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A B S T R A C T   

Environmental monitoring studies based on target analysis capture only a small fraction of contaminants of 
emerging concern (CECs) and miss pollutants potentially harmful to wildlife. Environmental specimen banks, 
with their archived samples, provide opportunities to identify new CECs by temporal trend analysis and non- 
target screening. In this study, archived white-tailed sea eagle (Haliaeetus albicilla) muscle tissue was analysed 
by non-targeted high-resolution mass spectrometry. Univariate statistical tests (Mann-Kendall and Spearman 
rank) for temporal trend analysis were applied as prioritisation methods. A workflow for non-target data was 
developed and validated using an artificial time series spiked at five levels with gradient concentrations of 
selected CECs (n = 243). Pooled eagle muscle tissues collected 1965–2017 were then investigated with an eight- 
point time series using the validated screening workflow. Following peak detection, peak alignment, and blank 
subtraction, 14 409 features were considered for statistical analysis. Prioritisation by time-trend analysis 
detected 207 features with increasing trends. Following unequivocal molecular formula assignment to prioritised 
features and further elucidation with MetFrag and EU Massbank, 13 compounds were tentatively identified, of 
which four were of anthropogenic origin. These results show that it is possible to prioritise new CECs in archived 
biological samples using univariate statistical approaches.   

1. Introduction 

Environmental monitoring campaigns commonly apply target anal-
ysis and focus on a small number of contaminants of emerging concern 
(CECs), while pollutants potentially harmful to wildlife are overlooked 
(Sonne et al., 2020). Detecting unknown CECs in wildlife by analytical 
chemistry is challenging, as large numbers of naturally occurring com-
pounds such as lipids and proteins co-exist with anthropogenic com-
pounds in wildlife tissues. Previous studies have shown that non-target 
high-resolution mass spectrometry (HRMS) analysis can be used to pri-
oritise and elucidate previously unknown CECs in wildlife (Heffernan 
et al., 2017; Millow et al., 2015; Myers et al., 2014; Shaul et al., 2015; Du 
et al., 2017). These studies highlighted the importance of minimising 
sample pre-treatment and clean-up for non-target screening (NTS) 
methods to be non-specific and extract a broad range of compounds 
(Heffernan et al., 2017; Dürig et al., 2020; Plassmann et al., 2016). 

However, the drawback, in particular for biota samples, is that this can 
lead to interferences by sample matrices, which may reduce the sensi-
tivity and increase the number of peaks in the chromatogram. This in 
turn complicates identification of compounds using NTS. Thus, it is 
challenging to find the optimal compromise between extensive sample 
preparation to reduce matrix interferences and minimal sample prepa-
ration to avoid losing NTS compounds. Prioritisation of HRMS features 
(retention times (RT), mass-to-charge ratios, and peak intensities) is a 
key requirement in non-target screening, since it reduces the amount of 
data produced and allows a focus on the most relevant features of in-
terest for further structural elucidation. Different prioritisation strate-
gies can be used, e.g., prioritization based on regulatory databases, 
(Gago-Ferrero et al., 2018) effect-directed analysis (Weiss et al., 2011), 
case-control studies (Heffernan et al., 2017; Shaul et al., 2015; Du et al., 
2017), spatial and temporal trend analysis (Beckers et al., 2020; 
Albergamo et al., 2019; Alygizakis et al., 2019a; Anliker et al., 2020; 
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Chiaia-Hernández et al., 2017), and analysis for specific compound 
groups (e.g., organohalogens) (Cariou et al., 2016; Fernando et al., 
2018). Gas chromatography (GC) approaches are commonly applied 
when investigating biological samples, since hydrophobic compounds 
tend to bioaccumulate and thus can be expected to be detected by GC 
analysis (e.g., Fernando et al., 2018). However, biota is also used as an 
indicator for water quality and therefore polar and mid-polar com-
pounds such as endocrine disrupting chemicals, pharmaceuticals, cur-
rent used pesticides and per- and polyfluoroalkyl substances (PFASs) are 
typically separated using liquid chromatography (LC) approaches. Polar 
and mid-polar compounds can be bioccumulative and harmful to biota, 
and are often mobile in the aquatic environment (Ahrens and Bund-
schuh, 2014; de Wit et al., 2020). Thus, GC and LC are complementary 
approaches to separate organic compounds for subsequent detection in 
biota. 

