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Abstract
The concept of reverse chemical ecology (exploitation of molecular knowledge for chemical ecology) has recently emerged 
in conservation biology and human health. Here, we extend this concept to crop protection. Targeting odorant receptors from 
a crop pest insect, the noctuid moth Spodoptera littoralis, we demonstrate that reverse chemical ecology has the potential to 
accelerate the discovery of novel crop pest insect attractants and repellents. Using machine learning, we first predicted novel 
natural ligands for two odorant receptors, SlitOR24 and 25. Then, electrophysiological validation proved in silico predictions 
to be highly sensitive, as 93% and 67% of predicted agonists triggered a response in Drosophila olfactory neurons expressing 
SlitOR24 and SlitOR25, respectively, despite a lack of specificity. Last, when tested in Y-maze behavioral assays, the most 
active novel ligands of the receptors were attractive to caterpillars. This work provides a template for rational design of new 
eco-friendly semiochemicals to manage crop pest populations.
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Abbreviations
AUROC  Area Under the Receiver-Operating Character-

istics curve
kNN  K-nearest neighbors
LOO  Leave-one-out
MCC  Matthews correlation coefficient
OR  Odorant receptor
OSN  Olfactory sensory neuron
QSAR  Quantitative-structure–activity relationship
SSR  Single sensillum recordings
SVC  Support Vector Classifier
SVM  Support Vector Machine

Introduction

Insects detect and use odorant information from the exter-
nal environment to make important decisions, such as 
selecting a mating partner, a food source or an oviposi-
tion site [1]. Depending on the species ecology, odorant 
signals can repel or attract insects, or do nothing. Among 
behaviorally relevant molecules, one can cite the moth 
sex pheromones that attract males from some distance 
away. Because of such olfactory-triggered behaviors, 
odorant molecules have been exploited to develop control 
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strategies against insect pests and disease vector popula-
tions [2–4] that are integrated in combination with other 
strategies in integrated pest management. For instance, 
synthetic moth sex pheromones have been used for dec-
ades for population monitoring or mating disruption [2], 
aggregation pheromones and/or host plant volatiles are 
used for mass trapping, and non-host or toxic odorants 
are used as repellents. However, the identification of such 
active molecules is usually difficult, because it mainly 
relies on bioassay-guided approaches, including fastidi-
ous behavioral assays on multiple individuals.

In this context, reverse chemical ecology has recently 
emerged as a powerful alternative to identify relevant sig-
nals for a given species. This approach proposes to screen 
olfactory proteins linked to a particular behavior in order 
to identify putative behaviorally active semiochemicals 
[5]. It has been promoted by the recent advances in our 
understanding of the molecular basis of insect olfaction 
in the last two decades, especially the discovery of their 
odorant receptors (ORs) [6–8]. These ORs are transmem-
brane proteins primarily responsible for odorant detection. 
They are expressed in olfactory sensory neurons (OSNs) 
housed in olfactory sensilla, located mainly on the anten-
nae. ORs form ion channels together with a subunit called 
Orco (OR coreceptor) that is highly conserved across 
insect species [9–11]. Odorants activate the corresponding 
OR-Orco complex that transforms the chemical signal into 
an electrical signal that is transmitted to the brain, lead-
ing to the behavioral response [12]. Identifying molecules 
that will be active on target ORs remains difficult [4], but 
ligand-based in silico strategies relying on the chemical 
structures of active compounds have proven quite effective 
for virtual screening of ORs. Quantitative-structure–activ-
ity relationship (QSAR) models, which have been widely 
used in medical chemistry [13, 14], have been applied with 
success to predict the activity of semiochemicals on ORs 
from model insects such as Drosophila melanogaster [15] 
and the mosquitoes Aedes aegypti and Anopheles gambiae 
[16–19].

In the present study, we used QSAR models to predict 
ligands for ORs from a non-model insect species, the crop 
pest moth Spodoptera littoralis, revealing it is possible 
to use machine learning to identify OR agonists outside 
Diptera [20]. We have previously identified ligands for a 
large number of S. littoralis ORs (hereafter SlitOR) using 
heterologous expression in the empty neuron system [21]. 
Moreover, behavioral assays have shown that S. littora-
lis caterpillars are attracted by plant volatiles that acti-
vate SlitOR24 and SlitOR25 [22]. With the final aim of 
identifying new attractive semiochemicals for S. littoralis 
larvae, we thus prioritized these two ORs that presented 
a large overlapping receptive range, including aromatic 
compounds and green leaf volatiles. We virtually screened 

