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Abstract

Humans play major roles in shaping and transforming the ecology of Earth. Unlike natural

drivers of ecosystem change, which are erratic and unpredictable, human intervention in

ecosystems generally involves planning and management, but often results in detrimental

outcomes. Using model studies and aerial-image analysis, we argue that the design of a

successful human intervention form calls for the identification of the self-organization modes

that drive ecosystem change, and for studying their dynamics. We demonstrate this

approach with two examples: grazing management in drought-prone ecosystems, and reha-

bilitation of degraded vegetation by water harvesting. We show that grazing can increase

the resilience to droughts, rather than imposing an additional stress, if managed in a spa-

tially non-uniform manner, and that fragmental restoration along contour bunds is more resil-

ient than the common practice of continuous restoration in vegetation stripes. We conclude

by discussing the need for additional studies of self-organization modes and their dynamics.

Author summary

Human intervention in ecosystems is motivated by various functional needs, such as provi-

sioning ecosystem services, but often has unexpected detrimental outcomes. A major ques-

tion in ecology is how to manage human intervention so as to achieve its goal without

impairing ecosystem function. The main idea pursued here is the need to identify the

inherent response ways of ecosystems to disturbances, and use them as road maps for con-

ducting interventions. This approach is demonstrated mathematically using two contexts,

grazing management and vegetation restoration, and compared to remote sensing data for

the latter. Among the surprising insights obtained is the beneficial effect of grazing, in terms

of resilience to droughts, that can be achieved by managing it non-uniformly in space.
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Introduction

The dominant role played by humans in shaping and transforming the ecology of the Earth is

well recognized [1]. Human intervention in ecosystems is driven by various needs, including

ecosystem services, land-use changes, and rehabilitation of degraded ecosystems [2]. Unlike

unpredictable natural drivers of ecosystem change, such as droughts, forest fires and pest out-

breaks, human drivers typically involve planning and controlled management. Yet, the out-

comes of human intervention are often detrimental to the ecosystems involved, often when

coupled to natural drivers [3]; biodiversity loss [4], desertification [5, 6], and degradation of

coastal ecosystems [7], are a few examples of such detrimental human impact. Planning

human intervention under conditions of environmental variability, without impairing ecosys-

tem function, is thus a major challenge of current ecological research.

An instrumental concept that emerged in the context of human intervention is that of ‘eco-

logical integrity’, viewed here as a system attribute that reflects the degree to which an ecosys-

tem is self-organized in a functional ecosystem state [8, 9]. Implicit in this concept are three

premises. i) Ecosystems are nonlinear dynamical systems that approach a stable state (see short

glossary in Table 1 and detailed glossary in S1 Appendix) when left undisturbed [10]. ii) The

approach to a functional stable state, i.e. a state of a steadily functioning ecosystem, is a self-

organization process, which involves the emergence of spatially heterogeneous landscapes,

networks of energy and resource flows, complex food webs, and high species diversity [8, 11,

12]. iii) Human intervention often interferes with these self-organization processes, typically

resulting in reduced functionality and ecological integrity [13]. The introduction of the integ-

rity concept is highly constructive in focusing attention on the natural tendency of ecosystems

to self-organize. However, most efforts have been devoted to the intricate question [3] of

Table 1. A short glossary, defining the central terms used in this manuscript. See S1 Appendix for more detailed

glossary, with more detailed definitions and a more comprehensive list of terms.

Main terms Short definitions

Basin of attraction The set of initial conditions that converge in time to the same stable state.

Bifurcation diagram A diagram that shows the existence ranges and stability properties of possible systems states.

Growing eigenmode The direction in phase space along which a system changes following an instability.

Instability

(bifurcation)

A threshold phenomenon where small perturbations of a system state are amplified along a

particular eigenmode and induce a state change.

Linear stability

analysis

A mathematical method to identify instabilities of systems states by analyzing the dynamics

of diminishingly small perturbations.

Phase space (state

space)

The space spanned by the state variables of a dynamical system.

Spatial resonance Self-adjustment of spatial periodicity (wavelength) of a patterned state to an imposed

external periodicity.

