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A B S T R A C T   

The increasing availability of wall-to-wall remote sensing datasets in combination with accurate field data en-
ables the mapping of different ecosystem services more accurately and over larger areas than before. The pro-
vision of wild berries is an essential ecosystem service, and berries are the most used non-wood forest products in 
Nordic countries. The aim of the study was to 1) develop general prediction models for bilberry and cowberry 
yield based on metrics derived from airborne laser scanning (ALS) data and other existing wall-to-wall data and 
2) to identify laser-based structural features of forests that can be linked to locations of the highest berry yields. 
We used the indirect approach where the correlation between forest structure described by the ALS data and the 
berry yields are utilized. Berry data collected in the Swedish National Forest Inventory (NFI) 2007–2016 were 
used for training the models and ALS data from 2009 to 2014 from the national ALS campaign of Sweden. Berry 
yields were modelled using generalised linear mixed models (GLMMs), and forest structural differences were 
demonstrated in histograms of presence/absence data. 

The ALS-based canopy cover was an important variable both in bilberry and cowberry models. Other signif-
icant variables were ALS-based height variance, shrub cover, height above sea level, slope, soil wetness and 
terrain ruggedness, satellite-based species-specific volume and percentage, seasonality of temperature and pre-
cipitation and annual precipitation, inventory year, soil type and land use class. In addition, the time difference 
between the inventory day and the Julian day when berries were expected to be ripe showed a 1.5% decrease for 
bilberry and a 1.1% decrease for cowberry yield per day during the season. The highest bilberry yield was 
identified in forests with a canopy cover of 50% and the highest cowberry yield in forests with a canopy cover 
close to zero. The canopy height of 15 m reflected the highest bilberry yield, whereas a canopy height close to 0 
m resulted in the highest cowberry yield. The shrub cover was close to zero both with highest bilberry and 
cowberry yields. 

This is the first study combining ALS metrics with other wall-to-wall variables and NFI field data to model 
bilberry and cowberry yields. Prediction models can be used to produce maps showing the most potential lo-
cations for berry picking. Further, the models may, in the future, be imported into forest planning systems to 
obtain stand-level prognoses of berry yield development under different forest management strategies.   

1. Introduction 

The Nordic landscape contains a variety of forest habitats that pro-
vide multiple benefits, natural resources and ecosystem services (e.g., 

Esseen et al., 1997, Snäll et al., 2014). The increased use of ecosystem 
services may lead to conflicts between different objectives. However, 
many forest owners appreciate the multiple benefits of the forest and 
want to integrate non-wood forest products and services in forest 

* Corresponding author. 
E-mail addresses: inka.bohlin@slu.se (I. Bohlin), matti.maltamo@uef.fi (M. Maltamo), henrik.hedenas@slu.se (H. Hedenås), tomas.lamas@slu.se (T. Lämås), 

jonas.dahlgren@slu.se (J. Dahlgren), lauri.mehtatalo@luke.fi (L. Mehtätalo).  

Contents lists available at ScienceDirect 

Forest Ecology and Management 

journal homepage: www.elsevier.com/locate/foreco 

https://doi.org/10.1016/j.foreco.2021.119737 
Received 9 July 2021; Received in revised form 21 September 2021; Accepted 24 September 2021   

mailto:inka.bohlin@slu.se
mailto:matti.maltamo@uef.fi
mailto:henrik.hedenas@slu.se
mailto:tomas.lamas@slu.se
mailto:jonas.dahlgren@slu.se
mailto:lauri.mehtatalo@luke.fi
www.sciencedirect.com/science/journal/03781127
https://www.elsevier.com/locate/foreco
https://doi.org/10.1016/j.foreco.2021.119737
https://doi.org/10.1016/j.foreco.2021.119737
https://doi.org/10.1016/j.foreco.2021.119737
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2021.119737&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Forest Ecology and Management 502 (2021) 119737

2

management planning (Kangas, 1998, Eggers et al., 2014). Wild berries 
are the most utilized non-wood forest products by Nordic people (e.g., 
Kardell, 1979, Turtiainen, 2015), where bilberry (Vaccinium myrtillus) 
and cowberry (Vaccinium vitis-idaea L) are economically most important 
and provide the most abundant annual yields (e.g., Kardell, 1979, Tur-
tiainen et al., 2011). The right of public access (Naturvårdsverket, 2021) 
makes it possible for everyone to pick berries for household consume 
and sale, and berry picking is also seen as an important recreational 
hobby (e.g., Hytönen, 2005). Further, the health effects of this “super-
food” are widely recognised and even of international interest (e.g., 
Olas, 2018). Bilberries and cowberries are important species in under-
story vegetation and essential nutriment of various animals such as 
grouse, vole and bear (e.g., Lakka and Kouki 2009). 

In northern Europe, bilberry and cowberry are adapted to different 
site types in conifer-dominated forests (e.g., Ritchie, 1955, 1956). 
Bilberry and cowberry are growing at the bottom of the shrub layer. 
Heights of the bilberry plants are about 10–50 cm and cowberry plants 
about 5–30 cm above the ground (Fig. 1). Plants reproduce both via 
vegetative means and form seeds and are pollinated by insects, in 
particular bumblebees. Bilberry typically grows in heath forests of me-
dium site fertility and dominated by spruce (Picea abies (L.) Karst.) or 
pine (Pinus sylvestris L.), whereas cowberry prefers light pine-dominated 
dryish heath forests (e.g., Raatikainen et al., 1984, Salo, 1995). Both also 
occur and produce yields in many marginal forest types such as fell 
forests and on pristine and drained peatlands (e.g., Salo, 1995, Hotanen 
et al., 2000). The production of bilberry and cowberry has been subject 
of numerous studies because of the wide range of habitats occupied by 
the species and the large number of factor influencing berry yield, such 
as temperature, precipitation, frost, drought, pollination success, site 
type, forest structure (e.g., Eriksson et al., 1979, Raatikainen and Raa-
tikainen, 1983, Rixen et al., 2010, Turtiainen, 2015, Kilpeläinen et al., 
2016). However, in Swedish and Finnish forests, the coverage of bilberry 
has decreased, mainly due to forest management (Kardell, 1979, Sale-
maa, 2000, Dahlgren and Fridman, 2012). Climate change may also 
affect berry yields (growth, pollination and ripening) by changing the 
local climate and by the occurrence of more extreme weather conditions 
(e.g., Wallenius, 1999, Rixen et al., 2010, Bădescu et al., 2017). 

Since 2003, worldwide unique berry yield data have been collected 
annually in the Swedish National Forest Inventory (NFI) (Fridman et al., 
2014) at the Swedish University of Agricultural Sciences (SLU). For this, 
the number of bilberries and cowberries are counted in small vegetation 

plots, here called “berry plots”, inside the NFI plots (see more detailed 
description below in “NFI field data”), and the annual berry yields of 
ripe berries kg/ha are estimated for each county with the help of local 
annual berry yield measurements from SLU’s research parks. In 
2006–2016, this information was used together with local models of 
berry yield development over the season (flowers to raw berries and raw 
berries to ripe berries) from SLU’s research parks to forecast the yields of 
bilberry and cowberry for northern, middle and southern Sweden. These 
prognoses achieved also high interest among the public. The unique 
time series of bilberry and cowberry data also offers possibilities for 
spatial and temporal studies of berry yields in Sweden. Such data, 
combined with other datasets, such as wall-to-wall remote sensing data, 
offer possibilities to improve the forecasting of berry yields and maps at 
the landscape level, which is of high interest to many users. 