a judiciously selected natural product library to identify 
novel ligands. This led to success rates of 67% and—even 
more impressively—93% active molecules on SlitOR25 
and SlitOR24, respectively. Finally, we conducted behav-
ioral experiments to investigate the activity of the most 
potent agonists of SlitOR24 and SlitOR25. This work, 
combining machine learning, electrophysiological anal-
yses and behavioral assays, not only expands the list of 
natural SlitOR ligands but also successfully identifies new 
larval attractants that can potentially be implemented in 
eco-friendly control strategies. Whereas the concept of 
reverse chemical ecology has been successfully applied in 
conservation biology (targeting endangered species [23]) 
and human health (targeting disease vectors [5]), our work 
now demonstrates its great potential in agriculture.

Materials and methods

Insects

S. littoralis larvae were reared on a semi-artificial diet [24] 
under the following conditions: 22 °C, 60% relative humidity 
and 16:8-h light: dark cycle. Fourth-instar larvae (L4) were 
used for behavioral assays.

Transgenic D. melanogaster flies expressing SlitOR24 
and 25 were obtained by crossing the lines w;Δhalo/
CyO;UAS-SlitOR24 and w;Δhalo/CyO;UAS-SlitOR25 [21] 
with the line w;Δhalo/CyO;OR22a-Gal4 [25]. Flies were 
reared on standard nutrient medium made of cornmeal, yeast 
and agar. Flies were kept at 25 °C, under a 12:12-h light: 
dark cycle.

Modeling

Datasets

The SlitOR24 QSAR model was built using the dataset of 
51 experimentally tested molecules (10 actives, 41 inactives) 
from [21]. The SlitOR25 model was built using the same 
dataset enriched with 32 molecules experimentally tested 
in [20], resulting in a dataset of 83 molecules labeled as 
active (25 molecules) or inactive (58 molecules) against 
SlitOR25. An in-house library of 158 plant volatile organic 
compounds (Online Resource 1) was screened by the two 
numerical models. All molecules were collected as SMILES 
strings, the major tautomers at pH 7.0 were retrieved with 
cxcalc (Calculator Plugins, Marvin 18.3.0, 2018, Che-
mAxon), and the resulting molecules were standardized with 
the standardizer python package v0.1.7 (for salt removal 
and structure normalization). Molecular descriptors were 
computed directly from the standardized SMILES using 
Dragon v6.0.38. Feature exclusion was performed within 
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the software based on the following criteria: constant or 
near-constant descriptors, descriptors with at least one miss-
ing value and highly correlated descriptors (absolute pair 
correlation greater than or equal to 0.95 for SlitOR25 and 
0.9 for SlitOR24) were excluded. This resulted in librar-
ies of 288 and 493 descriptors for SlitOR24 and SlitOR25, 
respectively.

The SlitOR24 and SlitOR25 datasets (Online Resource 2) 
were split in training and test sets using a common cluster-
ing method, the sphere-exclusion approach, which can select 
a diverse subset of compounds in a dataset. For both sets, 
descriptors were normalized between 0 and 1, and the split 
was initialized by putting in the test set the compound closest 
to the center of the normalized dataset. At each iteration the 
new compound to be added to the test set was selected using 
a MinMax procedure, the dissimilarity radius to exclude 
compounds from the test set was set to 4.8 for SlitOR24 
and 4.0 for SlitOR25, and the algorithm was stopped once 
the test set reached 24% of the size of the original dataset. 
This resulted in training sets of 39 molecules (8 actives, 31 
inactives) and 64 molecules (18 actives, 46 inactives), and 
test sets of 12 molecules (two actives, 10 inactives) and 19 
molecules (seven actives, 12 inactives) for SlitOR24 and 
SlitOR25, respectively. For both datasets, each descriptor 
was then denormalized and normalized only based on the 
training set min and max values. To quantify the uncertainty 
of prediction resulting from the initial choice of compounds 
in the training and test sets, five alternative splits were gen-
erated using the same strategy. The same sphere-exclusion 
approach was used to define the new training/test sets with 
initial compounds chosen randomly and not at the center of 
the normalized distribution as for the final model. Due to 
imbalanced data (less active than inactive compounds) and 
to facilitate comparison, only the first five splits that had 
the same activity distribution (active/inactive) as in the split 
used for the final model were investigated.

