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The adoption of the Precautionary Approach requires providing advice that is robust to uncertainty. Therefore, when conducting stock assess-
ment alternative, model structures and data sets are commonly considered. The primary diagnostics used to compare models are to examine
residuals patterns to check goodness-of-fit and to conduct retrospective analysis to check the stability of estimates. However, residual patterns
can be removed by adding more parameters than justified by the data, and retrospective patterns removed by ignoring the data. Therefore,
neither alone can be used for validation, which requires assessing whether it is plausible that a system identical to the model generated the data.
Therefore, we use hindcasting to estimate prediction skill, a measure of the accuracy of a predicted value unknown by the model relative to its
observed value, to explore model misspecification and data conflicts. We compare alternative model structures based on integrated statistical
and Bayesian state-space biomass dynamic models using, as an example, Indian Ocean yellowfin tuna. Validation is not a binary process (i.e. pass
or fail) but a continuum; therefore, we discuss the use of prediction skill to identify alternative hypotheses, weight ensemble models and agree
on reference sets of operating models when conducting Management Strategy Evaluation.
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Introduction
Fisheries management relies upon stock assessment to provide ad-
vice. There are various definitions of stock assessment (e.g. Hilborn,
2003; Cadrin and Dickey-Collas, 2014), and our preference is for
“the description of the characteristics of a ‘stock’ so that its biolog-
ical reaction to being exploited can be rationally predicted and the
predictions tested” (Sidney Holt, pers. comm.). The reasoning for
this is because it explicitly recognizes that the main aim of a stock

assessment is to provide the basis for long-term sustainable man-
agement. Stock assessment, therefore, requires making and validat-
ing probabilistic estimates of stock status and forecasts of the con-
sequences of different management actions.

The adoption of the Precautionary Approach to fisheries man-
agement (PA; FAO, 1996) requires a formal consideration of uncer-
tainty, which is increasingly being addressed by conducting stock
assessment using alternative modelling frameworks conditioned on
a variety of assumptions and data sets. This requires practices for re-
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ducing subjectivity when deciding whether to accept an assessment
(Punt et al., 2020). Current literature on the comparison of stock
assessment methods primarily focuses on how well models fit ob-
servational data (e.g. Deroba et al., 2015), and diagnostic tests for
explaining bias in model estimates of parameters and derived quan-
tities (Carvalho et al., 2021).

It can be challenging, however, to use traditional diagnostics
based on model residuals and likelihoods such as Akaike’s In-
formation Criteria (AIC; Akaike, 1998) to compare models. For
example, indices of abundance are a primary contributor to the
overall likelihood when fitting stock assessment models to data
(Whitten et al., 2013), and the sum of squared errors (SSE) between
observed and predicted indices in the log-space is often used as a
fitness measure. SSE is problematic because complex models tend
to have many parameters to allow flexibility, resulting in a low SSE
due to overfitting by adding more parameters than can be justified
by the data. Therefore, criteria such as AIC have been developed
to aid in model selection. However, AIC needs to be performed
on models with the same likelihood function and data, which is
not the case if different hypotheses are modelled with alternative
model structures and data sets.

Historical performance is also no indicator of how well a model
may perform in the future, which needs to be evaluated if a model
is to provide credible and robust advice. This is of particular im-
portance for stock assessment models where the quantities of in-
terest (i.e. fishing mortality and spawning stock biomass) are not
directly observable unlike in weather forecasting and there is of-
ten insufficient data to allow some of it to be kept back for testing
as in machine learning applications. A diagnostic tool to check the
potential future stability of stock assessment models is retrospective
analysis (Mohn, 1999). The procedure involves sequentially remov-
ing all data from the most recent period (i.e. peeling), refitting the
model, and then comparing terminal year estimates of spawning
stock biomass (SSB) and fishing mortality (F) to the full model. Ret-
rospective analysis is widely used to evaluate the stability of model
outputs, and in Europe is often the key diagnostic for accepting or
rejecting a model (ICES, 2019). Retrospective analysis has been ex-
tended to include stock forecasts, where the terminal year estimates
are projected for assumptions about future catches, recruitment, bi-
ological parameters, and the vulnerability of the stock to fishing
(e.g. Brooks and Legault, 2016). However, stability and a reduction
in variance can be achieved at the expense of bias by shrinking ter-
minal estimates towards recent historical values. It is impossible to
validate a model if bias is unknown, as is the case for unobservable
quantities, such as SSB and F (Hodges and Dewar, 1992); since in
such cases, the simplest way to remove a retrospective pattern is to
ignore the data.

