{package} 

Penalized quasi-
likelihood (PQL) 

Flexible, widely 
implemented 

Likelihood inference 
inappropriate; biased for large 
variance or small means; not 
preferred for final models or 
statistical inference 

glmmPQL 
{MASS} 

glmm {GLMM} 

Laplace approximation 
(c.f. as GHQ, but with 
single integration 
point) 

More accurate than 
PQL 

Slower and less flexible than 
PQL 

glmer {lme4, 
lme4a} 
glmmML 
{glmmML} 
glmm.admd 
{glmmADMD} 

Gauss-Hermite 
quadrature (GHQ) (as 
above, but with >1 
integration point) 

More accurate than 
PQL and Laplace 

Slower than Laplace and PQL, 
particularly with more 
integration points; limited to 2–3 
random effects; performs poorly 
with large datasets 

glmer {lme4, 
lme4a} 
glmmML 
{glmmML} 
gnlmm {gnlmm] 

Markov chain Monte 
Carlo (MCMC) 

Highly flexible, 
arbitrary number of 
random effects; 
accurate 

Very slow, technically 
challenging, Bayesian framework 

MCMCglmm 
{MCMCglmm} 
glmm.admd 
{glmmADMB}1 

1 uses Laplace approximations, but allows post-fit estimation with MCMC. 
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Model complexity 

The model should be restricted a priori to a feasible level of complexity, i.e. > 5–6 random-effect 
levels per random effect, and > 10–20 samples per treatment level or experimental unit (Bolker 
et al., 2009) 

i) Overdispersion: As with GLM, overdispersion can be due to real issues in the 
underlying variation in the data, or can be the result of model mis-specification 
(Section 13.1.1.6). Solutions to overdispersion in GLMM can include (i) adding 
covariates or interactions, (ii) including individual-level random effects, e.g. using 
“fish” as a random effect when multiple fish are observed per replicate, (iii) using 
alternative distributions, i.e. beta-binomial, and (iv) using a zero-inflated GLMM if 
appropriate. For further discussion see: https://stat.ethz.ch/pipermail/r-sig-mixed-
models/2011q1/015393.html 

ii) Hypothesis testing: As with GLM, formal hypothesis tests (e.g. Wald Z, Chi-squared, 
t, and F tests) are challenged by the properties of the binomial discrete probability 
distribution, particularly with respect to the uncertainty in marginal p-values. 
Furthermore, hypothesis testing and information theory approaches (i.e. AIC, QAIC) 
are also affected by “boundary effects” and the need to estimate degrees of freedom 
(d.f.) for random effects. However, parametric bootstrapping techniques can be used 
to generate more reliable estimates of uncertainty and increase the confidence in any 
inferences made during model selection and/or hypothesis testing. 

iii) Boundary effects: Testing the null hypothesis for the standard deviations of the 
random effects (σa = 0) is challenged by the fact that σ must be ≥ 0. This violates an 
assumption in hypothesis testing that the null values are not on the feasible limit of 
possible values. To overcome the risk of type II errors associated with this, the p value 
of the Chi-squared test should be divided by 2 (Bolker et al., 2009). Note: AIC and 
QAIC are affected by analogous problems.  

iv) Estimating effective degrees of freedom (d.f.) for random effects: The effective degrees 
of freedom (d.f.) for random effects, needed for Wald t or F tests or AIC, should be 
between 1 and n – 1 (where n is the number of random-effect levels), and depends on 
the strength of the intra-subject correlation. However, defining the required d.f. is a 
challenge, even for experienced statisticians. Various methods can be employed to 
help calculate the required d.f., which are summarized by Bolker et al. (2009). 

13.1.2.4 Model fitting, selection, and checking 

As with GLM, the aim is to identify the most parsimonious model (i.e. maximize the amount of 
variability in the data described by the model while using the smallest possible set of 
explanatory variables). Examples of packages and functions for fitting GLMMs in R can be seen 
in Information Box 13.3. Bolker et al. (2009), Zuur et al. (2009b; pp. 120–129, and Bolker (2015) 
provide informative overviews for fitting a GLMM, with worked examples using R. Overall, 
fitting a GLMM can be summarized in a six-step procedure (based on Bolker et al., 2009 (with 
input from Zuur et al., 2009a, 2009b, 2012): 

1. Specify fixed and random effects. 
2. Choose an error distribution and link function. 
3. Graphical pre-modelling data checks to identify potential issues (e.g. underlying 

distribution of data, extreme outliers, collinearity, heterogeneity, etc.; refer to Zuur et 
al., 2009a for a systematic protocol). 

4. Fit fixed-effect GLMs to full (pooled) dataset and each level of random factors. 

https://stat.ethz.ch/pipermail/r-sig-mixed-models/2011q1/015393.html
https://stat.ethz.ch/pipermail/r-sig-mixed-models/2011q1/015393.html
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5. Fit full GLMM (a. random effects; b. fixed effects). 
6. Check model assumptions parameter estimates and CIs for final model. 

 
When fitting mixed models, including GLMMs, Zuur et al. (2009b) state that it is important to 
properly define the random variance structure (i.e. random effects) within the model, before 
defining the most parsimonious combination of fixed effects in the model. Therefore, the GLMM 
should ideally include as many random and fixed effects as is practical. However, in practice 
this can present a challenge, particularly for small datasets, because it is easy to over-
parameterize a model with both random and fixed effects. This, in turn, greatly increases the 
likelihood that the approximation methods may not converge, or may run into other issues. If 
such problems are encountered, it may be necessary to simplify the model structure by 
removing some parameters and/or explanatory variables (see Bolker et al., 2009 for more details 
and other potential remedies). 

For worked examples of these fitting procedures, see Information Box 13.4 and refer to Bolker 
(2015) and Zuur et al. (2009b, 2013) as well as the online tutorials listed at the end of this section. 

 

Information Box 13.3. Examples of R packages and functions for fitting GLMMs. 

There are several R functions (and packages) available that can fit GLMM, including 
glmmPQL[MASS], glmer[lme4],  glmmML and glmmboot[GLMM], gnlmm[gnlmm], and 
MCMCglmm[MCMCglmm]. The different functions have differing capabilities for 
utilizing different parameter-estimation methods (Table 13.1). Furthermore, the coding 
formats differ among packages, and some packages are limited to fitting only random 
slope models. Here are some examples to illustrate these differences: 

i) Random slope model using glmer [package: lme4] with the Laplace approximation 
(nAGQ = 1). Note: nAGQ set to single sampling point. 

GLMM_Lap1 <- glmer(surv_ratio ~ Variable_1 + Factor_A 
                + ( Variable_1 | Group), 
                data = SurvData,  
                family=binomial, 
                nAGQ = 1) 

ii) Random intercept model using glmer [package: lme4] with the Laplace 
approximation (nAGQ = 1). Note: nAGQ set to single sampling point. 

GLMM_Lap2 <- glmer(surv_ratio ~ Variable_1 + Factor_A 
                  + ( 1 | Group), 
                  data = SurvData,  
                  family=binomial(link=logit), 

                  nAGQ = 1) 

iii) Random intercept model using glmer [package: lme4] with adaptive Gauss-Hermite 
quadrature (AGHq) approximation. Note: nAGQ set to 10 sampling points. 

GLMM_GHq <- glmer(surv_ratio ~ Variable_1 + Factor_A 

                  + ( 1 | Group), 
                  data = SurvData,  
                  family=binomial(link=logit), 
                  nAGQ = 10) 
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Information Box 13.3 (continued).  

iv) Random intercept model using glmmPQL [package: MASS] with penalized quasi-
likelihood (PQL) approximation. 

glmmPQL_PQL <- glmmPQL(surv_ratio ~ Variable_1 + Factor_A, 
                    random =  ~ 1 | Group, 
                    data = SurvData,  
                    family=binomial(link=logit)) 

v) Random intercept model using glmm [package: glmm] with Monte Carlo/maximum 
likelihood (MCML) approximation. 

glmm_PQL2 <- glmm(surv_ratio ~ Variable_1 + Factor_A, 
                  random = ~ 0 + Group, 
                  varcomps.names = c("Group"), 
                  data = SurvData,  
                  family=binomial.glmm, 
                  m = 100, 
                  doPQL = TRUE) 

vi) Random intercept model using glmm [package: glmm] with Monte Carlo/maximum 
likelihood (MCML) approximation. 

set.seed(1234) 
 
GLMM_MCML <- glmm(surv_ratio ~ Variable_1 + Factor_A, 

                  random = ~ 0 + Group, 
                  varcomps.names = c("Group"), 
                  data = SurvData,  
                  family=binomial.glmm, 
                  m = 100, 
                  doPQL = FALSE) 

vii) Random intercept model using glmmML [package: glmmML] with maximum 
likelihood (ML) approximation. Note: only allows random intercept as a “cluster” 
effect in model. 

glmmML_ML <- glmmML(surv_ratio ~ Variable_1 + Factor_A, 
                  data = SurvData,  
                  cluster =  Group, 
                  family=binomial ) 
 

viii) Random intercept model using glmmML [package: glmmML] with bootstrapped 
approximation. Note: only allows random intercept as a “cluster” effect in model 

glmmML_Boot <- glmmboot(surv_ratio ~ Variable_1 + Factor_A, 
                  data = SurvData,  
                  cluster =  Group, 
                  family=binomial, 
                  boot = 200) 

In reviewing these different packages and functions, we found the “glmer” function from 
the “lme4” package to be particularly useful. “lme4” is a well-established and well-
maintained R package, for which there are also additional packages for improved utility, 
particularly with respect to generating parameters for model selection (e.g. 
overdispersion tests, AICc, bootstrapped tests). More importantly, it is one of the few 
non-Bayesian functions that will allow the fitting of relatively complex random effects 
structures (i.e. more than a single random slope). 



 142  | Cooperative Research Reports Vol. 351 
 
 

13.1.2.5 Further reading and online tutorials 

Further reading 

Pinheiro and Bates (2000): a reference for mixed models with many case studies. 

Bolker (2015): a concise and non-technical introduction to GLMM for ecologists. 

Bolker et al. (2009): a “toolbox” article and a recent review on the use of GLMM for ecological 
data. It has an associated Wiki website (http://glmm.wikidot.com/). 

Zuur et al. (2009b): a reference for GLMM application in ecology with many case studies. 

Online tutorials 

https://stats.idre.ucla.edu/other/mult-pkg/introduction-to-generalized-linear-mixed-models/: 
An indepth introductory tutorial on GLMM, including details on the theory and notation.  There 
are examples of logistic/binomial GLMM, as well as for poisson/count data, but not with R code. 

https://stats.idre.ucla.edu/r/dae/mixed-effects-logistic-regression/: From the same site, as 
above, but with worked examples in R. 

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html: For FAQs on GLMM. 

http://glmm.wikidot.com/pkg-comparison. Gives a comprehensive overview of the available 
packages in R for fitting GLMM. 

 
 

 
 
 

Information Box 13.4. Fitting a GLMM in R – worked example part 3. 

In the following text, GLMM are applied to the American plaice case study outlined in 
Information Box 13.1 and Information Box 13.2. The American plaice case study involved 
664 individuals captured over 28 separate hauls. It is reasonable to expect that aspects 
associated with the different hauls could influence mortality in addition to the effect of 
covariates. These could include differences in both the capture conditions (e.g. 
environmental and gear-related) and the handling between net retrieval and release to 
water. 

A random “haul” effect was added to the previous best model for the plaice data (glm5). 
Three different formulations were considered: a random-intercept model (glmm1), a 
random-slope model for the effect of deck time (glmm2), and a random-slope-and-
intercept model (glmm3). The models were fitted using the glmer function from the lme4 
package: 

glmm1=glmer(dead~decktime+season + (1|haul) 
,data=pla2,family=binomial ) 

glmm2=glmer(dead~decktime+season + (-
1+decktime|haul),data=pla2,family=binomial ) 

glmm3=glmer(dead~decktime+season + (decktime|haul) 
,data=pla2,family=binomial ) 

http://glmm.wikidot.com/
https://stats.idre.ucla.edu/other/mult-pkg/introduction-to-generalized-linear-mixed-models/
https://stats.idre.ucla.edu/r/dae/mixed-effects-logistic-regression/
http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html
http://glmm.wikidot.com/pkg-comparison
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Information Box 13.4 (continued)  

The model glmm3 provided the best fit to the data based on AIC, with an improvement 
of 23.88 units over the next best model (model glmm2). Acknowledging the limitations 
of AIC in relation to GLMM models, the statistical significance of both random effects 
was also tested, adjusting the p-values for testing on the boundary. Both were statistically 
significant. The parameter estimates for glmm3 were the following: 

summary(glmm3) 

Random effects: 
 Groups Name        Variance Std.Dev.  
 haul   (Intercept) 228.9033 15.1296        
        decktime      0.1353  0.3678   
Number of obs: 664, groups:  haul, 28 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -10.6404     4.5342  -2.347  0.01894 *  
decktime       0.3224     0.1098   2.937  0.00332 ** 

seasonsummer   2.2556     1.4818   1.522  0.12798 
 

With the addition of the random effects, the fixed effect of season was no longer 
statistically significant. This indicated that the variation formerly attributed to season was 
now accounted for by the random effect. The effect of season was, therefore, dropped for 
glmm4: 

glmm4=glmer(dead~decktime + 
(decktime|haul),data=pla2,family=binomial ) 

summary(glmm4) 

anova(glmm3,glmm4) 

Random effects: 
 Groups Name        Variance Std.Dev.  
 haul   (Intercept) 283.6974 16.8433        
        decktime      0.1514  0.3891   
Number of obs: 664, groups:  haul, 28 
 
Fixed effects: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -8.7365     4.7049  -1.857  0.06332 .  
decktime      0.3105     0.1162   2.672  0.00754 ** 
 
      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq) 
glmm4  5 208.27 230.76 -99.134   198.27                          

glmm3  6 208.39 235.38 -98.196   196.39 1.8765      1     0.1707 
 

The overall predictions from glmm4 (Figure 13.5) differ substantially from those of the 
fixed-effect analogous model (glm1; Figure 13.1). In glmm4 the predicted mortality 
proportions for small values of deck time were considerably lower but more uncertain. 
The predictions for each haul, based on the model random effects, show that there is 
considerable between-haul variation in the relationship between deck time and the 
predicted capture and handling mortality rate. This led to a considerably improved 
pattern in model residuals, i.e. the dispersion of the residuals is now considerably 
reduced and better balanced (Figure 13.6). 
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13.2 Analysis of longitudinal survival data 

Traditionally survival or event analysis methods have generally been used for the analysis of 
longitudinal data. These analysis methods model survivorship as a function of time using non-
parametric (e.g. Kaplan-Meier method), semi-parametric (e.g. Cox proportional hazards 
analysis), or parametric models (e.g. Weibull model): 

Information Box 13.4 (continued)  

 

Figure 13.5. The observed (circles) and predicted (dark line with 95% confidence interval indicated by 
shading) proportion of American plaice that died during capture and handling as a function of deck 
time (min). The predicted values for each haul are indicated with grey lines. Observations were 
summarized in 10-min bins, and sample size in each bin is indicated by circle size according to the 
inset legend. 

 
Figure 13.6. Pearson residuals for model glmm4. 
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i) Non-parametric methods (Section 3.2.2): these models have the advantage that they 
make very few assumptions about the shape of the survivorship function (e.g. the 
survival function, S(t), is monotonically decreasing over time). However, they are 
inappropriate for making predictions beyond the range of the data. Furthermore, 
inferences on the mechanisms underlying the shape of the survivor function are 
necessarily subjective. 

ii) Semi-parametric methods (Section 3.2.3): these models use the hazard function, h(t), 
which is analogous to the survival function, and describes the instantaneous risk of 
dying (see Section 3.2.1). The most common of these approaches by far is the Cox 
proportional hazards model. It makes very few assumptions about the shape of the 
overall hazard function over time but does make assumptions about how hazard 
functions vary as a function of covariates. As with non-parametric approaches, it is 
inappropriate to make predictions beyond the range of the data, and mechanistic 
inferences based on the shape of the hazard functions are largely subjective. 

iii) Parametric methods (Section 3.2.4): these models are based on assumed forms of the 
survivorship function. That is, the hazard function is completely specified except for 
the values of the unknown parameters. Many parametric forms are possible, and the 
models can easily be expanded to incorporate plausible mechanisms affecting 
survivorship. Models making different assumptions about mechanisms can then be 
compared objectively using data. However, there is arguably a greater need to ensure 
that the models fit the data adequately with parametric models, when compared to 
fitting semi-parametric models. Furthermore, because there are more assumptions 
about model structure, there is also an increased chance of model misspecification 
which can result in biased inference. However, if a parametric model is correctly 
specified, it provides a potentially more accurate estimation and more powerful 
inferences than the Cox model.  

Each of these basic classes of longitudinal survival analyses is discussed in more detail in the 
following sections. Basic examples are presented along with key assumptions. This is not meant 
as a substitute to proper textbooks and other publications on the matter, but rather to present 
the options that are available to experimenters and analysts working with longitudinal survival 
data. The non-parametric, semi-parametric, and basic parametric analyses presented here can 
all be undertaken using the freely available R statistical software, specifically with the survival 
package. Example code to undertake these analyses in R are shown here. Packages and routines 
required to fit the models presented later in this section are noted in the subsections where those 
models are described. Several of the examples use data from a study of discard mortality of cod 
caught in bottom trawls in the Gulf of St Lawrence, Canada (details in Benoît et al., 2012). In that 
study, cod were selected at the time of discarding, their vitality was assessed using a four-level 
scale (see Table 8.1 in this report), and were held captive for upwards of 72 h to assess mortality 
(these data are available along with the associated R code in the OSM). 