Remote sensing data such as airborne laser scanning (ALS) data and 
satellite and aerial images are extensively used, especially in forest- 
related studies, because they enable 100% spatial coverage of study 
areas at lower costs compared to field inventories (e.g., Yichun et al., 
2008). The usefulness of ALS data for forestry applications is based on 
the strong relationship between the height (above ground) distribution 
of the ALS data and the vertical structure of the vegetation (e.g., Mal-
tamo et al., 2005). Due its cost efficiency, it has become the most effi-
cient method in large-scale stand level forest inventories in many 
countries. Most of these studies have been focusing on forest attributes, 
such as the prediction of stem volume, biomass, tree species and canopy 
cover (Maltamo et al., 2014), which is understandable because of the 
economic value of wood and forestry, but also because of the ecological 
value of forests in national and international politics. 

On the other hand, efficient forest planning requires knowledge 
about the supply and spatial distribution of all types of ecosystem values 
such as species habitats, ecosystem functioning and services within 
forest landscapes (e.g., Öhman et al., 2011). Predicting and mapping 
non-wood forest products has been challenging because of the charac-
teristics of non-wood products such as small size, seasonality, rarity, 
difficult locations, among others. In addition, collecting field data for 
modelling is laborious and expensive. In the earlier studies, field mea-
surements of bilberries and cowberries and accurate descriptions of tree 
stock and site type have been used to model berry yields. The main 
findings have been the relationship between berries and tree stock 
variables such as stand density, stand development, tree species and site 
type (Miina et al., 2009, Turtiainen, 2015). However, the general 

Fig. 1. Bilberry (left) and cowberry (right) with ripen berries.  
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drawback of field measurement-based approaches is that accurate field 
data are typically not available for applications of the elaborated 
models. This information can be replaced with auxiliary remote sensing 
data (e.g., McRoberts et al., 2010), such as ALS data describing the forest 
structure and terrain variables as well as satellite and aerial images 
describing the forest types and tree species. 

When predicting the dominant tree layer variables (e.g. tree height, 
stem volume, basal area) with ALS data the ALS metrics are directly 
measuring the structure of the forest, since laser points are reflecting 
from the forest canopy and the ground. However, when predicting 
variables under the dominant forest canopy, which are also usually 
small in size, such as many plant species, the use of ALS data is not as 
straightforward. This is because ALS data is usually too sparse in reso-
lution to measure the structure of surface vegetation but also because 
large proportion of the laser hits reflects from the dominant tree canopy. 
In such cases indirect method can be used; that are based on the cor-
relation between forest structure (such as tree height and density and 
canopy cover of trees described by ALS data) and the target variables 
(such as shrub cover or berry yield) instead of direct ALS measurements 
of the target variables. This type of method has been earlier applied e.g. 
in the prediction of plant species richness (e.g. Lopatin et al., 2016), 
downed dead wood (Pesonen et al., 2008), natural regeneration (e.g. 
Bollandsås et al., 2017) and forest beetle assemblages (Müller and 
Brandl, 2009). 

Local studies have investigated the species richness of undergrowth 
plants using ALS data (e.g., Lucas et al., 2010, Nijland et al., 2014, 
Lopatin et al., 2016, Barber et al., 2016, Mao et al., 2018, Moeslund 
et al., 2019, Nielsen et al., 2020). Most of these studies have modelled 
species richness as a whole and not by individual plants. But for 
example, Barber et al. (2016) modelled the abundance and fruit pro-
duction of buffaloberry, huckleberry and saskatoon shrubs using ALS 
data, concluding that models including stand structural variables 
improved, especially models of saskatoon and huckleberry. Similarly, 
Nielsen et al. (2020) used ALS based canopy cover and shrub abundance 
when predicting fruit production of velvet-leaf blueberry. 

The first study where remote sensing-based forest and land use maps 
were used in bilberry and cowberry yield prediction was performed by 
Kilpeläinen et al. (2016). The authors used multisource national forest 
inventory (MS-NFI) data, combing field data, satellite images, terrain 
models and other mapped data sources. They concluded that both field- 
and MS-NFI-based input data were equally suitable for berry yield 
modelling. Recently, Vauhkonen (2018) modelled the suitability of 
picking bilberry and cowberry based on ALS data and MS-NFI data in a 
local study area. In his study, the training data of forest suitability for 
berry picking were based on expert models (Ihalainen et al., 2002) using 
forest stand characteristics, not empirical yield measurements. After 
field calibration, a better ability to explain the variation in ecosystem 
service proxies (including potential for berry picking) was observed for 
ALS-based models compared to MS-NFI-based ones (Vauhkonen, 2018). 

Our current study is the first to combine berry yield data from 
Swedish NFI with nationwide ALS data to predict berry yields. The 
specific aims are 1) to develop general prediction models for bilberry 
and cowberry yields based on ALS data and other existing wall-to-wall 
data and 2) to identify laser-based structural features of forests that 
can be linked to locations of the highest bilberry and cowberry yields, 
highly interesting for berry pickers. This information can be used for 
multi-objective forest planning, developing the next-generation berry 
yield forecasting applications and mapping berry yields in forest 
landscapes. 

2. Material and methods 

Most of Sweden is covered by boreal forest dominated by Scots pine 
(Pinus sylvestris L.) and Norway spruce (Picea abies (L) Karst.). The 
proportion of deciduous trees is higher towards the south and in the 
mountain areas. The Scandinavian Mountains in the west and northwest 

create unique climate and soil conditions. Swedish forests are made up 
of 22.7 Mha productive forest land (site productivity ≥ 1 m3 ha− 1 

year− 1), largely well-managed for timber production, and consist of all 
kinds of development stages owned by private forest companies (24%), 
non-industrial private land forest owners (52%) and other owners (24%) 
(Skogsdata, 2019). 

2.1. NFI field data 

We used field data from the Swedish NFI 2007-2016 covering the 
entire country (Fridman et al., 2014). In the Swedish NFI, two inde-
pendent field samples are carried out annually on permanent and tem-
porary plots. During the period of this study, the NFI consisted of 
systematic (square grid) field samples randomly placed either on per-
manent (plot radius 10 m) or temporary plots (plot radius 7 m) located 
in square or rectangular clusters. Sampling intensity decreases and the 
side length of clusters (from 300 to 1,800 m) and the distance between 
plots within the clusters (from 300 to 600 m) increases towards the 
north. Since 2017, temporary plots have been established for balanced 
sampling, where auxiliary information is used (Grafström et al., 2017). 
Annually, about 9,500 plots are field-surveyed, of which 65% are per-
manent and re-measured every fifth year and 35% are temporary, i.e., 
measured only once. The coordinates of the plots are recorded using GPS 
(global positioning system) from the centre of the plots according to the 
instructions of the NFI. Several environmental variables, such as land 
use, soil, species richness, as well as habitat variables and forest vari-
ables such as tree species, stem volume, forest operations and forest 
damages, are measured or estimated in each plot (RIS, 2020). 

2.1.1. Berry data and berry data processing 
In the Swedish NFI, the unique bilberry and cowberry data collected 

from 2007 to 2010 from the permanent plots and from 2011 to 2016 
both from permanent and temporary plots were used in this study. Only 
plots within a single forest stand or land use class were used (i.e., non- 
divided plots), and plots on mountains and in farmland, built areas, 
roads/railways, other land and water areas were excluded. A detailed 
bilberry and cowberry inventory was performed in two 0.25-m2 circular 
berry plots inside the NFI plot. These two berry plots were located 2.5 m 
from the centre of the NFI plot, at 45 (right) and 225 (left) degrees from 
the original walking direction. In the berry plots, where at least one 
living bilberry or cowberry plant occurred, a development class (before 
flowering, flowering, raw berries, ripen berries, berries fallen of) was 
evaluated, and the numbers of flowers and berries (only in development 
classes flowers, raw berries and ripe berries) were counted by species. 
The development class was selected based on the stage of the majority of 
the bilberry and cowberry plants inside the berry plots and had to be 
same for both plots. If flowers or berries were missing from the berry 
plots, the development class was evaluated from the vegetation around 
the berry plots. All flowers and berries were counted despite different 
development classes, and afterwards, the sum of the counted flowers and 
berries of two berry plots was calculated. 