An alternative approach is to compare model estimates to ob-
servations. This is commonly used in many fields when known or
closely estimated values for past events are used to evaluate how
well model outputs match known results (Balmaseda et al., 1995; Jin
et al., 2008; Weigel et al., 2008). The comparison of model outputs
to observations not used in fitting is referred to as “predictive vali-
dation” or “cross-validation”, and when the observations are peeled
back from the terminal year, this is known as “hindcasting”. Remov-
ing observations allows models to be compared using prediction
skill (Glickman and Zenk, 2000), a measure of a predictor’s accu-
racy compared to its observed value unknown by the model, using
metrics such as correlation, relative error, mean absolute scaled er-
ror (MASE), and bias.

Model validation increases confidence in the outputs of a model,
leads to an increase in trust amongst the public, stake and asset-
holders and policymakers (Saltelli et al., 2020), and can identify
model limitations that should be addressed in future research. In
this paper, we validate models using prediction skill by peeling
back observations from the final year in the assessment and making
predictions of the removed values using a hindcast procedure. We
are not proposing the hindcast and prediction skill as the only
diagnostic tool used in stock assessment but as a key tool for the
assessment toolbox (Carvalho et al., 2021). The hindcast procedure
can be applied to many fields, e.g. climate and energy modelling
(Kell et al., 2020).

Material and methods
As a worked example, we compare three model families used to
assess Indian Ocean yellowfin tuna stock (IOTC, 2019), namely a
full integrated statistical model (SS; Methot and Wetzel, 2013), a
deterministic age-structured production model (ASPM; Maunder
and Piner, 2015), and a Bayesian state-space biomass dynamic
model (JABBA; Winker et al., 2018). Both the SS and ASPM
models were based on a seasonal structure with four regions,
JABBA in comparison, had an annual time step with no spatial
structure.

After a model structure is agreed upon, it is crucial to val-
idate the model to assesses whether it is plausible that a sys-
tem identical to the model generated the data (Thygesen et al.,
2017). The ambition of validation is not to prove that a model is
correct, but to check that it can not be falsified with the avail-
able data. This a different question from asking if the model is
fit for a given purpose, which depends on the model’s intended
use. For example, to evaluate whether an assessment model is ro-
bust despite being misspecified, Management Strategy Evaluation
(MSE; Punt and Donovan, 2007) can be conducted. See Sharma
et al., (2020) for a review of current practice in the Tuna Re-
gional Fisheries Management Organisations (tRFMOs). Valida-
tion is not a binary process, i.e. identifying whether a model is
valid or invalid, as there is a continuum between these two ex-
tremes. Therefore, a primary objective of validation is not to se-
lect a “best assessment” but to identify if models are overfitted and
how they can be extended or modified to better describe the dy-
namics.

Model validation, therefore, serves a complimentary purpose to
model selection and hypothesis testing. Model selection searches
for the most suitable model within a specified family; hypothesis
testing examines how to reduce the model structure, while model
validation examines if it should be modified or extended. For mod-
els to be valid, they must satisfy four prerequisites (Hodges and De-
war, 1992). Namely, the situation modelled must: (i) be observable
and measurable; (ii) be possible to collect sufficient informative data
about it; (iii) exhibit constancy of structure in time, and (iv) ex-
hibit constancy across variations in conditions not specified in the
model.