Time-series samples are frequently used in target analysis to identify 
concentration trends in CECs over time (Bignert, 2002). Archived 
environmental samples, collected in accordance with standardised 
protocols and held in e.g., environmental specimen banks (ESB), provide 
opportunities for new prioritisation strategies through temporal trend 
analysis of non-target features identified in HRMS analysis. The Swedish 
Museum of Natural History (SMNH) has systematically collected a wide 
variety of environmental samples since the 1960s, providing the possi-
bility to detect long-term trends in micropollutants in many different 
species (Odsjö, 2006). Tissues from top predators are commonly used for 
monitoring CECs, as these animals are at the top of the food web and can 
accumulate CECs to high concentrations as a result of biomagnification 
(Badry et al., 2020; de Wit et al., 2020). Previous studies have shown 
that prioritising features in non-target screening by means of temporal 
trend analysis in sediment and wastewater is possible and beneficial for 
identifying previously unknown CECs (Albergamo et al., 2019; Alygi-
zakis et al., 2019a; Anliker et al., 2020; Chiaia-Hernández et al., 2017; 
Hollender et al., 2017). However, to our knowledge, archived biological 
tissues from specimen banks have not been used previously to prioritise 
potential polar CECs by time trends in non-target screening using 
LC-HRMS for detection. 

In this study, a new prioritisation strategy for non-target screening 
was developed using time trend analysis of data from archived muscle 
tissue from white-tailed sea eagle (Haliaeetus albicilla). The samples were 
collected by SMNH from 1965 to 2017. Specific objectives of the work 
were to: i) develop and validate a non-target screening data treatment 
workflow based on an artificial time series (ATS) consisting of white- 
tailed sea eagle muscle tissue spiked with CECs (n = 243) at different 
levels, using two univariate statistical approaches (Spearman rank and 
Mann-Kendall), and ii) apply the validated workflow on an archived 
time series of white-tailed sea eagle muscle tissue collected from 1965 to 
2017, to search for novel CECs. 

2. Materials and methods 

2.1. Biota samples and storage 

Muscle tissue from white-tailed sea eagle (Haliaeetus albicilla) was 
obtained from the ESB at SMNH. The tissue samples were collected 
during 1965, 1983/1984, 1991, 1996, 2001, 2006, 2011, and 2017, 
mainly from birds killed by traffic. The ESB applied standardised pro-
tocols for sampling and storage at − 80 ◦C (Odsjö, 2006). After arrival at 
the laboratory, the wet samples obtained for the present analysis were 
stored at − 20 ◦C until extraction, which occurred within a couple of 
days of arrival at the laboratory (Table SI1 in Supplementary Informa-
tion (SI)). 

Selection criteria for the individual samples were: (i) availability of 
individual samples per year, (ii) close proximity of sample locations, (iii) 
equal sex ratio per year (1:1, male: female), (iv) preferably adult birds, 
and (v) feed intake mainly from marine feed sources. To determine 
consumption of marine food sources for individual birds, analysis of 

carbon (C) and nitrogen (N) isotopes in all individual muscle tissue 
samples was performed at the Department of Forest Ecology and Man-
agement, Swedish University of Agricultural Sciences (Umeå, Sweden) 
(section II in SI). Principal component analysis (PCA) and dendrogram 
analysis of the 15N/14N and 13C/12C ratios showed that four samples had 
a higher 15N/14N ratio than the others (Table SI2 and Fig. SI1 in SI), 
indicating that these birds had mainly consumed terrestrial organisms 
(Polunin et al., 2001). These four samples were therefore excluded from 
further analysis. The remaining eagle muscle tissue samples from 
approximately 10 individual birds per year were pooled (except 
1983–1984, which were treated as one year) (Bignert et al., 2014). Thus, 
eight pooled samples were obtained for analysis (1965, 1983/1984, 
1991, 1996, 2001, 2006, 2011, and 2017). 