We removed NFI plots with major changes in field and ALS data 
acquisition caused by management operations, natural disturbances and 
growth. This was done in three steps: first, only field plots inventoried 
maximum 3 years before or after ALS data acquisition were selected. 
Second, the NFI plots measured maximum 3 years after laser data 
acquisition, in which new clearcuts, thinnings and clearings were 
recorded, were removed. In the third step, Mahalanobis distance mea-
surement was used to compare the laser-based grid-value (mean value of 
grid-cells inside the NFI plot) of stem volume (m3 ha− 1) and basal area 
weighted mean height (m) from the National attribute map of Sweden 
(Nilsson et al., 2017, based on the same ALS data as used in this study) 
with the field-measured stem volume and the mean height of each 
remaining NFI plot. In total, 15% of NFI plots selected after the second 
step were determined as outliers and removed from the dataset in the 
third step (the same percentage was used when the National Forest 
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attribute map of Sweden was created). 
In the final phase, to be able to model the berry yield, only those 

bilberry and cowberry plots where flower and berry numbers had been 
counted (development stages flowering, raw berries and ripe berries 
from May to November) were used for modelling, together with plots 
which did not have any bilberry or cowberry vegetation. Berry plots 
with development stages before flowering and berries fallen off were 
removed since they contained no information on the potential berry 
production in the plot. The final plot numbers were 13,715 for model-
ling bilberries and 13,613 plots for modelling cowberries. In both 
datasets, approximately 29% of plots did not have any bilberry or 
cowberry plants. The proportion of plots in each berry yield class is 
presented in Fig. 2. Generally, the number of plots including bilberry 
and cowberry plants (Fig. 4, middle and right) and the amounts of 
berries were higher in the north of Sweden compared to the south of 
Sweden. 

The numbers of flowers and berries are affected by the inventory day 
of the growing season. To make the model parameters easily interpret-
able, the middle of July (Julian Dsay 196) for bilberries and the middle 
of August (Julian Day 227) for cowberries were used as reference days in 
modelling, indicating the day when berries should be ready for picking 
(ripe berries) (Fig. 3). The time difference between field data collection 
and the reference day was used as predictor variable in the models 
(Mid_July/August), together with other variables (See Auxiliary data 
below). The coefficient of this variable indicates the change in berry 
amount (% per day) throughout the season. 

The data showed a spatial hierarchical structure because sample 
plots were located inside NFI clusters inside laser blocks inside counties. 
The municipality level was excluded in this study because of large var-
iations in municipality size and replaced with equal-size laser blocks 
covering the entire country. If plots in the same cluster were located in 
different laser blocks, they received a different cluster ID; laser blocks 
were treated similarly if they were divided by the county border. The 
final cluster numbers were 3,736 in 438 laser blocks in 21 counties for 
bilberry data and 3,688 in 440 blocks in 21 counties for cowberry data. 
This hierarchy was taken into account by mixed-effect modelling (see 
statistical modelling below). 

The number of plots used for modelling from different years and 
different parts of Sweden varied because it depended on the year and 
location of laser scanning (only plots 3 years before and after scanning 
were included). As an example, Fig. 4 (left) presents the location of plots 

used in bilberry modelling by scanning year on laser blocks. 

2.2. Remote sensing and other auxiliary data 

Airborne laser scanning data were derived from a campaign for a 
new national digital elevation model (DEM) by the Swedish National 
Land Survey (Lantmäteriet, 2014), which started in 2009. At the end of 
2015, over 97% of the productive forest land in Sweden had been 
scanned. Flying height was between 1,700 and 2,300 m, point density 
0.5–1 pulse/m2, maximum scanning angle 20 degree and side overlap 
20% between scanning strips. Scanning was organised in 397 blocks 
with a size of 25 × 50 km. Most blocks were scanned with Leica, but 
Optech, Riegl and Trimble were also used. Southern Sweden was scan-
ned mainly in spring and autumn during the leaf-off period and northern 
Sweden in the summer with leaves. The new national DEM (pixel size of 
2 × 2 m) was used as ground reference when calculating the above 
ground heights of ALS returns. In this study, data from 2009 to 2014 
were used, including all different scanners and about 50% leaf-on and 
50% leaf-off data. Examples of maps of laser blocks, scanners, scanning 
season and scanning years can be found in Nilsson et al. (2017). 

Due to the small size and seasonality of the bilberry and cowberry 
species located under the forest canopy it was impossible to measure the 
berry yields directly using low resolution ALS data. This is the reason 
why we applied indirect method to model the berry yields based on the 
correlation between forest structure (described by ALS data) and the 
berry yields measured from NFI plots. All ALS-based and other wall-to- 
wall metrics calculated were extracted from the 7-m buffer around the 
centre of the NFI field plots (corresponding to the size of temporary NFI 
plots where trees were counted). The ALS point cloud data were 
extracted from each NFI plot, and point cloud metrics were calculated 
using the FUSION software (McGaughey, 2021). All measurements be-
tween 0 and 50 m above the ground were used to calculate height and 
density metrics. A list of variables and their formulas are presented in 
McGaughey (2021). Forest canopy cover metrics (percentage of echoes 
above a specific height limit, %) were calculated using height limits of 
0.2, 0.5, 1, 2 and 5 m, of which the 2 m limit was selected for final 
canopy cover. We also separately calculated “shrub cover” ((percentage 
of echoes below 2 m − percentage of echoes below 0.5 m)/(percentage 
of echoes below 2 m), %) (see e.g., Melin et al., 2016) and percentage of 
first echo from all echoes. In addition, the metric CCleaf (leaf-on canopy 
cover) was created; it was zero if leaf-off data were used and had a 

Fig. 2. Percentages of plots in berry yield classes (sum of number of flowers, raw berries and ripe berries) in the bilberry and cowberry data. No plant refers to data 
where no bilberry/cowberry plants were observed in the plots. Each plot represents sum of two 0.25 m2 berry plots inside NFI plot. 
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percentage of echoes above 2 m when leaf-on data were used (%). This 
metric was used to indicate the difference in canopy cover (especially in 
the case of deciduous trees) between leaf-on and leaf-off data. Metrics 
were calculated both from first echo data and all echo data. The intensity 
values were excluded because they varied among scanners. In addition, 
we also used categorical information about scanning time (leaf-on/off 
data), scanning year and scanner type (Leica, Optech, Riegl and Trim-
ble) from each laser block as predictor variables. 

Three common variables, namely percentage of first echoes above a 
height limit of 2 m, called “canopy cover” (CC), Elev.P95 (height, where 
95% of the first echoes are accumulated), called “tree height”, and 
“shrub cover” from first echo data described above, were selected to 
identify the critical structural differences of forest in presence/absence 
data (high berry yield/no berries) to locate the forests with highest berry 
yields. 