The first two prerequisites should be straight forward; how-
ever, many stock assessments, particularly for highly migratory
stocks like yellowfin tuna fished in areas beyond national juris-
diction, rely on fishery-dependent data rather than direct scien-
tific observations. The use of fishery-dependent data is a con-
cern since there is evidence that commercial catch per unit effort
(CPUE) is likely to remain high while abundance declines (Harley
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Figure 1. Spatial stratification of the Indian Ocean for the four region assessment model (Ra and Rb were treated as a single model region R,
but were retained for the fleet definition). The black arrows represent the configuration of the movement parametrization. Density contours
represent of the dispersal of tag releases and subsequent recaptures from Indian Ocean Regional tuna tagging programme. Green circles
represent the distribution of catches from the longline fishery aggregated by ◦ longitude and latitude for – (max. =  t).

et al., 2001). Prerequisite (iii) ensures that the model has predic-
tion skill for the same conditions under which the validation tests
were conducted. Prerequisite (iv) ensures that the model will still
be valid under conditions that differ from those in the validation
tests.

Material
Yellowfin tuna supports one of the largest tuna fisheries in the
Indian Ocean, with catches currently exceeding 400000 t annu-
ally. The stock is harvested by various gears, from small-scale
artisanal fisheries to large gill netters, industrial longliners, and
purse seiners (Fiorellato et al., 2019). There are regional differ-
ences in the stock and fisheries (Figure 1); and the western trop-
ical region (Region 1) is considered the core area of the stock’s
distribution.

The majority of data available for assessing the stock is fishery-
dependent. These include time series of the total catch, seasonal
CPUE based on the long-line fisheries (Hoyle and Langley, 2020),
samples of length compositions, tagging recaptures, and environ-
mental data. CPUE are the primary source of information on abun-
dance and are based on a composite long-line index, spatially strat-
ified by region, from the main distant water fleets.

Indices in each region are standardized using generalized lin-
ear models that accounted for differences in targeting practices
and catchability amongst fleets, based on gear configurations and
species composition (Hoyle and Langley, 2020). The reason for this
is because tuna long-line fishing strategies have changed over time.

In the assessment, the CPUE indices across regions were linked by a
common catchability coefficient, thus improving the model’s ability
to estimate regional biomass distribution. This required the calcula-
tion of arbitrary regional scaling factors related to a reference fleet’s
catch rates.

The length composition data are considered sufficient to provide
reasonable estimates of fishery selectivity and recruitment trends
but not stock abundance trends. Regional environmental indices
(current and sea temperature) allow seasonal and temporal vari-
ations to be incorporated in fish movement estimation. Tag re-
lease and recovery data collected from the main phase of the In-
dian Ocean large-scale tuna tagging programme inform estimates
of mortality, abundance, and movement.

Assessment models
Model development has focused on the spatial structure to ac-
count for differences in regional exploitation patterns; and non-
stationarity in selectivity and catchability and seasonal movements
have been found to resolve data conflicts (Urtizberea et al., 2019).
Although a fully integrated statistical model is used to develop the
base case, other models are also used. These include an ASPM-R
(Maunder and Piner, 2015) and a Bayesian state-space biomass dy-
namic model (JABBA; Winker et al., 2018).

Stock Synthesis (SS; Methot and Wetzel, 2013) is used to con-
duct the base case assessment and implements an age and spa-
tially structured model that reflects the complex population and
fishery dynamics of the stock. The most recent assessment estab-
lished a base case as a reference model for diagnostics and sce-
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narios to capture various uncertainties (Fu et al., 2018). The as-
sessment indicates that the stock has declined substantially since
2012; and SSB in 2017 is now estimated to be close to the histor-
ical lowest level. The stock is estimated to be overfished; and the
IOTC has implemented a rebuilding plan to reduce overall fishing
pressure.

