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Global data on earthworm 
abundance, biomass, diversity 
and corresponding environmental 
properties
Helen R. P. Phillips et al.#

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of 
crucial ecosystem functions and services. Little is known about their diversity and distribution 
at large spatial scales, despite the availability of considerable amounts of local-scale data. 
Earthworm diversity data, obtained from the primary literature or provided directly by 
authors, were collated with information on site locations, including coordinates, habitat 
cover, and soil properties. Datasets were required, at a minimum, to include abundance or 
biomass of earthworms at a site. Where possible, site-level species lists were included, as 
well as the abundance and biomass of individual species and ecological groups. this global 
dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except 
Antarctica. The data were obtained from 182 published articles, published between 1973 
and 2017, and 17 unpublished datasets. Amalgamating data into a single global database 
will assist researchers in investigating and answering a wide variety of pressing questions, 
for example, jointly assessing aboveground and belowground biodiversity distributions and 
drivers of biodiversity change.

Background & Summary
Soils are considered to be one of the most biodiverse terrestrial habitats1–3. Despite this, very little is known about 
the biodiversity that resides there compared to aboveground biodiversity, especially at the global scale1,4,5. This 
is surprising given the large number of local-scale biodiversity datasets available in the published literature. A 
number of studies have amalgamated local scale datasets, primarily for aboveground or marine organisms e.g.6,7, 
which can then be used for large-scale analyses e.g.8,9. Belowground biodiversity data are often overlooked in 
these large biodiversity databases4, and thus separate efforts to collate data are just now starting to emerge for 
certain belowground taxa, particularly microbes e.g.10,11.

Earthworms are involved in a large number of ecosystem functions and services, such as decomposition12, 
nutrient cycling13 and climate regulation14, amongst others13. In addition, they are often used as bioindicators 
of soil biodiversity and health15. Earthworms are relatively easy to sample; thus, a large amount of data are avail-
able16. Nevertheless, previous attempts to collate earthworm datasets have been geographically restricted17,18 or 
focused on country or regional species lists (e.g., DriloBASE; http://taxo.drilobase.org). By collating site-level 
diversity measures, we can also collect information on factors that might determine community composition, for 
example, measurements of soil properties or land use and cover.

Here, we describe a global database of local earthworm diversity and associated site-level characteristics from 
10,840 sites in 60 countries (Fig. 1)19. Site-level information includes at least one sampled soil property, land use, 
and habitat cover for just over 58% of sites. Measurements of earthworm species richness (including species lists 
where available), total abundance, and biomass were collected at the site-level, and for some species occurrences 
i.e., abundance and biomass of the species recorded at a site. In addition, using expert opinion and details given by 
data providers, we classified each earthworm species into ecological groups based on their feeding and burrowing 
behaviours (epigeics, endogeics, anecics, epi-endogeics; more details below20).

#A full list of authors and their affiliations appears at the end of the paper. 
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The compilation of this dataset is timely. It can be used to answer long-standing questions in ecology in rela-
tion to this important belowground faunal group (e.g., global diversity patterns16). And in light of the IPBES 
Global Assessment21 and the loss of biodiversity, the dataset has the potential to be used to address the pressing 
issue of the consequences of environmental change on soil biodiversity. These data are suitable for linking with 
other soil databases, such as BETSI (http://betsi.cesab.org/), a database of soil organism traits22. Linking trait 
information with site-level diversity would then allow analyses of functional diversity. In addition, as nearly all 
sites have geographic coordinates, other environmental data layers (e.g., related to climate variables, land use or 
soil abiotic factors) could be linked to the site-level diversity measures (e.g.16,). Belowground diversity measures 
could also be linked to similar diversity measurements aboveground, thus enabling investigations across ecosys-
tems to identify patterns of diversity and biodiversity changes23.