Other auxiliary data used in this study were divided into surface 
metrics, bioclimatic variables and other metrics (Appendix 1). Surface 
metrics consisted of variables calculated from the ALS-based digital 

elevation model (DEM, expressing height above sea levels (m), pixel size 
of 2 × 2 m) created by the Swedish Lantmäteriet and ALS-based soil 
wetness (SW, pixel size of 2 × 2 m) from the SLU soil moisture map (SLU, 
2021a). The DEM and SW were clipped using a 14-m buffer around each 
field plot. Different surface metrics (Appendix 1) were created from 
DEM, using 8 neighbour pixels. Mean and standard deviation of pixel 
values inside each plot (7-m radius) from each raster were calculated as 
final metrics. New rasters were created in R (https://www.r-project.org/ 
) using raster-package. Bioclimatic variables derived from the monthly 
temperature and the rainfall values from 1970 to 2000 with a raster cell 
size of 1 × 1 km were retrieved from worldclim.com (Fick and Hijmans, 
2017). They represent climatic conditions of the NFI plots as annual 
trends, (e.g., mean annual temperature and precipitation) seasonality (e. 
g., annual range in temperature and precipitation) and extreme or 
limiting environmental factors (e.g., temperatures of the coldest and 
warmest months, and precipitations of the wet and dry quarters). The 
value of the raster cells was extracted for each plot and in the case where 
several raster cell were overlapping the plot the mean value was used as 

Fig. 3. Number of bilberries (left) and cowberries (right) by Julian day in different development classes (top = flowers, middle = raw berries, bottom = ripe berries). 
Horizontal line shows the middle of July/August, when berries are expected to be ripen. Each plot represents sum of two 0.25 m2 berry plots inside NFI plot. 
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the final metrics. Detailed list of the variables is in Appendix 1. Data 
sources for other metrics were the SLU forest map from 2010 (SLU, 
2021b), soil type and soil depth maps from the Geological Survey of 
Sweden (SGU 2018, 2020) and the land cover map from the Swedish 
Environmental Protection Agency (Naturvårdsverket, 2014). Forest 
variables in the SLU forest map (pixel size of 25 × 25 m) were based on a 
combination of satellite images, Swedish NFI plots and kNN-imputation 
(Reese et al., 2003). In this study, only the stem volumes of pine, spruce 
and deciduous trees (m3 ha− 1) and their calculated proportions (%) were 
used. The soil type map (vector data) includes a classification of com-
mon soil types. Both soil type and soil depth maps (pixel size of 10 × 10 
m) were constituted from several different data sources (quaternary 
geological studies/drillings and existing map data). The land cover map 
(pixel size of 25 × 25 m) was based on classification from satellite data 
to EU land use classes (Corine Land Cover, reference year 2000). Classes 
with less than 100 observations were combined with closest class. The 
mean of the raster cells (continues variables) or the maximum (cate-
gorical variables) was extracted from each plot to represent the pre-
dictor variables. A detailed list of variables and used classes can be found 
in Appendix 1. 

2.3. Statistical modelling 

Models were created for bilberry and cowberry yields (number of 
berries) using generalised linear mixed-effect models (GLMMs). Berry 
counts were modelled using the Poisson distribution and expressed by 
the log-link function (McCullagh and Nelder, 1989). The hierarchy and 
unbalanced structure of the data were taken into account by random 
effects at different levels of grouping (county, laser-block, cluster). The 
year effect was included as dummy variable in the fixed part of the 
model. The models were defined as follows: 

yijk Poisson
(
πijk
)

(1)  

ln
(
πijk
)
= x’ijkβ+ ui + uij + uijk  

where y is the sum of flowers and berries in two 0.25-m2 circular plots 
inside the NFI plot; Poisson distribution with mean πijk is the conditional 
distribution of yijk given the random effects ui, uij and uijk; ln(π) is a log- 
link function and x’ijk are the fixed predictor variables with corre-
sponding coefficient vector β. Subscripts i, j and k refer to nested cluster, 
laser block and county levels, respectively, and ui, uij and uijk are nor-
mally distributed random effects with mean of zero and constant 
variances. 

For Poisson random variables, the variance equals the mean, but 
frequently, the data do not follow this due to the lack of independence. 
This means that it might show more or less variation than what would be 
expected based on the Poisson distribution (“over-and under-disper-
sion”). One way to allow over- or under-dispersion is to use Penalized 
Quasi likelihood (PQL) in model fitting, which allows the scaling factor 
of the variance function to deviate from 1, thus modelling the over- 
dispersion (see e.g., Mehtätalo and Lappi, 2020, Section 8.3.2). When 
using PQL with GLMM, the nonlinear function of the mixed-effect model 
is determined by applying the log-link function and the variance func-
tion where the above-mentioned variance of the Poisson distribution is 
multiplied by scaling factorτ. If the estimate ofτ > 1, it indicates over- 
dispersion, and ifτ < 1, under-dispersion is given. If modelling over- 
dispersion is ignored, it wound lead to an underestimation of standard 
errors of parameter estimates, and ignoring under-dispersion would lead 
to overestimation; therefore smaller (over-dispersion) or higher (under- 
dispersion) p-values are produced, leading to misinterpretation of the 
importance of the variables. 

Mixed-effect models were fitted using the glmmPQL function of the 
R-software (https://www.r-project.org/). Because glmmPQL does not 
allow the crossed random effects, the effects of the years 2007–2016 
were included as dummy variables in the fixed part of the model. All 
variables selected into the models had to be logical and statistically 

Fig. 4. Distribution of NFI plots used for modelling by scanning year (left) and by bilberry (middle) and cowberry (right) occurrence on laser blocks.  

I. Bohlin et al.                                                                                                                                                                                                                                   

https://www.r-project.org/


Forest Ecology and Management 502 (2021) 119737

7

significant (level 0.05), and no high correlation was allowed between 
variables. To rank and select the best variables into models, initial 
models were prepared by scaling continues variables (comparison be-
tween variables possible). The final models were produced using these 
metrics without scaling to easier interpret the coefficient of the metrics, 
such as the variable Mid_July/August, showing the change (percentage, 
%) in flowers and berries per day during the season. Also, different 
transformations of the variables were tested. 

When applying the model to the new area/dataset, the random ef-
fects are unknown and cannot be predicted. A naïve approach for pre-
diction in such case is to use the fixed part of the model. However, 
because the random effects are inside the link-function, such predictions 
are downward biased. A bias-corrected prediction is as follows (e.g., 
Mehtätalo and Lappi, 2020): 

ŷ = exp

(

x’ β̂ +
σ̂2

i + σ̂2
j + σ̂2

k

2

)

(2)  

where σ̂2
i , σ̂2

j and σ̂2
k are the variance estimates of each random level i, j, 

k (cluster, laser block and county level). 
The structural differences of commonly used ALS-based variables are 

demonstrated in the histograms of presence/absence (high berry yield/ 
no berries) data. Only bilberry and cowberry plots with ripe berries were 
included (Mid_July/August > 0). Five percent of the plots with the 
highest berry amount was selected to represent the high berry yield (452 
plots with bilberry and 391 plots with cowberry). This corresponded to 
15 berries or more in bilberry data and 9 berries and more in cowberry 
data in two 0.25-m2 circular plots. Class “no berries” included bilberry/ 
cowberry plots with zero berries (similarly Mid_July/August > 0) and all 
other plots without bilberry/cowberry plants. 

