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A B S T R A C T   

Machine learning (ML)-based models, decision tree and ANFIS, were used to predict the degree of surface 
checking and bending properties of 30-month weathered thermally modified timber. The results showed that the 
investigated initial board properties did not allow accurate predictions of surface checks. ML regression and 
clustering analysis confirmed important variables for accurate predictions of bending properties were dynamic 
stiffness, acoustic velocity, density and lowest local bending modulus. ML models performed better than con-
ventional regression models used for timber grading, and a prediction accuracy of 80–90% for bending stiffness 
and 50–70% for bending strength could be achieved.   

1. Introduction 

Thermally modified timber (TMT) is recommended for use in out-
door above-ground situations, where it is directly exposed to weather 
[1–4]. In general, thermal modification prolongs service life in these 
conditions because dimensional stability and decay resistance are 
improved by the treatment. The degree of the effects of thermal modi-
fication on wood properties depends on properties of the raw material 
and process conditions [5,6]. Previous research focussed mainly on ef-
fects of thermal modification on chemistry, anatomy, mechanical 
properties and decay resistance of small clear wood specimens [e.g. 
1,7–10]. Much less effort has been put on effects of thermal modification 
on the resistance of timber to weathering, in particular with regard to 
checking [6,11]. Checks are longitudinal separations in wood tissue, 
which occur when moisture-induced stress exceeds tensile strength of 
wood [12,13]. Checks typically first occur upon seasoning and develop 
during weathering. Checks start growing and are visible at the surface, i. 
e. surface checks, or in the core, i.e. internal checks. In unmodified 
wood, the degree of surface checking is known to be higher in juvenile 
wood, when pith is present, in and around knots, and when growth rings 
are oriented parallel to the exposed surface instead of perpendicular 

[14–18]. The degree of checking is typically higher for thermally 
modified (TM) than for unmodified wood of the same species [19–24]. 
Deep surface checks (i.e. equal or greater than 50% of the timber’s 
thickness) were found in Norway spruce TMT after a 30-month weath-
ering [24]. These checks are longer and more frequent in TMT than 
unmodified timber, especially on the pith side of timbers, where checks 
develop predominantly along growth rings. Checks may affect nega-
tively the aesthetics and mechanical properties of TMT. In 30-month 
weathered TMT, the presence of deep checks had no significant effect 
on static bending properties [24], although they could have a consid-
erable impact on shear strength or capacity of timber connections [25]. 
Deep checks also provide more favourable conditions for wood-decay 
fungi because of increased levels of moisture content (MC) in the sur-
rounding wood tissue [26]. Previous studies on unmodified Norway 
spruce clear wood showed a positive correlation between size of surface 
checks after weathering and density that was explained by differences in 
wood’s moisture uptake and sorption [27,28]. In contrast, Sandberg 
[17] found no such relationship for unmodified Norway spruce and 
Scots pine clear wood specimens. Relationships between the degree of 
surface checking and other wood properties have not been studied for 
TMT. 

Previous studies show that principles of strength grading apply to 
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TMT, while the loss in bending strength due to thermal modification can 
be as much as 40% on average [29,30]. In detail, linear regression an-
alyses with response variables bending strength and stiffness gave co-
efficients of determination (R2) of 0.4–0.5 and 0.8–0.9, respectively, 
depending on predictor variable or combination of predictor variables. 
Similar to unmodified timber, important variables for accurate pre-
dictions are density, acoustic velocity, dynamic stiffness, and size and 
position of knots. A 30-month weathering from outdoor above-ground 
exposure (EN 335–1, use class 3.2) had no considerable effect on re-
lationships between predictor and response variables important for 
strength grading timber, and hence, on the accuracy in prediction [24]. 
Van Blokland et al. [24,29,30] provided proof of concept but did not 
assess model performance. Validation of models indicates reliability of 
the obtained accuracy when the model is dealing with unseen data. 
Principles of strength grading were used to predict internal check 
occurrence in TMT after 30-month weathering based on initial board 
properties [31]. A machine learning-based model using decision tree 
regression proved useful and enabled predictions with 67% accuracy. 
Important variables for accurate predictions included annual ring width, 
density, acoustic velocity, dynamic stiffness and initial moisture con-
tent. It is possible to obtain predictor variables after kiln drying or 
following thermal modification. This has no noticeable effect on the 
accuracy in prediction of either TMT’s bending properties or internal 
check occurrence [24,29–31]. 