2.2. Chemicals 

A total of 243 target compounds (pharmaceuticals, industrial 
chemicals, pesticides, flame retardants, personal care products, benzo-
thiazoles, isoflavones, food additives, phthalates, stimulants, siloxanes, 
surfactants, contrast media, fatty acids, PFASs) and 65 isotopically 
labelled compounds (IS) were used for spiking and quality control ex-
periments (Tables SI3 and SI4 in SI). The target compounds were 
selected based on environmental relevance and availability. The refer-
ence compounds were obtained from Sigma-Aldrich (Steinheim, Ger-
many), European Pharmacopeia Reference Standard (Strasbourg, 
France), Teknolab Sorbent (Kungsbacka, Sweden), USP Reference 
standard (USA), BOC Sciences (Shirley, NY), and Supelco (Bellefonte, 
PA), and were of high purity (> 85%). 

2.3. Sample preparation 

Sample preparation was performed in triplicate at room temperature 
in a fume hood using a previously validated method (Dürig et al., 2020). 
For pooling, 0.1 g portions of muscle tissue from each individual eagle 
collected in the same year were weighed into 15 mL homogenisation 
tubes with ceramic beads to yield approximately 1 g total wet weight 
(ww). The pooled samples were homogenised without solvent in a 
Precellys tissue homogeniser (Bertin Technologies, France). Material 
from the year 1965 was limited (only one bird available) and therefore 
0.5 g of the individual sample was taken for analysis. Before extraction, 
50 ng of each IS were added and the solvent was left to evaporate at 
room temperature for 30 min. Then 1 mL acetonitrile + 0.1% formic 
acid was added to the homogenisation tubes and the samples were 
extracted (2 × 40 s at 5000 rpm) in the Precellys tissue homogeniser. 
After centrifugation and filtration through a 0.2 µm regenerated cellu-
lose syringe filter (Thermo Scientific, Rockwood, USA) into 2 mL 
Eppendorf safe-lock tubes (Eppendorf AG, Hamburg, Germany), aliquots 
were frozen at − 20 ◦C for at least 16 h to denature the proteins as well as 
to remove lipids, waxes, sugars and other compounds with low solubility 
in acetonitrile (Payá et al., 2007). Following centrifugation for 3 min at 
− 10 ◦C, aliquots of 250 µL were transferred to auto-injector vials and 
used for analysis. As IS were added to all samples, the data could also be 
used for target analysis and quantification based on the biota weight up 
to the lower ng g− 1 wet weight (ww) concentration range (Polunin et al., 
2001; Grabicova et al., 2015, 2018). 

An artificial time series (ATS) was prepared from a homogenised 
pool of 0.4 g ± 0.1 g portions of each individual eagle muscle tissue 
collected for the study (except the years 1965 and 2017) to yield 
approximately 1 g total ww. The homogenised tissue was split between 
15 homogenisation tubes (15 mL each), each containing 0.6–1.0 g ww, 
and spiked in triplicate with IS mixture (50 ng) and 243 target com-
pounds at a level of 0.5, 5, 10, 25, and 50 ng. These levels reflect a 
relatively wide range in which contaminants are expected to occur in the 
white-tailed sea eagle samples (Sletten et al., 2016; Nordlöf et al., 2012). 
Extraction was performed in the same way as for the other samples. This 
ATS was used for the non-target workflow development to evaluate 
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losses of target analytes during each step of the workflow. 

2.4. Instrumental analysis by UPLC-QTOF-MS 

Instrumental analysis was performed using ultra-performance liquid 
chromatography quadrupole-time-of-flight mass spectrometry (UPLC- 
qToF-MS) as reported previously (Dürig et al., 2020; Tröger et al., 2018). 
In brief, analytes were separated using a Waters Acquity I-Class UPLC 
system equipped with a quaternary pump. For chromatographic sepa-
ration in positive ionization mode, a reversed-phase Acquity UPLC HSS 
T3 column (2.1 mm × 100 mm and 1.8 µm; Waters Corporation, Milford, 
MA) was used, while for negative ionization mode an Acquity UPLC BEH 
column (2.1 mm × 100 mm and 1.7 µm; Waters Corporation, Milford, 
MA) was used. Detailed information about the UPLC gradient can be 
found in Table SI5 in SI. The UPLC was coupled to a Xevo G2-S QToF-MS 
(Waters Corporation, Manchester, UK) with an electrospray ionization 
(ESI) interface working in positive and negative ionization modes. All 
data were collected in separate injections for positive and negative 
ionization mode using data-independent resolution mode (MSE-r-
esolution) with low collision energy at 4 eV and a high collision energy 
ramp from 10 to 45 eV at a mass range of 100–1200 m/z. Leucine 
enkephalin was continuously infused for lock mass correction (for de-
tails, see Table SI6 in SI). The software UNIFI Waters Scientific Infor-
mation System (v 1.9.4) was used for instrument control and for 
identification of compounds during the target analysis step, by searching 
for [M+H]+ and [M-H]- adducts with one absolute charge for adduct 
combinations and 3 mDa mass tolerance. 