3. Results 

3.1. Models for bilberry and cowberry yield 

The bilberry model with significant fixed predictors is shown in 
Table 1. The continuous variables were ranked based on the weight they 
obtained when the models were prepared with standardised predictors 
(scaled using the scale function in R). The time difference between the 
inventory day and the middle of the July (Mid_July), when the berries 
were expected to ripen, showed a 1.5% decrease in bilberry yield per day 
during the season (the coefficient − 0.0145 in the Table 1). The number 
of bilberries increased when temperature seasonality, Elev.variance 
(McGaughey, 2021), DEM, PineVolume, Slope, SW and canopy cover 
(up to 50%) increased. The number of bilberries decreased when 
CCLeaf, DecidPro, SpruceVolume, shrub cover and precipitation sea-
sonality2 increased. The optimal canopy cover of 48.8% was calculated 
using a quadratic equation (ax2 + bx). Leaf-on/off and land use class 
(only class conifer forest > 15 m was significant) were significant cat-
egorical variables in the model. In addition, the variable Year showed 
significant variation among years, and the number of bilberries was 
highest in 2015 and in conifer forests at a height > 15 m and lowest in 
2009 and in conifer forests on mire. 

The cowberry model with significant fixed predictors is shown in 
Table 2. The time difference between the inventory day and the middle 
of the August (Mid_August) showed a 1.1% decrease for cowberry yield 
per day during the season (the coefficient − 0.0107 in the Table 2). The 
number of cowberries increased when canopy cover, temperature sea-
sonality, annual precipitation, Elev.variance (McGaughey, 2021) and 
TRI increased and decreased when DEM, CCleaf, DecidPro, SprucePro 
and PineVolume and shrub cover increased. The calculated optimal 
canopy cover was 13.6%. Soil type (Clay, Moraine and mountain/rock 
were significant) and land use class (conifer forest in mire, clear cut and 
other mires were significant) were significant categorical variables in 
the cowberry model. In the cowberry data, the variable Year showed 

significant variation among years, and the number of cowberries was 
highest in 2015 in forests on moraine-clay and in clear cuts and lowest in 
2013 in water areas (misclassified) and in other mires. 

Several ALS-based structural forest and surface metrics were signif-
icant predictors for the berry models, but they had a high correlation 
(±0.7–0.95) with the best metrics and were thus excluded from the 
model. Similarly, we also tested the north and south coordinates of plots, 
but they were highly correlated with more significant bioclimatic met-
rics and were therefore not used. The year effect was significant in both 
models, but it cannot be directly used to evaluate the true yearly vari-
ation because plot number, inventory year and inventory day variated 
among different areas. 

We also calculated the R2 values (degree of determination) for the 
full model and for the fixed part of the model separately. The R2 was 0.4 
for the full bilberry model and 0.08 for the fixed part and 0.53 for the full 
cowberry model and 0.03 for the fixed part. Most of the unexplained 
(random) variation was found in the cluster level both in bilberry and 
cowberry models (83 and 56%). The laser block level accounted for 

Table 1 
Bilberry model for the number of berries in two 0.25-m2 plots. Scaled refers to 
model, where continuous predictors were scaled (standardised). Continuous 
variables are ordered by estimate of scaled variables (the weight the variables 
received when the models were prepared with standardised predictors). * =
metric calculated from the first echo ALS data. Only fixed parameters are shown 
in the table.   

Estimate Std. 
Error 

t-value p-value Scaled 

Intercept − 3.6588 0.3265 − 11.21  <0.001  0.9969  

Mid_July − 0.0145 0.0006 − 22.29  <0.001  − 0.5847 
Temperature 

seasonality 
0.0005 0 15.65  <0.001  0.4306 

CCLeaf − 0.0106 0.0017 − 6.38  <0.001  − 0.3876 
Canopy cover2* − 0.0004 0 − 16.22  <0.001  − 0.3206 
Elev.variance 0.0136 0.0012 11.55  <0.001  0.2443 
DEM_mean 0.0018 0.0002 9.12  <0.001  0.2333 
DecidPro(%) − 0.0191 0.0027 − 6.98  <0.001  − 0.222 
PineVolume (m3ha− 1) 0.0031 0.0004 7.59  <0.001  0.1347 
SpruceVolume 

(m3ha− 1) 
− 0.0025 0.0004 − 6.2  <0.001  − 0.1294 

Slope_mean 0.0192 0.0037 5.22  <0.001  0.09 
Shrub cover − 0.8380 0.2242 − 3.74  <0.001  − 0.0776 
Precipitation 

seasonality2 
− 0.0007 0.0001 − 5.83  <0.001  − 0.0681 

SW_mean 0.0086 0.0023 3.72  <0.001  0.0616 
Canopy cover* 0.0409 0.0033 12.28  <0.001  − 0.0573  

Year (ref. 2007) 
2008 0.1473 0.1571 0.94  0.348  0.1336 
2009 0.0750 0.1561 0.48  0.631  0.0727 
2010 0.3379 0.1490 2.27  0.023  0.3398 
2011 − 0.2977 0.1330 − 2.24  0.025  − 0.3045 
2012 0.2066 0.1161 1.78  0.075  0.2072 
2013 0.3402 0.1306 2.60  0.009  0.3289 
2014 − 0.1358 0.1384 − 0.98  0.327  − 0.1326 
2015 0.5667 0.1389 4.08  0.000  0.5862 
2016 0.2987 0.1574 1.90  0.058  0.2911  

Leaf-on/off (ref. leaf off) 
Leaf-on − 0.2892 0.0839 − 3.45  0.001  − 0.3101  

Land use (ref. others) 
Deciduous forest 0.1447 0.1992 0.73  0.468  0.1486 
Conifer forest with 

lichen 
0.2340 0.1918 1.22  0.223  0.2232 

Conifer forest 7–15 m 0.3005 0.1871 1.61  0.108  0.2961 
Conifer forest > 15 m 0.4138 0.1871 2.21  0.027  0.4142 
Conifer forest in mire − 0.2105 0.2218 − 0.95  0.343  − 0.2086 
Conifer forest in 

mountain 
0.1749 0.2155 0.81  0.417  0.1434 

Mixed forest 0.1007 0.1909 0.53  0.598  0.0993 
Clear cut 0.3111 0.1901 1.64  0.102  0.2981 
Young forest 0.1825 0.1901 0.96  0.337  0.1756 
Other mires 0.1103 0.2248 0.49  0.624  0.1036  
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about 15–17% of the variation in both models. In the cowberry model, 
the county level accounted for over 28% and in the bilberry model for 
less than 1%. The dispersion parameter was greater than 1 both in 
bilberry and cowberry models, indicating over-dispersion of the data 
(more variation than expected). The variances of random effects and 

dispersion parameters of bilberry and cowberry models are presented in 
Table 3. 

We studied the model estimates based on only the fixed part of 
models, as done when applying new datasets. Although bias-correction 
improved the estimates, the mean values were still low in the highest 
berry yield classes (Table 4.). The reason for this was found when 
observing the distribution of random effects; with GLMM, the random 
effects are expected to be normally distributed, but in our models, the 
distributions were slightly positively skewed (Fig. 5), which caused the 
underestimation of the high berry yields and the smaller effect of the 
bias-correction. The true and estimated mean values of flowers and 
berries in each prediction class with bias-correction, are presented in 
Table 4. Although our model could not provide highly accurate esti-
mates for berry yields, underestimating especially high yields, the model 
can be used as an effective tool for predicting the most potential loca-
tions for berry yields in forest landscapes. 

3.2. Laser-based structural differences and the berry map 

The histograms in Fig. 6 show the commonly used structural ALS- 
based features: canopy cover (%), canopy height (m) and shrub cover 
(%) in presence/absence data (high berry yield/no berries). Histograms 
highlight the critical structural features, indicating the locations for the 
highest bilberry and cowberry yields. Clear differences between the 
distributions of high berry yield data and no berry data are shown, 
which follows the findings from the modelling. 