Methods
This work was conceptualised and discussed during two ‘sWorm’ workshops in 2016 and 2017, funded by sDiv, 
the synthesis centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. More 
than 20 international scientists with expertise in earthworms, soil science, and/or data management met at each 
of the workshops.

On 18th December 2016, Web of Science was used to search the available literature for articles that had 
sampled the earthworm community. Keywords were used that captured measurements of diversity of all taxa 
within Oligochaetes: ((Earthworm* OR Oligochaeta OR Megadril* OR Haplotaxida OR Annelid* OR Lumbric* 
OR Clitellat* OR Acanthodrili* OR Ailoscoleci* OR Almid* OR Benhamiin* OR riodrilid* OR Diplocard* OR 
Enchytraeid* OR Eudrilid* OR Exxid* OR Glossoscolecid* OR Haplotaxid* OR Hormogastrid* OR Kynotid* 
OR Lutodrilid* OR Megascolecid* OR Microchaetid* OR Moniligastrid* OR Ocnerodrilid* OR Octochaet* OR 
Sparganophilid* OR Tumakid*) AND (Diversity OR “Species richness” OR “OTU” OR Abundance OR individual* 
OR Density OR “tax* richness” OR “Number” OR Richness OR Biomass))

This search returned 7,783 papers. All titles and abstracts of papers post-2000 were screened (6140 papers), 
and were excluded if they did not make reference to data suitable for the analysis. As it was most likely that raw 
data would need to be requested, papers in the literature search published before 2000 were not screened and 
excluded, as it was unlikely that available author contact details were up-to-date. After this initial screening, PDFs 
of all remaining papers (n = 986) were manually screened to determine whether data were suitable (see below). 
477 papers made reference to data that was suitable.

In addition, to find unpublished data or to target underrepresented regions, inquiries were made to specific 
earthworm researchers regarding suitable datasets (e.g., by directly contacting researchers, giving presentations 
at the Second Global Soil Biodiversity Conference and the International Symposium of Earthworm Ecology). No 
date restrictions were placed on such datasets, and thus, some were published prior to 2000.

In order to be included in the database, the individual article was required to have sampled earthworm diver-
sity using an appropriate quantitative methodology (such as hand-sorting of a soil quadrat e.g.24, or chemical 
expulsion e.g.25) at two or more sites that varied in their land-use/habitat cover or soil properties. At a minimum, 
we required data on the total abundance or fresh biomass of earthworms at each site, and if possible, the number 
of species (ideally with species binomials), and the abundance and biomass of each species. In addition, geo-
graphic coordinates of the sites were required, and at each site, data collectors ideally had sampled at least one of 
the following soil properties: soil pH (in H2O, KCl, CaCl2), soil organic carbon (%), soil organic matter (%), sand/
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Fig. 1 Locations of the 276 studies included in the database. Each circle represents the centre of a study (a 
collection of sites where earthworms were sampled with a consistent method). The size of the circle indicates the 
number of sites within the study. Transparency is used only for aiding visualisation.
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silt/clay content (%), soil texture (USDA classification26), Cation Exchange Capacity (CEC), Base Saturation (%), 
Carbon:Nitrogen ratio, soil moisture (%), and soil type (WRB/FAO classification27).

Where possible, available data were extracted from the suitable articles. For each suitable article, the meta-data 
(e.g., the article title and DOI) was compiled (Online-only Table 1). Data were extracted from the article text, 
tables, figures, or supplementary material (e.g., using ImageJ28). Where data were not given but were required 
(Online-only Table 2), authors of the articles were contacted and the raw data (or missing information) were 
requested. If the authors did not respond, and the required information could not be obtained using an alternate 
method, the data were not entered into the database. All data were extracted into online data templates, with data 
from one article (i.e., a dataset) being entered into an individual template, referred to as a ‘file’. Each file was given 
a unique ID, and in total 199 files were created and made open-access.