13.2.1  Survival Probability Functions. 

There are several interrelated functions of event times, in addition to the survival function S(t) 
(first described in Section 12.3.1), that are used to describe survival probability. These are linked, 
among other things, with the estimation of survival rates in the presence of censored 
observations. These are briefly introduced here as they are referred to below and in the OSM: 
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The survival function S(t) 

S(t) is the probability of surviving beyond time t, i.e. Pr(T>t), where T is time to mortality (as 
defined in Section 12.3.1). As t ranges between 0 and ∞, S(t) will decrease from S(t) = 1 at t = 0 
towards 0 as t approaches ∞. 

The cumulative distribution function or lifetime distribution function F(t)  

F(t) describes the cumulative probability of mortalities as a function of time, with F(t = 0) = 0, 
and F(t) = 1 for times occurring after all individuals have died. Mathematically, it can be written 
as F(t) = Pr(T ≤ t), that is, the probability of death at or prior to t. F(t) is the inverse of the survival 
function S(t), that is S(t) = 1 – F(t) = Pr(T > t), and both are bounded over the interval [0,1]. 

The probability density function f(t) 

f(t) describes the relative likelihood of dying at t and is the first-derivative of F(t); 
mathematically, f(t) = dF(t) / dt = –dS(t) / dt. 

The hazard function h(t) 

h(t) is the instantaneous risk of dying over the finite interval t + Δt, conditional on surviving to 
t. Mathematically, h(t) = f(t) / S(t). 

13.2.2 Non-parametric method: Kaplan–Meier survival model 

The non-parametric Kaplan-Meier model (KM; also known as the product–limit estimator) is 
the most commonly used non-parametric method and is the focus of this section. KM calculates 
point-wise, in time, proportions of live organisms based on individual survival times, while 
accounting for censored observations. It is, in effect, the non-parametric maximum likelihood 
estimator of the survival function. Other non-parametric estimators exist, but will not be 
addressed in detail here (Cox and Oakes, 1984; Chapter 4). 

In the absence of censored observations, the KM estimator of the survival function �̂�𝑆(𝑡𝑡) is merely 
the proportion of observations in the sample with mortality times greater than t. In the case of 
single-right censoring, when all censored observations are made at the same time (tc) and all 
observed mortalities occurred prior to tc; �̂�𝑆(𝑡𝑡) is estimated in the same manner for time-points 
t ≤ tc, and �̂�𝑆(𝑡𝑡) is undefined for t > tc (i.e. we cannot estimate the survival function in the absence 
of mortality observations). In the case when some censoring times are smaller than some 
observed mortality times, the calculation is only slightly more complicated. The KM estimator 
is then defined as: 

�̂�𝑆(𝑡𝑡) = ∏ �1 −
𝑑𝑑𝑗𝑗
𝑛𝑛𝑗𝑗
�𝑖𝑖:𝑡𝑡𝑗𝑗≤𝑡𝑡  for t1 ≤ t ≤tz   (31) 

where dj is the number of individuals that die at time tj, nj is the number of individuals at risk 
at the beginning of time tj (i.e. total number of observable subjects alive and at risk of dying or 
being censored at the end of tj-1 ; see Section 12.3.1.2 for more details), and tz is the last distinct 
event time. For a given event time (tj), the quantity in the brackets of this equation is the 
conditional probability of surviving to time tj+1, given that an individual has survived to tj (i.e. 
𝑃𝑃𝑡𝑡��𝑇𝑇 > 𝑡𝑡𝑖𝑖 � 𝑇𝑇 ≥ 𝑡𝑡𝑖𝑖)). The survival function is the product of the conditional probabilities up to 
time tj. For t < t1, �̂�𝑆(𝑡𝑡) = 1, and for t > tz, �̂�𝑆(𝑡𝑡) is either equal to zero, if there are no censored 
observations at or beyond tz, or is undefined when this is not the case. So, in practice, �̂�𝑆(𝑡𝑡) will 
be defined for t0 ≤ t ≤ tz and will decrease only at times when there are observed mortalities, as 
can be seen in Equation 31. There are several estimators for the variance of the KM survival 
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function. One of the more commonly used is Greenwood’s estimator (details in Cox and Oakes, 
1984; Chapter 4.3). 

The principal use of the KM approach is to visualize the survival functions described by the 
data. This is useful for exploratory data analysis to identify which possible semi- or fully 
parametric models to use, and to provide a basis against which the fit of those models can be 
visualized and assessed. It can also be used to estimate derived quantities, such as the median 
survival time and the probability of survival to some time t.  

Using the estimated KM survival function, it is possible to test statistically for differences in 
survivorship between two groups or more. The two most popular methods are the log-rank test 
and the Wilcoxon test. Both these methods are based on large-sample, Chi-squared statistics, 
which compare observed event times to those expected under the null hypothesis of no group 
effect (for details see Allison, 2010; Chapter 3). The log-rank test has maximum power when the 
ratio of hazards is constant over time (proportional hazards), and is the more sensitive of the 
two tests to differences between groups at later times. The Wilcoxon test weights the numbers 
observed minus expected events, by the number at risk across event times. It can be biased if 
there are differences in the censoring pattern between groups.   

As noted above, the KM model can be fit using the R survival package. Additionally, alternative 
approaches to calculating confidence intervals for KM survival-function estimates are available 
in the km.ci package. A worked example can be seen in Information Box 13.5. 

 

 

Information Box 13.5. The Kaplan–Meier (KM)  model – Worked example 

Data for the post-release survival of trawl-caught cod from Benoît et al. (2012) are used to 
illustrate the KM approach. The empirical survival functions for two groups of cod are 
shown: (i) those categorized as being in excellent vitality (uninjured and responsive) and 
(ii) those in poor vitality (moderately or severely injured and barely responsive, identified 
using the variable “condition” in the R code below; Figure 13.7). This model was fitted 
using the function “survfit” [package: survival]: 

library(survival) 

km_est <- survfit(Surv(hours, (1-censored)) ~ condition, 
data=codKM) 

#note that the function uses an indicator for survival rather 
than for censoring hence the use of (1-censored) 

Using both the log-rank and Wilcoxon tests, the survivorship of the two vitality classes of 
fish was found to be statistically different (log-rank: χ2  = 48.3, p < 0.0001; Wilcoxon: 
χ2  = 47.6, p < 0.0001). 

#log-rank test for differences between groups 

survdiff(Surv(hours, (1-censored)) ~ condition, data=codKM) 

#Wilcoxon test for differences between groups 

survdiff(Surv(hours, (1-censored)) ~ condition, data=codKM, rho=1) 

 



 148  | Cooperative Research Reports Vol. 351 
 
 

 

13.2.3 Semi-parametric method: Cox proportional hazards model 

The Cox proportional hazards (CPH) model is one of the most broadly used methods to model 
mortality times. Contrary to the parametric methods described later in this section, the Cox 
method does not require the analyst to choose a particular probability distribution to represent 
mortality times. Instead, it uses a non-parametric baseline hazard function against which 
relative hazards (i.e. as a function of groups or covariates) are modelled using maximum partial 
likelihood. Thus, the approach is semi-parametric, and is potentially more robust with regard 
to model misspecification compared to parametric models. 

The basic CPH model can be written as: 

ℎ𝑖𝑖(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡) exp(𝑏𝑏1𝑥𝑥𝑖𝑖1+. . . +𝑏𝑏𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘) = 𝜆𝜆0(𝑡𝑡) exp(𝐗𝐗𝑩𝑩)  (32) 

where ℎ𝑖𝑖(𝑡𝑡) is the hazard function for an individual i, 𝜆𝜆0(𝑡𝑡) is the baseline hazard function, the 
bs are individual parameters (i.e. coefficients) for the linear predictor, which can also be 
represented as the vector of parameters B, and the xiks are values for the individual covariates 
for individual i which can be presented as the design matrix X. The baseline hazard function is 
unspecified, except that it cannot be negative.  

The CPH is a proportional hazards model because the resulting hazard functions for two 
individuals will be proportional to 𝜆𝜆0(𝑡𝑡) and, therefore, to each other, differing only in scale as 
a result of the covariates. This can be shown by taking the ratio of hazards for two individuals 
1 and 2, which yields: 

ℎ1(𝑡𝑡)
ℎ2(𝑡𝑡)

= exp [𝑏𝑏1�𝑥𝑥1,1 − 𝑥𝑥2,1�+. . . +𝑏𝑏𝑘𝑘�𝑥𝑥1,𝑘𝑘 − 𝑥𝑥2,𝑘𝑘�]  (33) 

Note that )(0 tλ  drops out, demonstrating that the ratio of the hazards is constant over time. 
Consequently, if the proportional hazards assumption holds, one can estimate the vector B 

Information Box 13.6 (continued) 

 

Figure 13.7. Kaplan-Meier non-parametric estimates of the survival functions for discarded cod in two 
vitality categories: excellent (red) and poor (green). The dashed lines are the point estimates of the 
survival function, the shaded areas are the 95% confidence bands, and the crosses indicate the times 
at which censored observations were obtained. 
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without having to specify the baseline function )(0 tλ . This is sufficient to test hypotheses about 

the effect of covariates. However, one may be interested in the shape of )(0 tλ  and the 
corresponding survival function S0(t). Once B is estimated, S0(t) can be estimated using a 
nonparametric maximum likelihood method, noting that: 

𝑆𝑆(𝑡𝑡) = 𝑆𝑆0(𝑡𝑡)exp (𝐗𝐗𝑩𝑩)    (34) 

A key assumption of the CPH is that hazards are proportional. The assumption of 
proportionality can be tested using residuals from the model (e.g. Schoenfeld residuals, 
Martingale residuals), which are assessed using a randomization procedure, or checked for any 
time-dependence which would be indicative of non-proportionality (Collett, 2003). 

A worked example of the CPH model using the cod data from Benoît et al. (2012) can be seen in 
Information Box 13.6. 

 

 
 

Information Box 13.7. The Cox proportional hazards (CPH) model – Worked example 

The CPH model was fitted to the data for the two groups of cod (“excellent” and “poor” 
vitality) from Benoît et al. (2012) with vitality class (condition) as the explanatory variable. 
Shown are the empirical survival functions for the two groups of cod, those categorized 
as being in excellent condition (uninjured and responsive) and those in poor vitality 
(moderately injured or severely injured and barely responsive; Figure 13.8). The 
likelihood ratio test of the null hypothesis of no difference in hazards between vitality 
classes produces a p-value < 0.0001. The hazard for cod in poor condition is 2.32-fold 
(1.78–3.02, 95% CI) greater than that for cod in excellent condition. 

Coxfit = coxph(Surv(hours, (1-censored)) ~ condition, 
data=codKM)  

summary(coxfit) 

 
           coef exp(coef) se(coef)     z Pr(>|z|)     
condition 0.8420    2.3210   0.1342 6.274 3.52e-10 *** 
--- 
Concordance= 0.699  (se = 0.029 ) 
Rsquare= 0.305   (max possible= 0.995 ) 

Likelihood ratio test= 47.27  on 1 df,   p=6.186e-12 

Wald test            = 39.36  on 1 df,   p=3.521e-10 
Score (logrank) test = 48.3  on 1 df,   p=3.657e-12 
 

# obtain the predicted survival functions for the two 
condition classes 

coxpred1=survfit(coxfit, newdata=data.frame(condition=3)) 

coxpred2=survfit(coxfit, newdata=data.frame(condition=1)) 

 

#test proportional hazards assumption 

cox.zph(coxfit) 

            chisq df     p 
  condition  3.62  1 0.057 

     GLOBAL     3.62  1 0.057 
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13.2.4 Parametric survival methods 

13.2.4.1 Basic models 

Parametric survival analysis methods are based on assumed probability distributions to 
represent survival times. Models are typically fitted using maximum likelihood methods. In 
their most basic form, parametric models can be built by specifying the form of the baseline 
hazard function 𝜆𝜆0(𝑡𝑡) in Equation 32. Alternatively, there are other forms that do not make the 
proportional hazards assumption. For example, whereas a proportional hazards model assumes 
that covariates have a multiplicative effect on the hazard (e.g. Equation 32), accelerated failure 
time models assume that the effect of covariates is to accelerate or decelerate survivorship. It is, 
therefore, possible to specify a model that provides a mechanistic interpretation of the process 
under study. 

There are many parametric distributions used in survival analysis, including the exponential, 
gamma, log-logistic, lognormal, and Gompertz-Makeham (for an overview of their properties 
see Cox and Oakes, 1984; Chapter 2). The Weibull survival function is one of the most commonly 
used parametric models in general, and specifically in the analysis of longitudinal data for 
discard mortality (e.g. Neilson et al., 1989; Campana et al., 2009; Depestele et al., 2014). It is 
written as: 

𝑆𝑆(𝑡𝑡) = exp[−(𝜃𝜃 ∙ 𝑡𝑡)𝛺𝛺]       (35) 

where θ and Ω are scale and shape parameters, respectively. This function is attractive due to 
the flexibility that is provided by its two parameters, which can produce a range of survival 
functions commonly encountered in ecological data (e.g. Type I, II, and III survival functions; 
Deevey, 1947; Figure 13.9). Notably, exponential mortality, typically assumed in stock 
assessments, is a special case of Equation 35 for Ω = 1. The Weibull model can be formulated as 
both a proportional-hazards model and an accelerated failure-time model. 

Information Box 13.6 (continued) 

 

Figure 13.8. Survival functions (with 95% confidence bands, dashed lines) for discarded cod in two 
vitality categories (excellent in red and poor in green) estimated using the Cox proportional hazards 
model. Crosses indicate the times at which censored observations were obtained. 



 ICES Guidelines on Methods for Estimating Discard Survival |  151 

 

 

Figure 13.9. Survival functions for the Weibull model assuming different values for the rate (theta) and shape 
(omega) parameters. Redrawn from Benoit et al. 2015. 

The effects of covariates are generally incorporated in θ, that is 𝜃𝜃 = exp (X𝐵𝐵1),  where again X is 
a design matrix for the covariates and Β1 is a vector of parameters for the effect of the covariates 
(note that the subscript 1 is introduced here because later equations will include more than one 
vector of parameters to be estimated). It is common in survival analysis to assume that omega 
(Ω) is common among groups, though this is not necessary. 

A worked example of the Weibull model can be seen in Information Box 13.7. 

 

Information Box 13.8. The Weibull model – Worked example 

The Weibull model was fitted to the Benoît et al. (2012) cod data, treating vitality as a 
categorical explanatory variable (Figure 13.10). Despite its flexibility, the Weibull model 
clearly provides a very poor fit to the data (compared to Figure 13.8). In fact, as is 
explained below, none of the basic parametric survival models is expected to adequately 
fit these data. However, as is shown later, the parametric model can be easily generalized 
to provide both an adequate fit and a mechanistic interpretation for the data resulting 
from discard mortality experiments. 

# estimate the parameters 

(sr=survreg(Surv(hours, (1-censored)) ~ condition, 
data=codKM,dist="weibull")) 

sr$coefficients 

(Intercept)   condition  
   7.025794   -1.520743  

sr$scale 

[1] 1.68263 
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13.2.4.2 Mixture-distribution models for discard mortality data 

A fundamental assumption of the Weibull model, and of other basic parametric survivor 
functions, is that they represent a homogenous mortality process. This process initiates at time 
t = 0 (e.g. discarding) and S(t) declines continuously towards zero as t increases. For discard 
mortality data that conform to these models, the conclusion must be that discard-related 
survival is nil. While there will certainly be instances in which this will be true, this has not been 
the case for the majority of studies reviewed by Benoît et al. (2012). Instead, survivorship 
patterns for the majority of reviewed species and studies were characterized by initial losses, 
followed by an asymptote in survival (e.g. the cod example above). This asymptote is generally 
assumed to reflect the point in time at which all discard-related mortality has occurred. 

Benoît et al. (2012) applied a mixture-distribution model to their data which relaxes the 
homogeneity assumption (Information Box 13.8). Under this model, the sample of discarded 
animals is assumed to be composed of a mixture of two groups of individuals: those that were 
adversely affected by the CHR process and which will die as a result, and those that were 
unaffected (i.e. immune individuals). Mathematically, this can be written as: 

S(t) =  π SD(t) + (1 - π) SI(t)     (36) 

where S(t) is the overall survival function for the sample, and, for consistency with the notation 
of Benoît et al. (2012), π  here is the probability that individuals are adversely affected, and SD(t) 
and SI(t) are the survival functions for the affected and immune groups respectively. For 
discard-mortality experiments that are short with respect to the natural longevity of the animals, 
and in which additional sources of mortality (e.g. predators, starvation) are excluded, it is 
reasonable to assume that SI(t) = 1; that is, the likelihood of death from other causes for these 
individuals during the experiment is essentially nil. (Note: ways in which this assumption can 
be relaxed are shown in the next section). With this assumption, the model reduces to:   

S(t) =  π SD(t) + (1 - π)     (37) 

Information Box 13.9 (continued) 

 

Figure 13.10. Survival functions for discarded cod in two vitality categories (excellent in red and poor 
in green) estimated using the Weibull model. 
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from which it is easy to see that once all affected individuals have died [SD(t) = 0], the overall 
survival rate become constant [S(t) = 1 – π], where π provides an estimate of the asymptotic 
discard mortality rate. 

 

Any parametric survival model can be used to describe SD(t). Using the Weibull model 
(Equation 35), the mixture-distribution model becomes: 

𝑆𝑆(𝑡𝑡) = 𝜋𝜋 ∙ exp[−(𝜃𝜃 ∙ 𝑡𝑡)𝛺𝛺] + (1 − 𝜋𝜋)   (38) 

When π = 1, all individuals are said to be adversely affected by the fishing event, such that S(t) 
= SD(t). Setting π = 1, it is clear that the Weibull model (or other parametric model of choice) is 
just a special case of Equation 37. For values of 0 < π < 1, Equation 38 can be rearranged to solve 
for t, thereby providing an estimate of the time when essentially all (e.g. 99.9%) of the CHR-
related mortality has occurred (e.g. Depestele et al., 2014): 

𝑡𝑡𝑆𝑆(𝑡𝑡)≈1−𝜋𝜋 = 𝜃𝜃−1 ∙ log (0.001)1 𝛺𝛺⁄    (39) 

Forπ = 0 (i.e. no mortality), this time is also zero. 