SS provides a flexible framework for conducting stock assess-
ment and Maunder and Piner (2015) proposed a deterministic
implementation in SS of an ASPM as a diagnostic of processes
that control the expected dynamics through a production function
(Carvalho et al., 2017). Selectivity in ASPM is parametrized based
on that estimated by a “full” SS model. The model is then refitted to
the abundance indices without the size composition contributing
to the likelihood. Recruitment deviations can either be estimated
(as in our example) or set to zero. This enables an evaluation of
whether the observed catches alone can not explain trends in the
index of abundance. If the ASPM can fit the indices of abundance
well, then a production function is likely to exist (i.e. the dynamics
are driven by density-dependent processes), and the indices pro-
vide information about absolute abundance. If the fit is poor, then
the expected surplus production and observed catches alone can
not explain the indices’ trends. This can have several causes, namely
the (i) stock dynamics are recruitment-driven, (ii) stock has not yet
declined to the point at which catch is a major factor influencing
abundance; (iii) indices of relative abundance are not proportional
to abundance; (iv) model is incorrectly specified, or (v) data are bi-
ased. While a production function was evident in the fit, the overall
fit to the indices of abundance in 3 of the 4 areas was poor, and
hence, we used recruitment deviates to help capture the trends in
abundance by area (see Minte-Vera et al., 2017). In this study, we
implemented ASPM with estimated recruitment deviates (ASPM-
R).

An alternative to an integrated assessment is to use a biomass
dynamic model based on an explicit production function. This re-
quires estimation and fixing of fewer parameters and does not use
the length composition. We used the R package JABBA as it pro-
vides a unifying, flexible framework for state-space biomass dy-
namic modelling, runs quickly, and generates reproducible stock
status estimates (Winker et al., 2018). A Pella Tomlinson produc-
tion function (Pella and Tomlinson, 1969) was assumed as this al-
lows the shape of the production function to be varied. Allowing
alternative assumptions about productivity, stock status, and refer-
ence points to be evaluated. JABBA does not account for spatial dy-
namics, and in this analysis, priors of production function param-
eters were based on the SS base case.

Assessment hypotheses
The base case is spatially disaggregated into two tropical regions
(R1 and R4) and two austral subtropical regions (R2 and R3). The
tropics encompass the main year-round fisheries, while the long-
line fisheries occur more seasonally in the austral regions (Langley,
2015), reciprocal movement is assumed to occur between adjacent
regions. The base case assumes a quarterly time step to approxi-
mate the continuous recruitment and rapid growth seen in the yel-
lowfin stock. The population comprised 28 quarterly age-classes
with an assumed unexploited equilibrium initial state in each re-
gion. Twenty-five fisheries are defined based on fishing gear, region,
time period, fishing mode, and vessel type. Fisheries were mod-
elled, allowing flexibility in selectivity (e.g. cubic spline or double

normal), whereas long-line selectivity was constrained to be fully
selective for the older ages.

Recruitment occurs in the two equatorial regions with tempo-
ral deviates in the regional distribution and is assumed to fol-
low a Beverton and Holt stock-recruitment relationship. Growth is
parametrized using age-specific deviates on the k growth parame-
ter to mimic the non-von Bertalanffy growth of juvenile and adults’
near-linear growth. Natural mortality varies by age, with the rela-
tive trend in age-specific natural mortality based on Pacific Ocean
yellowfin (Maunder and Aires-da Silva, 2012).

Hindcast
Validation requires that the system be observable and measurable.
So observations should be used unless model estimates are known
to be very close to their true values. For example, when conducting
a retrospective analysis, a reduction in mean squared error (a mea-
sure of variance) of model estimates can be achieved by shrinkage.
However, the bias is difficult to quantify in model-based quantities,
and therefore, the absence of retrospective patterns while reassur-
ing is not sufficient for validation. For this reason, validation should
be conducted using prediction skill based on observations. There-
fore, we used a hindcast procedure where the indices of abundance
are sequentially removed from the terminal year, i.e. peeled back-
wards from the model. In contrast, in a retrospective analysis, all
observations for a year are peeled back, which means that quanti-
ties can not be predicted for the years peeled back unless additional
assumptions are made.