A solvent calibration curve containing the IS mixture (50 ng mL− 1) 
and the 243 target compounds was prepared in acetonitrile at concen-
trations of 0.5, 5, 10, 25, and 50 ng mL− 1 and was injected multiple 
times throughout the analytical run. 

2.5. Quality assurance and quality control (QA/QC) 

For calculation of matrix effects and quality control, a quality control 
sample was prepared by pooling 50 µL extract from each (pooled) year. 
This quality control sample was injected multiple times throughout the 
chromatographic sequence to monitor the performance of the LC-qToF 
system. For matrix effect calculations, matrix-matched standards were 
prepared from the quality control sample by adding the 243 target 
compounds in three different concentrations (10, 50, and 100 ng mL− 1) 
after the extraction. For reaching the higher final concentrations of the 
target compounds in the matrix-matched standard, less extract volume 
was taken; however, still enough to compensate for dilution effect of the 
matrix by the added standards. For absolute recovery calculations, the 
responses of the target compounds in the matrix-matched standard (50 
ng mL− 1) were compared with the responses of the target compounds in 
a sample fortified with the 243 target compounds (50 ng mL− 1) before 
extraction (Fig. SI2 in SI) as reported previously by Dürig et al. (2020). 

2.6. Data handling and statistical time-trend analysis 

As previously demonstrated in other studies (Hohrenk et al., 2019; 
Pochodylo and Helbling, 2017), proper pre-processing workflow must 
be applied to obtain high-quality data. The raw data were recorded 
using the vendor software UNIFI Waters Scientific Information System 
(version 1.9.4) and converted and exported to mzML format via Pro-
teoWizards’ MSConvert (version 4.7.2) open-source software. The data 
were processed using an automated workflow described elsewhere 
(Alygizakis et al., 2019a). From the quality control sample that was 
injected multiple times throughout the run (after every six to nine matrix 
injections), a gradual decrease in sensitivity was observed for the spiked 
IS. Intensities of all detected features were corrected for the average 
sensitivity loss of all IS, setting the average IS response detected at the 
first time point of the time series to 100% (Fig. SI3 in SI). When ana-
lysing complex samples with heavy matrix, the drift in the signals due to 

instrumental restrictions can be challenging and sometimes lead to the 
escape of chemicals and the generation of artefacts. Features were only 
considered if: i) their intensity was at least 10-fold higher than that of 
the solvent blank injections (when present in the blank), ii) they were 
present in at least two of the three replicates, and iii) they had relative 
standard deviation (RSD) of less than 50% across the triplicates. Solvent 
blanks consisted of pure solvent injections as well as procedural blanks 
(acetonitrile). Matrix containing procedural blanks were not possible 
due to limited material available. Finally, time trend analysis was per-
formed for prioritisation of increasing features using Spearman rank and 
Mann-Kendall correlation coefficients on the average response of each 
year, using R (v 4.0) software. Features with a temporal increasing in-
tensity trend at significance level α = 0.05 and ƿ > 0.8 were prioritised 
(R script is provided in Section V in SI) as these features could possibly 
be concerning compounds even though toxicity criteria are not included. 
Visual inspection of the peak shapes of the prioritised features was 
performed, and peaks with bad peak shape were discarded. Unequivocal 
molecular formula for prioritised features was predicted using Waters 
Corporation software UNIFI (version 1.9.4). For features to be further 
evaluated coherent molecular formula prediction was required. Further 
elucidation was carried out in MetFrag using the unequivocal predicted 
molecular formula for candidate collection (Ruttkies et al., 2016). 
PubChem was used as a search database, candidates were retrieved with 
a mass error of 5 ppm, and [M+H]+, and [M+H]- adducts were searched 
for features prioritised in positive and negative ionisation mode, 
respectively. The candidates were then scored using the patent and 
reference counts in PubChem and the in silico fragment score, which was 
based on the experimental high-collision energy spectra. Fragmenter 
score, patent counts, and PubMed reference counts were weighted 
equally (1:1:1), candidates with the highest MetFrag score were 
considered when evaluating the candidates individually. The final 
identification status was assigned based on all available information. 
Available reference standards (n = 3) of the tentatively identified 
compounds (two anthropogenic and one endogenous compound) were 
ordered and added to the extract at different concentrations (50 ng mL− 1 