Saddle point An unstable system state that has both stable and unstable manifolds, that is, directions of

convergence and departure in phase space.

Saddle-node

bifurcation

A collision and disappearance of two states of a dynamical system, as a control parameter

traverses a threshold value.

Stable manifold The set of points (initial conditions) in phase space that converge at long times to the system

state.

Stable state A system state that recovers from any sufficiently small perturbation or disturbance.

Unstable manifold The set of points (initial conditions) in phase space that converge to the system state when

time is run backwards.

Unstable state A system state that evolves towards a different state when subjected to small perturbations.

Wavenumber The spatial frequency of a periodic pattern, defined as the reciprocal of the wavelength.

https://doi.org/10.1371/journal.pcbi.1009427.t001
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assessing ecological integrity [8, 9], overlooking the dynamics of self-organization and the

implications of these dynamics to management practices.

The significance of studying the dynamics of self-organization lies in the ability to uncover

their characteristic spatio-temporal modes. These modes, hereafter ‘self-organization (SO)

modes’, represent ecological processes that direct ecosystems toward various stable states. Met-

aphorically, they are the road signs that point toward the possible destinations of self-organiza-

tion. Mathematically, they are growing eigenmodes associated with instabilities (bifurcations) of

ecosystem states [14], which dictate the growth directions of perturbations around unstable

ecosystem states.

Here, we put forward the thesis that by analyzing specific ecological contexts of interest,

exploiting methods of dynamical-systems and pattern-formation theories [14–18], concrete

suggestions for human intervention can be made that meet the requirement of high ecological

integrity under conditions of environmental variability, that is, keep the system at a high

degree of self-organization, despite the intervention.

The simplest realization of this thesis is the much discussed topic of ecological thresholds

[13, 19–21], where the implicit assumption is the existence of an unstable ecosystem state [22–

24] that acts as a barrier, and thus as a threshold, for transitions between two alternative stable

states. The simplicity in the notion of ecological thresholds makes it easily applicable, but at

the same time it limits its usefulness. This univariate representation of the ecosystem focuses

on whether a single process (representing a single SO mode), such as biomass removal, goes

past a threshold, and thus limits management options to keeping the ecosystem within some

safety bounds. However, the multivariate nature of most ecosystems and their spatial extent

calls for generalizing that approach by considering the multidimensional phase space (state

space) spanned by all relevant SO modes, and the unstable states it contains. These unstable

states, usually neglected because no real-life ecosystem converges to them, strongly affect the

flow in phase space; not only do they divide the phase space into distinct basins of attraction,

and thereby determine the possible ecosystem trajectories that disturbances can induce, but

this division may change as unstable states appear or disappear as a result of environmental

changes. Viewing specific forms of human intervention as initial points in that phase space,

informed choices of intervention, based on deep understanding of the phase-space structure,

may avoid undesired outcomes.

Out of all contexts of ecological self-organization, dryland ecosystems stand out as excellent

case studies for exploring high-integrity human intervention. Drylands are home to over a

third of the world’s population, and a variety of research questions related to human interven-

tion and the escalating concerns about desertification and biodiversity loss have been raised [5,

25]. Drylands also show striking spatial self-organization phenomena, which are well

accounted for by dryland-vegetation models [26–32], and are readily accessible via remote

sensing methods [33–35]. While dryland landscapes represent infinite-dimensional systems

(because of their spatial extent), the actual dynamics may be governed by a small number of

SO modes associated with a few instabilities of ecosystem states. Vegetation models indeed

uncover two generic instabilities: bare soil losing stability to uniform vegetation, and uniform

vegetation losing stability to periodic vegetation patterns [36]. Dryland-vegetation models

therefore provide an excellent tool to study high-integrity human intervention problems that

take into account more of the inherent dynamical complexity of actual ecosystems.