The hindcast is a variant of cross-validation where, like retro-
spective analysis, recent data are removed, and the model refitted
with the remaining data. Known values (observations) or well es-
timated historical values are then compared to model estimates.
When observations are used for comparison, this is also referred
to as model-free validation (Kell et al., 2016). In a hindcast, ob-
servations are removed from the terminal year and up to n years
back, and then the missing observations are predicted by fitting to
the remaining data for 1, 2, ... n steps ahead. Observations may be
removed by series or fleets to evaluate data conflicts, time blocks
to overcome serial correlations, or individually to estimate bias as
in the jackknife. No stock forecast or projection needs to be per-
formed, and so there is no need to make assumptions about fu-
ture parameters as all parameters needed are estimated within the
model. The hindcast may be conducted for individual data series or
combinations of series and data types, for example, by fleet where
both CPUE and length data are removed. This allows data conflicts
to be explored. Theoretically, the projection period is to the end of
the historical time period (Brooks and Legault, 2016); However, in
practice, a step size of one or several years ahead (the horizon h)
is chosen for the hindcast when removing observations removed
from the model fit. This should reflect the time horizon required
for robust management advice, considering typical process stochas-
ticity in fishery population dynamics and observation uncertainty.
Assessment cycles are typically for three years in most tuna Re-
gional Fisheries Management Organisations and so a horizon of
three years was also used.

In this study, only CPUE observations were removed, catch and
length composition remained in the model. Thus, all model fits had
the same terminal year and differed only in the length of the CPUE
time series. Therefore, the implemented procedure is similar to a
jackknife in that we remove points using a peel and then “predict”
missing values as part of the fitting process. Time series of pseudo
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Figure 2. Hindcasts for one-step ahead, the thick solid line represent the model estimates for stock and harvest relative to MSY benchmarks,
based on SSB and instantaneous fishing mortality for SS and ASPM-R and total biomass and harvest rate for JABBA. The points indicate the
terminal years of the assessments peeled for the CPUE.

data (i.e. data that are artificially generated to test a program or pro-
cedure) were generated from estimates of vulnerable biomass and
catchability (q). Prediction residuals (e) were then computed as the
difference between the predictions and the observations. It is pos-
sible to perform the hindcast by peeling other data, e.g. the length
or age compositions (see Carvalho et al., 2021).

Relative error
In a retrospective analysis, Mohn’s ρ (Mohn, 1999), is commonly
used as a measure of relative error for model-based estimates. We
used a variant, where we scaled by the mean, so the metric is not
affected by the peel’s length or the number of steps ahead.

ρM = 1
n

T−1∑

t=T−n

ŷ(1:t ),t − ŷ(1:T ),t

ŷ(1:T ),t
, (1)

where n is the number of time steps that the peel is performed for,
t is the time for which the missing value estimates, T is the termi-
nal year in the CPUE series, and ŷ denotes a model-based quantity,
which in this case was SSB. The value with suffix ŷ(1:T )|t means a
value estimated at time t from the full series running from time 1 to
T, and ŷ(1:t ),t is the value estimated using the data window from 1 to
t(≤T). The data window is only applicable to the CPUE data win-
dow, as the catch and length composition data remain unchanged.

ρM is an average of the relative differences at the final time of each
window and is a measure of relative retrospective ‘bias’ (scale-free)
in a statistical sense. The metric tends to be applied not on the log
but the original scale because both positive and negative directions
are equivalent. ρ can be estimated for different horizons

ρM = 1
n − h + 1

T−h∑

t=T−n

ŷ(1:t )|t+h − ŷ(1:T )|t+h

ŷ(1:T )|t+h
. (2)

There is no upper limit for reference values that are low relative
to the alternative, while in the reverse case, the error cannot exceed
1.0. Therefore, it is usual to use a lower bound of −0.15 and an up-
per bound of 0.20 to identify acceptable performance for long-lived
species (Hurtado-Ferro et al., 2015) in practice. For values near or
equal to 0, e.g. stocks where exploitation or stock size is low, small
absolute differences can result in large relative differences. This may
result in assessments being rejected when needed the most, e.g. dur-
ing the development of recovery plans, when both stock biomass
and fishing mortality may be low.