In contrast to statistical modelling traditionally used in timber 
grading, machine learning (ML) modelling provides a powerful tool for 
predictive regression [32]. ML models can deal with complex datasets 
encompassing nonlinearity or missing data. Common techniques are 
partial least squares (PLS) regressions and artificial neural networks 
(ANNs) that use multilayer perceptron (MLP) neural network (NN) 
[33,34]. MLP NN applied to small data sets can be challenging. The risk 
is overfitting and lack of generalization, which can cause the model’s 
goodness-of-fit parameters (especially for training data) to be 
misleading and can make hyperparameter tuning and selection of 
training algorithm to be a critical task [35]. Small data sets with sample 
size (N) in the range of a few to a couple of hundreds are typical in the 
field of wood science [31,33,36]. Other, more robust, ML-based models 
have been used to predict wood properties with success. Examples are 
adaptive neuro-fuzzy inference system (ANFIS) [36], group method of 
data handling NN [37] and decision tree [38]. ANFIS is a fuzzy-based 
model that benefits from a neural structure. It is a strong tool when 
analyzing dataset with small to medium size [32]. ANFIS performed 
better compared to MLP ANN when monitoring wood machining in 
sawmilling applications (90 observations) and better than PLS regres-
sion when predicting physical and mechanical properties of wood based 
on infrared spectroscopy (240 observations) [33,39]. ANFIS comprises 
the main steps in a fuzzy inference system (FIS) that are the input fuz-
zification, rule inference, fire strength computation, aggregation, and 
deffuzification [39]. Decision tree can be used to study relationships 
between variables through exploratory data analysis such as variable 
clustering analysis and to study the relative importance (RI) of input 
variables [38,40]. Decision tree was used to predict internal check 
occurrence in 30-month weathered TMT and to monitor mechanical 
degradation of wood by ultraviolet radiation [31,38]. Performance of 

ML-models is also determined by choosing the right type of model for 
the job and quality of training data (e.g. size, missing data) [41]. 

This study will further analyse the data set from van Blokland et al. 
[24] and focus on predicting (1) the degree of surface checking and (2) 
bending properties (response variables) in 30-month weathered ther-
mally modified Norway spruce timber using initial board properties, 
typically determined at the sawmill (predictor variables). The intention 
regarding (1) was to investigate if possibilities for prediction exists, 
while (2) aims to evaluate and maximise model’s performance. To 
achieve this, predictive regression-based ML models, ANFIS and deci-
sion tree were developed and validated, and models’ performance was 
evaluated. While variable clustering analysis simultaneously gave 
insight in relationships between the parameters of investigation. The 
main hypothesis is that a well-trained ML model should be capable of 
predicting the degree of surface checking and bending properties in 
weathered TMT using initial board properties. This will enable timber 
manufacturers and engineers alike to perform fast and reliable grading 
at early stage and select boards with better resistance to weathering. 

2. Materials and methods 

2.1. Experimental work 

Eighty-four (84) Norway spruce (Picea abies [L.] Karst.) logs were 
block sawn and two ‘side matched’ boards per log were obtained from 
the main yield. Boards were then kiln dried and planed to cross-sectional 
dimensions of 45 × 145 mm2 at the sawmill, and cut to lengths of 
3.6–4.8 m. Subsequently, 84 boards, one from each log, were thermally 
modified (TM) at an industrial treatment plant using the ThermoWood® 
Thermo-D process, while the other 84 side matched boards remained 
unmodified and served as control sample. All 168 boards were exposed 
to the weather in South Sweden from spring 2017 until autumn 2019. 
Boards were placed horizontally on racks about 1 m above ground; one 
third of the TM and control boards were oriented flat pith side up (pith 
up), one third flat pith side down (pith down), and the last third on their 
edge (edge). After weathering, all boards were conditioned at room 
temperature conditions (approx. 20 ◦C/ 60% RH), which should result in 
a MC of ~ 5% for TM and ~ 12% for control boards [30]. Initial board 
properties were obtained after kiln drying and after thermal modifica-
tion. Bending properties and the degree of surface checking were ob-
tained after conditioning (Fig. 1). Bending tests were performed 
according to EN 408 [42] standard but no corrections to 12% MC were 
made. At the end of bending tests, a representative 20 mm thick knot- 
free section was cut per board from the unbroken part at least 300 
mm from board’s ends. This section was used to visually assess the de-
gree of surface checking after 30-month weathering. Surface checks with 
a minimum depth of 1 mm on the board’s flat sides, i.e. pith or bark side, 
were included. The depth of surface checks was taken as distance 
d [mm] over which the check had propagated into the board (Fig. 2). 
The degree of surface checking of each board was defined by the total 
number and the maximum depth of surface checks on the pith and bark 
side. An overview of the initial board properties and details of the 
preparation of boards, weathering setup and determination of board 
properties are found in van Blokland et al. [31] and therein included 
references. 

2.2. Data analysis 

2.2.1. Predictor and response variables 
In total, 13 predictor variables and 4 response variables were 

included in the data analysis (Table 1). The following four variables 
were obtained on TM boards also before thermal modification, i.e. after 
kiln drying: MCi, ρ, va,res and Ea,res, and shown in Table 1 in parenthesis. 
The influence of when these four variables were obtained was included 
in the analysis. Table 1 shows also an overview of variables’ mean values 
presented and discussed previously by van Blokland et al. [24,30,31]. 