and 200 ng mL− 1) for confirmation. Retention time Index (RTI) were 
analysed in positive and negative ionisation mode to predict retention 
times for the tentatively identified compounds to further support the 
findings. Retention time prediction models (Aalizadeh et al., 2019) were 
used to verify that top-ranked candidates were eluted at plausible 
retention times. The methodology that was followed, was also imple-
mented in the NORMAN collaborative trial (Rostkowski et al., 2019). 
This method has been proven efficient in removing false positive results 
in suspect (Alygizakis et al., 2019b) and non-target screening (Aalizadeh 
et al., 2019). 

3. Results and discussion 

3.1. Validation of prioritization strategy using artificial time series 

The workflow developed was validated using the ATS (Section 2.3). 
All 243 compounds were detected in the calibration solution with the 
highest concentration level (50 ng mL− 1), whereas 233 were detected in 
the highest concentration level of the ATS (50 ng mL− 1). The failure to 
detect 10 compounds was due to matrix suppression (average − 67% 
(− 100% to 64%)) and/or low recovery (average 77% (16–140%)) (see 
Fig. SI2 in SI). A limited number of compounds (n = 83) was detected in 
the extract with the lowest concentration (0.5 ng mL− 1) in the ATS, and 
therefore this concentration was excluded from further evaluation. 
Temporal trend analysis of the ATS (5–50 ng mL− 1) was used for vali-
dation of the prioritisation of features with increasing trends (Fig. SI4 in 
SI). After blank subtraction, 19 272 features were detected across all 
injections of the ATS. A noteworthy data reduction was achieved by only 
considering features detected in at least two of three replicates (9 963 
removed) and with RSD < 50% (12 067 removed). For a statistically 
significant trend to be prioritised, at least three time points needed to be 
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detected of the ATS (i.e., 10, 25, and 50 ng mL− 1), which was fulfilled by 
127 target compounds. For elucidation of the prioritised features, all 
spiked target compounds were treated as non-target features. Retro-
spective checking was performed to determine which features belonged 
to the spiked target compounds. After prioritisation using Spearman 
rank and Mann-Kendall, only 126 features remained (104 in positive and 
22 in negative ionisation mode). As expected, the same features were 
prioritized using Spearman rank and Mann-Kendall, due to the similarity 
of these statistical approaches. High correlation should lead to a low p- 
value, however if the time series has too few data points even a high 
correlation would lead to non-significancy. With regards to the ATS, the 
spiked target compounds were detected in almost all samples which was 
maybe the reason why the Spearman rank correlation and Mann-Kendall 
p-value showed similar results. However, high concentration and co- 
elution of endogenous compounds might hamper prioritisation of 
exogenous compounds present in the sample. Even spiked compounds 
might have low response and slightly increasing intensity trends may 
not be prioritised in pooled matrix-rich samples with the statistical tools 
applied in this study. Of the 126 prioritised features (65 targets), an 
unequivocal molecular formula with iFit value > 50% using Waters 
Corporation software UNIFI (version 1.9.4) was predicted for 62 fea-
tures (40 targets). The loss of 25 target compounds during this step was 
possibly attributable to low intensity or high influence of matrix on the 
mass spectra, which resulted in unreliable molecular formula prediction 
by UNIFI (Menger et al., 2021; Samanipour et al., 2017). Further 
elucidation with MetFrag and EU Massbank allowed the tentative 
identification of 37 structures (26 targets). The loss of 14 target com-
pounds during this step appears to be caused by similar fragmentation 
patterns in MetFrag between experimental data from target compounds 
and predicted fragment patterns of other highly cited and patented 
chemicals (Ruttkies et al., 2016). For example, climbazole (PubChem ID 
37907) and fuberidazole (PubChem ID 19756) were ranked lower 
compared to other compounds (data not shown). Combining prioriti-
sation and the elucidation workflow described above demonstrated that 
20% of the 127 target compounds could be tentatively identified in the 
ATS when treated as non-targets, which was considered an acceptable 
fraction for a non-target screening identification workflow on biota. 