Machine‑learning

QSAR models were trained and evaluated using Weka v3.8.2 
[26]. Several classification algorithms were optimized in 
“leave-one-out” (LOO) cross-validation loops: C-SVC 
(LibSVM v1.0.10) (SVC: Support Vector Classifier; SVM: 
Support Vector Machine), k-nearest neighbors (kNN), Ran-
domTree, DecisionTree, and RandomForest. Cost-sensitive 
models were also tested without providing a significant 
improvement in performance. Once the optimal algorithm 
and hyperparameters were identified for each OR based on 
Matthews correlation coefficient (MCC) (Table 1), the final 
models were trained on the full training set and parametrized 
as follow: for SlitOR24 a RandomForest was chosen and 
trained with 100 trees, unlimited maximum depth for each 
tree, and no feature randomly chosen; for SlitOR25 a kNN 
classifier (IBk) was chosen with nine neighbors, weighted 
by the inverse of the Euclidean distance, and a brute force 
neighbor search. Finally, the performances of the SlitOR24 
and SlitOR25 models were assessed on the test sets.

Applicability domain

A similarity distance approach [27] was used to estimate 
the applicability domain of the two selected models. A dis-
tance cutoff is defined as Dc = ⟨D⟩ + Z� where ⟨D⟩ and � 
are the mean and standard deviation of Euclidean distances 
of each training set compound with their nearest neighbor 
in the descriptor space, and Z is an empirical parameter. 
The parameter Z was incremented until all training set 
compounds had their distance with their kNN lower or 
equal to Dc. For SlitOR25, we kept the same number of 
neighbors as in the model (k = 9) and for SlitOR24, we 
used k = 6 based on our benchmark of different learners 
during the training phase. For each external compound, 
its distance with the kNN was measured and a reliability 
score was estimated as reliability = 1 +

D−Dc

Dc
.

Table 1  Performance evaluation 
of the SlitOR24 and SlitOR25 
QSAR models using different 
metrics

LOO performance of the best model using a leave-one-out cross-validation strategy, TP true positives, TN 
true negatives, FP false positives, FN false negatives, FPR false positive rate, MCC Matthews correlation 
coefficient, AUROC area under the receiver-operating characteristics curve

Dataset TP TN FP FN Accuracy Precision Recall FPR MCC AUROC

SlitOR24 LOO 4 29 2 4 0.85 0.67 0.50 0.06 0.49 0.83
Training 7 31 0 1 0.97 1.00 0.88 0.00 0.92 0.99
Test 1 9 1 1 0.83 0.50 0.50 0.10 0.40 0.80

SlitOR25 LOO 15 34 12 3 0.77 0.56 0.83 0.26 0.52 0.84
Training 18 46 0 0 1.00 1.00 1.00 0.00 1.00 1.00
Test 5 10 2 2 0.79 0.71 0.71 0.17 0.55 0.89
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Single sensillum recordings on neurons expressing 
SlitOR24 and SlitOR25

Single sensillum recordings were performed on Dros-
ophila ab3A neurons expressing SlitOR24 or SlitOR25, 
using fly lines previously generated [21]. A 2–8-day-old 
fly was immobilized in a pipette tip, only the head stick-
ing out. The fly was placed on a microscope glass slide 
under a constant 1.5 L  min−1 flux of charcoal-filtered and 
humidified air delivered through a glass tube of a 7 mm 
diameter. The experiments were monitored using a light 
microscope (Olympus BX51WI, Tokyo, Japan) equipped 
with a × 100 magnification objective. Action potentials 
from ab3A OSNs were recorded using electrolytically 
sharpened tungsten electrodes (TW5-6, Science Products, 
Hofheim, Germany). One reference electrode was inserted 
into the eye and the recording electrode was inserted at 
the base of an ab3 sensillum using a motor-controlled 
PatchStar micromanipulator (Scientifica, Uckfield, United 
Kingdom). Odorants were purchased from Sigma-Aldrich 
(Saint-Louis, MO, USA). Stimulus cartridges were built 
by placing a 1  cm2 filter paper in a Pasteur pipette and 
loading 10 μL of the odorant solution onto the paper  (10–2 
dilution in paraffin oil), or 10 μL of paraffin oil or a paper 
without any odorant as controls. Odorant stimulations 
were performed by inserting the tip of the pipette into a 
hole in the glass tube and generating a 500 ms air pulse 
(0.6 L  min−1). The responses of ab3A OSNs were calcu-
lated by subtracting the spontaneous firing rate (in spikes.
s−1) from the firing rate during the odorant stimulation.