Nomenclature 

N Sample size 
R2 Coefficient of determination 
Rtr

2 R2 of train data 
Rts

2 R2 of test data 
p p-value from statistical test 
rs Spearman’s correlation coefficient  
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2.2.2. Statistical analysis 
Parameters describing checks in wood, such as length, area or depth, 

typically do not follow normal distribution [16,24]. Therefore, proba-
bility plot was used to evaluate the fit of normal distribution to the data. 
It shows an estimated cumulative distribution function by plotting the 
value of each observation versus its estimated cumulative probability 
[43]. Normal distributed data aligns with a straight fit line and is re-
flected by a large p-value. The significance level in this study is 0.05. The 
probability plot also shows 95% confidence intervals (CIs) and mean and 
standard deviation (SD) values, and was used to estimate percentiles and 
to compare distributions of response variables between sample sets. 
Relationships between variables were studied for both sample sets 
through correlation analysis. For this, Spearman’s rank correlation was 
used, which can evaluate monotonic relationships between two vari-
ables and deal with both continuous and ordinal variables [44]. In 
addition, Spearman’s rank correlation does not require linearity and 
absence of outliers, like Pearson’s correlation. The p-value correspond-
ing to each correlation coefficient (rs) was calculated, in which the p ≤
0.05 refers to a statistically significant correlation between two vari-
ables. rs was calculated separately for control and TM boards. 

2.2.3. ML models 
A ML model based on decision tree was used to study whether the 

degree of surface checking (Cno and Cmax) and bending properties (Em,g 
and fm) can be predicted using the initial board properties listed in 
section 2.2.1. ML models were developed using the whole data set of 168 
boards. The combined data set offers better possibilities to train the 
model and likely contains more variation as it includes both TM and 

Fig. 1. Overview of experimental work.  

Fig. 2. Measurement of depth of surface checks as distance d [mm] in board’s 
cross-section. 

Table 1 
List of variables including mean values of 84 control and 84 TM boards for 
continues variables.  

Symbol Description Mean values Unit   

Control TMa  

Predictor variables     
Wyr Annual ring width 2.9 3 mm 
Pith Presence of pith 

(yes/ no) 
– – – 

MCi Initial moisture 
content 

10.6 6.3 
(10.6) 

% 

ρ Air-dry density 456 417 
(454) 

kg/ 
m3 

ρOD Oven-dry density 416 388 kg/ 
m3 

Eb,90,nom Lowest local elastic 
bending modulus 
based on fibre 
scanning 

7.8 7.9 GPa 

Peak Peak amplitude 
from longitudinal 
ultrasonic stress 
wave 

689 686 mV 

va,tof Acoustic velocity 
based on time-of- 
flight from 
longitudinal 
ultrasonic stress 
wave and board 
length 

5682 5852 m/s 

va,res Acoustic velocity 
based on frequency 
of the first mode of 
longitudinal 
vibration and board 
length 

5190 5384 
(5189) 

m/s 

Ea,tof Dynamic stiffness 
based on va,tof and ρ 

14.8 14.4 GPa 

Ea,res Dynamic stiffness 
based on vares and ρ 

12.3 12.2 
(12.3) 

GPa 

Orientation Board orientation 
during weathering 
(pith up/ bark up/ 
edge) 

– – – 

Treatment – – – 

(continued on next page) 
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control boards. This should result in better performing ML models that 
are more robust to variation in input parameters [41]. Another advan-
tage is that the ML models are applicable to both unmodified and TM 
Norway spruce timber. The classification and regression trees (CART) 
algorithm was used for decision tree classification [40]. Decision tree is 
developed using a subset of the data (training data) and node splitting at 
each branch point was based on the decision to minimise the least square 
error of the relationship between the model’s estimated values and 
experimental values. After reaching maximum tree size, the R2 of this 
relationship was calculated again, but this time using the remaining data 
(test data) to assess model performance. To find the optimal size of tree, 
tree pruning was performed by removing nodes from leaf to root based 
on the criteria that the R2 of a pruned tree should be within one standard 
error of the maximum tree’s R2. The RI of predictor variables was 
calculated and ranked through identifying their contribution in 
enhancing model performance. RI of the most important variable(s) is 
always set to 100 and other variables are ranked accordingly. Hyper-
parameters of the tree were set to those of defined in Nasir et al. [38]. 
The performance of the model was validated using two approaches: a 
70/30% ratio train/test data (70/30) and a 5-fold cross validation 
method (5-fold). The R2 for train (R2

tr) and test (R2
ts) data were reported. 

Details of decision tree modelling and cross validation were discussed in 
Leo Breiman et al. [45] and an example of decision tree classification in 
the context of the current work was given by van Blokland et al. [31]. 

The performance of the decision tree model was compared with an 
ANFIS model. The FIS structure of ANFIS was generated by Fuzzy C- 
mean (FCM) clustering method using four clusters similar to Nasir et al. 
[36]. The input parameters were first fed into a principal component 
analysis (PCA) model for data reduction [33]. The optimal number of 

predictor variables was found to be eight, which preserved 99% of the 
total variance of the data. The output of PCA was then linked to ANFIS 
for predicting response variables Cno, Cmax, Em,g and fm. More details on 
ANFIS structures and its hyperparameters can be found in Nasir and Cool 
[39]. Variable clustering was then performed to study the similarity 
between boards’ initial properties (predictor variables) and to find 
common characteristics between predictor and response variables. An 
agglomerative hierarchical clustering method was applied, in which 
variables with higher similarity level have a smaller inter-observation 
distance [37]. Details of this method and its implementation in a 
similar context can be found in Fathi et al. [37]. The RI of and similarity 
between variables was also studied separately for control and TM boards 
to better study the effect of thermal modification on the interaction 
between variables. 