Bilberry yield peaked in forests with a canopy cover (CC) of 50%, but 
even a CC close to zero showed good bilberry yield. Cowberry yield 
peaked drastically in forests with no canopy cover, but it was also high in 
sites with a canopy cover up to 80%. Highest bilberry yields were most 
commonly found in sites with a canopy height from 10 to 16 m, and 
highest cowberry yields were observed when the canopy height was 
close to zero. High bilberry and cowberry yields were identified for all 
stand heights. The shrub cover was most often close to zero, both with 
highest bilberry and cowberry yield, and the number of high-berry-yield 
plots decreased clearly when the scrub cover increased from 0 to 10%. 

To demonstrate the use of the model in the forest landscape, we 
predicted the most potential locations of bilberry yields in a small study 
area and compared it to ALS-based canopy cover and stem volume 
values obtained from the National Forest attribute map (Fig. 7). Fig. 7 
highlights the effects of canopy cover and stem volume on berry yields; 
too low or too high cover/volume values did not result in high berry 
yields. 

4. Discussion 

This is the first study using ALS and other wall-to-wall variables to 
model bilberry and cowberry yields, but also the first berry yield model 
developed for Sweden. Here, we also obtained valuable information 
about suitable remote sensing-based variables for predicting berry yields 

Table 2 
Cowberry model for the number of berries in two 0.25-m2 plots. Scaled refers to 
model, where continuous predictors were scaled (standardised). Continuous 
variables are ordered by estimate of scaled variables (the weight the variables 
received when models were prepared with standardised predictors). * = metric 
calculated from the first echo ALS data. Only fixed parameters are shown in the 
table.   

Estimate Std. 
Error 

t-value p-value Scaled 

Intercept − 5.6022 1.2265 − 4.57  <0.001  0.0704  

Canopy cover* 0.0101 0.0033 3.05  0.002  − 0.7791 
Temperature 

seasonality 
0.0006 0.0001 5.77  <0.001  0.671 

Mid_August − 0.0107 0.0008 − 14.07  <0.001  − 0.4319 
DEM_mean − 0.0024 0.0004 − 6.14  <0.001  − 0.3985 
CCLeaf − 0.0087 0.0016 − 5.35  <0.001  − 0.3181 
Annual precipitation2 0.03 0.0086 3.47  <0.001  0.2863 
Canopy cover2* − 0.0004 0 − 11.76  <0.001  − 0.2833 
DecidPro(%) − 0.0189 0.0026 − 7.13  <0.001  − 0.2254 
SprucePro(%) − 0.0078 0.0009 − 9.06  <0.001  − 0.2162 
PineVolume (m3ha− 1) − 0.0032 0.0005 − 6.07  <0.001  − 0.1458 
Elev.variance 0.0078 0.0014 5.76  <0.001  0.143 
TRI_mean 7.2822 0.895 8.14  <0.001  0.1369 
Shrub cover − 1.2526 0.2229 − 5.62  <0.001  − 0.1163  

Year (ref. 2007) 
2008 − 0.5022 0.1834 − 2.74  0.006  − 0.5022 
2009 0.2717 0.1680 1.62  0.106  0.2717 
2010 − 0.2970 0.1771 − 1.68  0.094  − 0.2970 
2011 − 0.2268 0.1453 − 1.56  0.119  − 0.2268 
2012 0.0386 0.1204 0.32  0.748  0.0386 
2013 − 0.5305 0.1475 − 3.60  0.000  − 0.5305 
2014 − 0.2725 0.1551 − 1.76  0.079  − 0.2725 
2015 0.2822 0.1614 1.75  0.080  0.2822 
2016 − 0.4076 0.1928 − 2.11  0.035  − 0.4076  

Soiltype (ref.sediment) 
Peatland 0.2258 0.1218 1.85  0.064  0.2258 
Sand-gravel − 0.2132 0.1533 − 1.39  0.165  − 0.2132 
Clay − 0.3687 0.1794 − 2.06  0.040  − 0.3687 
Water (misclassified) − 0.6815 0.5467 − 1.25  0.212  − 0.6815 
Moraine 0.2473 0.0964 2.57  0.010  0.2473 
Mountain/Rock (berg) 0.2971 0.1113 2.67  0.007  0.2971 
Moraine-Clay 0.4353 0.2379 1.83  0.0673  0.4353  

Land use (ref. others) 
Deciduous forest 0.1042 0.2572 0.41  0.6854  0.1042 
Conifer forest in lichen 0.4397 0.2417 1.82  0.0689  0.4397 
Conifer forest 7–15 m 0.2981 0.2349 1.27  0.2043  0.2981 
Conifer forest > 15 m 0.2814 0.2339 1.20  0.2289  0.2814 
Conifer forest in mire − 0.7316 0.2934 − 2.49  0.0127  − 0.7316 
Conifer forest in 

mountain 
0.0007 0.2849 0.00  0.9980  0.0007 

Mixed forest − 0.1651 0.2452 − 0.67  0.5007  − 0.1651 
Clear cut 0.7850 0.2346 3.35  0.0008  0.7850 
Young forest 0.4542 0.2369 1.92  0.0552  0.4542 
Other mires − 0.7745 0.2984 − 2.60  0.0094  − 0.7745  

Table 3 
Variances of random effects and dispersion parameters of bilberry and cowberry 
models.   

Bilberry Cowberry 

Random effects, grouping Std.Dev n.obs Std.Dev n.obs 

County 0.0003 21 0.5654 21 
Laserblock 0.1804 438 0.3249 440 
Cluster 0.8965 3736 1.1384 3688 
Under-/over-dispersion (σ2)  3.17  3.63   

Table 4 
Means of the true and estimated values of flower and berry numbers in pre-
diction classes with bias-correction. Prediction was done using only the fixed 
part of the model.   

Predicted flower and berry numbers  

0–10 10–20 20–30 30–40 40+

Bilberry 
n. obs. 11,916 1478 222 68 31 
Mean true 3.22 12.53 18.54 17.51 18.10 
Mean est. 3.63 13.50 23.45 33.56 48.19  

Cowberry 
n. obs. 11,135 1642 502 169 165 
Mean true 2.88 11.76 12.70 23.81 21.94 
Mean est. 2.93 13.85 24.12 34.24 53.56  
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and about the ALS-based structural features that reflect the locations of 
the highest berry yields. Earlier studies modelling bilberry and cowberry 
yields for forest planning, mainly produced in Finland, have used field- 
measured stand attributes (such as site type, tree height, mean diameter, 
volume, basal area and age, tree species, soil type) and some 
geographical data (mean temperature and height above sea) as predictor 
variables (e.g., Muhonen, 1995, Miina et al., 2009, Turtiainen, 2015). 
These models can be used for forest planning purposes but not for ac-
curate and cost-effective wall-to-wall prediction because of the lack of 
accurate field data. In our study, we used only remote sensing-based and 
other wall-to-wall variables in modelling to cost-effectively produce 
spatial information about potential berry yields. 

The importance of mapping ecosystem services, such as berry yield, 
has been recognised by the European Commission (2013) in Action 5 of 
the EU Biodiversity Strategy to 2020, where they request the Member 
States to map ecosystems services, resulting in a number of initiatives (e. 
g., Burkhard and Maes, 2017). Our maps of potential berry yield are 
much needed as input for, e.g., land-use planning at landscape level (e. 
g., European Commission, 2016). These maps may support forest man-
agement, enabling multiple uses of the forest landscape. Further, such 
maps can aid in communication and knowledge transfer and increase 
our understanding among and between different stakeholders with 
different interests (Sandström et al., 2003). For local berry pickers, the 
berry yield maps make it easier to find the berries in the forest 
landscape. 