The workflow developed reduced the number of features drastically 
and provided a manageable number of curated features to focus upon 
during structural elucidation. However, the conservative approach 
applied led to losses of target compounds during the workflow. This 
indicates that during application of the workflow on real time-series 
samples, the number of identified compounds was likely under-
estimated. The advantage of using Spearman rank coefficients for 

prioritisation is that even with shorter time series, an increase can be 
detected. However, these trends might not be significant as the time 
series gets prolonged. The latter could be a risk if applying this statistical 
test in early identification. Significancy in terms of p-values like for 
Mann-Kendall gives reassurance that the increasing trend is not random, 
however more data points are needed which is not always possible with 
archived samples. The validation results for the prioritisation strategy 
developed here showed that temporal trends detected using univariate 
statistics (i.e., Spearman rank (Plassmann et al., 2016) and 
Mann-Kendall (Lamchin et al., 2019)) can be used for prioritisation and 
identification of CECs in matrix-rich samples such as biota, as previously 
suggested and demonstrated by Plassmann et al. (2016). 

3.2. Workflow application to eagle muscle tissue time series 

The validated data treatment workflow was applied to the real eagle 
muscle tissue time series (1965–2017) (Fig. 1). After blank subtraction, 
26 597 features were obtained, which was a higher number of features 
than for the ATS, probably due to the separate analysis of the pooled 
samples (i.e., not combining them to one pool as for the ATS). Setting the 
requirements of detection in at least two out of three replicates (7 107 
removed) and RSD < 50% (12 188 removed) reduced the number of 
features to 14 409. Finally, a total of 207 features were prioritised using 
univariate statistical approaches (17 by Spearman rank only, 138 with 
Mann-Kendall only, and 52 with both statistical approaches (Fig. 1 and 
Fig. SI5 in SI). Spearman rank test was able to pick up a few but linear 
correlations in the time series more effective than Mann-Kendall did. 
Interestingly, in the real time series the two statistical approaches pri-
oritised different features, whereas in the ATS the same features were 
prioritised by the two statistical approaches. One likely cause for this 
could be that the spiked compounds in the ATS were dominant (high 
signal intensity) and therefore picked up by both statistical approaches 
as discussed above (see Section 3.1). In total, 130 prioritised features 
were removed due to bad peak shape. For 51 of the 207 prioritised 
features (25%), it was possible to predict an unequivocal molecular 
formula with iFit value > 50% in Waters Corporation software UNIFI. 
For Spearman rank only, Mann-Kendall only and both statistical ap-
proaches, 6, 38, and 7 features were assigned an unequivocal molecular 
formula, respectively, showing that it was possible to reduce the 
extensive number of curated features to a reasonable number using the 
approach developed in this study. 

Comparison of the experimental high collision energy spectra for 
those features with MetFrag (Ruttkies et al., 2016) and EU MassBank 
resulted in 13 tentatively identified structures (1 prioritized by 

Fig. 1. Number of features in the white-tailed sea eagle time series samples during each step of the data treatment workflow.  
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Table 1 
The 13 tentatively identified features in the white-tailed sea eagle time series samples (1965–2017), along with their top ranked structure (via MetFrag), x-fold increase 
to the max intensity compared with the first detected time point, identification status according to Schymanski et al. (2014), and detected adducts. Compounds which 
are most likely of anthropogenic origin are highlighted in grey.  