The stimulation panel consisted, for each SlitOR, of an 
already known agonist [21] used as positive control (ben-
zyl alcohol for SlitOR24 and acetophenone for SlitOR25), 
paraffin oil as a negative control, 34 predicted agonists 
and 5 molecules randomly chosen among the predicted 
non-agonists for both ORs (Online Resource 3). Each 
stimulus cartridge was used at maximum eight times in 
total. The panel of molecules was tested on five (for pre-
dicted non-agonists) to eight-ten (for predicted agonists) 
different flies expressing SlitOR24 or SlitOR25. Odorants 
were considered as active if the response was statistically 
different from the response elicited by the solvent alone 
(Kruskal–Wallis test followed by a Dunnett multiple com-
parison test, p < 0.05).

Larvae behavior in Y‑tube olfactometer

Behavioral experiments were performed in a Y-tube olfac-
tometer. The olfactometer consisted of a 2.1 cm inner diame-
ter glass Y-tube, the main segment was 13 cm long, and each 
of the two arms was 9.5 cm long. L4 larvae were used and 
starved overnight (16–20 h starvation) prior to the experi-
ments. All experiments were performed under red light, to 

avoid biases due to visual cues. Charcoal-purified air was 
delivered into each arm of the olfactometer at a flow rate 
of 0.5 L  min−1, stabilized using a flowmeter (Key Instru-
ments, Trevose, PA, USA) to ensure that equal air streams 
entered each arm. The temperature of the room was main-
tained at 24 °C during all tests. The experimental set-up was 
first tested with different controls: (1) paraffin oil in each 
arm, a configuration expected to induce no larval choice, 
(2) a  10–2 dilution of benzyl alcohol, an odorant known to 
induce larvae attraction [22], in one arm and paraffin oil in 
the other arm (larval choice expected) and (3) a  10–2 dilu-
tion of (E)-ocimene, a molecule inactive on larval behavior 
[22], versus paraffin oil (no larval choice expected). Seven of 
the strongest agonists of both SlitOR24 and 25 were tested 
for behavioral activity. Odorants were diluted in paraffin oil 
(dilutions  10–2 and  10–3). Ten µL of diluted odorants or con-
trol (paraffin oil) were loaded on a filter paper. A paper with 
solvent alone was placed in one arm and a filter paper with 
the odorant dilution in the other arm. One larva at a time was 
placed in the main arm of the olfactometer and the behavior 
was recorded during 10 min with a digital camera located 
above the device. Each larva was tested only once. To avoid 
any bias during the test, the olfactometer was switched 
from one side to the other between each test and up to three 
times, before washing the olfactometer with TFD4 detergent 
(Franklab, Montigny-le-Bretonneux, France) diluted at 3% 
for 30 min, then rinsing with distilled water and 95% etha-
nol. Once dry, all glass parts were put in an oven at 200 °C 
overnight. We analyzed two different parameters: (1) the 
choice made by the caterpillar and (2) the time spent in each 
arm. We considered that the caterpillar made a choice when 
three quarters of its body length entered an arm. Larvae that 
did not make a choice within ten minutes were not included 
in the statistical analysis. This explains the variable num-
bers of replicates for each test, ranging from 27 to 34. All 
behavioral assays were carried out within a 4 h time interval 
during larvae photophase.

Statistics

Single sensillum recording data were analyzed using a 
Kruskal–Wallis test followed by nonparametric multiple 
comparisons using ‘nparcomp’ R package (type: Dunnett). 
For behavioral data, a Chi-squared test for given probabili-
ties was used to verify the significance of caterpillars’ choice 
and a paired Student’s t-test was used to compare the time 
spent by larvae in each arm of the Y-tube olfactometer.
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Results

Virtual screening of SlitOR24 and SlitOR25

Model performance

Each SlitOR model was parameterized with a LOO strategy, 
re-trained on the full training set once the best parameters 
were identified, and validated using the independent test 
set (Table 1). For SlitOR24, due to the limited number of 
active molecules in the training set, the model appeared to 
be mostly tuned to classify correctly the non-agonists. For 
SlitOR25, the model came with the benefit of an expanded 
applicability domain. However, the decrease in performance 
on the test set, compared to a previous preliminary model 
we conducted on this OR [20], is probably linked to the 
increased chemical diversity and thus to the complexity of 
the problem. Overall, both current SlitOR24 and SlitOR25 
models had satisfying predictive abilities with MCC ≥ 0.4, 
and AUROC (area under the receiver operating characteris-
tics curve) ≥ 0.8, and were suitable to prioritize compounds 
for experimental testing. To estimate the generalization 
error, five similar models were generated using alterna-
tive splits for preparing the training and test sets (Online 
Resources 4 and 5). When changing the distribution of 
compounds in the training and test sets, the overall perfor-
mance of the predictive models remained similar compared 
to the final model. In details, the MCC was still above 0.4 
and the AUROC ranged from 0.7 to 0.9 for both SlitOR24 
and 25 models except for two alternate SlitOR24 models. 
For these two, no true positive compound was identified, 
mostly due to the small size of the dataset. One has to note 
that the false positive rate (i.e. the number of false positive 
prediction over the total number of inactive compounds) was 
higher for SlitOR25 models (0.17–0.50) than for SlitOR24 
ones (0.00–0.10) and may lead to incorrectly classify non 
agonists and overestimate the number of compounds to be 
experimentally tested.