The influence of covariates believed to affect discard mortality can be incorporated in SD(t) as 
above, in π, or in both (Benoît et al., 2012; Depestele et al., 2014). A logistic function is used for 

Information Box 13.10. Mixed distribution model – Worked example 

From the model described in Section 13.2.4.2, the estimated discard mortality rate for cod 
in excellent condition is 0.325 (95% CI: 0.217, 0.456), while that for cod in poor condition 
is 0.846 (95% CI: 0.740, 0.914). The estimated values for theta (θ) are 0.086 and 0.181 for 
excellent and poor condition, respectively. These results indicate that cod in excellent 
condition have a high overall survival rate, but the assymptote is reached less rapidly 
than for cod in poor condition. This model is associated with an Aikaike Information 
Criteria value corrected for small sample size (AICc) of 586.48, a net improvement over 
the fit of the Weibull model above (Figure 13.11; AICc = 623.87).  

 

Figure 13.11. Predicted survival function obtained by fitting the mixture-distribution (cure-rate) 
model to the discarded cod data (solid lines) compared to the Kaplan-Meier non-parametric estimates 
of the survival functions (dashed lines and shaded areas) as an indicator of model fit. Note that the 
solid and dashed lines overlap considerably and are indistinguishable in much of the plot. 
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inclusion in π  to ensure that the parameter remains bounded in the interval [0,1]:  
𝜋𝜋 =  [1 + exp (−𝐗𝐗𝑩𝑩𝟐𝟐)]−1, noting that the matrix X may, and the vector  𝑩𝑩𝟐𝟐 will differ from the 
ones used to estimate covariate effects on θ. Benoît et al. (2012) found considerable evidence of 
vitality (covariate) effects on the mixture parameter π, since asymptotes in survivorship were 
inversely related to individual categorical vitality pre-release statuses. 

Benoît et al. (2012, 2015) and Depestele et al. (2014) found the mixture model provides a good fit 
to data from discard mortality studies for a range of species. The fit of the model to the cod data 
used above is shown in Figure 13.11. In this case, the effect of vitality is assumed to occur on the 
parameters θ and π: 

𝑆𝑆(𝑡𝑡) = 𝜋𝜋 ∙ exp[−(𝜃𝜃 ∙ 𝑡𝑡)𝛺𝛺] + (1 − 𝜋𝜋)   (40) 

with 𝜃𝜃~𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑦𝑦 and 𝜋𝜋~𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑦𝑦. 

Though they are not presented here, there are several special cases of the model that can be 
defined depending on assumptions for θ and π (e.g. fixed, fixed but estimated, variable owing 
to covariates; see Benoît et al., 2012). These various submodels provide different mechanistic 
interpretations of the discard mortality, and the models can be compared via AICc. 

There is a long history of the use of such models in medicine, where they are termed cure-rate 
models (Boag, 1949; Ibrahim et al., 2001). The name refers to the fact that the modelled asymptote 
represents the rate at which individuals were cured following the application of some 
treatment. In the software R, the cure-rate model can be fitted using the smcure package. 
Alternatively, the models can be fitted by programming the likelihood function for the model 
(available in Benoît et al., 2012) and using an optimization routine to maximize the log-
likelihood, such as the optim function in R (associated example code, OSM). 

13.2.4.3 Generalized model for discard mortality data 

Though the mixture model in Equation 36 is likely to be appropriate to many discard mortality 
studies, some of its key assumptions will be limiting for others. For example if there is additional 
mortality not related to the capture and discarding (i.e. SI(t) ≠ 1), if there are dead individuals 
prior to release (i.e. SD(t = 0) < 1), or if there is a post-release delay before mortality ensues in the 
sample (Benoît et al., 2015). Capizzano et al. (2016) identified three types or phases of mortality 
in a recent study involving tagged cod released from a recreational handline fishery into an 
acoustic-receiver array: (i) cod that died during capture and handling; (ii) cod that died soon 
after release, presumably as a result of capture, handling, and release (post-release mortality; 
Figure 13.12); and (iii) natural cod mortality, observed through monitoring cod, after release 
into their natural environment, and over a period of hundreds of days (note that Capizzano et 
al., 2016 studied injury dependence in both capture and handling mortality and post-release 
mortality, though the data are presented here in an aggregated manner to simplify the 
illustration of the model).  

Fortunately, simple additions to the mixture-distribution model can be made to relax the 
assumptions noted above, and to accommodate additional mortality types or properties. Two 
key examples are briefly presented below. Benoît et al. (2015) provide a much more thorough 
discussion of these models, along with fits to case study data and simulation modelling to 
evaluate the robustness of the estimates. It should be noted that there are no existing pre-
packaged routines to fit these models. However, they can readily be fitted by using maximum 
likelihood methods, and solved using an optimizing routine (e.g. R optim function) as shown by 
Benoît et al. (2015). They could also just as easily be fitted under the Bayesian paradigm. 
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Figure 13.12. Plot of the Kaplan-Meier (KM) estimator of the overall survival function for all acoustically 
tagged and released cod in Capizzano et al. (2016), with the 95% confidence interval indicated by shading 
and times of right censoring indicated with circles. Time zero is the time of release to the water. The plot is 
annotated to indicate the three types of mortality that affected the captured and released cod. 

Distinct capture–handling and post-release mortalities 

A parameter τ can be added to Equation 38 to account for capture and handling mortality 
occurring prior to release:  

𝑆𝑆(𝑡𝑡) = 𝜏𝜏 ∙ [𝜋𝜋 ∙ exp[−(𝜃𝜃 ∙ 𝑡𝑡)𝛺𝛺] + (1 − 𝜋𝜋)]   (41) 

Under this formulation, 1 – τ  is the capture and handling mortality (CH; i.e. prior to 
release), τπ  is the post-release mortality rate (PR), and 1 − τ  + τπ  is the total capture–handling–
release (CHR) mortality. For the aggregated data from Capizzano et al. (2016; Figure 13.12), the 
estimated CH mortality is 0.179 (0.124–0.251, 95% CI), the estimated conditional PR mortality 
rate is 0.031 (0.011–0.088), and the total CHR mortality is 0.210 (0.151–0.305). As is also clear in 
Figure 13.12, these results indicate that most of the mortality for these recreationally caught cod 
occurs prior to release; fish released alive have ca. a 97% chance of surviving their capture-
related ordeal. 

The τ parameter in Equation 41 can be modelled as a function of covariates, using a linear 
predictor with a logit link to ensure that the parameter is bounded in the interval [0,1], in a 
manner analogous to that shown in Equation 40 for covariate effects on the π parameter. The 
analyst can thereby separately analyse the factors that affect capture, handling and post-release 
mortality. This was the approach used by Capizzano et al. (2016) to examine injury dependence 
on both capture and handling and conditional post-release mortality. 

Additional mortality 

Experimental conditions may involve additional mortality that is unrelated to the discarding 
process. For example, if discarded individuals are exposed to predators, such as in a tagging 
study, there may be additional predation mortality. One way to incorporate this is to add a 
mortality term to Equation 38. Assuming an exponential function for natural mortality M, which 
is common in stock assessments and population modelling, we obtain: 

𝑆𝑆(𝑡𝑡) = 𝜋𝜋[∙ exp[−(𝜃𝜃 ∙ 𝑡𝑡)𝛺𝛺] + (1 − 𝜋𝜋)] ∙ (−𝑀𝑀𝑡𝑡)   (42) 



 156  | Cooperative Research Reports Vol. 351 
 
 

A natural mortality term could also just as easily be added to Equation 41, yielding 

𝑆𝑆(𝑡𝑡) = 𝜏𝜏 ∙ [𝜋𝜋 ∙ exp[−(𝜃𝜃 ∙ 𝑡𝑡)𝛺𝛺] + (1 − 𝜋𝜋)] ∙ (−𝑀𝑀𝑡𝑡)  (43) 

which is the underlying model used by Capizzano et al. (2016). In these formulations, M is 
assumed to act equally on both the affected and unaffected components and is, therefore, an 
independent additional mortality source. Increases in predation risk that result from being 
affected by the CHR process are subsumed in the mortality modelled by the Weibull function. 
Alternatively, one might choose to model M as a function of vitality or other sensible covariates 
using a linear predictor with a log-link, again to keep values of M positive. 

For the aggregated data from Capizzano et al. (2016; Figure 13.12), the maximum likelihood 
estimate for the M parameter is 0.067 (0.009–0.440); scaled to 365 days to provide an annual rate,. 
This estimate, and its confidence interval, is comparable to the values of M assumed for the 
stock in question, 0.2 and 0.4; lending support to the validity of the estimation. Note that when 
Capizzano et al. (2016) accounted for injury-dependence in CHR mortality, they obtain a 
maximum-likelihood estimate of M that is greater than the one presented above: 0.157 (0.051, 
0.419). 

Given all of its properties, this model variant is likely to be highly useful for the analysis of 
discard mortality data obtained using acoustic or data-storage tanks over long durations, where 
fish are likely to have been exposed to additional sources of mortality in their natural 
environment. 

General considerations 

It should be clear from this subsection that parametric survival models can be readily adapted 
to include different factors and processes affecting discard mortality. Though there is 
considerable evidence for the mixture model as a basis for discard mortality (see Benoît et al., 
2015), the generalizations of it presented above are certainly not exclusive. Analysts can, 
therefore, construct different models that make different assumptions about the underlying 
process and can compare the evidence of those different models using likelihood-ratio or 
information theoretic (e.g. Akaike information criterion) approaches.  

13.2.5 Random effects in models for longitudinal survival data 

As with the GLMMs described earlier in this report, it is possible to incorporate random effects 
into both semi-parametric and fully parametric survival models (Hougaard, 2000; Duchateau 
and Janssen, 2008). These models are typically referred to as frailty models, because they 
attempt to account for unobserved heterogeneity resulting from certain individuals propensity 
to die more rapidly than others (i.e. they are more frail). Generally, frailty is accounted for by 
introducing a random effect to the hazard function to account for heterogeneity which is 
individual-specific (individual frailty) or group-specific (group frailty). 

Using the notation for random effects in Equation 29 , random effects (hereafter “group frailty”) 
can be added to the linear predictor of the hazard function for the Cox proportional hazards 
model (Equation 32) as follows: 

ℎ(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡) exp(𝐗𝐗𝑩𝑩 + 𝐔𝐔𝑨𝑨) = 𝜆𝜆0(𝑡𝑡) exp(𝐗𝐗𝑩𝑩) exp(𝐔𝐔𝑨𝑨)  (44) 

It is standard to assume that the mean of exp(𝐔𝐔𝑨𝑨) is 1 and its variance is unknown, and, 
therefore, estimated. Any continuous distribution with positive support, a unit mean, and a 
finite variance can be used. Some examples are the gamma and lognormal distribution 
(Duchateau and Janssen, 2008), with the gamma distribution being the most common.  
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Similarly, random effects can be added to the parametric models. The standard Weibull model 
with covariate effects and a random effect on the rate parameter θ has the form: 

𝑆𝑆(𝑡𝑡) = exp[−(exp(𝑿𝑿𝑩𝑩) ∙ exp (𝐔𝐔𝑨𝑨) ∙ 𝑡𝑡)𝛺𝛺]       (45) 

There are numerous packages in R for the estimation of semi-parametric and standard 
parametric models. The packages coxme (Therneau, 2015) and phmm (Donohue and Xu, 2013) 
can perform the estimation of the Cox model assuming lognormal frailty, while the coxph() 
function in the survival package can handle gamma and lognormal frailties (Therneau, 2012). 
The parfm package can handle a range of parametric frailty models. 

Random effects can also be introduced to the mixture-distribution (cure rate) model (e.g. 
Rondeau et al., 2013). They can be introduced as frailties in the survival function for affected 
individuals by substituting Equation 43 into the SA(t) term in Equation 37 or by assuming 
heterogeneity in the affected fraction of the population (Rondeau et al., 2013), i.e.: 

𝜋𝜋 = logit(exp (𝐗𝐗𝑩𝑩 + 𝐔𝐔𝑨𝑨))    (46) 

13.2.6 Further reading and online tutorials 

Further reading 

Allison (2010): longitudinal data analysis guide with practical examples using the SAS statistical 
analysis software. Practical and user-friendly, yet sufficiently detailed. 

Benoît et al. (2015): description of the generalized model for discard mortality data development, 
including details on fitting and testing the models. 

Cox and Oakes (1984): book on survival data and their analysis. Fairly detailed, but reasonably 
approachable. 

Ibrahim et al. (2001): book on survival analysis from the Bayesian paradigm. Detailed and fairly 
technical. 

Kleinbaum (1996): entry level introduction to survival analysis using KM and Cox PH models. 
Concise and easily understandable. 

Online tutorials 

http://www.stat.columbia.edu/~madigan/W2025/notes/survival.pdf: A gentle introduction to 
survival analysis with examples in R 

http://justanotherdatablog.blogspot.ca/2015/08/survival-analysis-1.html: Fitting Kaplan-Meier 
models in R 

https://www.r-bloggers.com/2015/08/survival-analysis-2/: Fitting Cox’s proportional hazards 
model4 for survival data in R. 

 

                                                           

4 https://en.wikipedia.org/wiki/Proportional_hazards_model 

http://www.stat.columbia.edu/%7Emadigan/W2025/notes/survival.pdf
http://justanotherdatablog.blogspot.ca/2015/08/survival-analysis-1.html
https://www.r-bloggers.com/2015/08/survival-analysis-2/
https://en.wikipedia.org/wiki/Proportional_hazards_model
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13.3 Analysis of vitality data and estimation of survival 

The categorical vitality assessment (CVA; vitality assessed in a small number of ordinal classes) 
and aggregated vitality assessment (AVA; reflex-action mortality predictor) give direct 
measurement of unimpaired and impaired states in animals. In this section, we describe two 
approaches for analysing such data: 

1. modelling the response of vitality indicators to explanatory variables in order to 
allow predictions on changes in vitality with relevant covariates; and  

2. modelling vitality as a predictor for survival: “vitality-correlated survival” 
(VCS). 

13.3.1 Modelling the response of vitality indicators to explanatory variables 

Categorical vitality indicators are ordinal categorical data. Individual fish belong to a single 
category, and the order of the categories is meaningful. In the survival assessment context, the 
order reflects the severity of the effect on observable behavioural, reflex, or physical injury 
patterns, resulting from the capture, handling, and release processes. The categories themselves 
represent an abstraction of an underlying, unobservable, latent and quantitative (continuous) 
variable, which integrates how somatic systems have been affected [Anderson and Philips, 1981; 
Agresti, 2002 (pp. 277–279)]; in this instance, the latent variable corresponds to an abstract 
concept, i.e. the categorical definitions of vitality/behavioural states. In this context they may 
also be referred to as “hypothetical variables or constructs” (Borsboom et al., 2003). 

To illustrate the notion of an ordinal variable reflecting an underlying latent variable, consider 
the example of the enjoyment derived from consuming a glass of a particular brand of beer. 
Enjoyment could be measured by determining whether consumption results in the consumer 
being “1 – very dissatisfied”, “2 – dissatisfied”, “3 – neutral”, “4 – satisfied”, or “5 – very 
satisfied” with the experience. A property of ordinal data is that the distribution of categories 
along the latent variable scale need not be regular. For instance, the difference in enjoyment 
expressed by giving a rating of “neutral” rather than “dissatisfied” (i.e. score of 3 vs. 2) might 
be much greater than the difference in enjoyment expressed by giving a rating of “very 
satisfied” rather than “satisfied” (score of 5 vs. 4). Another property of these data is that there 
will almost necessarily be some subjectivity in attributing observations to the categories, 
resulting in some variability among observers or contexts. Ideally, the analysis method chosen 
for the data should accommodate these two properties. 

Given the relationship between latent and ordinal variables, a model that describes changes in 
the probability of a fish belonging to a given vitality category as a function of a covariate, also 
effectively describes the effect of that covariate on the latent variable, provided that the discrete 
scores are an adequate representation of the underlying process, and that observers consistently 
apply the vitality scoring criteria (the latter is addressed below). One such model is the 
proportional-odds multinomial linear model based on cumulative logits:  

logit[𝑃𝑃𝑡𝑡(𝑌𝑌𝑖𝑖 ≤ 𝑖𝑖|𝐗𝐗𝐛𝐛)] = 𝑖𝑖𝑁𝑁𝑔𝑔 �𝑃𝑃𝑟𝑟(𝑌𝑌𝑖𝑖≤𝑣𝑣|𝐗𝐗𝐛𝐛)
𝑃𝑃𝑟𝑟(𝑌𝑌𝑖𝑖>𝑣𝑣|𝐗𝐗𝐛𝐛)

� = 𝑏𝑏𝑣𝑣 + 𝐗𝐗𝐛𝐛′𝑩𝑩  (47) 

where Yi is the assigned vitality score for fish i, v is the vitality score level from among V possible 
levels, 𝑏𝑏𝑣𝑣  is an intercept specific to v, Xi is the design matrix of covariates, and 𝑩𝑩 is a vector of 
fixed covariate parameter values, as above (Agresti, 2002; pp. 275–277). There are only V – 1 
uniquely defined probabilities because Pr(Yi  ≤ V) must equal 1, resulting in V – 1 values of 𝑏𝑏𝑣𝑣  
to estimate. The intercepts 𝑏𝑏𝑣𝑣 increase with v since 𝑃𝑃𝑡𝑡(𝑌𝑌𝑖𝑖 ≤ 𝑖𝑖|𝐗𝐗𝐛𝐛) also increases in v for fixed 
values of Xi. Estimates for 𝑩𝑩 under this model are invariant to the number of categories used or 
how the categories “divide-up” the latent variable (Ananth and Kleinbaum, 1997). That is, they 
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need not be equally spaced along the latent variables distribution, thereby addressing one of 
the properties of these data noted above.  