We focus in this paper on two contexts of human intervention in drylands: grazing man-

agement in drought-prone grasslands, and rehabilitation of degraded landscapes by water-har-

vesting methods. Through these two examples, we will show that the consideration of the

inherent ecosystem dynamics provides essential information needed for maintaining high eco-

logical integrity. We use model analysis to consider both cases, and show that the results
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remain valid even when strong environmental stochasticity is taken into account. We further

analyze aerial images of an afforestation project to demonstrate actual dynamics driven by

emerging SO modes. We conclude with a discussion of available empirical support for the pro-

posed approach and the need for further empirical and theoretical studies.

Results

General approach

The question we address here is how to intervene in an ecosystem and maintain it near a self-

organized functional state, despite environmental fluctuations and the additional stress that

the intervention itself incurs. We first propose a general approach for high-integrity human

intervention of this kind, and then demonstrate it with two examples, grazing management in

drought-prone grasslands, and rehabilitation of degraded landscapes by water-harvesting

methods.

The general approach consists of the following steps:

1. Identification of self-organized (SO) modes and the variables that quantify them, hereafter

‘SO variables’.

2. Uncovering the structure of the phase space spanned by the SO variables.

3. Exploration of high-integrity human intervention forms as initial phase-space points from

which phase trajectories emanate toward functional ecosystem states.

Implementing these steps for a given ecological context may turn out to be too hard without

a conceptual simplification of that context. In the two examples presented below, the context is

dryland ecosystems, and the conceptual simplification involves the consideration of primary

producers only, specifically plants, and a single limiting resource—water. This simplification

necessarily misses significant aspects of the ecosystem’s complexity such as plant-soil feed-

backs, species interactions and biodiversity, as well as aspects of the complex human impact

on ecosystems [5, 6, 21, 37]. However, in drylands it is a reasonable simplification due to the

dominance of plant-water interactions and the often existence of a single pattern-forming spe-

cies [18].

Given these conditions, the analysis can rely on existing mathematical models that capture

various pattern-forming feedbacks, and account for a wide variety of observed vegetation pat-

terns [14, 36, 38]. More complex situations, e.g. where plant-soil feedbacks play important

roles in addition to plant-water interactions, can be studied as well, but are not considered

here [39]. The general approach may also be implemented in the absence of mathematical

models, when detailed empirical data, including high-resolution remote-sensing images and

rainfall patterns, are available. In this case it, is important to make sure that the scales of the

empirical data and relevant phenomena match, i.e., that spatial and temporal scales are large

enough to capture the spatial and temporal patterns of interest.

Grazing management

The intervention goal in the grazing-management example we consider here is a provisioning

ecosystem service—feeding livestock. High-integrity management means achieving this goal

while maintaining the system in a viable vegetation state, despite the occurrence of occasional

droughts.

The first step of high-integrity intervention is identifying the system’s SO modes. These are

growing eigenmodes associated with instabilities of ecosystem states, which define the direc-

tions along which the system flows away from unstable states. If a reliable mathematical model
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of the particular ecological context of interest is available, then these instabilities and the asso-

ciated SO modes can be identified using linear stability analysis [14].

Here, we use a relatively simple model of dryland vegetation [18, 31], given by Eq (1) in the

Materials and methods section. This model, and similar ones, have been used over the past

decade to predict and understand dryland patterns with notable success [34, 35, 40, 41]. These

models are particularly relevant to understand periodic patterns that occur when the terrain is

relatively homogeneous, and here we focus on such ecosystems. Fig 1a presents a bifurcation
diagram that shows the existence and stability ranges of various ecosystem states in one spatial

dimension along the rainfall gradient.

A uniform vegetation state is stable at high precipitation P, while for low P a bare soil state

with no vegetation is stable. For intermediate P a periodic vegetation pattern state is stable,

creating bistability regions where both the patterned state and either the uniform-vegetation

state (high P) or the bare-soil state (low P) are stable. Mathematically, the two vegetated states

in this system are the result of instabilities: A uniform instability of the bare-soil state, where

the growth of a spatially uniform SO mode leads to a uniform vegetation state, and a

nonuniform (Turing) instability of the uniform-vegetation state, which involves the growth

of a spatially periodic SO mode to form a periodic pattern. The SO variables that quantify

these modes can be chosen to be the time-dependent modes’ amplitudes, denoted here as the

A0 for the uniform mode and Ak for the periodic mode, which can be deduced from spectral

analysis.