The current SlitOR25 and SlitOR24 machine learning 
models were used to virtually screen an in-house library 
of 158 natural volatile organic compounds. 28 and 67 mol-
ecules were predicted as agonists and within the applicabil-
ity domain of SlitOR24 and SlitOR25 models, respectively, 
with 27 molecules in common (Online Resource 3). The 
67 molecules predicted as agonists for SlitOR25 were re-
screened by our previously published model [20] and 20 of 
them were predicted as agonists by both SlitOR25 models 
(Online Resource 3).

Electrophysiological responses of SlitOR24 
and SlitOR25 to the predicted agonists 
and non‑agonists

To validate in silico predictions, we performed single sensil-
lum recordings on Drosophila OSNs expressing SlitOR24 or 
SlitOR25 with a stimulus panel containing the 27 molecules 
predicted as agonists for both SlitOR24 and SlitOR25, 6 
molecules predicted as agonists only for SlitOR25 by both 
the current and the published SlitOR25 models, and one 
molecule predicted as an agonist only for SlitOR24. We 
also tested five molecules predicted as non-agonists for 
both receptors (Online Resource 3) and one already known 
agonist for each OR as control [21]. In total, we tested 39 
molecules on both receptors (28 + 11 and 33 + 6 predicted 
agonists + non-agonists for SlitOR24 and SlitOR25, respec-
tively). As expected, both ORs responded to their respective 
positive control (Fig. 1).

For SlitOR24, 26 predicted agonists out of 28 were active 
(Fig. 1a), representing a 93% success rate of prediction. 
Among the six agonists predicted only for SlitOR25, four 
were active on SlitOR24 although they were not predicted 
as agonists by the model. Six molecules from the panel 
triggered responses above 100 spikes.s−1 (1-pentanol, (Z)-
2-hexenol, 2-hexanol, (E)-3-hexenol, 2-heptanol and 2-phe-
nylethanol, the latter eliciting the highest response), thus 
being as active as the previously identified agonist benzyl 
alcohol. Eight agonists triggered responses between 50 and 
100 spikes.s−1 (1-hexen-3-ol, 2-hexanone, benzyl cyanide, 
3-heptanone, 2-heptanone, furfuryl alcohol, 4-methyl-2-pen-
tanol and heptanal).

For SlitOR25, 22 out of the selected 33 predicted agonists 
were active, representing a 67% success rate (Fig. 1b). As 
expected, the agonist predicted only for SlitOR24 did not 
elicit any SlitOR25 response. Two molecules from the panel 
triggered responses above 100 spikes.s−1 (2-heptanol and 
benzyl cyanide) and were more active than the previously 
identified agonist acetophenone, and six triggered responses 
between 50 and 100 spikes.s−1 (2-phenylethanol, (E)-3-hex-
enol, heptanal, 1-hexen-3-ol, 3-heptanone, 2-heptanone). 
None of the six non-agonists predicted for SlitOR25 elicited 
a significant response. In short, with a recall of 0.84 vs 1.00, 
both models were highly sensitive, even if the SlitOR25 
model was less precise (0.93 vs 0.67) and specific (0.75 vs 
0.35) than the SlitOR24 one, as expected by the evaluation 
metrics of the trained models (Online Resource 6).