The model described by Equation 47 can be generalized by relaxing the proportional-odds 
assumption, thereby estimating separate slopes for each of the V – 1 vitality levels:  

logit[𝑃𝑃𝑡𝑡(𝑌𝑌𝑖𝑖 ≤ 𝑖𝑖|𝐗𝐗𝐛𝐛)] = 𝑖𝑖𝑁𝑁𝑔𝑔 �𝑃𝑃𝑟𝑟(𝑌𝑌𝑖𝑖≤𝑣𝑣|𝐗𝐗𝐛𝐛)
𝑃𝑃𝑟𝑟(𝑌𝑌𝑖𝑖>𝑣𝑣|𝐗𝐗𝐛𝐛)

� = 𝑏𝑏𝑣𝑣 + 𝐗𝐗𝐛𝐛′𝑩𝑩𝒗𝒗  (48) 

Both models can be fitted using the VGAM package in R5 and can be compared, for example, 
using analysis of deviance. 

A weakness of both models is that they do not explicitly address the subjectivity that likely 
exists in the attribution of fish to vitality categories. There are likely to be differences among 
observers, and among fishing trips sampled by particular observers (henceforth, observer 
differences). The effect of observer differences on inferences drawn using the above equations 
depends on the degree of inconsistency, and how the observer differences are distributed 
among the sampled fish. If sampled fish were randomly distributed among observers and over 
time, observer differences would be reflected in the standard errors of the estimated parameters 
𝑩𝑩�  and perhaps in some overdispersion in the data. The estimates of those parameters would be 
unbiased, but the statistical power to detect significant covariate effects would vary inversely 
with the degree of scoring inconsistency. However, sampled fish are very unlikely to be 
effectively randomized among observers or fishing trips. Therefore, observer differences will 
likely lead to biased parameter estimates unless accounted for. Furthermore, the clustered 
nature of the sampling schemes typically used in the field will mean that individual fish often 
do not constitute independent samples (i.e. intracluster correlation). This has consequences for 
both the bias in 𝑩𝑩�  and the precision of the parameter, which are likely to be too high, leading to 
spurious significant relationships. 

When random effects are incorporated in generalized linear models for ordinal outcomes, they 
can also be used to account for observer differences (e.g. Hartzel et al., 2001; Sheu, 2002). Within-
cluster and within-observer correlation can be introduced to Equation 47 through a shared 
random effect in the linear predictor: 

logit[𝑃𝑃𝑡𝑡(𝑌𝑌𝑖𝑖𝑚𝑚 ≤ 𝑖𝑖|𝐗𝐗𝐛𝐛𝐢𝐢 , 𝑡𝑡𝑚𝑚)] = 𝑏𝑏𝑣𝑣 + 𝐗𝐗𝐛𝐛𝐢𝐢′ 𝑩𝑩 + 𝑡𝑡𝑚𝑚  

  where 𝑡𝑡𝑚𝑚 ~ Norm(0,𝜎𝜎𝑎𝑎2)   (49) 

Yim is now the assigned vitality score for fish i captured in fishing set m, and 𝑡𝑡𝑚𝑚 is the random 
effect specific to set m (e.g. Carrière and Bouyer, 2006) drawn from a normal distribution with 
a mean of zero and a variance σ 2. Equation 49 is, therefore, a random-intercept, mixed-effects 
model where 𝑃𝑃𝑡𝑡(𝑌𝑌𝑖𝑖𝑚𝑚 ≤ 𝑖𝑖|𝐗𝐗𝐛𝐛𝐢𝐢, 𝑡𝑡𝑚𝑚) is the probability that an individual observed vitality score is 
less than or equal to vitality level v, conditional on the covariates and the random effect. The 
random intercepts effectively model unobserved differences among observers in their 
application of vitality-scoring criteria, while addressing the within-cluster correlation of fish 
captured in the same fishing set. Cumulative logit models with random effects can be fitted 
using the clmm function in the R ordinal package6. 

Agresti (2002) provides a description of methods for the analysis of ordinal categorical data,   
which should be generally understandable for fisheries scientists working with discard 

                                                           

5 https://cran.r-project.org/web/packages/VGAM/VGAM.pdf 
6 http://cran.r-project.org/web/packages/ordinal/vignettes/clmm2_tutorial.pdf 

https://cran.r-project.org/web/packages/VGAM/VGAM.pdf
http://cran.r-project.org/web/packages/ordinal/vignettes/clmm2_tutorial.pdf
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mortality data. Further details on the methods described above can be found there. A worked 
example can be found in Information Box 13.9. 

 

Information Box 13.11. Modelling the response of vitality indicators to explanatory 
variables – Worked example  

The model in Equation 49 and its generalized (non-proportional odds) analogue were 
applied to vitality data by Benoît et al. (2010). Key outputs of these models are predictions 
on how covariates affect the probability that a fish is associated with a given vitality class. 
The authors analysed vitality data collected for 11 fish taxa captured by four gear types, 
evaluating the effect of eight factors previously shown to affect discard survival (e.g. 
Figure 13.13). The random effect in the models used to account for observer subjectivity 
and data clustering was significant for most taxa and fisheries. The authors found, for 
example, that for cod and white hake (Urophycis tenuis) discarded in longline fisheries, 
the probability that a fish was in excellent condition declined as a function of capture 
depth (Figure 13.13, panels a and c, black area). They also found that for winter flounder 
(Pseudopleuronectes americanus) and sculpins (Family Cottidae and Hemitripteridae) 
discarded in mobile-gear fisheries, the probability of being in excellent condition is very 
high when the catch is first brought on deck, but declines rapidly as the time spent on 
deck increases (Figure 13.13, panels b and d). In contrast, the probability of being in either 
good or poor condition initially increases for deck times of less than 15 min and then 
decreases, while the probability of being moribund increases rapidly with increasing 
deck time.  

 

Figure 13.13. Examples of the predicted probability of a fish occurring in each of four vitality code 
categories (shaded area; code 1 (excellent condition) = black, 2 (good condition) = dark grey, 3 (poor 
condition) = light grey, 4 (moribund) = white) as a function of depth in longline fisheries [panels: (a) 
– cod, (c) – white hake] or deck time in mobile gear fisheries [panels: (b) – winter flounder, (d) - 
sculpins; redrawn from Benoît et al. (2010)]. Superimposed in each plot are expanding circles showing 
the relative proportion of observations in each vitality code category in a given bin for the covariate, 
which provides a visualization of the model fit. The total number of observations for each covariate 
bin is indicated near the bottom of each plot. Redrawn from Benoît et al., 2010. 
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Predicting how the probability of membership of vitality classes changes with relevant 
covariates can be an important element of discard-mortality estimation. Combined with 
estimates of vitality-correlated survival (VCS), these predictions can be used to estimate 
survival in fisheries of interest for years in which there were no vitality observations, but for 
which observations for the relevant covariate were available (Benoît et al., 2012; Benoît, 2013). 

13.3.2 Modelling vitality data as a predictor for survival 

The use of categorical vitality indicators as predictors for survival was presented in 
sections 13.2.3.2 and 13.2.3.3. Here, we consider the modelling of aggregated vitality assessment 
data (reflex-action mortality predictor) as a predictor for survival. To calibrate vitality 
impairment as a predictor for discard survival, animals must be exposed to appropriate 
stressors, their impairment observed, and the likelihood of survival at each level of the vitality 
index observed using either captive observation (Section 9) or tagging and biotelemetry 
(Section 10; Davis and Ottmar, 2006; Davis, 2007). To avoid extrapolation when predicting 
survival, animals should be exposed to stressors that produce impairment and survival ranging 
from 0 to 100%. 

Models of “vitality-correlated survival” (VCS) can then be constructed to show species-specific 
relationships among fishing conditions, impairment, and survival or mortality (e.g. figures 
13.13 and 13.14). Once validated, vitality impairment can be used to indirectly predict species-
specific discard survival from the relevant VCS relationship. 

 

Figure 13.14. The relationship between mortality, reflex impairment, and capture method (from Humborstad 
et al., 2016). Solid lines are fitted values (with 95% confidence intervals; dashed lines) fitted using GLM. 
Lower panels show the number of fish per reflex impairment score. Redrawn from Humborstad et al., 2016 

In the reflex action mortality predictor method (RAMP), aggregated vitality data for individual 
fish have generally comprised the survival outcome for each individual and presence/absence 
for a series of vitality traits (particular reflexes, behavioural responses, or physical 
characteristics, including injuries; e.g. Davis and Ottmar, 2006; Davis, 2007, 2010; Campbell et 
al., 2010a; Nguyen et al., 2014). These data have typically been analysed by taking the sum of the 
Bernoulli outcomes (presence/absence of each trait; 1/0) and relating it to the observed survival 
data (dead or alive). Various approaches have been used in modelling this AVA data (e.g. Davis 
and Ottmar, 2006; Campbell et al., 2010a; Nguyen et al., 2014), including using GLM 
(Humborstad et al., 2016; Figure 13.4). Humborstad et al. (2016) included an AVA score in a 
logistic regression model (i.e. Equation 26), with the linear predictor (Equation 50) describing 
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the relationship between the survival of an individual (pi) and the sum of the separate vitality 
trait/reflex scores (ri), where the total number of vitality traits/reflexes observed (R) was 9: 

logit(𝑝𝑝𝑖𝑖) =  𝑏𝑏0 + 𝑏𝑏1. ∑ 𝑟𝑟𝑖𝑖𝑅𝑅
𝑟𝑟=1
𝑅𝑅

     (50) 

As discussed in Section 13.1.1, GLM (i.e. a logistic regression model) is well suited to fitting a 
model to describe the relationship between the observed mortality and potential explanatory 
variables, including the AVA score, because it accounts for the key properties of binomial data 
(i.e. finite limits and non-constant variance). Alternatively, where the data are known to have a 
hierarchical variance structure, the use of GLMM may be more applicable (Section 13.1.2). From 
these models, appropriate predictions of survival (with confidence intervals) relating to specific 
vitality scores can be made. 

13.3.2.1 Discussion on underlying assumptions for the RAMP approach  

The approach of summing an array of individual vitality indicators into a unified score is 
conceptually simple and straightforward to implement analytically. However, it does make 
several assumptions:  

• Binomial outcomes are independent across traits (i.e. the presence of one trait is 
unrelated to the presence of the others). 

• Traits have an additive effect on eventual survival. 
• Traits contribute equally to eventual survival. 

The validity of these assumptions has been questioned in discussions in WKMEDS and the 
implications of this are summarized in Table 13.2. 

Table 13.2. Underlying assumptions for the RAMP approach 

Assumption Consequences if assumption is false 

Binomial outcomes are independent 
across traits (i.e. the presence of one trait 
is unrelated to the presence of the others) 

 

Traits will contribute more weight in the RAMP index by 
virtue of being correlated with one or more other traits 
rather than because they are stronger predictors of 
mortality 

Traits have an additive effect on eventual 
survival 
 

Miss important interactive effects, with consequence for 
the precision and accuracy of the predicted survival 
  

Traits contribute equally to eventual 
survival 

There will be a loss in precision and possibly accuracy for 
the predicted survival if some traits are better predictors 
of mortality than others 

The third assumption in (each trait contributes equally to survival) was initially made by design, 
with the aim of giving no a priori expectations of the importance of different traits in determining 
survival (Davis, 2010). However, this implicitly makes the assumption that the traits are equally 
important. There exists other, arguably more suitable, approaches to analysing these data that 
do not make this assumption (see Section 13.3.2.2).  

Another drawback of the current RAMP approach is that it reduces all traits to Bernoulli 
outcomes. For some traits, categorical or aggregated observations can easily be made, and 
variation in those values is known to meaningfully predict eventual survival (e.g. degree of 
injury, or body size; e.g. Benoît et al., 2013). Collapsing those observations to Bernoulli outcomes 
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results in a potentially large decrease in the precision of survival predictions. This decrease may 
often be larger than the loss of precision associated with observation error for semi- and fully-
quantitative metrics. Furthermore, taken to the extreme, the application of the “rule of doubt” 
to classifying binomial outcomes could introduce a small prediction bias if observers are liberal 
in its application. 

13.3.2.2 Development of the partitioned vitality assessment (PVA) 

Rather than aggregate the Bernoulli responses into a single score to predict survival, as is 
typically done in the RAMP approach (e.g. Equation 50), an alternative is to include the effect 
of the separate responses in the linear predictor for a suitable survival model, e.g. logistic 
regression for cross-sectional survival data or a formal survival model for longitudinal data. For 
example, the linear predictor describing the relationship between the survival of an individual 
(pi) and a set of R separate reflex scores (ri) would take the form: 

logit(𝑝𝑝𝑖𝑖) = 𝑏𝑏0 + 𝑏𝑏1. 𝑡𝑡1𝑖𝑖 + ⋯+ 𝑏𝑏𝑅𝑅 . 𝑡𝑡𝑅𝑅𝑖𝑖   (51) 

This effectively turns the analysis into a regression problem in which the effect size associated 
with each response or trait can be estimated, and interactions between traits can be modelled 
and tested. This negates assumptions 2 and 3 above. WKMEDS has termed this approach 
partitioned vitality assessment (PVA). 

There are several advantages to this approach: 

1. It can accommodate numerous data types in the predictor. Trait data can, therefore, 
be collected and used at the most meaningful and practical level of resolution rather 
than being relegated to a Bernoulli outcome. Furthermore, the model can also include 
ancillary information on the individual (e.g. length) and the conditions under which 
it was caught; 

2. there are methodologies for variable selection or model construction, as described 
earlier in Section 13.1; 

3. tools and procedures exist for detecting and dealing with lack of independence (multi-
collinearity) between the predictors (traits) in the model (e.g. variance inflation factor; 
correlations evidence in the parameter covariance matrix), negating the need for 
assumption 1 in Table 13.2; and  

4. the data collected from fish captured or handled in different contexts (e.g. different 
gears) can be combined in a single analysis, and trait context interactions can be 
assessed objectively.  

In this manner, one can determine whether and how the relationship among traits and survival 
varies by context, thereby generalizing the survival predictions that can be made from traits 
observed in different contexts. 

13.4 Analysis of tagging and biotelemetry data to estimate survival 

13.4.1 Analysis of acoustic tag data in the estimation of discard survival rates 

There are few standardized methods for analysing telemetry data, particularly in aquatic 
animals (Heupel et al., 2006). Most telemetry studies require customized analyses, dependent 
on the study objectives and the tagging and tracking methods used. Because the main aim of a 
discard survival analysis is to assess whether individuals have survived, analyses need to 
employ clear, objective, consistent, and defensible criteria for assessing the status of each study 
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animal at a given point in time, based on its tracking data. Because systems, species, and receiver 
arrays are unique to each study, those criteria will differ from study to study. As an example, if 
fish equipped with depth-sensor acoustic transmitters are released from a vessel into a grid 
array, fish may be assessed as mortalities if they (i) remain in the array, and (ii) fail to exhibit 
over a period of 48 h depth changes > 1 m or horizontal movement within the array (i.e. from 
receiver to receiver). Fish that actively exit the array will be assessed as survivors up to the time 
of their exit (and censored thereafter), as long as their departure from the array differs from the 
patterns that would be expected from a dead animal being carried by water currents (see Yergey 
et al., 2012). It may also be necessary to distinguish between the natural movement of a subject 
and the movement expected of a tagged subject that has been ingested by a predator. 

In some systems, all released fish are expected to migrate away from, or into an area by a given 
point in time (e.g. migration to spawning areas). In such cases, lines of receivers can be 
positioned to detect all fish moving through an area to assess survivorship. If the detection 
efficiency for a receiver array is known (and is < 100%), that value can be used to adjust the 
estimate of the proportion of fish that successfully passed the array (e.g. Raby et al., 2015). The 
success in reaching spawning areas for Pacific salmon is assessed by positioning receivers along 
the migration route. In this case, fish are only assigned as survivors if they are detected moving 
past the receivers furthest upstream en route to spawning areas, and are not subsequently 
detected as having fallen  back downstream (Donaldson et al., 2011; Raby et al., 2014b). 

Quantitatively classifying fish into groups (i.e. dead or alive) using telemetry data is possible 
through discriminant function or cluster analyses (Jain et al., 1999). These user-defined 
quantitative survival assessments are currently in development (e.g. Yergey et al., 2012). 

13.4.2 Analysis of DST data in the estimation of discard survival rates 

DST (data storage tags) tags usually provide high-resolution data on animal movement, which 
makes assessment of whether the tagged animal survived the monitoring period relatively 
straightforward. The most critical step in the analysis of DST data is to actually retrieve the data 
for both study animals that survived and died after being discarded. This is difficult for non-
pop-up archival tags, since dead individuals are unlikely to be recaptured in most instances. 
For pop-up archival tags that do not report their data automatically via satellite, the likelihood 
of recovering a tag should be the same for both live and dead fish. The tags will detach from the 
tagged individual after the pre-programmed monitoring period or when the individual dies. 
When floating at the surface, these tags may get washed up on shore and can be recovered. It is 
usually assumed that the recovery rate will not be 100% because some tags will never get 
washed up on shore or be found. For pop-up satellite archival tags (PSATs), the recovery rate 
will ideally be 100%, and will not differ between surviving and dead animals.  