Fig 1. Managing grazing in grasslands. (a) A partial bifurcation diagram obtained from Eq (1), where solid (dashed)

lines represent stable (unstable) states. The diagram shows three states: bare soil (black line, BS), uniform vegetation

(dark green line, UV), and periodic vegetation pattern (light green line, PP). The insets show spatial biomass

distributions of these three states. The uniform vegetation state disappears in a saddle-node bifurcation (fold

bifurcation) at precipitation Pc. (b,c) Phase space spanned by the self-organized (SO) variables A0 and Ak at

precipitation P2 > Pc and at P1 < Pc, respectively. Solid (open) circles represent stable (unstable) states. They

correspond to the intersection points of the black vertical dotted lines in panel (a) with the various solution branches.

The lines in blue represent invariant manifolds (stable or unstable) associated with two saddle points. At P = P2, where

unstable uniform vegetation states still exist (two open circles on the horizontal axis in panel b), phase trajectories that

emanate from a nearly uniform-vegetation state converge to a periodic pattern (green line in panel b). By contrast, at P
= P1, where uniform vegetation states no longer exist, phase trajectories collapse to bare soil (red line in panel c).

However, introducing a small component of the periodic mode Ak to the initial uniform state, which may represent

non-uniform grazing, results in convergence to periodic pattern (green line in panel c). Units: precipitation [mm/yr],

biomass and SO variables A0 and Ak [kg/m2].

https://doi.org/10.1371/journal.pcbi.1009427.g001
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Once the SO variables have been identified we can proceed to the second step—studying

the structure of the phase space they span. Fig 1b and 1c show the phase-space spanned by

A0(t) and Ak(t) for two precipitation values, P1 and P2, that represent droughts of different

strengths occurring in a system that had originally been in a stable uniform vegetation state.

The main phase-space elements shown are: (i) uniform states and periodic vegetation states

denoted by circles, where solid (open) circles correspond to stable (unstable) states, (ii) Stable
and unstable manifolds of selected unstable states (blue lines), consisting of sets of points in

phase space that flow toward unstable states (stable manifolds) or away from them (unstable

manifolds), and (iii) phase trajectories emanating from phase-space points that represent ini-

tial states—the original uniform vegetation state before the occurrence of droughts, slightly

perturbed (green and red lines). The phase trajectories and the manifolds were calculated by

integrating numerically the model equations, as described in the Materials and methods sec-

tion, starting with initial conditions of high uniform vegetation and extracting the SO variables

A0 and Ak from spatial spectral densities [42, 43]. Note that circles denoting uniform states lie

on the A0 axis as they do not have a periodic component, while circles denoting periodic pat-

terns do not lie on the Ak axis as they have a uniform component that rules out negative bio-

mass values.

We are in a position now to proceed to the third step and explore forms of high-integrity

grazing management. The precipitation downshift to P2 represents a mild long-lasting drought

that renders uniform vegetation unstable and results in a transition to a periodic pattern, as

the green phase trajectory in Fig 1b shows. The precipitation downshift to P1 represents a

stronger drought that results in a collapse to bare soil, despite the existence of a stable pattern

state, as the red phase trajectory in Fig 1c shows. What makes the difference between these two

dramatically different responses is the disappearance of the pair of unstable uniform-vegeta-

tion solutions in a saddle-node bifurcation at Pc (see Fig 1a). Above Pc the unstable manifold of

the unstable uniform-vegetation solution (blue line in Fig 1b) acts as a barrier to the flow in

phase space that starts from initial conditions of fairly uniform vegetation, preventing the

approach of phase trajectories to the bare soil state. As the phase spaces show (and cannot be

gleaned in the bifurcation diagram alone), below Pc this barrier no longer exists, and collapse

to bare soil becomes possible.

The phase space information contained in Fig 1c leads to a significant insight about grazing

management. It suggests that managing grazing in a non-uniform manner, so as to create a

component along the periodic mode, Ak(t), will increase ecosystem resilience to droughts.