Behavioral effect of newly identified agonists

The newly identified OR agonists were then tested for their 
effect on larvae behavior. In all behavioral experiments, 
larvae were starved for 16–20 h since previous experi-
ments have shown that starved larvae are more motivated to 
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orientate toward odor sources than satiated larvae and that 
such starvation has no impact in larval survival or mobility 
[28]. Before testing the effect of SlitOR24 and SlitOR25 
ligands on the larval behavior, the experimental setup was 
first validated using different controls: paraffin oil (solvent), 
benzyl alcohol (known attractant) and (E)-ocimene (neutral) 
at dilution  10–2 [22]. As expected, larvae did not make any 
choice when exposed to both arms loaded with solvent. Lar-
vae were statistically more attracted to the arm containing 
benzyl alcohol than to the control arm whereas no choice 
was observed using (E)-ocimene (Fig. 2). Then, seven of 
the molecules that elicited the highest neuronal responses 
in flies expressing SlitOR24 and SlitOR25 [(Z)-2-hexenol, 
(E)-3-hexenol, 2-phenylethanol, benzyl cyanide, 2-heptanol, 

anisole and 2-hexanone] were used in the same behavio-
ral assay at two different dilutions  (10–2 and  10–3). Results 
showed that for the  10–2 dilution, all molecules tested were 
attractive to the larvae (Fig. 2), with percentages of choice 
between 69.6% (2-heptanol) and 96.5% (2-phenylethanol). 
At the  10–3 dilution, larvae retained preference for three 
compounds: (Z)-2-hexenol, (E)-3-hexenol and 2-phenyle-
thanol. Regarding the time spent in each arm (Fig. 3), lar-
vae spent significantly more time in the arm containing five 
out of the seven molecules when tested at the  10–2 dilution: 
benzyl cyanide, (Z)-2-hexenol, 2-phenylethanol, anisole and 
2-hexanone. At the  10–3 dilution, larvae spent more time in 
the arm containing three molecules: (E)-3-hexenol, 2-phe-
nylethanol and 2-hexanone. Strikingly, the time spent by 

a b

Fig. 1  Responses of SlitOR24 and SlitOR25 to predicted ligands. 
Single-sensillum recording (SSR) responses (spikes.s−1) of Drosoph-
ila ab3A neurons expressing SlitOR24 (a) and SlitOR25 (b) during 
stimulation with QSAR model-predicted ligands. Gray bars represent 
negative controls (solvent and filter paper without odorant) and posi-
tive controls (known ligands for the respective OR [21]). Purple bars 
represent predicted agonists. Turquoise bars represent predicted non-

agonists. All molecules were tested at a  10–2 dilution in paraffin oil. 
Box plots show the median (line), 25–75% percentiles (box), 10–90% 
percentiles (whisker), and outliers (dots). Asterisks indicate statisti-
cally significant differences between responses to the odorant and to 
the solvent alone (Kruskal–Wallis non parametric ANOVA followed 
by a Dunnett’s multiple comparison test, **p < 0.01, ***p < 0.001, 
n = 8–10 for predicted agonists, n = 5 for non-agonists)
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larvae on the arm containing (E)-3-hexenol was higher at 
the lowest dilution. In order correlate SSR responses and 
behavioural preferences, we constructed 2-D scatter plots for 
both SlitOR24 and 25, but r2 values were too low due to the 
low number of molecules tested in behavioral experiments 
to confidently evidence a positive correlation.

Discussion

Reverse chemical ecology has recently appeared as a promis-
ing approach to identify behaviorally active semiochemicals 
that could be used for pest control strategies. In Helicov-
erpa armigera caterpillars, a combination of transcriptomic 
analyses, functional characterization of ORs and behavio-
ral assays led to the identification of OR ligands that are 
behaviorally active (attractive and repulsive) for first-instar 
larvae [29]. A link between the activation of some ORs and 
attraction was also demonstrated in another species of pest 
caterpillars, the cotton leafworm S. littoralis [22]. These 
works thus showed that caterpillar ORs have a great poten-
tial as targets in reverse chemical ecology, yet the chances 

to identify behaviorally active molecules remain limited 
by the number of molecules tested on the target ORs. The 
incorporation of in silico modeling to the functional studies 
could fill this gap, since it has proven efficient when applied 
to the identification of new mosquito repellents [5, 18, 19]. 
Recently, we have published a proof-of-concept that revealed 
that such an approach can be extended to crop pest ORs 
[20]. Focusing on a single S. littoralis OR, SlitOR25, we 
could predict new agonists via machine learning that were 
indeed active on this OR, with a reasonable success rate of 
28%. However, we did not investigate their behavioral activ-
ity. Anyhow, the chemical structures of the newly identified 
SlitOR25 agonists precluded their use for pest control, as 
most agonists were fluorinated compounds that cannot be 
used in the field [20].