Prediction skill
Prediction skill compares an observation at time t (yt) to an predic-
tion of that observation made h time steps previously (ŷt|t−h). As a
metric, we use the MASE, as it is a robust and easy to interpret statis-
tic (Hyndman and Koehler, 2006). The MASE compares prediction
error (et) for a prediction horizon of h

et = yt − ŷt|t−h (3)

to a benchmark forecast corresponding to a naïve forecast equal to
the last observed value

ŷt|t−h = yt−h. (4)

For a peel of n and a horizon of h years

MASE =
1

n+1
∑T

t=T−n

∣∣yt − ŷt|t−h
∣∣

1
n+1+h

∑T
t=T−n−h

∣∣yt − yt−h
∣∣ . (5)

The MASE has the desirable properties of scale invariance, so it
can compare forecasts across data sets with different scales and has
predictable behaviour, symmetry, interpretability, and asymptotic
normality. Unlike relative error, MASE does not skew its distribu-
tion even when the observed values are close to zero. It is easy to in-
terpret as a score of 0.5 indicates that the model forecasts are twice

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/78/6/2244/6296435 by Sveriges Iantbruksuniversitet user on 08 N
ovem

ber 2021



Validation of stock assessment methods: is it me or my model talking? 

Table 1. Summary of Mohn’s rho (ρM) statistics for relative stock sta-
tus estimates from retrospective analysis (ρMr ) and hindcasts with one
and three-step ahead projections (ρMp ) using the full Stock Synthe-
sis (SS) reference case, the corresponding Age-Structure Equilibrium
Model (ASPM-R) and Bayesian state-space biomass dynamics model
JABBA.

Quantity Method 1-step ahead (ρM) 3-step ahead (ρMp )

SSB/SSBMSY SS . .
SSB/SSBMSY ASPM-R . − .
B/BMSY JABBA − . − .
F/FMSY SS − . − .
F/FMSY ASPM-R . .
U/UMSY JABBA − . − .

as accurate as a naïve baseline prediction. The Diebold-Mariano test
(Diebold and Mariano, 1995) for one-step forecasts can also be used
to test the statistical significance of the difference between two sets
of forecasts, i.e. by comparing the prediction yt − ŷt to a random
walk yt − yt − 1.

Results
The one-step ahead and the three-step ahead estimates for model-
based quantities are presented in Figure 2 and summarized in
Table 1. These show estimates of stock size (SSB for age-based and
biomass (B) for length-based methods) and exploitation level (fish-
ing mortality (F) or harvest rate (U)), relative to their maximum
sustainable yield (MSY) reference points.

No retrospective pattern is seen for ASPM-R, either for the one
(Figure 2) or three-step (Figure 3) ahead forecasts. For SS, a nega-
tive bias is seen in SSB/SSBMSY for one-step ahead, while for three-
steps ahead, SSB is overestimated in the recent period little change
is seen in the estimates of F/FMSY. JABBA shows a negative pattern
for harvest rate, which increases for three-step ahead forecast. In
the case of JABBA, although exploitation is less than the MSY level
stock biomass still declines below BMSY, which implies that process
error is driving the dynamics. When considering retrospective pat-
terns, ρ has to be in the range [−0.15, 0.2] for an assessment to be
accepted (ICES, 2019). For the one-step ahead, all the assessments
apart from the SS estimates of F pass this test. When the 3-year pro-
jection is considered, however, only ASPM-R shows acceptable per-
formance.

The results from the model-free hindcasts (based on CPUE) are
shown in Figures 4 and 5 for the one- and three-year ahead predic-
tions respectively; the background colour indicates whether MASE
≤ 1. Table 2 summarizes the MASE values. For SS and JABBA, pre-
diction skill is poor for CPUE indices 2 and 4, while the ASPM-
R performs poorly for Region 2. Prediction skill deteriorates for
the three-step ahead projections, particularly for SS and JABBA; al-
though for ASPM-R, CPUE indices for Regions 1 and 3 still have
good prediction skill.

The model and prediction residuals for future periods from one
to five steps ahead are summarized in Figure 6 pooling across all
CPUE indices. SS becomes increasingly imprecise and biased as the
prediction horizon is increased. Although JABBA is more precise,
it is still biased.