When analysing movement data from archival tags, there needs to be an objective assessment 
on how a dead animal is defined and how it differs from a survivor (e.g. Neat et al., 2009; 
Stokesbury et al., 2011). In many cases, this can be done in a similar manner to the analysis of 
movement data in acoustic telemetry research (see Section 13.4.1 and Figure 13.5 for an 
example). However, for some species which may remain on the seabed for an extended period 
of time, and generally do not exhibit any substantial vertical migrations, this can be a challenge. 
Predation can be another issue. It is therefore important to be able to distinguish between the 
normal movements of a tagged individual and the movements of a predator which has ingested 
a tagged individual. 
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Figure 13.15. Change in depth data from a data storage tag (DST) can be used to infer activity and survival 
status during and after encounters with fishing gear, including discarding events (from Neat et al., 2009).  The 
black line is the depth of the DST below the surface.  The green line is normal/baseline activity, as inferred 
by depth change per 5 minutes; red is inferred activity in proximity to and during capture in a trawl; and blue 
is the inferred post capture activity. Redrawn from Neat et al., 2009. 

13.5 Integrating results using conditional reasoning 

As was discussed in Section 4, it is unlikely that a single discard mortality study can be 
undertaken in such a way that the results will be fully representative of all conditions in the 
target fishery. Consequently, it may be necessary to combine the results of related studies which 
used different assessment methods (i.e. vitality assessment, captive observation, and tagging). 
This section describes how results derived from different assessment methods can be integrated 
to produce discard survival estimates that are more generally representative of the case in 
question (i.e. with respect to species, métier, season, and/or fishery). 

Spatial, temporal, and between-fisher differences in environmental and technical conditions 
experienced by discarded fish are likely to generate a variability of survival rates, for which 
there should be some accounting, to ensure that inferences on survival are reliable. The use of 
representative vitality sampling in the fishery as an integrator of vitality-related survival is a 
useful approach for deriving reliable estimates (Benoît et al., 2012). 

At its most basic, an integrated survival rate can be estimated as an average of vitality-related 
survival rates, weighted by the relative frequency of fish in each vitality class (e.g. Richards et 
al., 1995; Trumble et al., 2000). Mathematically, this can be written as: 

�̂�𝑆(𝑡𝑡) = ∑ Pr (𝑖𝑖) ∙ 𝑆𝑆(𝑡𝑡|𝑖𝑖)𝑉𝑉
𝑣𝑣=1  for 𝑖𝑖 ∈ {1, … ,𝑉𝑉}                               (52) 

where �̂�𝑆(𝑡𝑡) is the average overall discard-related survival function (survival probability to 
time t), v is a vitality category of which there are V categories, Pr(ν) is the probability that a fish 
belongs to category v,  and S(t | ν) is the survival function for fish in vitality category v (survival 
probability to time t conditional on being in category v). In practice, the maximum likelihood 
estimator for Pr(ν) is the proportion of fish for which vitality has been assessed that belong to 
category v. Methods for estimating S(t | ν) were described in Section 13.3. 

The estimate in equation 52 assumes that Pr(ν) is representative of the discarded fish 
population. If subsampling is used to quantify vitality, vitality observations from individual 
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sampling events j should probably be weighted by catch amounts to reflect the discarded 
population. Sampling designs will dictate the appropriate manner of applying this weighting. 
For simplicity, it is assumed here that sampling events are all exchangeable; that is, they are all 
random selections from among all possible sampling events (probably all hauls in the fishery of 
interest). Under this assumption, Equation 52 then becomes: 

�̂�𝑆(𝑡𝑡) = (∑ 𝑙𝑙𝑖𝑖 ∑ Pr (𝑖𝑖)𝑖𝑖 ∙ 𝑆𝑆(𝑡𝑡|𝑖𝑖))𝑉𝑉
𝑣𝑣=1

𝐽𝐽
𝑖𝑖=1 ∑ 𝑙𝑙𝑖𝑖

𝐽𝐽
𝑖𝑖=1�                                 (53) 

where 𝑙𝑙𝑖𝑖  is the catch weight for sampling event j. 

These basic equations can then be generalized to refine the conditionally linked probabilities 
used in the estimation. For example, Pr (𝑖𝑖)𝑖𝑖 might be inferred using an empirical relationship 
with covariates (Section 13.3.1) rather than being observed directly in the fishery. The result is 
a probability of v, conditional on covariates measured for sample j, Pr�𝑖𝑖|𝐗𝐗𝐣𝐣�. For example, 
Benoît (2013) combined observations of haul-specific catch amounts from at-sea observers, with 
estimates of sea surface temperature at haul locations derived from satellite telemetry, to predict 
the distribution of vitality scores, and ultimately short-term survival for skates captured in 
mobile gear fisheries in the Gulf of St Lawrence (Canada). Likewise, Richards et al. (1995) used 
this approach to predict the survival of Pacific halibut (Hippoglossus stenolepis). 

The conditional survival function itself can be decomposed into a probability of 
capture/handling mortality (also termed immediate mortality) and a post-release survival 
function, conditional on vitality and on having survived capture and handling. This was the 
approach used by Benoît et al. (2012), who modelled the probability of capture/handling 
mortality as a function of the time fish spent on deck and then modelled distinct post-release 
conditional survival functions. Alternatively, these two components can be modelled 
simultaneously (Section 13.2.3.3; Benoît et al., 2015). 

The conditional survival function can further be decomposed into short- and long-term 
functions. Most captive observation discard survival studies only assess short-term survival. 
However, a growing number of tagging studies are producing estimates of longer-term 
survival. For tagging studies that produce time-to-mortality data (e.g. acoustics tags, data 
storage tags), one could derive estimates of long-term survival conditional on having survived 
in the short term. These conditional long-term survival estimates might then be applied to the 
results of short-term survival studies to provide better estimates of overall survival. Likewise, 
post-release survival might be generalized to include the effect of predator abundance at the 
release location, or the likelihood of long-term mortality due to disease resulting from fishery-
induced wounds. 

The key to this integrated approach is the conditional linking of the various probabilities that 
can be estimated from field observations and experiments, and  determine the fate of discarded 
fish . The dependence on key covariates known to affect mortality during capture and handling, 
or after release can be accommodated and modelled explicitly to refine the estimate. 

This section has so far provided a general non-technical summary of the integrated approach 
for deriving estimates of average discard survival, using conditional reasoning. In the majority 
of applications, the uncertainty of those estimates is also likely to be of interest. Furthermore, it 
will be important that the uncertainty reflects the uncertainties of all the components involved 
in the estimation, including sampling uncertainty, parameter uncertainty, and, if applicable, 
model-choice uncertainty. Given the nature of the inputs, there are unlikely to be analytical 
solutions for propagating the uncertainty from each of these components to the uncertainty in 
the overal discard survival estimate. Instead, some form of simulation will be required. 
Bayesian approaches provide a natural manner of propagating uncertainty across components 
of the estimation and into the final estimates (e.g. Hill et al., 2007; Parent and Rivot, 2013). From 



 ICES Guidelines on Methods for Estimating Discard Survival |  167 

 

a frequentist perspective, observation and parameter errors can be propagated using Monte 
Carlo simulations based on empirical bootstrapping of data, and parametric bootstrapping from 
parameter covariance matrices (e.g. Efron and Tibshirani, 1993; Benoît et al., 2012); and model 
uncertainty can be evaluated using information theoretic approaches (e.g. Burnham and 
Anderson, 2002). 

13.6 Summary and recommendations 

This section provided an overview of the statistical techniques used to model the influence of 
potential explanatory variables on survival and related data (including vitality, tagging data, 
and avian predation). Commonly applied techniques for analysing survival data, cross-
sectional and longitudinal, are reviewed and example code for the R statistical software are 
provided. 

Cross-sectional survival data are typically analysed using generalized linear modelling (GLM), 
assuming a logit link and binomial error distribution, otherwise known as logistic regression. 
GLM can be extended to include random effects in a method known as generalized linear model 
mixed modelling (GLMM). 

Longitudinal survival data are typically analysed using a class of methods commonly referred 
to as “survival”, “failure”, or “event” analysis. These methods model survival as a function of 
time using non-parametric (e.g. Kaplan-Meier method), semi-parametric (e.g. Cox proportional 
hazards analysis), or parametric models (e.g. Weibull model). The advantage of the non- and 
semi-parametric approaches is that they make very few assumptions about the shape of the 
survivorship function. However, these methods are inappropriate for making predictions 
beyond the range of the data, and inferences on the mechanisms underlying the shape of the 
survivor function are necessarily subjective. 

Asymptotic survival can be estimated directly from longitudinal data using extensions of 
simple parametric survival models, e.g. mixture-distribution models (aka “cure-rate” models). 
Mixture-distribution models can be extended to explicitly include (i) properties (or 
mechanisms) such as distinct capture–handling and post-release mortalities, (ii)  additional 
natural mortality, which can occur in discard mortality studies conducted in situ using tagging, 
and (iii) the effect of covariates, such as vitality scores, on the parameters that describe these 
and other properties of the model (e.g. the level of the asymptote). 

Vitality data can be analysed using two different approaches: (i) modelling the response of 
vitality indicators to explanatory variables using linear modelling techniques for multinomial 
data, to enable predictions about changes in vitality with respect to relevant covariates, and (ii) 
modelling vitality as a predictor for survival using GLM, GLMM, or survival analysis, to 
calibrate vitality assessments as a tool for predicting discard survival: “vitality-correlated 
survival” (VCS).  

Finally, methods for using conditional reasoning to integrate survival and vitality data from 
different related sources are discussed. This is a key element in scaling up from small-scale 
mortality experiments to a scale that is relevant for management decisions. 
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Recommendations 

Recognising that statistical modelling is a rapidly evolving field, and that alternative 
approaches to those described in this section are likely to be developed in the future, we 
offer the following advice: 

• Longitudinal survival data are the most informative survival data format, because 
they enable the accurate estimation of asymptotic survival values (SA). So where 
practical, survival data should be collected and analysed in a longitudinal (time 
referenced) format; 

• Asymptotic survival (SA) should be estimated from longitudinal data directly 
using mixture distribution (“cure-rate”) models or indirectly using non- or semi-
parametric models; 

• When longitudinal and cross-sectional survival data (including vitality) are 
potentially confounded by complex hierarchical data structures and other random 
effects (e.g. observer bias), which are common to survival assessments, they 
should be modelled using mixed modelling techniques that can account for these 
random effects; and  

• Integrating related survival and vitality data from different sources, including 
vitality, tagging, and avian predation, is recommended as a useful means of 
scaling up from small-scale survival assessments to a scale that is relevant for 
management decisions. 
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14 Ethics and relevant legislation 

It may be necessary to apply for licences, for both the project and the staff, to work with animals 
in scientific experiments. Please note that these applications can be time-consuming and should 
be done at an early stage in the planning of the assessment. 

Details on EU legislation regarding experiments with animals can be found at: 

https://ec.europa.eu/environment/chemicals/lab_animals/index_en.htm 

http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm 

https://ec.europa.eu/environment/chemicals/lab_animals/index_en.htm
http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm
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15 Health and safety 

An important part of the planning and execution of any scientific work is ensuring the safety of 
personnel directly involved in the operations, as well as anyone who could be indirectly affected 
by them. 

National and regional guidelines and regulations should be followed when planning and 
conducting survival assessments. Further information on this can be found at the European 
Agency for Safety and Health at Work (EU-OSHA): 

https://osha.europa.eu/en 

A number of key hazards may need to be considered when planning and conducting survival 
assessments, including: 

• operations on commercial fishing vessels 
• handling dangerous animals 
• biosecurity 
• diving operations 
• stability of vessels with observation tanks 
• handling/moving tanks during observations 
• releasing tagged fish 

https://osha.europa.eu/en
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Annex 1: Definitions of mathematical symbols and notation 

Table A1.1. Mathematical symbols and notation 

Symbol Definition 

A Coefficient vector of random effects (Matrix notation) 

aj Coefficient for a random intercept in a GLMM, for replicate j 

am Coefficient for the random effects, specific to set m 

B Vector of fixed covariate parameters (Matrix notation) 

Bv Vector of fixed covariate parameter values specific to vitality score level, v 

b0 Coefficient for the intercept in a linear model 

bj Coefficient for an explanatory variable (assigned treatment) specific to replicate j in a 
linear model 

bk The parameter values (for explanatory variables) from a linear regression 

b1 … bk Model coefficients for fixed effect explanatory variables 1 to k 

𝑏𝑏𝑣𝑣 Intercept specific to v (in Matrix notation) 

C Censoring status 

cj Number of censored at time tj (survival analysis) 

cj-1 Number of censored in the previous time interval, tj-1 

𝑜𝑜𝑣𝑣 Intercept specific to v (Section 13.3.1, eq 47 & 48) 

d Number of dead subjects (“morts”). 

dj Number of dead at observation j, i.e. at time tj  in survival analysis 

dj-1 Number of dead in the previous observation, or time interval, tj-1  

dt Number of dead subjects, at time t 

H A nominal “High Survival” threshold. 

i  Index for individual fish; e.g. xi 

J Total number of observations/replicates (e.g. tanks) per treatment 

j Index for observations; e.g xj 

K Total number of explanatory variables 

k Index for explanatory variables (or fixed effects in GLMM) 

l Number of levels in a categorical variable 

M Natural mortality 

m Index for random effect, m; e.g. am 

N Total number of observations 

Nsim Number of simulations in a simulation-based power analysis 

n Sample size – i.e. number of “binomial trials” or experimental subjects  

nj Number of fish in observation j ; or in survival analysis, number of individuals at risk 
at the beginning of observation j, at time tj  (see Section 12.3.1.2 for more details) 

nj Time tj  

njm Number of subjects/fish in observation j, with respect to random variable m 

nt Number of subjects, at time t 

n! n factorial;  i.e. n! = n ∙ (n-1) ∙ (n-2) ∙ (n-3) ∙ …  ∙ 3  ∙ 2  ∙ 1 

p Probability of success or “survival” 

�̂�𝑝 Estimated probability of survival (from a sample). 
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Table A1.1 (continued) 

pi Probability of survival of individual i  

pj Probability of survival in observation (haul) j 

pjm Probability of survival in observation (haul) j , with respect to random variable m 

�̂�𝑝𝑡𝑡 Estimated probability of survival, at time t 

q Probability of failure or death/mortality; i.e. 1 - p 

𝑞𝑞� Estimated probability of death/mortality (from a sample); i.e. 1 - p̂ 

qĵ Estimated mortality for observation j, at time tj 

𝑞𝑞�𝑡𝑡 Estimated probability of death/mortality, at time t 

SA Asymptotic Survival estimate. See Information Box 12.1 

ŜA Estimated survival at asymptote 

s Number of surviving subjects (“survivors”) 

s.e. Standard error of an estimated parameter. i.e. s.e. = σ / √𝐵𝐵 

st Number of subjects alive (“survivors”), at time t 

T Time to mortality, in survival/failure analysis 

t A particular point in time 

ta Time a (used in explanation of Interval censuring) 

tb Time b (used in explanation of Interval censuring) 

tc Censoring time 

tj Time at observation/event j  

tj-1 Time of previous observation to j  

t1..j Time from 1 to j  

tz Last distinct event time 

U Random effects matrix in GLMM (Matrix notation) 

V Number of possible vitality score categories/levels 

v Vitality score level from among V possible levels 

W-, W+ Wilson Score Interval 

wj Catch weight for sampling event j. 

X Design matrix of fixed effects in GLMM (Matrix notation) 

Xi Design matrix of covariates specific to individual i 

Xim Design matrix of covariates specific to individual i in set m 

X1 … Xz A range of explanatory variables, from 1 to z 

xi1 … xik Covariates 1 to k for individual i 

xkj Explanatory variable k, with respect to observation j 

xkjm Fixed effect explanatory variable k, with respect to observation j and random effect m 

Yi Response variable, for individual/fish i 

Yij Response variable for individual/fish i in replicate/observation j  

Yim Response variable for individual/fish i, with respect to random effect m 

𝑌𝑌𝑖𝑖 Response variable for observation j 

𝑌𝑌𝑖𝑖𝑚𝑚 Response variable for observation j, with respect to random effect m 

yj Observation y, with respect to observation j 

Z1 – α One-sided normal quantile for a particular confidence level (1 – α) 

Z1 – α/2 Two-sided normal quantile for a particular confidence level (1 – α) 

α “Significance level” – probability of committing type I error, i.e. incorrectly rejecting a 
true null hypothesis 
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Table A1.1 (continued) 

1 – α “Confidence level” - probability of not rejecting a true null hypothesis 

β Probability of committing type II error - i.e. not rejecting a false null hypothesis 

1 – β “Statistical power” – probability of rejecting a false null hypothesis 

εj Random error distribution in a linear model, with j observations 

η Linear predictor in a GLM and GLMM 

θ Scale parameter in Weibull survival model/function 

µ Mean of a population 

µ� Sample mean 

π Probability that individuals are adversely affected 

σ Standard deviation; i.e. square root of the variance, σ2 

σ2 Variance of a population 

𝜎𝜎𝑎𝑎2 Variance of the random effect (a) 

τ Capture and handling survival prior to release in “mixture distribution model” 

ф Dispersion parameter in GLM/M: ratio of the residual deviance to the residual degrees 
of freedom in a model 

Ω Shape parameter in Weibull survival model/function 

∞ Infinity 

Table A1.2. Mathematical Functions & Distributions 

Notation Definition 

Bin(n, p) Binomial distribution with n trials and a probability of “success” (p) 

Bin(nj, pj) Binomial error distribution of the response variable for observation j, with nj trials 
and a probability of “success” (pj) 

Bin(njm, pjm) Binomial error distribution of the response variable for observation j and random 
variable m, with njm trials and a probability of survival (pjm) 

dF(t)/dt First derivative of cumulative distribution function, with respect to time. 

–dS(t)/dt Negative first derivative of the survival function, with respect to time. 