3. Results and discussion 

3.1. Surface checking and bending properties 

After 30 months of weathering, surface checks were present in both 
TM and control boards. Fig. 3 shows neither surface checking indices 
follows a normal distribution for TM boards. For control boards, Cno did 
not follow the shown normal distribution, while Cmax did. In contrast, 
Cmax of TM boards shows significant deviation from the normal distri-
bution. In detail, Fig. 3b shows Cmax of TM boards follows a similar trend 
as Cmax of control boards up to a maximum surface check depth of ~ 14 
mm, but changes after that point. Parameters used to characterise checks 
in unmodified wood of Scots pine and Norway spruce, i.e. check length 
and area, followed a non-normal distribution [16]. In contrast, Cmax of 
unmodified Norway spruce boards was normally distributed (Fig. 3b). 
Both the total number and maximum depth of surface checks were 
significantly higher for TM boards compared to the control, as discussed 
earlier in detail by van Blokland et al. [24]. 

Unlike the surface checking parameters, the probability plot in Fig. 4 
shows that bending properties follow the shown normal distribution. 
Fig. 4a also shows that there is no significant difference in Em,g between 
TM and control boards, whereas fm was significantly reduced after 
thermal modification (Fig. 4b). The considerable decrease in fm while 
Em,g remains largely unaffected is in line with previous studies, which 
together include various species, treatment types and conditions, out-
door above-ground exposure or not, and both small clear wood speci-
mens and timber [46–49]. The main reason for this loss in strength is the 
change in chemical composition due to heat treatment, primarily the 
loss in hemicelluloses [7,50]. While other mechanisms such as the 

Fig. 3. Cumulative frequency diagram of (a) Cno and (b) Cmax. Note the lines show estimated normal distributions and 95% CIs.  

Table 1 (continued ) 

Symbol Description Mean values Unit   

Control TMa  

Thermal treatment 
(yes/ no) 

Response variables     
Cno Total number of 

surface checks 
6.3 9.2 – 

Cmax Maximum depth of 
surface checks 

7.0 12.1 mm 

Em,g Global modulus of 
elasticity 

10.7 10.5 GPa 

fm Bending strength 40.9 22.9 MPa  

a Values in parenthesis: Board properties obtained after kiln drying 
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decrease in polymerization of cellulose and cross-linking of the cell wall 
matrix were listed as contributing factors [51]. It was shown earlier the 
increased formation of surface and internal checks due to 30 month 
weathering had no significant effect on bending properties of Thermo-
Wood® Thermo-D and unmodified Norway spruce timber, but did in-
fluence bending failure modes [24,31]. An extensive overview and in- 
depth discussion of the effects of thermal modification on bending 
properties of Norway spruce timber from the same timber batch as used 
in the present study can be found in van Blokland et al. [30]. The level 
and variation of boards’ initial properties, used in this study for pre-
dictions, were presented and discussed earlier in van Blokland et al. 
[24]. 

3.2. Relationships between variables 

Table 2 shows rs of relationships between boards’ initial properties, 
and surface checking parameters and bending properties. The rs of re-
lationships between surface checking parameters, between bending 
properties, and between surface checking parameters and bending 
properties are included. For the predictor variables obtained on TM 
boards after kiln drying, only MCi showed different results and therefore 
rs in this scenario was given in parenthesis (Table 2). Relationships of 
predictor and response variables with correlation coefficients around 
0.6 and up are typically employed in timber grading [52,53]. It is 
important to note that N influences correlation coefficients. For 

Fig. 4. Cumulative frequency diagram of (a) Em,g and (b) fm. Note the lines show estimated normal distributions and 95% CIs.  

Table 2 
Spearman’s rank correlation coefficients of relationships between boards’ initial properties, and surface checking and bending properties of 84 control and 84 TM 
boards.  

Treatment Control  TM 
Variables Surface checking Bending properties  Surface checking Bending properties 

Cno Cmax Em,g fm  Cno Cmax Em,g fm  

Initial board properties 
Characteristics                  
Wyr  − 0.32*  0.18  − 0.65*  − 0.6*   − 0.43*  − 0.22*  − 0.63*  − 0.52* 
Pith  0.23  0  − 0.04  − 0.06   − 0.14  0.04  − 0.07  0.02 
Physical                  
MCi

1  0.22*  − 0.15  0.47*  0.45*   − 0.38* 
(0.23*)  

− 0.2 
(0.12)  

− 0.63* 
(0.37*)  

− 0.53* 
(0.21) 

ρ2  0.35*  − 0.01  0.69*  0.55*   0.53*  0.3*  0.62*  0.36* 
ρOD  0.38*  − 0.05  0.73*  0.59*   0.59*  0.3*  0.72*  0.43* 
Fibre scanning                  
Eb,90,nom  0.29*  − 0.16  0.68*  0.65*   0.3*  0.24*  0.67*  0.64* 
Dynamic                  
Peak  − 0.06  0.05  0.15  0.18   0.2  0.08  0.15  0.06 
va,res

2  0.38*  − 0.13  0.83*  0.77*   0.43*  0.36*  0.82*  0.73* 
va,tof  0.31  − 0.12  0.64*  0.62*   0.37*  0.25*  0.73*  0.63* 
Ea,res