In the present work, the objective was threefold. The 
first one was to improve our machine learning model for the 
prediction of agonists. The second objective was to predict 
natural, plant derivate, non-toxic and affordable agonists that 
would be compatible with pest control. The last objective 
was to investigate the behavioral activity of predicted ago-
nists. To reach these objectives, we focused on the broadly 

Fig. 2  Behavioral responses (percentage of choice) of S. littora-
lis larvae to predicted ligands shown to be active on SlitOR24 and 
SlitOR25. a Experimental setup used to study caterpillar’s behavior. 
In this device, there is an air inlet, which circulates through two fil-
ters (active carbon and water bubbles), from where it passes to two 
flowmeters, to finally reach the Y-tube olfactometer. At the base of 
the olfactometer, the air outlet and the starting point for the larva are 
indicated. b Percentage of larval choice to (left/right): blank/blank 

(paraffin oil), neutral control (paraffin oil/ocimene), positive con-
trol (paraffin oil/benzyl alcohol), active ligands on ORs (paraffin oil/
compounds). Dark gray bars at right represent the caterpillar’s choice 
at  10–2 dilution, and light gray bars represent caterpillar’s choice at 
 10–3 dilution. Asterisks indicate statistically significant preferences of 
larvae for the odorant side (Chi-squared test for given probabilities, 
*p < 0.05, **p < 0.01, ***p < 0.001, NS not significant). Numbers of 
replicates (n) are indicated on the right
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tuned receptors SlitOR24 and SlitOR25 [21], whose activa-
tion has been linked to larvae attraction [22] and that were 
thus highly relevant for a reverse chemical ecology strat-
egy. More, SlitOR25 has been used to establish the machine 
learning proof-of-concept on Lepidoptera ORs [20], and the 
data acquired (additional ligands) are perfectly suited to be 
used for model improvement.

First, we revealed that the QSAR models are highly 
precise since 67% and 93% of predicted agonists triggered 
a response in Drosophila olfactory neurons expressing 
SlitOR25 and SlitOR24, respectively. Even if the models 
lack specificity, notably for SlitOR25, they were sufficiently 
accurate to predict many new agonists. The SlitOR24 suc-
cess rate was notably higher than what has been reported 
previously for Diptera. In Drosophila, more than 240,000 
compounds were first screened in silico to find new OR 
ligands [15]. OR-optimized descriptors allowed to rank the 
untested molecules, identifying the top 500 hits for each 
OR. Predicted compounds were experimentally tested on 
nine ORs, showing 71% of success rate compared to only 
10% when using non-predicted odors [15]. In mosquitoes, 
Tauxe et al. 2013 obtained a ~ 30% success rate when try-
ing to identify  CO2 receptor activators by using molecular 
descriptors [18]. In a second round of in silico prediction, 
they increased prediction accuracy through a SVM-based 

approach, yielding an improved success rate of 74%. In the 
present work, while the SlitOR24 model appeared excep-
tionally precise to identify true agonists (93%), it has to be 
noticed that it did miss some of them. Some of the molecules 
predicted as agonists only for SlitOR25 appeared to be ago-
nists for SlitOR24 (false negative rate of 18%). Reversely, 
the SlitOR25 model was less efficient to identify true ago-
nists (precision of 67% and a false positive rate of 65%), 
but was highly sensitive and succeeded in predicting all the 
non-agonists. More, combining the SlitOR25 model with the 
previously published one [20] (Online Resource 3) guided 
us to prioritize the most promising compounds. As already 
reported in mosquitoes [18], such results suggest that model 
combination, in addition to cumulative experimental data 
to feed models, offer a way to improve insect OR ligand 
identification.

One has to keep in mind that our models are based on 
experimental data obtained from ORs expressed in the 
empty neuron system of Drosophila, which lacks perirecep-
tor proteins such as odorant-binding proteins and odorant-
degrading enzymes [12]. We cannot rule out that response 
spectra of caterpillar ORs expressed in a fly neuron may 
somehow differ from the response of the corresponding cat-
erpillar neurons, leading to a potential confounding effect 
on the modeling. However, we have previously shown that, 

Fig. 3  Behavioral responses (time in each arm) of S. littoralis larvae 
to predicted ligands shown to be active on SlitOR24 and SlitOR25. 
Time (in seconds) spent by the larvae in each arm on the Y-tube 
olfactometer. Bars at left represent the time spent in the arm contain-
ing the solvent (paraffin oil). Bars at right: Dark gray bars represent 
the time spent in the arm containing the odorant at  10–2 dilution, and 

light gray bars represent the time spent in the arm containing the 
odorant at  10–3 dilution. Asterisks indicate statistically significant dif-
ferences between the time spent by larvae in each arm (Paired Stu-
dent’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001, NS not significant). 
Numbers of replicates are indicated on the right and error bars indi-
cate SEM
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when expressed in the empty neuron system, SlitOR24 and 
SlitOR25 exhibit exactly the same response spectrum than 
the two corresponding olfactory neurons from S. littoralis 
adult antennae (see Supplementary Figure S3 in [21]). Thus, 
we can be confident in the use of models based on empty 
neuron SSR data for identifying molecules active on S. lit-
toralis caterpillars.