A file could contain multiple ‘studies’, where each study was either a different sampling event i.e., multiple sam-
ples taken at the same site over time, and/or different sampling methodology. Each study was assigned a unique 
study ID. Sampled diversity of earthworms is highly dependent on the extraction method used29. If a dataset did 
not contain consistent sampling methodologies across all sites (i.e., some sites sampled with hand sorting and 
others hand sorting + chemical extraction), thus making it inappropriate to compare earthworm communities, 
the dataset was split into a separate study for each consistent methodology. If sites had been sampled multiple 
times, either across multiple years or within years, and the data were available for each sampling period, then only 
data from the first and the last sampling period were used. Each sampling period was entered as a study, which 
can help prevent temporal autocorrelation during analysis, e.g., when using a mixed-effects modelling approach.

A site was defined as a single location where the earthworm community was sampled using an appropriate 
quantitative methodology. Within each study, each site was given a unique ID (usually based on an ID given in 
the original source). For each site, information on the sampling methodology, soil properties, and land-use/hab-
itat cover, along with the diversity measurements (site-level species richness, abundance and/or biomass) were 
entered into the data template (see Online-only Table 2 for full list of variables and the format that was required 
for the data template). Where possible, data were entered into the data template in the same format as given in 
the original source. To help enable this, columns often had separate fields to record the units. However, for some 
fields, values needed to be standardised prior to data entry, such as for the site coordinates and some soil proper-
ties (e.g., sand/silt/clay content).

All available and required soil properties for each site were entered into the template. Where a site had soil 
properties sampled at different depths (e.g., at 0–15, 15–30, and 30–40 cm), the weighted average of the values was 
entered into the templates. The value was then indicated as being a mean (Online-only Table 2).

The fields for habitat cover, land-use, and management system were predefined categories based on ESA 
CCI-LC (https://www.esa-landcover-cci.org/), the Land-use Harmonization dataset30,31 (Fig. 2), and expert opin-
ion (during the sWorm workshops), respectively. These classification systems were chosen based on knowledge 
of what external pressures might be important for explaining earthworm communities, whilst also ensuring con-
sistency across all regions of the globe. Based on information given within the published article, or from the data 
providers directly, every site was classified into one of the categories for each of these fields. When information 
was missing, sites were classified as “unknown”. Additional information on the land use and management system 
classification definitions shown in Tables 1 and 2, respectively.

As sampling effort also impacts diversity measurements32, the sampling effort at each site was recorded. Effort 
was recorded in two ways:

 1. The area that was sampled, e.g., of a quadrat or soil block, or the area across all e.g., quadrats. This depend-
ed on how the data were presented.

 2. The number of times a site was sampled, either temporally or spatially. If a site was sampled over multiple 
time periods, it would be the number of occasions the site was sampled. If the site had multiple samples 
(e.g,, multiple quadrats) and the diversity measure is an average, the sampling effort would be 1. If the 
diversity is a total measure (e.g., the total number of species across all quadrats) the sampling effort would 
be the total number of e.g., quadrats.

When datasets contained information at a higher resolution than total abundance or biomass of earthworms 
at a site (i.e., at ecological group, genus, or species level), this information was entered into the species occurrence 
table (Online-only Table 3). Each row contained a measurement of an observation (e.g. species, morphospecies, 
genus, life stage or ecological group) at a single site. The measurement could be the presence only, abundance, 
or fresh biomass of the record. Where possible, for each row we also included the life stage (adult or juvenile), 
whether the species was native to the location or not, and the ecological group (epigeic, endogeic, anecic, 
epi-endogeic). Thus, if the diversity measure was for all the juveniles at the site regardless of species, columns such 
as the species binomial and genus would be empty, but life stage completed. Every species binomials and ecolog-
ical group assignment were checked using DriloBASE and by earthworm taxonomists (GB, MJIB, MLCB, PL),  
see ‘Technical Validation’.