Discussion
Of the three structurally different model families used to assess In-
dian Ocean yellowfin, it was found that the model with the best
prediction skill was the ASPM-R. Despite integrating all the avail-
able data, the SS base case assessment’s poor performance is likely
due to large sampling error in the length compositions, introduc-
ing noise rather than information about year-class strength. This
was confirmed by an additional run performed as a check where
the length data were down-weighted (effective sample size was
0.00005), where results were very similar to those of the ASPM-R.

Results for the ASPM-R suggest that a deterministic age-
structured surplus production and observed catches could explain
the trends in the indices of abundance and that the base case assess-
ment model is incorrectly specified as it assigns too much weight to
spurious signals in the length composition data. The Bayesian state-
space biomass dynamic model, by contrast, produced reasonable
performance metrics for the core fishing area (Region 1) and the
south-western Indian Ocean (Region 3), but could not predict the
diverging trends in CPUE for the Eastern Indian Ocean (Regions
3 and 4). Therefore, it appears that it is important for this stock to
model both the age structure and spatial dynamics, while the qual-
ity of length samples needs to be improved.

There are many aspects of resource dynamics and productivity
about which there is little information in stock assessment data sets
(e.g. Lee et al. 2011, 2012; Jiao et al., 2012; Simon et al., 2012; Mangel
et al., 2013; Pepin and Marshall, 2015; Cury et al., 2014). Therefore
hypotheses about different plausible states of nature are increasingly
represented by alternative model structures, fixed parameters, and
weighting of data components (Sharma et al., 2020). Thus, as well
as methods for identifying uncertainties and agreeing on scenarios
(Leach et al., 2014), There is a need for methods to weigh, reject,
extend models to include alternative hypotheses, and evaluate the
value-of-information associated with different data sets.

However, model selection based on methods like AIC is only
suitable for comparing frameworks based on the same input data.
There is also a danger, with diagnostics based on the inspection of
residuals, of “hypothesis fishing” or “p-hacking” (Head et al., 2015;
Wasserstein and Lazar, 2016), i.e. finding a pretext for excluding an
index or adding extra parameters to improve the fit. On the other
hand, if multiple true hypotheses are tested, some will likely be re-
jected falsely. Thus, it is valuable to reserve part of the data for hind-
casting based on model-free validation so that a pattern’s signifi-
cance is not tested on the same data set that suggested the pattern
(Arlot et al., 2010).

The accuracy and precision of projections depend on the infor-
mation in the data and determine how far ahead we can predict and
the model’s potential uses. If a model can not be validated, other
uses include using a model as part of a feedback management sys-
tem and scenario modelling when conducting MSE. An example of
a model that can not be validated is a catch only model where if
catch observations are removed can not be run. However, it can be
simulation tested as part of an MP since feedback means that there
is no need for prediction skill.

For example, backtesting is a form of hindcasting used in finan-
cial risk modelling to assess a trading or investment strategy’s per-
formance. This requires simulating past conditions, which is simple
with the hindcast. MSE can be conducted as part of the backtest to
allow the impact of feedback on historical catches and stock sta-
tus to be evaluated. Although it is possible to find a strategy that
would have worked well in the past, this is no guarantee that it will

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/78/6/2244/6296435 by Sveriges Iantbruksuniversitet user on 08 N
ovem

ber 2021



 L. T. Kell et al.

SS ASPM JABBA
stock

harvest

2005 2010 2015 2005 2010 2015 2005 2010 2015

0.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

Year

R
el

at
iv

e 
to

 B
en

ch
m

ar
k

Figure 3. Hindcasts for three-step ahead, the thick solid line represent the model estimates for stock and harvest relative to MSY benchmarks,
based on SSB and instantaneous fishing mortality for SS and ASPM-R and total biomass and harvest rate for JABBA. The points indicate the
terminal years of the assessments peeled for the CPUE.

Table 2. MASE used for model-free validation of the full Stock Synthesis (SS) reference case, the corresponding Age-Structure Equilibrium Model
(ASPM-R), and Bayesian state-space biomass dynamics model JABBA based on individual CPUE observations by region and quarter. The MASE
values are shown for hindcasts with made with -year ahead and -year ahead projections

Region Quarter 1 year 3 year

SS ASPM-R JABBA SS ASPM-R JABBA

  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .
  . . . . . .

work well in the future. Therefore, although a backtest MSE is use-
ful, particularly as it allows stakeholders to see the consequences of
a different strategy, it is not sufficient to ensure the robustness of
candidate future strategies. Despite this limitation, backtesting may
provide insights that are unavailable when models and strategies are
tested on simulated data alone.