This is because of another manifold that acts as a barrier to phase trajectories (blue line in Fig

1c); points below this manifold (Ak too small) initiate phase trajectories that converge to the

bare soil state, while points above this manifold (Ak large enough) initiate trajectories that con-

verge to the periodic-pattern state. The latter correspond to nonuniform perturbations of uni-

form vegetation that can be interpreted as nonuniform grazing. In this view, grazing is

introduced into the model simulations through initial biomass distributions or pulse perturba-

tions. That view can be justified in cases of short grazing events relative to the time scale of veg-

etation growth.

Continual nonuniform grazing, where grazing proceeds continuously in time and nonuni-

formly in space, can be studied as press perturbations by modulating the biomass-decay

parameter M (see Eq 1 and Table 2) in space. Fig 2 shows an example of model simulations

with spatially periodic modulations of the biomass-decay parameter M applied to a limited

period of time. The management scenario we envision here consists of switching from uniform

grazing to nonuniform grazing once a developing drought is monitored, until a periodic vege-

tation pattern—a stable state at the reduced precipitation rate—develops. Practically, the graz-

ing field is divided into equal lots and grazers are restricted to any alternate lot. Once the
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Table 2. Model parameters.

Parameter name Symbol Units Model A Model B Figs 3 & 5 Model B Fig 6

Carrying capacity K kg/m2 1 5 10

Biomass decay rate (mortality and grazing) M 1/yr 2 3 5

Evaporation rate N 1/yr 5 10 7

Growth rate Λ (kg/m2)−1 yr−1 0.1 0.1 0.15

Water consumption rate Γ (kg/m2)−1 yr−1 4 10 5

Root-to-shoot ratio E (kg/m2)−1 1.5 - -

Shading coefficient R − 0.1 - -

Max infiltration A 1/yr - 100 50

Infiltration reference Q kg/m2 - 0.25 1

Infiltration contrast f − - 0.1 − 0.2 0.1 − 0.2

Biomass spread DB m2/yr 0.01 0.02 0.4

Soil-Water diffusion DW m2/yr 10 2 0.1

Water overland spread DH (m2/yr)/(kg/m2) - 2 5

Precipitation P (kg/m2 � yr−1) 80 − 120 200 − 360 150 − 250

https://doi.org/10.1371/journal.pcbi.1009427.t002

Fig 2. Response of the ecosystem to a drought under different grazing practices. Vegetation undergoes grazing in either uniform (a) or non-

uniform (b) ways, modeled by modifying the biomass-decay parameter M in Eq (1). Snapshots taken over time (left to right) show the

vegetation profiles, for a system undergoing a strong drought at t = 0, from precipitation P = 115 to P = 90[mm/yr] (similarly to red and green

lines in Fig 1c). Uniform grazing is enacted by keeping a constant M = 2, while non-uniform grazing is modeled by having the system’s domain

split into 16 (8) segments in the top (bottom) rows of panel b, where only odd segments undergo grazing for the first five years of a drought

(marked by gray shading in the panels). During non-uniform grazing, values of M for grazed segments and non-grazed segments are M = 2.2

and M = 1.8, respectively.

https://doi.org/10.1371/journal.pcbi.1009427.g002
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patterned state is established the management is switched back to uniform grazing, where

grazers are no longer restricted in space. As Fig 2 shows, nonuniform grazing of this kind

results in increased-resilience to droughts as compared with uniform grazing, and is not sensi-

tive to the spatial periodicity of the nonuniform grazing.

The surprising conclusion we draw from this analysis is that managing grazing non-uni-

formly is a high-integrity form of human intervention that can result not only in achieving an

ecosystem service but also in increasing the resilience to droughts, rather than decreasing it

due to the additional stress that uniform grazing imposes.