E(Yj) Expected value (i.e. mean) of the distribution of the response variable Yj  

exp(…) Natural exponent of a function , i.e. to the base e 

e𝜂𝜂𝑗𝑗  or   exp(ηj) Natural exponent of ηj , i.e. to the base e 

e𝑏𝑏𝑗𝑗  or  exp(bj) Exponent of bj ; in a GLM or GLMM this equates to the odds ratio (OR) between the 
treatment in replicate j (numerator) & control replicate (denominator) 

F(t) Cumulative distribution function or lifetime distribution function 

f(t) Probability density function 

g(…) Link function in a GLM and GLMM 

h(t) Hazard function 

ℎ𝑖𝑖(𝑡𝑡) Hazard function for an individual i 

h1(t), h2(t) Hazard function for individuals 1 and 2 

loge (𝜇𝜇𝑖𝑖) Natural logarithm of µj , i.e. to the base e 

logit(p) Logit function: log ( 𝑝𝑝
1−𝑝𝑝

) ; i.e. log of the odds ratio (see Section 12.4.2.3) 

Norm(µ, σ2) Normal distribution with mean, µ, and variance, σ2 

 

𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡(0,𝜎𝜎2) Normal distribution, with mean = 0, and variance σ2 
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Table A1.2 (continued) 

𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡(0,𝜎𝜎𝑚𝑚2 ) Normal error distribution for random variable, m, with mean = 0, and variance 𝜎𝜎𝑚𝑚2  

Pr(T>t) Probability that time to mortality, T, is greater than t: i.e. the probability of 
surviving beyond time t 

Pr(T≤t) Probability time to mortality, T, is less than or equal to t 

Pr(T>tj | T≥tj) Probability that time to mortality, T, is greater than tj, given time to mortality, T, is 
at least greater or equal to t; i.e. probability of surviving beyond tj , given survival 
to at least tj 

𝑃𝑃𝑡𝑡��𝑇𝑇 > 𝑡𝑡𝑖𝑖 � 𝑇𝑇
≥ 𝑡𝑡𝑖𝑖) 

Conditional probability of surviving to time tj+1, given that an individual has 
survived to tj 

Pr (𝑖𝑖)  Probability that a fish belongs to category v 

Pr (𝑖𝑖)𝑖𝑖 Probability that a fish belongs to category v, in sampling event j 

Pr(X=s) Probability that an observation, X, is equal to a nominal value for s 

𝑃𝑃𝑡𝑡(𝑌𝑌𝑖𝑖 ≤ 𝑖𝑖|𝐗𝐗𝐛𝐛) Probability assigned vitality score is less than or equal to vitality score level v, given 
the explanatory variables / covariates Xi 

𝑃𝑃𝑡𝑡(𝑌𝑌𝑖𝑖 > 𝑖𝑖|𝐗𝐗𝐛𝐛) Probability assigned vitality score is greater than vitality score level v, given the 
explanatory variables / covariates Xi 

𝑃𝑃𝑡𝑡(𝑌𝑌𝑖𝑖𝑚𝑚
≤ 𝑖𝑖|𝐗𝐗𝐛𝐛𝐢𝐢,𝑡𝑡𝑚𝑚) 

Probability that an individual observed vitality score is less than or equal to vitality 
level v, conditional on the covariates and the random effect. 

q̂(tj) Estimated mortality, for observation (interval) j 

S(t) Survival (time to mortality) function 

Ŝ(t) Estimated survival (time to mortality) function 

Ŝ(tj) Estimated survival function, for observation (interval) j 

)(0 tS  Baseline survival function 

SD(t) Survival function for “affected group” in “mixture distribution model” 

SI(t) Survival function for “unaffected, “Immune” group” in “mixture distribution 
model” 

�̂�𝑆(𝑡𝑡𝑒𝑒𝑛𝑛𝑑𝑑) Estimated survival at end of observation period 

)|( vtS  The survival function for fish in vitality category v; i.e. survival probability to time t 
conditional on being in category v 

𝑡𝑡𝑆𝑆(𝑡𝑡)≈1−𝜋𝜋 Time when essentially all (e.g. 99.9%) of the CHR-related mortality has occurred;  
i.e. approximately to asymptote (c.f. SA) 

𝑖𝑖 ∈ {1, … ,𝑉𝑉} v is a member of the set 1 through to V 

var(Yj) Expected variance of the distribution of the response variable Yj 

𝜆𝜆0(𝑡𝑡) Baseline hazard function 

∏j1 The product of observations 1 … j  

∏j:tj≤t The product of observations j … tj ≤ t (observation index = j) 

χ2 Chi squared – a value from the Chi Square distribution relating to a statistical 
hypothesis test 
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Table A1.3. Miscellaneous mathematical notation and acronyms 

Notation Definition 

AIC Akaike Information Criteria (AIC; Akaike, 1998) 

AICc AIC corrected for small samples 

AFT Accelerated Failure Time models 

ANOVA Analysis of Variance 

BIC Bayesian Information Criteria 

CI Confidence Interval  

CrI Credibility Interval 

d.f. degrees of freedom 

GHQ Gauss-Hermite quadrature 

GLM Generalised Linear Model 

GLMM Generalised Linear Mixed Model 

HR Hazard Ratio (see Section 12.4.2.4) 

ID Subject identifier 

LMM Linear mixed modelling 

LR Likelihood Ratio 

MCMC Markov chain Monte Carlo algorithms 

ML Maximum likelihood method for estimating parameters in GLM 

OR Odds Ratio (see Section 12.4.2.3) 

p-value Probability of obtaining the observed hypothesis test results, assuming the null 
hypothesis is correct. 

PH Weibull Proportional Hazards model 

PQL Pseudo- and penalized quasi-likelihood method for fitting GLMM 

QAIC Quasi-Akaike Information Criteria 

QAIC Quasi-AIC, for use with quasi-binomial models 

RB Relative Benefit (see Section 12.4.2.2) 

RD Risk Difference (see Section 12.4.2.1) 

REML Restricted maximum likelihood parameter estimation method 

RR Relative Risk (see Section 12.4.2.2) 
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Annex 2: Explanatory variables – glossary 

Air exposure: Time spent out of the water and exposed to air (also called “deck time”). 

Air temperature: Ambient temperature measured on deck or in the laboratory. 

Behaviour: Behaviour of the studied species (evasion reflexes, movement, 
competition, antagonistic behaviour). 

Body size: Measured length of discarded specimen. It is related to the sensitivity 
of the specimen and its core body temperature. 

Catch composition: List of species recorded in the catch. Important regarding potential 
deleterious interactions between the study organisms and other 
components of the catch (scale abrasion from spiny fish or stings from 
jellyfish). 

Crowding density: Number of individuals in the catch, per unit of volume. 

Catch volume: Amount of catch expressed as a volume.  

Deployment duration: Period of time the fishing gear is submerged underwater and actively 
fishing (e.g. towing time; haul-back time; “set duration”; fighting time, 
and “soak time”). 

Depth: Depth from which the catch is hauled up. It isrelated to changes in 
hydrostatic pressure, light intensity, water temperature, salinity, and 
dissolved oxygen levels. 

Dissolved oxygen: Amount of oxygen dissolved in water (related to hypoxia). 

Gear configuration: Materials used and their arrangement/rigging (e.g. yarn stiffness or 
surface, knot thickness, mesh size, mesh shape, dimensions, or hook 
type, hook design and size); includes gear modifications to improve 
selectivity (e.g. Nordmøre grids or guiding/escape panels). 

Gear operation: Particular mechanisms describing the way gear is being deployed and 
retrieved (e.g. haulback operations with purse-seiners).  

Gear type: Refers to distinct gear configurations that classify gears into different 
groups (e.g. trawls, hook and line, gillnets, trammelnets, purse-seine). 

Sex: Sexual morphological characteristics of the discarded specimen (male, 
female, hermaphrodite). 

Handling: Describes all operational steps associated with the sorting and 
processing of the catch on board a vessel, including mechanical 
processing machinery (e.g. sorting procedure, drop height of discards, 
gaffing, crew experience). 
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Infection: Invasion by, and multiplication of pathogens in or on body tissue, 
which may lead to a disease through a variety of cellular or toxic 
mechanisms. 

Injury: Describes the size and severity of any potential external or internal 
injuries (e.g. scale loss, lesions, or wounds). 

Light: Light intensity in water and/or air. 

Location: Latitude/longitude where the catch was taken. It is related to sediment 
type.  

Physical condition: Specific condition of the discarded specimen (e.g. vitality, injuries, 
reproductive condition). 

Predation: Process of being eaten by a predator. It is a function of predator type, 
predator density, predator avidity, and initial responsiveness of prey to 
a potential predator. 

Recapture: The reoccurrence of a capture-and-release event. In intensively fished 
areas, a discarded organism may be recaptured. 

Salinity: Dissolved salt content in the water.  

Season: Time of year in relation to weather conditions or physical condition of 
the species to be discarded (e.g. reproductive condition, air and/or 
water temperature, sea state, passage of storms.  

Sediment type: Type of sediment at the location where the catch is taken from (e.g. 
rock/sand bottom). 

Species: Phenotype of species i.e. being more robust or fragile (e.g. spines, shells, 
carapaces, presence/absence of a swimbladder, deciduous scales). 

Stress: Response to a stressor, such as threatening stimulus or adverse change 
in environmental conditions. It represents a wide range of physiological 
and behavioural responses that occur as a direct effect of a stressor 
causing a disruption to an animal’s state of well-being.  

Water temperature: Temperature of the water measured in situ or in the laboratory (e.g. 
temperature change, thermocline, water surface temperature). 

Weather: Temperature and precipitation patterns. 

Year: If a study was annually replicated. 
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Annex 3: Examples of discard survival estimates  

Table A3.1 Examples of discard survival estimates by species and fishing gear (from Revill, 2012). 

 

 

Species Fishing Gear Survival Estimates (%) Reference 
  

Mean Pooled Median Lower Upper 
 

Gadus morhua Handlines  74.3 - 61.4 100 Weltersbach and Strehlow (2013) 

Gadus morhua Demersal longline - - - 31 100 Milliken et al. (2009) 

Gadus morhua Otter trawl - - - 0 100 Carr et al. (1992) 

Gadus morhua Jigging  - - 42 68 Palsson et al. (2003) 

Gadus morhua Bottom trawl - - - 0 63.7 ICES (1976) 

Gadus morhua Otter trawl - - - 9 51 Robinson et al. (1993) 

Pleuronectes platessa Shrimp beam trawl - - - 68 100 Graham (1997) 

Pleuronectes platessa Otter Trawl - - - 0 54.1 vanBeek et al. (1990) 

Pleuronectes platessa Beam Trawl - - - 2.1 47.9 vanBeek et al. (1990) 

Pleuronectes platessa Beam trawl - - - 39 40 Kaiser and Spencer (1995) 

Pleuronectes platessa Beam trawl - - - 20.3 56.8 Revill et al. (2013) 

Nephrops norvegicus Crustacean trawl, simulated - - - 58 75 Harris and Ulmestrand (2004) 

Nephrops norvegicus Crustacean trawl - - - 30 79.3 ICES, 1971 

Nephrops norvegicus Crustacean trawl - - - 12 60 Castro et al. (2003) 

Nephrops norvegicus Nephrops trawl 28.6 - - 18.9 38.9 Wileman et al. (1999) 

Nephrops norvegicus Nephrops trawl - - - 16.5 38.9 ICES (1975b) 

Nephrops norvegicus Nephrops trawl 19-31 - - 11 36 ICES (1982) 
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Table A3.2. Examples of discard survival estimates (from Table A3.1) disaggregated with respect to key explanatory variables (i.e. depth, degree of injury, and season; adapted from 
Revill, 2012). 

Species Fishing Gear Test Effect Survival Estimates (%) Reference 
   

Mean Pooled Median Lower Upper 
 

Gadus morhua Jigging Depth & Injuries - - - 42 74 Palsson et al. (2003) 

Gadus morhua Jigging Deep - - - 46 42 50 Palsson et al. (2003) 

Gadus morhua Jigging Shallow - - - 68 62 74 Palsson et al. (2003) 

Gadus morhua Jigging Single Injury - - 73 - - Palsson et al. (2003) 

Gadus morhua Jigging Multiple Injury - - 41 - - Palsson et al. (2003) 

Gadus morhua Handlines Season - 74.3 - 61.4 100 Weltersbach and Strehlow (2013) 

Gadus morhua Handlines April - 100 - - - Weltersbach and Strehlow (2013) 

Gadus morhua Handlines May - 78.1 - - - Weltersbach and Strehlow (2013) 

Gadus morhua Handlines June - 57.7 - - - Weltersbach and Strehlow (2013) 

Gadus morhua Handlines July - 61.4 - - - Weltersbach and Strehlow (2013) 

Pleuronectes platessa Beam trawl Season - - - 20.3 56.8 Revill et al. (2013) 

Pleuronectes platessa Beam trawl February 20.3 - - - - Revill et al. (2013) 

Pleuronectes platessa Beam trawl March 25.6 - - - - Revill et al. (2013) 

Pleuronectes platessa Beam trawl May 56.8 - - - - Revill et al. (2013) 
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Annex 4: Examples of Metrics used in Vitality Assessments 

Tables adapted from: https://yesheflowers.blogspot.com/p/list-of-potential-reflex-
actions_9.html 

Table A4.1. Example metrics for scoring presence/absence of behavioural/reflex impairment in fish and 
elasmobranchs as part of a vitality assessment. 

Metric Positive Behavioural / Reflex Response 

Body Flex 1 Attempts to escape when restrained 

Body Flex 2 Body flex when placed on flat surface 

Orientation In water, maintains body upright 

Righting In water, returns to normal orientation when turned upside down 

Head Complex Regular pattern of ventilation with jaw and operculum 

Operculum Closure Operculum clamps closed when lifted or opened 

Mouth Closure Mouth clamps closed when lifted or opened 

Gag Response Body flexes when throat stimulated with probe 

Vestibular-Ocular Reflex Eyes roll when body rotated around long axis 

Dorsal Fin Erection Fin becomes erect when body restrained or touched 

Tail grab Burst movement away from observer 

Tail flexion Body flex when tail flanks stimulated 

Evasion In water, actively swims away when released 

Startle – Light Moves in response to light 

Startle – Sound Moves in response to sound 

Startle – Touch Moves in response to touch 

Nictitating Membrane Nictitating membrane closes on stimulation 

Atonic Immobility Becomes immobile when stimulated 

Dorsal Light Reaction Body rolls in direction of light 

Optimotor Response Movement in response to external object motion 

Optikinetic Response Eye movement in response to external object motion 

 

 

 

 

 

 

 

https://yesheflowers.blogspot.com/p/list-of-potential-reflex-actions_9.html
https://yesheflowers.blogspot.com/p/list-of-potential-reflex-actions_9.html
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Table A4.2. Example metrics for scoring presence/absence of behavioural/reflex impairment in crustaceans as 
part of a vitality assessment. 

Metric Positive Behavioural / Reflex Response 

Abdominal Turgor Abdomen extends horizontally or tail flip 

Abdominal Extension Abdomen extends outward 

Leg Motion Leg moves when animal held 

Leg Retraction  Leg retracts when animal held 

Leg Extension / Flare  Leg extended / spread wide, when animal held 

Pleopod Motion Pleopods retract when stimulated 

Maxilliped Motion Maxillipeds move when stimulated 

Maxilliped Retraction Maxillipeds retract in posterior direction 

Antenna Response  Antenna moves when stimulated 

Eye Turgor Eye stalk moves when stimulated 

Eye Retraction Eye stalk retracts when stimulated 

Chela Closure Chela closes when stimulated 

Aggressive Posture  Assume aggressive defence posture when released 

Table A4.3. Examples of barotrauma indicators in fish, for inclusion vitality assessments scores. 

Barotrauma Indicator Descriptions 

Tight Abdomen Abdomen swollen, tight to touch 

Bulging Membrane  Bulge in branchiostegial membrane 

Gas in Membrane Gas spaces or bubbles visible in branchiostegial membrane 

Exophthalmia Eyes distended outwards from head 

Corneal Gas Bubbles Gas present in eye or membrane covering eye 

Stomach Eversion Eversion of oesophageal tissue (at least 1 cm in diameter) in buccal 
cavity 

Prolapsed Cloaca Intestine protruding out of anus 

Subcutaneous gas bubbles Gas under tissue; e.g. fins, gums, skin 

Subcutaneous haemorrhaging Blood under tissue; e.g. fins, gums, skin 
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Table A4.4. Examples of injury/trauma indicators, in fish, for inclusion vitality assessments scores. 

Injury Indicator Descriptions 

Shallow hooking Hooking location: upper jaw, lower jaw roof of mouth, lateral side of 
mouth, floor of mouth, tongue 

Deep hooking Hooking location: eye, stomach, oesophagus, pharynx, gills 

Jaw broken Lower mandible broken into two or more pieces 

Jaw missing Lower mandible missing 

Bleeding Haemorrhaging/bleeding from any tissue 

Abrasion  Abrasive damage (including blood spotting) on external surface  

Mucous loss Area of mucous loss on external surface  

Scale loss Area of scale loss on skin 

Wounding Incision and/or laceration wound 

Deep wounding Deeply penetrating incision and/or laceration wound 

Gill colour Gill filaments pale 

Fin fraying  Fin membranes damaged/retracted, may be associated with bleeding 

Internal organs exposed Internal organs exposed by deep penetrating wounds 

Net Marks Any type of visible net impression/mark on external surface of body 
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Annex 5: Examples of explanatory variables in survival 
assessments 

Table A5.1. Examples of explanatory variables monitored and analysed as explanatory variables in survival 
assessments in several fisheries using towed fishing gears (i.e. demersal trawls & seines). 