PubChem 
CID 

Molecular 
formula 

Top ranked structure Name RT 
(min) 

Predicted 
RT (min) 

Plausible 
RT 

x-fold 
increase 

Identification status 
(Schymanski et al., 
2014) 

Adducts 

168381 C19H37NO4 Dodecanoyl-L-carnitine  9.08  8.91 Yes  5.2 Level 3 [M+H]+

163841 C18H28O2 6,9,12,15- 
Octadecatetraenoic acid  

11.9  12.41 Yes  21 Level 3 [M+H]+

10917 C7H15NO3 (-)-L-Carnitine  0.97  0.01 Yes  1.3 Level 2a [M+H]+

445694 C9H12N2O L-Phenylalaninamide  4.20  1.89 Yesa  1.2 Level 3 [M+H]+

1071 C20H30O Retinol  12.9  11.84 Yes  3.7 Level 2a [M+H]+

443879 C22H31NO R-(+)-Tolterodine  9.35  8.43 Yes  2.3 Level 3 [M+H]+

6918403 C20H18N4O PKI166  9.7  8.23 Yesa  1.6 Level 3 [M+H]+

7689 C24H41NO2 4′-Hydroxystearanilide 
(EPA TSCA)  

14.0  14.24 Yes  2.8 Level 1 [M+H]+

24775 C18H30O3 Octoxynol-2  6.51  10.47 Yesb  2.2 Level 2a [M-H]- 

457964 C20H34O4 (+)-Aphidicolin  7.68  3.42 Yesb  2.9 Level 3 [M-H]- 

(continued on next page) 
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Spearman rank only, 11 by Mann Kendall only, and 1 by both statistical 
approaches) (Table 1). Structures were obtained in MetFrag from the 
most likely predicted molecular formulas with an iFit > 50% and using 
PubChem as a search database (see Section 2.6 for details). The MetFrag 
fragmenter results, patent count, and PubChem reference count were 
weighted equally (1:1:1) and considered in the final scoring. Potential 
hits were evaluated in depth individually. Four of the 13 structures were 
tentatively identified with a level 2 and had a match in EU Massbank (71 
568 entries in 2020). 

In this study, analysis with univariate statistical methods led to pri-
oritisation and elucidation of potential CECs in biota. Similarly, 
Purschke et al. (2020) recently developed a multivariate statistics 
approach including principal component analysis (PCA) for temporal 
trend analysis of complex matrices using industrial wastewater, also 
resulting in prioritisation and elucidation of new CECs. This indicates 
that multivariate and univariate statistics are both suitable strategies for 
data reduction and prioritisation using temporal trend analysis of HRMS 
data in matrix-rich samples (Plassmann et al., 2016; Purschke et al., 
2020). It remains to be determined whether these two statistical ap-
proaches are complementary to each other. 

3.3. Tentatively identified compounds 

With the workflow developed, it was possible to prioritise and 
tentatively identify 13 structures with statistically significant increasing 
temporal trends in the eagle muscle tissue samples. Retention time pre-
diction excluded that the candidate with mass 406.2975 was ”Chol-
amide”. 4′-Hydroxystearanilide was confirmed by standard addition to 
level 1 (see Fig. SI8 in SI) (Schymanski et al., 2014). Anthropogenic 
compounds prioritised and elucidated in this study mainly belonged to 
the families pharmaceuticals (i.e., R-(+)-tolterodine, and (+)-aphidico-
lin) and cosmetics (i.e., octoxynol-2), while some of the structures (viz. 
dodecanoyl-L-carnitine, 6,9,12,15-octadecatetraenoic acid, L-phenyl-
alaninamide, retinol, PKI166, L-(-)-tyrosine, and PD-128042) were 
endogenous compounds like fatty acids, vitamins, amino acids, or in-
hibitors previously mentioned in metabolomics papers (Pekala et al., 
2011; Johnson, 2017). The prioritisation of the latter compounds could 
be explored as potential biomarkers for increasing exposure to external 
stressors, such as CECs, in wildlife over time. MassBank includes both 
endogenous and exogenous compounds, which permitted tentative 
identification of both naturally occurring and anthropogenic compounds. 

Identification of anthropogenic compounds (e.g., CECs) via non-target 
screening is desired. Filtering out anthropogenic compounds in 
non-target screening is challenging, as naturally occurring compounds 
co-exist with anthropogenic compounds. In addition, naturally occurring 
compounds could be released from human products. Plassmann et al. 
(2016) suggested comparing the original feature list against known 
metabolite databases to exclude endogenous compounds, which could be 
beneficial when dealing with many prioritised features. 