Another promising field of applications is to use skill-based
weighting for multimodel ensembles. A prediction skill score can

be used to assign more weight to the better performing models ob-
jectively and has been found to improve forecasts (e.g. Casanova
and Ahrens, 2009).

Conclusions
The hindcast is an important tool to achieve the aim of this pa-
per, which was to support the definition of stock assessment “as
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Figure 4. Hindcasts with one-step ahead for CPUE indices by region and quarter. Green backgrounds indicate that the CPUE index passes Mean
Absolute Scaled Error (MASE < ) criterion, or failed (red) otherwise. Red dots are the observed CPUE values and thin lines are the fits with
terminal hincast year indicated by a solid point.
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Figure 5. Hindcasts for three-step ahead for CPUE indices by region and quarter. Green backgrounds indicate that the CPUE index passes Mean
Absolute Scaled Error (MASE < ) criterion, or failed (red) otherwise. Red dots are the observed CPUE values and thin lines are the fits with
terminal hincast year indicated by a solid point.
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Figure 6. Boxplots showing model residuals and prediction residuals for ,,,, and  year ahead projections, pooled for all CPUE indices across
regions and quarters.

the description of the characteristics of a ’stock’ so that its bi-
ological reaction to being exploited can be rationally predicted
and the predictions tested”. If a model is to be used for fore-
casting, a model should be validated by comparing predictions

to a system’s observable and measurable properties (Ianelli et al.,
2016).

The objective of validation is not to prove that a model is cor-
rect, but to check that the model can not be falsified with the
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available data. In other words, if a model has low prediction skill,
then you either need more informative data or to develop alter-
native models. This is a step forward from hypothesis testing and
model selection which is a way of rejecting rather than extending
models.

Retrospective analysis evaluates the temporal stability of advice
by using a reference series of model estimates based on the most
recent assessment. In the Northeast US, allowing for time-varying
dynamics (e.g., in natural mortality or catchability) has been used
to eliminate retrospective patterns. This runs the risk of overfitting
and could conceivably make estimates more biased (Brooks and
Legault, 2016). It is not possible, however, to estimate bias using
model-based and thus latent quantities. Instead, model predictions
need to be compared to observations. Therefore, we used the hind-
cast to calculate prediction skill using simulated observations to
identify overfitting and explore how models can be improved based
on alternative structural assumptions without the risk of “hypothe-
sis fishing”.

An aim of stock assessment modelling is often to identify a ‘best’
model, ignoring uncertainty about model structure (Jardim et al.,
2020). To move beyond the best assessment to a multiple model ap-
proach, procedures need to be agreed upon for the initial selection
of models and then for rejecting and weighting them. Currently,
once a candidate model is agreed upon, rejection is mainly based
on goodness of fit and retrospective analysis. However, this could
result in overfitting, while the best way to remove a retrospective
pattern is to ignore the data.

Prediction skill is an alternative and can be used to develop ad-
vice that is robust to uncertainty by weighing alternative models
within an ensemble, either when providing estimates of stock sta-
tus or when conducting MSE.

As the stock assessment process becomes more complex, e.g.
through the increased use of integrated models, ensembles of mod-
els, and MSE, there are concerns about a lack of transparency. This
is because of the many internal, implicit, and often poorly doc-
umented assumptions and a lack of access as only a few highly
skilled experts can run or interrogate the models (Hilborn, 2003).
Therefore to increase confidence in the outputs of a model and
trust amongst the public, stake and asset-holders and policymak-
ers, modellers need to ask, “is it me or my model talking” before
others ask the question posed by Hodges and Dewar (1992) “is it
you or your model talking?”.

Data availability
The data underlying this article are available in the github reposi-
tory flrpapers and can be found at https://github.com/flrpapers
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