2  0.46*  − 0.1  0.92*  0.81*    0.58*  0.42*  0.9*  0.69* 

Ea,tof  0.45*  − 0.09  0.86*  0.75*   0.57*  0.35*  0.86*  0.62* 
Other                  
Orientation  0.1  0.34*  0  − 0.04   − 0.19  0.02  0.01  − 0.08  

Surface checking 
Cno  1  0.01  0.44*  0.31*   1  0.29*  0.6*  0.32* 
Cmax    1  − 0.14  − 0.20     1  0.42*  0.3*  

Bending properties 
Em,g      1  0.82*       1  0.75* 
fm        1         1  

* Statistically significant at the 0.05 level 
1 rs for when MCi was obtained after kiln drying given between parenthesis 
2 rs was similar when predictor variable was obtained after kiln drying 
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example, the correlation coefficient between the number of internal 
checks and density in pine TMT was only ~ 0.4 (N = 38), but this 
relationship was later used successfully for predictions of internal check 
occurrence in Norway spruce TMT with reasonable accuracy in predic-
tion (N = 84) [31,54]. 

Cno was positively correlated with density, velocity and stiffness, 
while the relationship with Wyr was negatively correlated. This change 
of sign is consistent with the correlation between density and Wyr that is 
typically negative for Norway spruce timber [55,56]. The rs of these 
relationships was in general stronger for TM than for control boards 
(Table 2). The presence of pith, peak amplitude from ultrasonic stress 
wave and orientation of boards during exposure seemed to have no in-
fluence on Cno, since rs-values were low and not significant. MCi corre-
lated negatively with Cno for TM boards. That is, the number of surface 
checks after 30-month weathering was larger for TM boards with a low 
MCi. Van Blokland et al. [31] argued that the reduction in equilibrium 
moisture content due to thermal modification is larger for Norway 
spruce timber with a smaller Wyr and a higher density. Hence, TM 
boards with a low MCi are associated with higher density, velocity and 
stiffness, and smaller Wyr. This relationship was reversed when MCi was 
obtained after kiln drying (Table 2), because during kiln drying higher 
density timber dries slower compared to low density timber [57]. 
Indeed, MCi and density were correlated positively after kiln drying (rs 
~ 0.35, p≪0.05). For control boards, no significant correlations were 
found between Cmax and boards’ initial properties with exception of 
orientation (Table 2). In fact, surface checking in unmodified Norway 
spruce timber reaches a greater depth when the surface is exposed to the 
weather [24]. For TM boards, Cmax correlated positively with density, 
velocity and stiffness, and negatively with Wyr. The change of sign is 
consistent with the above discussion. Orientation did not correlate with 
Cmax for TM boards, as well as pith. In contrast, check length in Norway 
spruce and Scots pine was larger in boards with the pith enclosed 
[15,17], but in those studies only unmodified wood was investigated 
and the unexposed surface and check depth were not evaluated. 

In general, rs of relationships between boards’ initial properties, and 
bending stiffness and strength were comparable among samples in terms 
of goodness-of-fit and direction (Table 2). This with exception of MCi, 
which was higher for stronger and stiffer control boards (positive cor-
relation), but lower for stronger and stiffer TM boards (negative corre-
lation). Again, this change in sign is consistent with the above discussion 
on the effect of thermal modification on the MCi. Correlations were 
significant for Wyr, MCi, density, velocity and stiffness, but not for pith, 
peak and orientation. Also, correlations between boards’ initial proper-
ties and bending strength were typically stronger for control than for TM 
boards. This may lead to lower accuracy in ML-based prediction of the 
bending strength of TM boards, as is the case for linear regression-based 
predictions [29,30,46,58]. 

Lastly, Table 2 shows rs of relationships between surface checking 
parameters and bending properties. A higher number of surface checks 
was coupled with deeper surface checks for TM boards, but not for 
control boards. Bending strength and stiffness were correlated as ex-
pected for unmodified and TM Norway spruce timber [46,52,53,59], 
and stiffer boards were typically stronger. The rs-values between 
bending stiffness and surface checking parameters were similar to when 

stiffness was obtained from static instead of dynamic tests (Table 2). The 
rs-values between bending strength and surface checking parameters 
were consistent with those for bending stiffness, but slightly weaker. 

3.3. ML-based prediction 

3.3.1. Degree of surface checking 
A summary of the decision tree model shows that prediction accu-

racy was poor for both Cno and Cmax (Table 3). Specifically, the model 
showed severe overfitting for Cno. The type of validation had some in-
fluence on prediction accuracy. Validation by splitting train/test data in 
a 70/30 ratio was somewhat better than 5-fold cross validation. 
Compared to decision tree, a higher accuracy in prediction of Cno and 
Cmax was achieved by ANFIS both for train and for test data (Table 3), 
although still poor. In contrast, a R2 of 0.67 could be achieved when 
predicting internal check occurrence in TMT using the same data set as 
the present study [31]. This implies that the investigated initial board 
properties cannot be used for predicting the degree of surface checking 
in weathered TMT. Since both decision tree and ANFIS were used, it 
seems that poor performance in prediction accuracy is unlikely due to 
the type of ML model. More likely, the poor performance can be 
explained in part by the relationships between the investigated initial 
board properties and surface checking parameters, which were poor as 
well (section 3.2). Other reasons could be quality and size of the data, 
which may be supported by the higher R2

tr of ~ 0.8 (Table 3) obtained 
when omitting the validation step. When splitting the data set into a TM 
and control sample, R2

tr-values of ~ 0.7–0.85 (not shown) were obtained, 
independent of treatment level. This suggests it may be worth further 
investigating surface check prediction in unmodified and TM Norway 
spruce timber based on initial board properties. 