Factor Measurement Data and analysis Species  
[Gear Type] 

Reference 

Air 
exposure 

Presence or 
absence of "wet 
treatment" during 
catch process 

Binary data 
(dead/alive) vs. 
treatment (dry or wet 
handling process) - 
Student-Newman-
Keuls and/or logistic 
model 

School prawn 
(Metapenaeus 
macleayi)  
[Bottom 
trawl] 

Macbeth et 
al. (2006) 

Air 
exposure  

Time to mortality Survival analysis using 
a modified Kaplan-
Meier method 

Various 
species 
[Bottom 
trawl] 

Benoît et al. 
(2013) 

Air 
exposure 
and 
temperature 
(air and 
water) 

Duration of air 
exposure under 
various 
temperatures (air 
& water) 

One-tailed sign test to 
check effect of size on 
mortality under 
various temperature 
conditions 

Lingcod 
(Ophiodon 
elongatus)  
[Simulated 
trawl] 

Davis and 
Olla (2002) 

Air 
temperature 

Summer: 28°C 
winter: 9°C 

Mann–Whitney U-test Sandy 
swimming 
crab 
(Liocarcinus 
depurator)  
[Rapido 
trawl] 

Giomi et al. 
(2008) 

Air 
temperature 

Season increased 
mortality in warm 
months 

Maximum likelihood 
analysis of variance for 
the log-linear mode 

Norway 
lobster 
(Nephrops 
norvegicus)  
[Bottom 
trawl] 

Castro et al. 
(2003) 

Air 
temperature 

Sorting times 5 and 
10 min 

ANOVA Brown 
shrimp 
(Crangon 
crangon)  
[Beam trawl] 

Gamito and 
Cabral 
(2003) 

Catch 
volume 

Discards as a 
proportion of total 
catch 

GLMM catch 
comparison (Holst and 
Revill) 

Skate       
(Rajidae)  
[Bottom 
trawl] 

Enever et al. 
(2009) 

Catch 
volume 

Catch weight Percentage of mortality 
after 72 h in pens. 
ANOVA-stepwise 
regression: 
%_mortality~tow 
weight 

Spiny dogfish 
(Squalus 
acanthias)  
[Bottom 
trawl] 

Mandelman 
and 
Farrington 
(2007) 
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Table A5.1 (continued)    

Deployment 
duration 

Duration ≤ 6 h and  
> 6 h 

Maximum likelihood 
analysis of variance for 
the log-linear mode 

Norway 
lobster 
(Nephrops 
norvegicus) 
[Bottom 
trawl] 

Castro et al. 
(2003) 

Deployment 
duration 

Haul durations 10, 
20, and 30 min 

ANOVA Brown 
shrimp 
(Crangon 
crangon)  
[Beam trawl] 

Gamito and 
Cabral 
(2003) 

Deployment 
duration 

Tow duration 35–
300 min 

ANOVA Lingcod 
(Ophiodon 
elongates)  
[Bottom 
trawl] 

Parker et al. 
(2003) 

Gear 
deployment 

Tow duration 
catch weight 

Logistic regression 
between tow duration, 
catch weight, and fish 
length and mortality. 

Sea snakes 
(various 
species)  
[Prawn trawl] 

Wassenberg 
et al. (2001) 

Size Size < 66 and ≥ 66 
cm 

ANOVA Lingcod 
(Ophiodon 
elongates) 
[Bottom 
trawl] 

Parker et al. 
(2003) 

Sorting and 
handling 

Least (“mild”) and 
most (“extreme”) 
stressful sorting & 
handling 
procedures from a 
plausible range of 
commercial 
practices.  

Two-sample 
Kolmogorov–Smirnov 
test (for length 
distributions) 

School 
prawns 
(Metapenaeus 
macleayi)  
[Seines &  
trawl] 

Broadhurst 
and 
Uhlmann 
(2007) 

Sorting and 
handling 

Sorting containers 
were wooden, 
plastic or metallic; 
dark or light-
coloured 

ANOVA Brown 
shrimp 
(Crangon 
crangon)  
[Beam trawl] 

Gamito and 
Cabral 
(2003) 

Sorting and 
handling 

Time 0–55 min ANOVA Lingcod 
(Ophiodon 
elongates)  
[Bottom 
trawl] 

Parker et al. 
(2003) 
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Table A5.2. Examples of explanatory variables monitored and analysed as explanatory variables in survival 
assessments in several gillnet fisheries. 

Factor Measurement Data and analysis Species [Gear 
Type] 

Reference 

Gear 
configuration 

Gillnet tension was 
increased by using 
larger floats and 
heavy, weighted 
footrope; 
entanglement 
modus of sharks 
was classified into 
four categories. 

Effect of the 
entanglement 
modus on shark 
mortality was 
determined by Chi-
squared test. 
ANOVA for 
comparing 
entanglement 
modus and gillnet 
treatment. 

Blacknose 
shark 
(Carcharhinus 
acronotus) et al. 

Thorpe and 
Frierson 
(2009) 

Gear type  Simulated capture 
by either gillnets or 
longlines  

Comparison of 
struggling profiles 
with two-sample t-
tests, ANOVA 

Port Jackson 
sharks 
(Heterodontus 
portusjacksoni) 
and gummy 
sharks 
(Mustelus 
antarcticus) 

Frick et al. 
(2010) 

Injury Wound type was 
recorded as either 
sealed or unsealed 

Logistic regression 
model 

Blue swimmer 
crab (Portunus 
pelagicus) 

Uhlmann et 
al. (2009) 

Size Fork length was 
measured and 
found to be 
negatively 
correlated with the 
proportion dying 

Mixed-effects 
logistic models 

Surf bream 
(Acanthopagrus 
Australis) 

Broadhurst 
et al. (2008) 
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Table A5.3. Examples of explanatory variables monitored and analysed as explanatory variables in survival 
assessments in several longline fisheries. 

Factor Measurement Data and 
analysis 

Species Reference 

Area Catch position Vitality 
assessment/  
linear regression 
with transformed 
data 

Blue shark (Prionace 
glauca) 

Diaz and 
Serafy 
(2005) 

Deployment 
duration 

Soak time Tagging (PAT)/ 
logistic regression 

Blue shark (Prionace 
glauca) 

Campana 
et al. 
(2009) 

Depth   Cage experiment/ 
logistic regression 

Atlantic cod (Gadus 
morhua) 

Milliken 
et al. 
(2009) 

Depth   Cage experiment/ 
logistic regression 

Atlantic cod (Gadus 
morhua) 

Pálsson et 
al. (2003) 

Gear 
modification 

Hook type (J-
hook vs. circle 
hook) 

Vitality 
assessment/ 
Cochran–Mantel–
Haenszel Chi-
squared test 

Several tropical and 
subtropical pelagic 
species 

Kerstetter 
and 
Graves 
(2006) 

Gear type  Simulated 
capture by 
either gillnets or 
longlines  

Comparison of 
struggling 
profiles with two-
sample t-tests, 
ANOVA 

Port Jackson sharks 
(Heterodontus 
portusjacksoni) and 
gummy sharks 
(Mustelus antarcticus) 

Frick et al. 
(2010) 

Handling Method of 
removal from 
line 

Vitality 
assessment/  
logistic regression 

Skate (Raja sp. anon.) Endicott 
and 
Agnew 
(2004) 

Position on 
line 

  Vitality 
assessment/  
logistic regression 

Skate (Raja sp. anon.) Endicott 
and 
Agnew 
(2004) 

Season   Vitality 
assessment/ linear 
regression with 
transformed data 

Blue shark (Prionace 
glauca) 

Diaz and 
Serafy 
(2005) 

Sex Sex Vitality 
assessment/  
logistic regression 

Skate (Raja sp. anon.) Endicott 
and 
Agnew 
(2004) 

Size Fork length Tagging (PAT)/ 
logistic regression 

Blue shark (Prionace 
glauca) 

Campana 
et al. 
(2009) 

Temperature, 
air 

  Vitality 
assessment/  
logistic regression 

Skate (Raja sp. anon.) Endicott 
and 
Agnew 
(2004) 
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Table A5.3 (continued)    

Temperature, 
water 

  Tagging (PAT)/ 
logistic regression 

Blue shark (Prionace 
glauca) 

Campana 
et al. 
(2009) 

Weather Windspeed on 
Beaufort scale 

Vitality 
assessment/  
logistic regression 

Skate (Raja sp. anon.) Endicott 
and 
Agnew 
(2004) 
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Table A5.4. Examples of explanatory variables monitored and analysed as explanatory variables in survival 
assessments in several hook and line fisheries. 

Factor Measurement Data and 
analysis 

Species Reference 

Air exposure  Swimming activity 
after different air 
exposure durations 

ANOVA Brook trout 
(Salvelinus 
fontinalis) 

Schreer et al. 
(2005) 

Deployment 
duration 

Rapid vs. extended 
capture 

Multiple 
regressions 

Rainbow trout 
(Oncorhynchus 
mykiss) 

Meka and 
McCormick 
(2005) 

Depth Capture depth, 
barotrauma relief 
methods 

Multifactor 
GLM 

Red emperor 
(Lutjanus sebae) 

Brown et al. 
(2010) 

Dissolved 
oxygen 

ATP, Phosphocreatine 
(PCr) and glycogen 
levels as proxy for 
stress 

ANOVA Largemouth 
bass 
(Micropterus 
salmoides) 

Suski et al. 
(2006) 

Gear 
configuration 

Hook type (J-hook vs. 
circle hook) 

Logistic 
regression and 
Chi-squared 
test 

Trachynotus 
ovatus 

Alós (2009) 

Gear 
configuration 

Lure/bait type Logistic 
regression 

Northern pike 
(Esox lucius) 

Arlinghaus 
et al. (2008) 

Gear 
operation 

Active vs. passive 
fishing 

Logistic 
regression 

Rainbow trout 
(Oncorhynchus 
mykiss) 

Schisler and 
Bergersen 
(1996)  

Handling Retention in fishing 
tournaments 

ANOVA Largemouth 
bass 
(Micropterus 
salmoides) 

Suski et al. 
(2004) 

Handling Levels of angling 
experience 

Logistic 
regression 

Striped bass 
(Morone 
saxatilis) 

Diodati and 
Richards 
(1996) 

Season Locomotory activity of 
nesting and non-
nesting fish 

Paired t-test Largemouth 
bass 
(Micropterus 
salmoides) 

Cooke et al. 
(2000) 

Size Total length Radio tagging, 
no statistical 
analysis of 
survival rates 

Atlantic salmon 
(Salmo salar) 

Thorstad et 
al. (2003) 

Temperature, 
water 

ATP, Phosphocreatine 
(PCr) and glycogen 
levels as proxy for 
stress 

ANOVA Largemouth 
bass 
(Micropterus 
salmoides) 

Suski et al. 
(2006) 
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Table A5.5. Examples of explanatory variables monitored and analysed as explanatory variables in survival 
assessments in several purse seine fisheries. 

Factor Measurement Data and analysis Species Reference 

Catch 
composition 

Amount of species in the 
catch, different from the 
studied species 

GLM and GAM 
analyses 

Sardine 
(Sardina 
pilchardus) 

Marçalo et 
al. (2008) 

Condition 
Factor 

Monitoring of mortality, 
behavior and blood 
parameters in different 
treatments. Condition 
factors were based on 
weight and length of 
fish. 

ANOVA, Tukey's 
HSD model for 
pairwise 
comparison, 
Tamhane's 
posthoc test 

Herring 
(Clupea 
harengus) 

Olsen et al. 
(2012) 

Condition 
Factor 

Measure lengths and 
weights of fish. Fulton’s 
condition factor: C = 
Weight/(Length3) × 
constant (1000). 

Regression 
analysis to 
evaluate: effect of 
time spent in 
crowded net pens 
on the condition 
factor and the 
effect of fish 
condition on the 
blood parameter 
levels 

Herring 
(Clupea 
harengus) 

Tenningen 
et al. (2012) 

Crowding 
Density 

Reducing the volume in 
a net and increasing fish 
density. While fully 
crowded, the dimensions 
of the net were estimated 
using a measuring pole 
and the shape of the net 

Effects of 
crowding density 
(number/m3) and 
time on blood 
parameters and 
number of dead 
fish. Also oxygen 
levels were 
monitored in the 
net pens. 

Herring 
(Clupea 
harengus) 

Tenningen 
et al. (2012) 
[Similar 
appoach for 
mackerel 
(Huse and 
Vold, 2010) 
and sardine 
(Marçalo et 
al., 2010, 
2013)] 

Predation Predator approach and 
nearest-neighbour 
distance measured in 
random frames, using 
image processing 
programme.  

Comparison of 
nearest-neighbour 
distances between 
treatment and 
control by 
Kruskal–Wallis 
test followed by 
pairwise multiple 
comparison 
among groups 
using Dunn’s 
method 
 
 
 
 
 
  

Sardine 
(Sardina 
pilchardus) 

Marçalo et 
al. (2013) 
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Table A5.5 (continued)    

Skin Injury Recorded at the surface 
by photograph. 
Each flank of the fish was 
divided into eight 
regions that could be 
delimited visually.Scale 
loss in each region was 
evaluated from 0 to 10, 
corresponding to 0 to 
100% scale loss. 

Mean level of 
scale loss among 
regions and flanks 
was used to 
describe fish scale 
loss (expressed as 
percentage). 

Sardine 
(Sardina 
pilchardus) 

Marçalo et 
al. (2008) 

Skin Injury Recorded at the surface 
by photograph. 
Each flank of the fish was 
divided into eight 
regions that could be 
delimited visually, and 
scale loss in each region 
was evaluated on a level 
of 0 to 10 (corresponding 
to 0 to 100% scale loss). 

GLM analysis Sardine 
(Sardina 
pilchardus) 

Marçalo et 
al. (2008) 

Temperature, 
water 

Seasonal variation of 
water temperature in 
captivity tanks was used 
as a factor during fishing 
simulation experiments 

ANOVA table 
was built on a 
linear model of 
each relevant 
variable as a 
function of fishing 
time and 
temperature (both 
as factor 
variables), and the 
interaction term. 
Effect of 
temperature on 
survival was 
modelled with 
Kaplan–Meier 
(KM) survival 
estimators 

Sardine 
(Sardina 
pilchardus) 

Marçalo et 
al. (2010) 
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Annex 6: Examples of data sheets  

The following is an example of typical sections seen in data sheets used to collect information 
on various technical, environmental, and biological variables:  

Nephrops survival survey  
 
Survey information 
 

 
VESSEL 
Name 
 

Length 

TRAWL CODEND 
Twine material 
 

Twine diameter 

Number of mesh Twine     
        simple       double 

Protections 
 
        Yes       No 

Selective device 
 
        Yes       No 

DECK 

Dimension of sorting area on board : 

Height working area :  

Dimension of sorting table : 

Drawing of sorting area: 
 
 
 
 

CATCH SORTING ORGANIZATION (Crew) 

Number of crew members : 

Sorting table :    Yes      No 

Discard :    all along the sorting process      after the sorting of the catch 
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Nephrops survival survey 
Fishing  
operation information Date 

                    
N° haul 
 

Type of seabed 
 

 
Trawl Shooting 
Start of fishing operation Depth 

Latitude Longitude  

Trawl Hauling 
End of fishing operation depth 

Latitude Longitude  

Time codend on the deck 
 
 
CATCH 
 Landed (kg) Discarded (kg) 
Nephrops   

Fish, others 

   

   

   

   

Discarded Nephrops after sorting the catch 

Nephrops 
Number alive Number dead 
  

ENVIRONMENT 

Water Temperature: 

Temp air: 

Atmospheric pressure: 

Humidity: 

Sea state: 

 

Predation (e.g. : bird) 

OBSERVATIONS 
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Nephrops survival survey Individual information  

 
Fishing operation After             

reimmersion 

Date                    N° Haul N° Flag 
 

Time haul on board Date bag on board 

Trawl 
 Starboard   
 Port side   

Sorting starting time Sorthing ending time  Time bag on board 

 
Bag N°1  
BEFORE reimmersion 

 Bag N°1 
AFTER reimmersion 

N
° tube 

Tim
e 

Length 

Vitality
1 

Sex 

Phys. 
state 2 

N
° tube 

Tim
e 

Length 

Vitality
1 

Sex 

Phys. 
state 2 

      

 

      
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
Observations 
 

 Observations 

1 Vitality : H = Healthy, M = Moribund, D = Dead 

2 Physical state : OK, 1P = 1 pincer, 0P = 0 pincer, E = female with eggs, other information should 
be noted as Observations. 
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Annex 7: Referenced species names 

Latin name Common name 

Acanthopagarus schlegelii Blackhead sea bream, Black sea bream 

Acanthopagrus Australis Surf bream 

Albula vulpes Bonefish 

Anoplopoma fimbria Sablefish 

Argentina sphyraena Lesser argentine 

Brosme brosme Tusk 

Calonectris borealis Cory’s shearwater 

Calonectris diomedea Scopoli’s shearwater 

Capros aper Boarfish 

Carcharhinus acronotus Blacknose shark 

Clupea harengus Atlantic herring  

Clupea harengus Herring 

Crangon crangon Brown shrimp 

Esox Lucius Northern pike 

Fulmarus glacialis Northern fulmar 

Gadus morhua Cod 

Ginglymostoma cirratum Nurse shark 

Heterodontus portusjacksoni Port Jackson shark 

Hippoglossoides platessoides American plaice 

Hippoglossoides platessoides Long rough dab 

Hippoglossus hippoglossus Atlantic halibut 

Hippoglossus stenolepis Pacific halibut 

Larus argentatus Herring gull 

Larus fuscus Lesser black-backed gull 

Larus marinus Great black-backed gull 

Leucoraja erinacea Little skate 

Liocarcinus depurator Sandy swimming crab 

Lutjanus sebae Red emperor 

Mallotus villosus Capelin  

Melanogrammus aeglefinus Haddock 

Merlangius merlangus Whiting 

Merluccius merluccius Northern hake 

Metapenaeus macleayi School prawn 

Micromesistus potassou Blue whiting 

Micropterus salmoides Largemouth bass 

Molva molva Ling 

Morone saxatilis Striped bass 

Morus bassanus Northern gannet 

Mustelus antarcticus Gummy shark 

Myoxocephalus scorpius Shorthorn sculpin 
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Myxine glutinosa Hagfish 