To reach the second objective, the QSARs have been 
used here to screen an in-house virtual library of plant 
compounds, while our previous efforts focused on a large 
subset of the Pubchem database selected on physico-chem-
ical properties that led to the identification of structurally 
related, mainly fluorinated, predicted ligands [20]. Through 
this approach, we have identified new agonists for SlitOR24 
and SlitOR25 (more or equally active as previously iden-
tified ligands), greatly extending their initially described 
response spectra [21]. Both ORs presented a large overlap-
ping receptive range, including aliphatic alcohols, aromatic 
compounds and green leaf volatiles. Interestingly, a large 
majority (74%) of predicted ligands for SlitOR25 were also 
active on SlitOR24. This suggests that the binding pocket 
of both ORs would be quite similar and opens up further 
studies on structure–function relationships. The tridimen-
sional structure of an insect (Machilis hrabei) OR has been 
recently elucidated [30] and even if the sequence identity 
between MhraOR5 and SlitOR24 or 25 is low (< 20%), one 
can try to extrapolate the corresponding binding pockets. 
Interestingly, in line with the experimental data, a multiple 
sequence alignment suggests that the residues from the puta-
tive odorant-binding sites of SlitOR24 and 25 are highly 
conserved (Online Resource 7).

The behavioral effects of the new ligands that elicited 
high neuronal responses were investigated on larvae, and 
all proved to be attractive. These data not only confirmed 
the former hypothesis that SlitOR24 and OR25 activation is 
linked to larval attraction [22], but also demonstrated that 
reverse chemical ecology is efficient in predicting behav-
iorally active odorants. Interestingly, many of these new 
attractants for S. littoralis larvae have never been reported to 
be relevant cues for adults or larvae on this species. Among 
the new ligands for SlitOR25, benzyl cyanide (a nitroge-
nous aromatic compound) induced the highest OSN firing 
rate and a high attraction rate. It has been shown previously 
that benzyl cyanide is a herbivore-induced volatile emitted 
by diverse plants, like the black poplar Populus nigra and 
Brussels sprouts Brassicae oleracea [31, 32]. On the one 
hand, such signal indicates actual presence of herbivores, 
and thus the possible presence of adequate food for larvae. 
On the other hand, benzyl cyanide has also been reported to 
be attractive to different parasitoid species that use this cue 
to detect the presence of host larvae [31, 32]. Benzyl cya-
nide is also naturally emitted by some insect species, and is 
notably known as a male anti-aphrodisiac pheromone in the 

desert locust [33] as well as in the butterfly Pieris brassicae. 
In this latter species, it is transferred to the females while 
mating, making them less attractive to conspecific males 
[34]. In turn, this anti-aphrodisiac is exploited by parasitoid 
wasps such as Trichogramma brassicae to detect laid eggs 
for further parasitization [35]. The most potent attractant for 
S. littoralis larvae at both doses tested was 2-phenylethanol, 
an aromatic compound that induced the highest firing rate in 
OSNs expressing SlitOR24. 2-phenylethanol is released by 
flowers, fruits or vegetative tissues of a large array of plants 
from a multitude of families [36] and it may be important 
for caterpillar foraging behavior. It is documented as one of 
the most attractive compounds—together with phenylacet-
aldehyde—for H. armigera adults [37, 38] and elicited high 
neuronal responses in Heliothis virescens females [39].

Although we propose here a probable role in caterpil-
lar foraging behavior, the potential ecological significance 
of these S. littoralis larval attractants remains to be deter-
mined, as well as their behavioral effects on adults, in which 
SlitOR24 and 25 are also expressed in antennae [40, 41]. 
Anyhow, our work shows that reverse chemical ecology 
can be applied efficiently to identify behaviorally-active 
volatiles that could ultimately implement semiochemical-
based control strategies against agricultural pests. Improved 
membrane protein tridimensional structure resolution [30, 
42] and prediction [43, 44] will give access to structural 
details of the odorant-binding pocket of insect ORs then 
contributing to expand the chemical space to be explored by 
structure-based virtual screening.
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