Fig. 5 shows RI of the models’ input parameters for predicting Cno 
and Cmax. Overall, the most important decision for prediction of Cno and 
Cmax is based on whether a board is TM or not. The model can make this 
decision by using MCi or treatment, because after thermal modification 
MCi depends greatly on treatment level [6,24]. The high RI of treatment 
emphasizes the negative effect of thermal modification on the resistance 
of timber to surface checking during weathering, as discussed above 
(Fig. 3) and previously by van Blokland et al. [24]. However, this finding 
has no practical relevance for sawmill grading operations. For that 
purpose, other variables are needed to identify TM boards with better 
resistance to surface checking. This variable could be acoustic velocity 
(va,res), which, in general, was an important variable for accurate pre-
dictions of Cno and Cmax. When the data was split into control and TM 
boards (not shown), predictor variables with high RI were dynamic 
stiffness (Ea,res then Ea,tof) often followed either by density (ρ or ρOD) or 
acoustic velocity (va,res or va,tof). MCi had low RI, and orientation the 
highest RI but only for predictions of Cmax. Compared to the results in 
Fig. 5, these results were more in line with Table 2. When initial board 
properties were obtained after kiln drying instead of after thermal 
modification, Eb,90,nom became more important for prediction of Cno and 
dynamic stiffness and density for Cmax, while MCi lost importance (not 
shown). This change in RI of variables was unexpected, because, except 
for MCi, rs did not depend on which process step the initial board 
properties were obtained (Table 2). This change could be associated 
with the decision tree’s poor performance in predicting Cno and Cmax. 
Especially, results shown in Fig. 5a are questionable, since the decision 
tree failed to predict Cno and R2 was ~ 0 (Table 3). Having very poor 
performance in decision tree modelling, clustering analysis provides a 
more meaningful tool to assess relationships between study variables 
[37]. 

The dendrogram in Fig. 6 shows the results of variable clustering. 
Seven clusters were identified. Overall, the results obtained from clus-
tering analysis confirmed the ML findings from decision tree. Cno is 
clustered with acoustic velocity and Eb,90,nom consistent with results 
shown in Table 2. Cmax forms a cluster with treatment and pith. Probably 

Table 3 
Performance of ML models for prediction of the degree of surface checking in 
control and TM boards using boards’ initial properties  

Model Validation R2   

Cno  Cmax 

Train Test  Train Test 

Decision tree No 0.82 –   0.80  –  
5-fold 0.36 –*   0.21  0.11  
70/30 –* –*   0.38  0.27 

ANFIS 70/30 0.66 0.32   0.43  0.37  

* Model failed to predict the degree of surface checking 
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because both Cmax and pith are correlated with treatment and not because 
pith affects Cmax [24]. That is, no relationship was found between pith 
and Cmax (Table 2), while rs was 0.51 for the Cmax–treatment relationship 
(p≪0.05) because TM board check more than control boards during 
weathering and 0.29 for the pith–treatment relationship (p≪0.05) 
because TM boards contained pith more often (27% vs. 6%) [24]. 
Clustering analysis also confirms that MCi has little similarity with 
surface checking indices. Moreover, the dendogram shows orientation, 
peak and Wyr have little similarity with surface checking indices. Wyr 
proved earlier to be the most important parameter to identify internal 
checking in weathered TMT [31]. Water uptake and sorption depend on 
density and annual ring width [27], and hence, it can be expected that 
moisture-induced stress during weathering also depends on these vari-
ables. However, other parameters that influence physical and mechan-
ical properties involved in check formation due to moisture-induced 
stress, such as shrinkage properties and resistance to fracture initiation 
and propagation, also depend, or at least in part, on density [60,61]. It is 
likely the dependency of moisture-induced stress and resistance against 
check formation on material parameters, such as ring width or density, 
counterbalanced each other and/or are not properly represented by the 
investigated initial board properties. Again, a better match with the 
correlation analysis was found when the data was split in control and TM 
boards (not shown). For control boards, Cmax was most similar to 
orientation, while Cno formed a cluster with dynamic stiffness and 

density. For TM boards, Cno and Cmax were most similar to density. 

3.3.2. Bending properties 
The performance of ML models for prediction of bending properties 

is shown in Table 4. In general, the ML models performed well and 
R2

ts-values of ~ 0.8–0.9 and ~ 0.5–0.7 could be achieved for predictions 
of Em,g and fm, respectively. The accuracy was somewhat higher for the 
5-fold validation, especially for predictions of fm. For predictions of Em,g, 
ANFIS performed better than decision tree. A higher accuracy was 
achieved for Em,g than fm, which is typical when predicting wood’s 
bending properties, both for regression and ML models, for clear wood 
and timber, and for unmodified and TM wood [37,46,52,62]. Compared 
to a previous study on Norway spruce TMT that used multiple linear 
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Fig. 5. RI of variables in the decision tree model for prediction of (a) Cno and (b) Cmax.  