Nephrops norvegicus Norway lobster 

Oncorhynchus keta Pacific salmon 

Oncorhynchus mykiss Rainbow trout 

Ophiodon elongatus Lingcod 

Osmerus mordax Rainbow smelt 

Paralithodes camtschaticus Alaskan crab 

Pleuronectes platessa Plaice 

Portunus pelagicus Blue swimmer crab 

Prionace glauca Blue shark 

Pseudopleuronectes americanus Winter flounder 

Puffinus mauretanicus Balearic shearwater 

Raja clavate Thornback ray 

Rissa tridactyla Black-legged kittiwake 

Salmo salar Atlantic salmon 

Salvelinus fontinalis Brook trout 

Sardina pilchardus Sardine 

Scomber scombrus Mackerel 

Scophthalmus maximus Turbot 

Solea solea Sole 

Squalus acanthias Spurdog, Spiny dogfish  

Stercorarius skua Great skua 

Thunnus thynnus Bluefin tuna 

Trachinotus ovatus Pompano, Silverfish 

Trachurus trachurus Horse mackerel 

Trisopterus esmarki Norway pout 

Trisopterus spp. Pouting, Poor cod, Norway pout 

Urophycis tenuis White hake 

Xiphias gladius Mediterranean swordfish 

 

 



 222  | Cooperative Research Reports Vol. 351 
 
 

Annex 8: Author contact information 

These guidelines are an output from three meetings of the ICES Workshop on Methods for 
Estimating Discard Survival (WKMEDS):  

Copenhagen, 17–21 February 2014 
Copenhagen, 24–28 November 2014 
London, 20–24 April 2015 

Editors 

Mike Breen and Tom Catchpole 

Authors and editors affiliation and contact details 

Name Affiliation Email 

Mike Breen (editor) Institute of Marine Research (IMR), 
Norway 

michael.breen@hi.no  

Tom Catchpole (editor) Centre for Environment, Fisheries and 
Aquaculture Science (Cefas), UK 

thomas.catchpole@cefas.co.uk  

Aud Vold Institute of Marine Research (IMR) 
(Retired), Norway 

n/a 

Bob van Marlen Wageningen University & Research 
(Retired), Netherlands 

n/a 

Chun Chen Wageningen University & Research, 
Netherlands 

chun.chen@wur.nl  

Connor Capizzano University of Massachusetts, US connor.capizzano001@umb.e
du  

Dorothee Kopp French Research Institute for 
Exploitation of the Sea (IFREMER), 
France 

dorothee.kopp@ifremer.fr  

Floor Quirijns Independent fisheries consultant, 
France 

@floorquirijns 

Graham Raby Trent University, Canada graham.d.raby@gmail.com  

Hans Nilsson University of Agricultural Sciences, 
Sweden 

hans.nilsson@slu.se  

Harry Strehlow Thünen Institute, Germany harry.strehlow@thuenen.de  

Hugues Benoît Fisheries and Oceans, Canada Hugues.Benoit@dfo-
mpo.gc.ca 

Jochen Depestele Institute for Agricultural, Fisheries and 
Food Research (ILVO), Belgium 

jochen.depestele@ilvo.vlaand
eren.be  

Julio Valeiras Spanish Oceanographic Institute (IEO), 
Madrid, Spain 

julio.valeiras@ieo.es  

Keno Ferter Institute of Marine Research (IMR), 
Norway 

keno@hi.no  

Luis Arregi AZTI-Tecnalia, Spain larregi@azti.es  

Michael Davis National Oceanic and Atmospheric 
Administration (Retired), US 

yesheflowers@gmail.com 

mailto:michael.breen@hi.no
mailto:thomas.catchpole@cefas.co.uk
mailto:chun.chen@wur.nl
mailto:connor.capizzano001@umb.edu
mailto:connor.capizzano001@umb.edu
mailto:dorothee.kopp@ifremer.fr
mailto:graham.d.raby@gmail.com
mailto:hans.nilsson@slu.se
mailto:harry.strehlow@thuenen.de
mailto:hugues.benoit@dfo-mpo.gc.ca
mailto:hugues.benoit@dfo-mpo.gc.ca
mailto:jochen.depestele@ilvo.vlaanderen.be
mailto:jochen.depestele@ilvo.vlaanderen.be
mailto:julio.valeiras@ieo.es
mailto:keno@hi.no
mailto:keno@hi.no
mailto:yesheflowers@gmail.com


 ICES Guidelines on Methods for Estimating Discard Survival |  223 

 

Rolf Erik Olsen Institute of Marine Research (IMR), 
Norway 

rolf.erik.olsen@hi.no  

Ruben Theunynck Institute for Agricultural, Fisheries and 
Food Research (ILVO), Belgium 

ruben.theunynck@ilvo.vlaan
deren.be 

Sebastian Uhlmann Institute for Agricultural, Fisheries and 
Food Research (ILVO), Belgium 

sebastian.uhlmann@ilvo.vlaa
nderen.be 

Simon Weltersbach Thünen Institute, Germany simon.weltersbach@thuenen.
de  

Sonia Mehault French Research Institute for 
Exploitation of the Sea (IFREMER), 
France 

sonia.mehault@ifremer.fr  

Stephen Votier University of Exeter, UK S.C.Votier@exeter.ac.uk  

Thomas Noack DTU Aqua - National Institute of 
Aquatic Resources, Denmark 

thno@aqua.dtu.dk  

 

 

mailto:rolf.erik.olsen@hi.no
mailto:ruben.theunynck@ilvo.vlaanderen.be
mailto:ruben.theunynck@ilvo.vlaanderen.be
mailto:sebastian.uhlmann@ilvo.vlaanderen.be
mailto:sebastian.uhlmann@ilvo.vlaanderen.be
mailto:simon.weltersbach@thuenen.de
mailto:simon.weltersbach@thuenen.de
mailto:sonia.mehault@ifremer.fr
mailto:S.C.Votier@exeter.ac.uk
mailto:thno@aqua.dtu.dk

	Contents
	I Summary
	Background
	Survival Assessment Methods
	Selecting the appropriate method/s
	Conclusions and Recommendations

	1 Introduction
	1.1 Objectives for guidance notes
	1.2 Note on high survival

	2 Background
	2.1 What are discards?
	2.2 What is discard survival?
	2.3 Survival and time
	2.4 Variability of discard survival estimates
	2.4.1 Variability of survival from stressors
	2.4.2 Variability of survival from individual characteristics

	2.5 Benefit of studying factors influencing discard survival

	3 Main recommendations to practitioners
	3.1 Key questions for practitioners
	3.1.1 Are criteria given to define when death occurred?
	3.1.2 Is a control being used to inform of experimental induced mortality?
	3.1.3 Is mortality being observed/modelled to asymptote?
	3.1.4 Does the sample represent the part of the catch being studied?
	3.1.5 Does the sample represent the relevant population in the wider fishery?

	3.2 Experimental design
	3.3 Controls
	3.4 Identifying potential explanatory variables
	3.5 Vitality assessments:  visual health, injury, and reflex
	3.6 Captive observation
	3.7 Tagging
	3.8 Avian predation assessment
	3.9 Analysis

	4 Discard survival assessments
	4.1 What is a discard survival assessment?
	4.2 Experimental approaches
	4.3 Towards an integrated approach
	4.4 Planning a survival assessment – an integrated approach
	4.5 Involving stakeholders
	4.6 Criteria for Prioritizing species, fisheries, and variables
	4.6.1 Biological characteristics of the discarded individuals of interest
	4.6.2 Characteristics of the fishery
	4.6.3 Population status
	4.6.4 Magnitude of discards or discard rate
	4.6.5 Socio-economic value
	4.6.6 Policy implications

	4.7 Selecting methods for estimating survival
	Objective 1: Estimate an immediate discard survival potential for specific conditions
	Objective 2: Estimate an immediate discard survival potential that is representative of the management unit
	Objective 3: Estimate a discard survival rate, excluding predation, for specific conditions
	Objective 4: Estimate a discard survival rate, excluding predation, representative of the management unit
	Objective 5: Estimate a discard survival rate, including predation, for specific conditions
	Objective 6: Estimate a discard survival rate, including predation, representative of the management unit
	4.7.1 Including Avian Predation


	5 Experimental design in survival assessments
	5.1 Key concepts
	5.1.1 Experimental unit
	5.1.2 Controls
	5.1.3 Replication
	5.1.4 Randomization
	5.1.5 Orthogonal and non-orthogonal designs

	5.2 Visualizing the experimental design and data structure
	5.3 Power analysis
	5.3.1 Analytical approach
	5.3.2 Simulation-based methods
	5.3.3 Online tutorial


	6 Using controls in discard survival assessments
	6.1 Principles of experimental controls
	6.2 Controls in survival assessments
	6.2.1 Method controls
	6.2.2 Comparative controls

	6.3 Properties of effective controls
	6.4 Acquiring controls
	6.5 Do we really need controls?
	6.6 Summary and recommendations

	7 Explanatory variables
	7.1 Stressor
	7.2 Literature review identifying key explanatory variables
	7.2.1 Selection of variables

	7.3 Measurement of variables
	7.4 Conceptually identifying key variables
	7.4.1 Capture phase
	7.4.1.1 Technical stressors
	7.4.1.2 Environmental stressors
	7.4.1.3 Biological stressors

	7.4.2 Handling phase
	7.4.2.1 Technical stressors
	7.4.2.2 Environmental stressors
	7.4.2.3 Biological stressors

	7.4.3 Release phase
	7.4.3.1 Technical stressors
	7.4.3.2 Biological stressors
	7.4.3.3 Environmental stressors


	7.5 Explanatory variables: conclusions
	7.6 Summary and recommendations

	8 Vitality assessments
	8.1 Defining and measuring “vitality”
	8.2 Overview of vitality assessment methods
	8.2.1 Coarse mortality indicators (e.g. time to mortality, TTM)
	8.2.2 Categorical vitality assessment (CVA)
	8.2.2.1 CVA method
	8.2.2.2 Defining assessment criteria
	8.2.2.3 CVA applications

	8.2.3 Aggregated and partitioned vitality assessments (AVA and PVA)
	8.2.3.1 AVA and PVA methods
	8.2.3.2 Selecting assessment criteria
	8.2.3.3 Collecting and calculating AVA score
	8.2.3.4 Collecting and calculating PVA score
	8.2.3.5 AVA and PVA applications


	8.3 Predicting survival from vitality assessments
	8.3.1 Vitality correlated survival
	8.3.2 Selection of appropriate stressors for the correlation
	8.3.3 Controls

	8.4 Limitations and uncertainties of vitality assessment
	8.4.1 Coarse mortality indicators
	8.4.2 Categorical vitality assessment (CVA)
	8.4.3 Aggregated and partitioned vitality assessment (AVA and PVA)

	8.5 Predicting survival from vitality assessments
	8.6 Summary and recommendations

	9 Captive observations
	9.1 Field vs. laboratory assessments
	9.1.1 Field assessments
	9.1.2 Laboratory assessments

	9.2 Designing a captive observation assessment
	9.2.1 Obtaining a representative subject population
	9.2.2 Transfer into captivity
	9.2.3 Containment facilities
	9.2.3.1 Construction and materials
	9.2.3.2 Volume/surface area
	9.2.3.3 Stocking density
	9.2.3.4 Stable and appropriate environmental conditions
	9.2.3.5 Water quality and exchange
	9.2.3.6 Water movement
	9.2.3.7 Lighting conditions: intensity, spectrum, and periodicity
	9.2.3.8 Shelter for the subjects
	9.2.3.9 Feeding requirements of the subjects
	9.2.3.10 Exclusion of predators
	9.2.3.11 Facilitate monitoring with minimal disturbance

	9.2.4 Monitoring
	9.2.4.1 Characterizing subjects as dead
	9.2.4.2 Removal of dead specimens
	9.2.4.3 Observations
	9.2.4.4 Variables to be measured


	9.3 Summary

	10 Tagging
	10.1 Mark–recapture
	10.2 Acoustic telemetry tagging (including radio tagging)
	10.2.1 Acoustic tagging methods to estimate discard survival
	10.2.2 Principle advantages, challenges, and assumptions of acoustic tagging
	10.2.3 Best practices for the use of acoustic tagging in discard survival studies

	10.3 Data storage tags
	10.3.1 Principle advantages, challenges, and assumptions of DST tagging methods
	10.3.2 Best practice for DST tagging to estimate discard survival

	10.4 Summary and recommendations

	11 Methods for assessing avian predation on discards
	11.1 Estimating the risk of seabird predation in a fishery
	11.1.1 The association of seabird populations and a fishery
	11.1.1.1 Boat-based and aerial surveys
	11.1.1.2 Land-based studies
	11.1.1.3 Biologging
	11.1.1.4 Autonomous vehicles
	11.1.1.5 Distribution of fisheries
	11.1.1.6 Association between seabirds and fishing vessels

	11.1.2 Dietary preferences of seabirds
	11.1.2.1 Discard consumption by seabirds
	11.1.2.1.1 Conventional dietary assessment tools
	11.1.2.1.2 Species of discarded fish eaten by seabirds
	11.1.2.1.3 Stable isotopes and fatty acids
	11.1.2.1.4 Biologging



	11.2 Discard mortality by ship-following seabirds: experimental discarding
	11.2.1 Recording the fate of fish in ship-borne discard experiments
	11.2.1.1 Monitoring composition of discarded portion of the catch
	11.2.1.2 Predation during hauling
	11.2.1.3 Effects of the seabird assemblage on fish mortality
	11.2.1.4 Effects of the availability of alternative seabird food on fish mortality
	11.2.1.5 Discharge rates and methodology
	11.2.1.6 Selection of fish for simulated discarding
	11.2.1.7 Effect of discarding practices


	11.3 Analysis of avian predation data and estimating survival
	11.4 Summary

	12 Survival data: format, structure, and simple summary analysis
	12.1 Survival data: types and properties
	12.2 Cross-sectional data
	12.2.1 The binomial distribution
	12.2.2 Confidence Intervals: a measure of uncertainty.
	12.2.2.1 Confidence intervals and their application to normally distributed data
	12.2.2.2 Binomial Confidence intervals
	12.2.2.3 Resources for calculating binomial confidence Intervals
	12.2.2.4 Confidence intervals and hypothesis testing


	12.3 Longitudinal data
	12.3.1 Survival/failure analysis: an introduction
	12.3.1.1 Censoring
	12.3.1.2 Data formats for survival analysis
	12.3.1.3 Describing survival over time: the Kaplan-Meier survival function.
	12.3.1.4 Using R to estimate and plot a Kaplan-Meier survival function

	12.3.2 Time-varying covariates (TVC)

	12.4 Summarizing survival data
	12.4.1 The importance of presenting effect size, confidence intervals and p-values
	12.4.2 Measures of effect: a measure of difference
	12.4.2.1 Risk difference (RD or attributable risk)
	12.4.2.2 Risk ratios (RR, or relative risk and relative benefit)
	12.4.2.3 Odds ratio (OR)
	12.4.2.4 Hazard ratio (HR)
	12.4.2.5 Which measure of effect?
	12.4.2.6 Using measures of effect to adjust for method-control mortality


	12.5 Are these “simple” methods applicable to “real-world” survival data?
	12.6 Summary and recommendations

	13 Analysis and modelling of survival and vitality data
	13.1 Analysis of cross-sectional survival data
	13.1.1 Generalized linear model (GLM) for survival data
	13.1.1.1 Introduction to the linear model
	13.1.1.2 Elements of a generalized linear model (GLM)
	13.1.1.3 The logistic regression: a GLM for binomial data
	13.1.1.4 Fitting a GLM in R
	13.1.1.5 Interpreting GLM coefficients
	13.1.1.6 Important considerations specific to GLM
	13.1.1.7 Model selection
	13.1.1.8 Model checking
	13.1.1.9 Further reading on GLMs and online tutorials

	13.1.2 Generalized linear mixed models (GLMM)
	13.1.2.1 Fixed and random effects: definitions
	13.1.2.2 The GLMM model
	13.1.2.3 Important considerations specific to GLMM
	13.1.2.4 Model fitting, selection, and checking
	13.1.2.5 Further reading and online tutorials


	13.2 Analysis of longitudinal survival data
	13.2.1  Survival Probability Functions.
	13.2.2 Non-parametric method: Kaplan–Meier survival model
	13.2.3 Semi-parametric method: Cox proportional hazards model
	13.2.4 Parametric survival methods
	13.2.4.1 Basic models
	13.2.4.2 Mixture-distribution models for discard mortality data
	13.2.4.3 Generalized model for discard mortality data

	13.2.5 Random effects in models for longitudinal survival data
	13.2.6 Further reading and online tutorials

	13.3 Analysis of vitality data and estimation of survival
	13.3.1 Modelling the response of vitality indicators to explanatory variables
	13.3.2 Modelling vitality data as a predictor for survival
	13.3.2.1 Discussion on underlying assumptions for the RAMP approach
	13.3.2.2 Development of the partitioned vitality assessment (PVA)


	13.4 Analysis of tagging and biotelemetry data to estimate survival
	13.4.1 Analysis of acoustic tag data in the estimation of discard survival rates
	13.4.2 Analysis of DST data in the estimation of discard survival rates

	13.5 Integrating results using conditional reasoning
	13.6 Summary and recommendations

	14 Ethics and relevant legislation
	15 Health and safety
	16 Acknowledgements
	References
	Annex 1: Definitions of mathematical symbols and notation
	Annex 2: Explanatory variables – glossary
	Annex 3: Examples of discard survival estimates
	Annex 4: Examples of Metrics used in Vitality Assessments
	Annex 5: Examples of explanatory variables in survival assessments
	Annex 6: Examples of data sheets
	Annex 7: Referenced species names
	Annex 8: Author contact information