4.1. Modelling berry yields 

Both ALS-based structural forest and terrain variables were signifi-
cant in the prediction of bilberry and cowberry berry yields, similar to 
species-specific volumes or percentiles and land use class. In our study, 
canopy cover of about 50% indicated the locations for the highest 
bilberry yields, along with high pine volume/conifer dominance and 
greater tree height. This supports earlier studies showing that the 
highest bilberry yields can be obtained in mature, not too dense stands 
with conifer dominance (e.g., Eriksson et al., 1979, Raatikainen et al., 
1984, Miina et al., 2009, Turtiainen, 2015). In addition, more important 
than e.g. tree species is the light reaching the bilberry stand; it has been 
found that a crown density of 10–50% allows bilberry to flower and 
produce berries (Raatikainen and Raatikainen, 1983, Raatikainen et al., 
1984). This supports the usability of ALS-based canopy cover measure-
ment, especially in the prediction of bilberry yields (see also Figs. 6 and 
7). Similarly, canopy cover and tree height close to zero indicated lo-
cations for the highest cowberry yields, but also denser canopy cover, 
greater tree height and conifer dominance resulted in good yields. These 
findings are also supported by earlier studies. High cowberry yields can 
be found in pine-dominated stands which are not too dense, in recently 
clear-felled open areas, small seedling stands and seed tree stands, but 
also in mature stands (e.g., Jaakkola, 1983, Belonogova, 1993, 

Turtiainen, 2015). 
The other ALS based metrics used in the models which were linked to 

the berry production were Shrub cover, Elev.variance, SW_mean and 
TR_mean. Shrub cover was close to zero both in plots of bilberry and 
cowberry, supporting the assumption that these berry species demand 
light. Berry yields of both species increased when height variance (Elev. 
variance) of laser pulses increased. In this study the large height vari-
ance means that heights of the laser point are reflecting both from the 
dominant trees and from the ground, thus, indicating gaps in the tree 
canopy. Also supporting the earlier finds about light demand of the 
considered berry species. Correspondingly, when soil wetness 
(SW_mean) increased the bilberry yield increased, which can be un-
derstood by the fact that bilberry produces berries also in peatlands. 
When terrain roughness (TR_mean) increased the cowberry yield 
increased, which is related to the fact that cowberry is growing in sunny 
slopes. In this study, the Height above sea (DEM_mean) were used in 
both models and had opposite effect to the different species; when 
DEM_mean increased the bilberry yield increased and cowberry yield 
decreased. The use of forest structural measures from ALS data, espe-
cially canopy cover have been applied also in other studies where 
occurrence and fruit production of other berry species have been studied 
(e.g. Barber et al., 2016, Nielsen et al., 2020). 

Our results are also in agreement with the recent findings of Vauh-
konen (2018), predicting the provisional potential of ecosystem services 
(including suitability for the picking of bilberries and cowberries) based 
on ALS data in the Evo study area in Finland. Provisional potentials were 
constructed based on expert models, and regression analyses were used 
to model the priority values for ecosystem services. The authorś bilberry 
and cowberry models included structural ALS measures for relatively 
low vegetation and metrics separating and combining different echo 
categories in the models. Vauhkonen points out that the performance of 
his models should be tested by re-fitting or validating models against 
indicators which are not based on models but on direct observations in 
the field. 

The site- and vegetation-related variables did not as such describe 
the berry yields optimally and, therefore, also bioclimatic variables 
describing the climate conditions of NFI plots, were included to the 
models. Seasonality of the temperature and the precipitation described 
the annual range/variation in the temperature and in the precipitation. 
The increasing variation in the temperature increased the yields of both 
berry species. This is logical since higher berry yields are found in the 
northern part of Sweden where the variation of monthly temperatures is 
larger than in the south. In addition, the higher variation in the pre-
cipitation decreased the bilberry yields and the increasing annual pre-
cipitation increased the cowberry yields. Earlier, Turtiainen et al. (2013) 
used the temperature sum in their cowberry models, whereas Barber 
et al. (2016), in addition to temperature and precipitation, used even 
variables such as mean annual solar radiation, beginning and ending of 
the frost-free period, reference atmospheric evaporation demand and 

Fig. 5. Distribution of the sum of random effects (ui + uij + uijk) in bilberry and cowberry models.  
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continentality in their wall-to-wall models for saskatoon, huckleberry 
and buffaloberry. 

In our study, the numbers of flowers, raw berries and ripe berries at 
different times of the growing season we used. Therefore, we could use 
the inventory day (Mid_July/August) as predictor variable in the model 
and take into account the changes in berry yield throughout the season. 
In the case of bilberry, this was the most important variable in the 
model. By measuring field data during the entire season, the model can 
be updated continuously, and seasonal prognoses of berry yields are 
possible. 

Our study supports the findings that accurate prediction of berry 
yields is difficult because of the complexity of berry yield production. 

This was observed, for example, by obtaining high variations in esti-
mation accuracies among plots and by small R2 values for the fixed part 
of the model. This indicates that variables used in the models cannot 
catch the spatial and temporal variation of berry yields for accurate 
berry yield modelling. In addition, the model underestimated especially 
the high berry yields, which was caused by the non-normal distribution 
of the random effects. Similar results have been found in all earlier 
studies. For example, Turtiainen (2015) obtained an R2 of 0.06–0.4 for 
the fixed part of their bilberry models and 0.03–0.62 for cowberry 
models. Kilpeläinen et al. (2016) tested the existing Finnish berry 
models in North Karelia, Finland, and obtained an RMSE percentage (kg 
ha− 1) between 154 and 179% for bilberry and between 238 and 322% 

Fig. 6. Density distribution of ALS-based structural forest variables (first echo data) in plots with high bilberry (left) and cowberry (right) yields and no berries. Only 
plots with ripe berries were included in the berry data (Mid_July/August > 0). Five percent of the plots with the highest berry amount represent the high berry yield. 
Class “no berries” included bilberry/cowberry plots with zero berries (similarly Mid_July/August > 0) and other plots without bilberry/cowberry plants. 
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for cowberry. Correspondingly, the ALS-based models by Vauhkonen 
(2018) resulted in RMSE values of 20–30% for the suitability for bilberry 
and cowberry picking. Both expert and empirical models as well as 
mixed-effects models have been used in earlier studies. However, our 
models cannot be totally compared to those developed in earlier studies 
due the different variables used (field-measured forest variables vs. wall- 
to-wall remote sensing variables), different environmental conditions, 
size of the study area (nationwide Sweden vs. local study area), different 
inventory set-ups, different modelling methods, among others. 

Modelling spatiotemporal data could be done by using special 
spatiotemporal models (e.g., Vanhatalo et al., 2017, Hefley et al., 2017), 
but we decided to use generalised linear mixed-effect models, which also 
have been used successfully in earlier berry yield studies (e.g., Miina 
et al., 2009, Turtiainen, 2015). By using mixed-effect models, we could 
take into account the hierarchy of the data (here county, laser block, 
cluster) and calibrate the model based on that hierarchy. We only used 
the nested random effects because glmmPQL cannot take into account 
the crossed effects. Therefore, the year effect was included as fixed 

Fig. 7. Predicted potential locations of bilberry yields in a forest landscape (top) compared with canopy cover percentage (middle) and stem volume (m3ha− 1), 
obtained from the National Forest attribute map. 
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dummy variable in the model. Modelling berry yields is challenging also 
because the response variable is seldom systematically or normally 
distributed (and many values are around zero (Kilpeläinen,et al., 2016). 
We selected PQL estimation because it can apply non-normal distribu-
tion (here, Poisson distribution for count data) and can deal with over- 
dispersion, which was present in our data, enabling us to trust the sig-
nificance of the variables (p-values). 