Where site-level diversity measures were given by the data provider, these were entered into the site-level 
sheet. Where site-level diversity measures were not given, but could be calculated from the species occurrence 
information, that was done in R33, following data entry and prior to subsequent analyses. The species present at 
each site, as given in the species occurrence data, were used for calculating species richness, this included species 
identified as sub-species. If data collectors identified a specimen as a morphospecies (i.e., a species delineation 
based solely on morphological characteristics, typically identified to genus level with a unique ID differentiating 
from other species of the same genus, as determined by the original data collector), it was included in the species 
richness estimate as an additional species. Unidentified species grouped as ‘unknown’ were excluded (Fig. 3). As 
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juveniles of many earthworm species are hard to identify to species level29,34, juveniles were excluded from the 
calculation (even identified at family level). All earthworms (including juveniles) found at a site were included in 
the total biomass and abundance calculations.

After the ecological grouping (epigeic, endogeic, anecic, and epi-endogeic) of each species had been assigned 
and/or checked by the earthworm taxonomists, diversity measures within each ecological group at a site were also 
calculated. As with the site-level metrics, the species richness within each ecological group was calculated using only 
species with binomials or morphospecies. Biomass and abundance of each ecological group at a site was calculated 
regardless of species identity. The total number of the ecological groups at each site was calculated regardless of 
abundance, biomass, life stage or native status of the species included (maximum ecological group richness = 4).

Data Records
The data presented here are available in the iDiv data portal (https://doi.org/10.25829/idiv.1880-17-3189. Dataset 
ID: 1880)19 in a static form. In addition, the full dataset will be hosted by Edaphobase (www.portal.edaphobase). 
In the future, the version in Edaphobase might change (i.e., with species names revisions, or requests from the 
data providers) and will hopefully be added to with additional earthworm records (or other soil taxa).
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Fig. 2 The number of sites (grey bars) and the number of studies (red dots) for each category in (a) the land-use 
system, and (b) the habitat-cover system. Sites could only be categorised within one category, but studies do 
contain sites that span multiple categories.
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The data is stored in three tables; meta-data (Online-only Table 1), site-level (Online-only Table 2), and spe-
cies occurrence (Online-only Table 3). The file ID links the meta-data to the site-level data, and the Study ID and 
the Site ID, link the site-level data to the species occurrence table.

Land use category Definition

Primary Relatively undisturbed natural habitat

Secondary Recovering, previously disturbed natural habitat

Pasture Land used for the grazing of livestock

Production - Arable Land used for crop production (e.g., wheat, rice, corn)

Production - Plantations crops Land used for plantations crops (e.g., coffee, vineyards, oil palm)

Production – Wood plantations Land used for timber production (e.g., teak)

Urban Land converted to dense urban settlement

Unknown If the land use is not given or is not clear

Table 1. Definitions for the land use category. The land use classification was based on the Land-use 
Harmonization dataset30,31, to map to the original classification system, ‘Production – Wood plantations’ and 
‘Production – Plantation crops’ would be ‘Secondary’ and ‘Production – Arable’ would be ‘Cropland’.

Management Intensity measure Annual crops Integrated systems Perennial crops Pastures (grazed lands) Tree plantations

Tillage × ×

Pesticide × × × × ×

Fertilizer × × × × ×

Selectively harvested × ×

Clear cut × ×

Fire × × × × ×

Stocking rate ×

Grazing all-year ×

Rotation × × ×

Monoculture × × × × ×

Planted ×

Table 2. A management classification system was created during the sWorm wokshops. For each managed site 
(i.e., not natural vegetation) the management system could also be identified (table headers), and additional 
management intensity variables could be also captured (table rows). However, not every management intensity 
variable was applicable for each management system, thus restrictions were placed. ‘×’ indicates which 
management intensity variable was applicable to each management system.