Fig. 6. Clustering analyses between initial board properties and surface checking parameters. Cluster 1 (blue): treatment, Cmax, pith; cluster 2 (red): orientation; cluster 
3 (purple): ρ, ρOD, Ea,res, Ea,tof; cluster 4 (yellow): va,res, va,tof, Eb,90,nom, Cno; cluster 5 (green): MCi; cluster 6 (grey): Wyr; cluster 7 (dark blue): peak. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Performance of ML models for prediction of bending properties in control and 
TM boards using boards’ initial properties  

Model Validation R2   

Em,g  fm 

Train Test  Train Test 

Decision tree No  0.98  –   0.94  –  
5-fold  0.89  0.83   0.88  0.72  
70/30  0.96  0.77   0.65  0.51 

ANFIS 70/30  0.92  0.88   0.84  0.74  
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regression model [30], decision tree and ANFIS performed better. 
Similar R2-values were achieved, whereas the models in the former 
study were not validated. Indeed, without validation, R2

tr-values from the 
decision tree model were as much as 0.98 for Em,g and 0.94 for fm 
(Table 4). Splitting the data into control and TM boards or using initial 
board properties obtained at different process steps (after kiln drying or 
after thermal modification) did not affect model performance (not 
shown). 

Overall, the property with the highest RI was dynamic stiffness 
whether Em,g or fm was predicted (Fig. 7). This is consistent with 
Spearman’s correlation coefficients (Table 2) and with current knowl-
edge on strength grading of timber and TMT [30,52]. However, there are 
differences in RI between Em,g and fm predictions (Fig. 7a vs. Fig. 7b). 
The most noticeable difference is the critical role of treatment on the 
decision tree model when predicting fm, which could also be measured 
through MCi as discussed in section 3.2, whereas this variable had a low 
RI when predicting Em,g. This is confirmed by Fig. 4 and the literature, 
which show that Em,g is not significantly affected by thermal treatment, 
at least not for commercial modification processes, while fm is typically 

affected to a high degree [46,47]. Acoustic velocity and density, which 
can also be measured through Wyr (section 3.2), were typically ranked 
after dynamic stiffness in terms of RI for Em,g predictions, and after 
variables treatment and dynamic stiffness for fm predictions. The RI of 
acoustic velocity from stress waves (va,tof) typically had a lower RI than 
acoustic velocity from resonance (va,res), as was previously shown in 
linear regression analyses on Norway spruce timber and TMT [29]. 
Density (ρ and ρOD), in general, had higher RI for prediction of fm than 
for Em,g. In addition, Eb,90,nom had a rather low RI, particularly for fm 
predictions. The observations regarding density and Eb,90,nom contradict 
with the rs results in Table 2 and the literature on strength grading of 
timber and TMT [30,52], but agree with the clustering analysis pre-
sented below. It should be mentioned that Eb,90,nom was more important 
while MCi lost importance for accurate predictions of TMT’s fm after 
splitting the data in control and TM boards (not shown). When initial 
board properties obtained after kiln drying were used for predictions, 
MCi showed some importance for predictions of Em,g and fm (not shown). 
A positive correlation can be expected between MCi and Em,g, and MCi 
and fm, because ρ and MCi correlate positively after kiln drying (section 
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Fig. 8. Clustering analyses between initial board properties and bending properties. Cluster 1 (blue): treatment, pith; Cluster 2 (purple): Wyr; Cluster 3 (grey): peak; 
Cluster 4 (red): orientation; Cluster 5 (green): MCi, fm, ρOD, ρ, va,res, va,tof, Ea,res, Ea,tof, Em,g, Eb,90,nom. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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3.2) and the relationships between density and these bending properties 
are also positive, both for unmodified and TMT [30,52]. 

The dendrogram in Fig. 8 shows five clusters could be identified. 
Similar to the variable clustering analysis for surface checking indices, 
treatment and pith, Wyr, peak and orientation each formed a separate 
cluster, whereas the other predictor variables and response variables 
were similar and formed one large cluster. In this large cluster, fm was 
most similar to MCi followed by density. Together these variables 
formed one sub cluster. The remaining variables formed a second sub 
cluster and had a high similarity level with Em,g – over 80%. This was in 
agreement with the RI in Fig. 7 and Spearman’s correlation coefficients. 
Although Eb,90,nom represents only 90 mm board length, a rather high 
similarity was found between this parameter and the other variables 
related to board stiffness that were determined over much larger board 
lengths of 2.6–4.8 m. Since Eb,90,nom can be interpreted as a measure of a 
board’s severest knot or cluster of knots, this finding underlines the 
impact of knots on measures of axial time-of-flight, axial resonance 
frequency and modulus of elasticity [63,64]. A higher similarity be-
tween Eb,90,nom and fm was expected. Especially, since Eb,90,nom was 
developed to increase the accuracy of fm predictions as an improvement 
of more traditional measures of knot sizes, such as knot area ratio [65]. 
The low similarity between Wyr and bending properties in clustering 
analyses (Figs. 8 and 9) was in contrast with results from Spearman’s 
correlation coefficients and RI from ML models, which showed Wyr had 
about similar rs with bending properties as density. 