4.2. Further development 

In this study, we predicted plot-level berry yields. Another option 
would have been to make the modelling in two phases; first, predicting 
the presence/absence of bilberry/cowberry vegetation and second, 
predicting the plot-level yields of bilberry and cowberry. Some earlier 
studies have shown a high correlation between berry vegetation cover 
and berry yield (Miina et al., 2009, Turtiainen et al., 2013). In the 
Swedish NFI, bilberry and cowberry cover are measured on approxi-
mately half of the permanent plots, and therefore, this approach would 
be possible, first predicting bilberry/cowberry cover and using this as a 
predictor variable in yield models. 

Here, we used the structural forest variables from ALS data directly 
in the prediction; tree species variables were taken from the SLU forest 
map and are based on predictions of spectral values of satellite images 
and NFI field data. Direct spectral values could have been used instead of 
predicted tree species information, but that would have demanded 
calibration between images from different areas, years and sensors over 
the entire country. Earlier, Kilpeläinen et al. (2016) showed that the use 
of Finnish multi-source national forest inventory data (combining NFI 
data, satellite remote sensing data and other mapped data for forest 
attribute prediction) is suitable for berry models. Surely, it would be 
possible to test the suitability of the ALS-based wall-to-wall attributes 
from the Swedish National Forest attribute map (e.g., stem volume, 
basal area, tree height and diameter) (Nilsson et al., 2017) for berry 
yield prediction. By using predicted forest variables instead of direct 
laser or satellite variables, it might be easier to implement the models 
into forest planning systems, which not yet include direct remote sensing 
variables. 

Natural and manmade changes in forest structure between field in-
ventory and remote sensing data collection can affect model accuracy. 
For example, tree species information from the SLU forest map and the 
map of land cover classification was relatively old (2010 and 2000), and 
the accuracy of the used satellite data was not high at the plot or stand 
level (pixel size of 25 × 25 m). In particular, many of the classes in the 
land cover map might have changed, such as clear-cuts to young forest 
and young forest to mature forest, among others. In this sense, class 
information should be used with cation. Despite the possible old land use 
classes, land cover data can contain valuable information about site 
quality and fertility, which was the reason to keep this variable in the 
modelling. More accurate tree species and land cover data are developed 
constantly. For example, SLU has recently published a new species- 
specific forest map based on new Sentinel 2 satellite data (pixel size of 
10 × 10 m) and height information from aerial images and NFI field 
plots. In addition, research using multitemporal satellite and ALS data 
for tree species classification is ongoing, and a more accurate Swedish 
land cover classification (Nationella marktäckedata, Naturvårdsverket, 
2020), also based on Sentinel 2 and ALS height information, has been 
published in summer 2019. In the next-generation berry yield models, 
these more accurate datasets should be used. 

In addition to demanding improvements in tree species detection and 
land use classification, one improvement in wall-to-wall berry predic-
tion would be accurate information about site fertility. In most Finnish 
berry yield models, site type is a critical variable (e.g., Muhonen, 1995, 
Miina et al., 2009, Turtiainen, 2015), or models were developed only for 
a particular site type. On the other hand, according to Raatikainen et al. 
(1984), bilberry yield depends primarily on the canopy cover and only 
secondarily on the site fertility. For ALS based applications this 

observation is positive, since the prediction of the site fertility by ALS 
data is not a straightforward task. In Swedish forestry, forest produc-
tivity is not usually expressed in terms of site type classes, and instead, 
the site index is used. Neither accurate site type classes nor site index 
values are currently available in wall-to-wall prediction in Sweden, but 
studies predicting the site index (based on tree height development) 
using multi-temporal laser data have been published, for example for 
Norway (Noordermeer et al., 2018). In addition, further development of 
sensor technologies, such as the use of more dense ALS data together 
with different wavelengths (multispectral), might provide more detailed 
information about the ground floor vegetation and its spatial 
distribution. 

It is also worth mentioning that the different size of the berry plots 
and the plots where auxiliary variables were extracted might affect the 
modelling accuracy, since berry plots covered only 0.3% of the area of 
the auxiliary data plot. On the other hand, auxiliary variables cannot 
accurately describe the forest and terrain structure if they are extracted 
from the size of the berry plots or, alternatively, the amount of time used 
for counting the berries/flowers is not realistic. The effect of plots size is 
thus interesting and worth exploring in the future. 

In this study, the general berry yield models were produced for the 
entire country, but more accurate predictions may be possible by 
creating models locally. Here, models were calibrated at the county, 
laser block and even cluster level, and bioclimatic metrics and height 
above sea level, for example, were also used to indicate variations in 
berry yield in different parts of Sweden. It should be kept in mind that 
the number of plots as well as the inventory year and inventory day 
varied among different areas, making the model more reliable in some 
areas than in others. Local models could better take into account the 
local forest, terrain and weather conditions, but they would also require 
a larger number of field plots in the target area. 

Our models are based on the available wall-to-wall variables and can 
therefore be used to create wall-to-wall prediction maps covering the 
entire landscape (Fig. 7). Wall-to-wall prediction makes it also possible 
to evaluate the variation in berry yields at the landscape and stand level 
all the way to the cell level inside stands. It is noteworthy that our 
models lack critical variables, such as site fertility and variables 
describing the temporal variation between and within years and the 
local spatial variation of berry yields (not available or unknown), which 
means that these models/maps can only be used for identifying the most 
potential locations for bilberry and cowberry in wall-to-wall prediction, 
not for measuring the exact yields. 

To improve the yearly prognoses of berry yields, more accurate 
temporal and spatial data, such as weather, pollination, site type and 
operational history data from continuous measurements of berry yield 
development, together with localised observations of berry yield, are 
needed. Unfortunately, because of the lack of resources, only ripe berries 
have been counted in the Swedish NFI since 2018, excluding the pos-
sibility to calibrate models during the season by NFI plots. Because of the 
complexity of berry yield production and the impossibility to measure 
all factors, currently, only part of the variation can be explained by the 
existing variables. 

Despite the difficulties in modelling berry yields, our models could 
be imported to the forest planning system, such as Heureka in Sweden 
(Wikström et al., 2011), and stand-level prognoses of berry yield 
development under different forest management strategies could be 
produced (e.g., Turtiainen, 2015). Integrating berry yields as non-wood 
forest services into forest planning system makes it possible to evaluate 
the trade-offs in different decision making situations and therefore 
supports the forest owners ́ growing interest in integrating multiple as-
pects of forests in management planning. So far, no berry yield models 
have been integrated in forest planning systems in Sweden. 
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bärproduktion i Sverige 1974-1977. [Bilberry, lingonberry, raspberry. Occurrence 
and berry production in Sweden 1974-1977]. Report 16, Section of Environmental 
Forestry, The Swedish University of Agricultural Sciences. pp. 1–124. [In Swedish]. 
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Kilpeläinen, H., Miina, J., Store, R., Salo, K., Kurttila, M., 2016. Evaluation of bilberry 
and cowberry yield models by comparing model predictions with field 
measurements from North Karelia, Finland. For. Ecol. Manage. 363, 120–129. 
https://doi.org/10.1016/j.foreco.2015.12.034. 

Lakka, Johanna, Kouki, Jari, 2009. Patterns of field layer invertebrates in successional 
stages of managed boreal forest: implications for the declining Capercaillie Tetrao 
urogallus L. population. For. Ecol. Manage. 257 (2), 600–607. https://doi.org/ 
10.1016/j.foreco.2008.09.042. 
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