The increase to the highest intensity from the first detected time 
point of the 13 tentatively identified compounds is shown in Fig. 2. 
There were steadily increasing trends in all tentatively identified fea-
tures, by up to 160% from 1965 to 1996 and even up to 500% from 1996 
onwards, except for C24H41NO4, PD-12804, and 6,9,12,15-octadecate-
traenoic acid. Data gaps (i.e., below detection limit) for all detected 
features occurred mainly before 1990 for the tentatively identified 
compounds, indicating that fewer environmental stressors were released 
to the environment some decades ago. From 1991 to 2011, a rapid in-
crease was observed for 6,9,12,15-octadecatentraenoic acid (an increase 
of 2100%), PD12804 (+2600%) and C24H41NO4 (+1500%) (Fig. 2). The 
European Chemical Agency (ECHA) has pre-registered 6,9,12,15-octa-
decatentraenoic acid, as it is produced by at least one company in vol-
umes of up to 10 tons and is suspected to be bioaccumulative (BCF > 2 
000 L kg− 1), and therefore could be investigated for influences on the 
aquatic environment (ECHA, 2020). Chloamide is a tetracyclic diter-
phenoid used as an antiviral and cytotoxic agent for cancer treatment 
which is not registered at the Swedish Medical Product Agency. Tol-
terodine is approved for medical use in Sweden since 1998 and used as 
treatment for incontinence (National Board of Health and Welfare, 
2021). According to ECHA, this drug is in the hazardous class 3 and 2 of 
acute and reproductive toxicity, respectively (ECHA, 2021a). The 
cosmetic and surfactant Octoxynol-2 is on the NORMAN Suspect List 
Exchange for its high presence in the environment (NORMAN Suspect 
List Exchange, 2021). ECHA classified Octoxynol-2 as hazardous class 4 
acute toxicity, 1B skin corrosion, 2 reproductive toxicity, 1 aquatic acute 
toxicity and 1 aquatic chronic toxicity (ECHA, 2021b). White-tailed sea 
eagles are migrating birds and may accumulate contaminants from 
different sources and countries making it possible that usage pattern of 
the compounds in Sweden do not reflect the results obtained in our 
study. The drop in intensity for most tentatively identified compounds 
after 2011 indicates reduced emissions of these chemical stressors to the 
environment. 

Table 1 (continued ) 

PubChem 
CID 

Molecular 
formula 

Top ranked structure Name RT 
(min) 

Predicted 
RT (min) 

Plausible 
RT 

x-fold 
increase 

Identification status 
(Schymanski et al., 
2014) 

Adducts 

6057 C9H11NO3 L-(-)-Tyrosine  0.62  1.04 Yes  1.6 Level 2a [M-H]- 

122327 C23H39NO4 PD-128042  12.4  13.77 Yes  26 Level 3 [M-H]- 

447685 C24H41NO4 Cholamide  12.4  4.85 Not 
plausible  

15 Level 4 [M-H]-  

a RT plausible despite the observed difference between experimental and predicted retention time. 
b RT plausible despite the observed difference between experimental and predicted retention time. It is suggested to use other verification tool 
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4. Conclusion 

Ultimately, non-target analysis of biological matrices is of high 
relevance to pinpoint unknown, potentially harmful compounds with an 
increasing trend, which can indicate persistency and bioaccumulation 
potential of these compounds. Univariate statistics proved to be useful 
for prioritisation of increasing intensity trends in LC-HRMS data. The 
strategies developed here can be used as a complement to traditional 

target screening monitoring. The use of archived biological tissue pro-
vides more possibilities of successful prioritisation of CECs in biota using 
non-target screening. 

Funding sources 

This work was supported by the Swedish Environmental Protection 
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Fig. 2. a) Time trends in tentatively identified compounds displaying statistically significant (Mann-Kendall p < 0.05 and Spearman rank ƿ > 0.8) increasing trends 
from 1965 to 2017 (n = 3) b) Magnified view on the lower intensity time trends. 
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