n = 90
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n = 77 n = 7

n = 30 n = 4

n = 24
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n = 3666

n = 632

n = 4469
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Fig. 3 The number of (a) studies and (b) sites that measured each of the three community metrics. The points 
at the vertices indicate the number of studies or sites with only one community metric. The points on the edges 
indicates the number of studies or sites with the community metrics represented at the connecting two vertices. 
Finally, the point in the centre indicates the number of studies or sites with all three community metrics. For 
example, in (a), 145 studies measured biomass, shown in the blue polygon. 4 studies measured only biomass, 
7 measured biomass and species richness, 44 measured biomass and abundance, and 90 measured all three 
metrics.
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For all suitable datasets, the meta-data information was completed. The meta-data contains bibliographic 
information on the original paper which analysed, or published, the data, as well as contact information of the 
person who provided the raw data (not included in the release of the database for privacy reasons). The meta-data 
also included the number of sites and studies within the file, so that validation checks could be completed. 
Online-only Table 1 shows all fields within the meta-data, personal information of data providers has not been 
made available.

Information on all sampled sites within each dataset was recorded in the site-level table (Online-only Table 2). 
Each row represents a single site within a study, with information on the sampling methodology, soil properties, 
and how the land was used, managed, and covered. The site-level earthworm community metrics (species rich-
ness, abundance and biomass) are also included if available.

Site-level species lists, or abundance, and/or biomass measures for individual records are given in the species 
occurrence table (Online-only Table 1). Each row is a measurement of an observation at a site (22,690 non-zero 
observations in total). An observation could relate to a species (with a scientific binomial, e.g., the abundance of 
Lumbricus terrestris at a site, or a morphospecies identification), a genus, life stage, ecological group, or native/
non-native group (e.g., the abundance of all non-native species at a site). Details of native/non-native status of a 
species was only available when provided by the original data collector.

technical Validation
Templates used to enter the individual datasets were designed so that fields were only allowed certain values and 
formats where possible. This helped to reduce spelling errors, slight inconsistencies, and incorrect values being 
entered. Data providers were contacted if details within their raw data were unclear. As multiple people entered 
data into the templates, detailed documentation was created at the start of the project to ensure consistency 
amongst those involved. In addition, a subset of datasets was checked by several curators.

All earthworm species names were checked against DriloBASE (http://taxo.drilobase.org) to identify potential 
synonyms and spelling mistakes. Following that, earthworm specialists and taxonomists (GB, MJIB, MLCB and PL)  
checked the scientific names, removed synonyms and updated names if taxonomies had changed. Where ecolog-
ical groupings were missing, the earthworm taxonomists also added them where possible, based on the available 
literature.

Usage Notes
Land-use fields were based on classification schemes, and may not be the most suitable for the analysis of earth-
worms. We included a free-text field (“Habitat as described”) that could be used by future researchers to define 
their own classification scheme for land-use or habitat cover.

As diversity measures are highly influenced by sampling methodology, we included information on sampling 
methods in the database (Fig. 4). In addition, we would expect that variation in diversity would differ between the 
individual datasets due to, for example, inter-observer variability. We highly recommend that statistical methods 
used on this database take these between-dataset variations into account.

Despite our efforts to obtain a global dataset, there is a geographic bias (Fig. 1), such that sites are highly clus-
tered in certain regions (e.g., Europe), sparse in others (e.g., South America), or lacking (e.g., southern Africa, 
northern Russia). To reduce such biases, we attempted to contact as many researchers as possible in such areas to 
acquire data. Although this helped to improve the data coverage, it did not remove the gaps. We hope to address 
these gaps in the future, but in the meantime, researchers should be aware of the influence these biases might have 
on their analyses35,36.
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Fig. 4 The number of sites sampled with each sampling method across the different earthworm studies.

https://doi.org/10.1038/s41597-021-00912-z
http://taxo.drilobase.org


7Scientific Data |           (2021) 8:136  | https://doi.org/10.1038/s41597-021-00912-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

code availability
All code used to format and clean the dataset for publication is available on GitHub (www.github.com/
helenphillips).
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