Fig. 9 shows results from clustering analysis when the data was split 
into a control and a TM board sample. Some differences could be 
observed after data splitting (Fig. 8 vs. Fig. 9). For control boards 
(Fig. 9a), Eb,90,nom formed a cluster with acoustic velocity, while fm was 
most similar to stiffness and density. For TM boards (Fig. 9b), fm was 
most similar to Eb,90,nom, while MCi and Wyr formed one cluster. The 
similarity between MCi and Wyr for TMT was observed and discussed 
previously [31]. The lower dependency of bending properties on MCi 
than on velocity and stiffness is in line with rs in Table 2 and also became 
clear from RI analysis after data splitting. Nevertheless, after data 
splitting, both correlation and RI analyses show MCi has some impor-
tance for accurate predictions of bending properties. Thus, MCi is not 
only a measure of treatment level as discussed earlier. MCi was obtained 
directly after treatment, and thus the variation in MCi was determined 
by treatment level and board’s anatomical and physical characteristics, 
and not by climate conditions. Since MCi is commonly and easily 
determined at sawmills, it may provide a valuable predictor in addition 
to the common predictors suitable for fm predictions of Norway spruce 
timber and TMT [29,30]. 

Overall, performance of the ML models discussed in sections 3.3.1 
and 3.3.2 did not depend on when initial board properties were deter-
mined except for MCi. This is in line with previous work on prediction of 
internal check occurrence and bending properties in weathered TMT 
[24,31]. It implies that the variation of ρ and va,res remains largely 

unaffected by thermal treatment. Future studies should focus on 
including features that have stronger correlations with surface checking 
parameters. For this, more in-depth and fundamental research into 
moisture-induced check formation in TMT is required, where, for 
example, tools like finite element modelling can provide a way to study 
the complicated interaction between material parameters, wood mate-
rial orientation, and external loads [66,67]. The cost of data acquisition 
encourages looking for those features that can be measured quickly. 
Various non-destructive evaluation tools such as near-infrared spec-
troscopy and ultrasonic Lamb wave propagation have been proven 
useful for this purpose [36,68]. At the same time, further efforts are 
needed to provide accurate and objective measure of the degree of 
surface checking in TMT after weathering. For this, various advanced 
scanning technologies may be suitable [69–71]. The performance of 
decision tree may be improved and overfitting issues resolved by 
implementing random forest modelling [72] alongside with expanding 
the size of data. Clustering in addition to statistical analysis should be 
used on various types of wood science data to better understand the 
relationship between these methods. Finally, further studies are needed 
to evaluate the potential of initial moisture content to improve bending 
strength predictions of TMT. 

4. Conclusions 

Conclusions regarding possibilities to predict the degree of surface 
checking in weathered thermally modified timber:  

• Machine learning-based models failed to predict the total number 
and maximum depth of checks, because relationships between the 
investigated initial board properties and surface checking parame-
ters were weak and/or quality and size of the data was insufficient;  

• The high relative importance of treatment confirmed the negative 
effect thermal modification has on the resistance of timber to check 
formation;  

• Variables important for accurate predictions were acoustic velocity 
followed by dynamic stiffness and density, but since models failed 
this conclusion should be taken with caution. 

Conclusions regarding performance of models when predicting 
bending properties in weathered thermally modified timber:  

• Machine learning-based models performed better than conventional 
regression models used for timber grading. The achieved prediction 
accuracy was 80–90% for bending stiffness and 50–70% for bending 
strength; 

• Results from machine learning and variable analyses was in accor-
dance with the literature on strength grading of timber and thermally 
modified timber, i.e.: dynamic stiffness was the most important 
property for accurate predictions; other important variables were 

(a) (b)

Fig. 9. Clustering analysis between initial board properties and bending properties for (a) control and (b) TM boards. Legend a: Cluster 1 (blue): orientation; Cluster 2 
(purple): peak; Cluster 3 (yellow): Wyr; Cluster 4 (grey): pith; Cluster 5 (green): MCi, Ea,res, Ea,tof, ρ, ρOD, Em,g, fm; Cluster 5 (red): va,res, va,tof, Eb,90,nom. Legend b: Cluster 
1 (blue): orientation; Cluster 2 (green): ρ, ρOD, va,res, va,tof, Ea,res, Ea,tof, Em,g, Eb,90,nom, fm; Cluster 3 (red): MCi, Wyr; Cluster 4 (grey): peak; Cluster 5 (purple): pith. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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acoustic velocity, density and lowest local bending modulus, and; the 
high relative importance of treatment for bending strength pre-
dictions emphasized the negative effect thermal modification has on 
timber’s bending strength;  

• Initial moisture content was very important for bending strength 
predictions, because it provided a measure of treatment level. When 
predictions were made only on unmodified or thermally modified 
timber, this variable had some importance for predictions of both 
bending strength and stiffness. 
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