Rehabilitation of degraded landscapes

A common approach of rehabilitating degraded vegetation is water harvesting by spatially

periodic ground modulations that intercept overland water flow and along which vegetation is

planted [44]. Most often, the ground modulations consist of micro-catchments, such as paral-

lel contour bunds or furrows, but milder intervention forms, such as soil-crust removal, can

also be envisaged. In the following we study vegetation rehabilitation by a stripe-like configu-

ration of ground modulations using another variant of the Gilad et al. model given by Eq (3) in

the Materials and methods section. We modulate the infiltration rate, as in Eq (5), to mimic

stripes of removed soil crust that form a periodic configuration in the x direction with a wave-
number kf or wavelength Lf = 2π/kf. This is a spatial resonance problem [45, 46] whereby a sys-

tem that tends to self-organize in a periodic pattern with a wavenumber k0 (wavelength L0) is

subjected to an external periodic force of a different wavenumber kf.
The natural wavelength L0 is determined by various biotic and abiotic factors, such as the

lateral root extension and the rates of precipitation and infiltration, and when it differs from

the forcing wavelength Lf it stands in conflict with the favorable growth conditions that the lat-

ter forms. Since L0 changes with environmental conditions and cannot be known in highly

variable environments, a major question of resilience arises: what plantation patterns keep

productive system states most resilient to environmental changes? Should the plantation pat-

tern follow the periodic configuration of ground modulations, i.e. vegetation bands along each

stripe of removed crust, or should other plantation patterns, that do not fully overlap the peri-

odic ground modulations, be used instead?

In order to study this question we first identify the relevant SO modes. The bifurcation dia-

gram in Fig 3a reveals two basic instabilities: an instability of the bare-soil state to a periodic

stripe pattern as the precipitation parameter is increased past a threshold value, and an insta-

bility of the periodic stripe pattern to a spot-like rhombic (stretched hexagonal) pattern [47] as

the precipitation parameter is decreased below another threshold value. Fig A in S1 Appendix

illustrates the development in time of the two instabilities. Notice that the rhombic pattern per-

sists as a stable state at precipitation values significantly lower than that of the stripe pattern.

The instability of the bare-soil state involves the growth of a stripe SO mode of the form

A(t) cos(kfx) (up to an arbitrary constant phase), where A(t) is the time-dependent mode’s

amplitude. The growth of this periodic mode, as precipitation is increased, represents the

expected establishment of vegetation along the stripes of removed soil crusts, where the infil-

tration rate and thus the soil-water content are higher. The instability of the stripe pattern

involves the growth of two additional SO modes of the form a(t) cos(kxx ± kyy), where a(t) is

the shared amplitude of the pair of modes, kx = kf/2 and ky is such that the total wavenumber k
is equal to the natural wavenumber k0 (see Fig 4) [45]. The appearance of these modes can be

deduced using a spectral-density analysis of the rhombic pattern they lead to. Fig 4 shows a

rhombic pattern (left panel) and the modes of highest amplitudes (colored squares) in the (kx,
ky) plane (right panel). The original stripe mode is represented by the red squares, whereas the
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Fig 3. Vegetation rehabilitation using periodic ground modulations. (a) A partial bifurcation diagram obtained from Eq (3), showing

bare soil state (black line, BS), a stripe pattern (dark green line, SP) and a rhombic pattern (light green line, RP). Solid (dashed) lines

represent stable (unstable) states. The insets show examples of two-dimensional spatial biomass distributions of the two patterned states.

The stripe pattern disappears in a saddle-node bifurcation at precipitation Pc. (b,c) Phase space spanned by the self-organized (SO) variables

A and a above the saddle-node bifurcation (P = P2 > Pc) and below it (P = P1 < Pc), respectively. Solid (open) circles represent stable

(unstable) states. They correspond to the intersection points of the black vertical dotted lines in panel (a) with the various solution branches.

The lines in blue represent stable and unstable manifolds. At P = P2, where the unstable stripe pattern still exist, phase trajectories that

emanate from a nearly stripe-pattern state converge to the rhombic pattern (green line in panel b). In contrast, at P = P1, where the stripe-

pattern state no longer exists, phase trajectories collapse to bare soil (red line in panel c). However adding small components of the oblique

modes to an initial stripe pattern places the system above the stable manifold of the unstable rhombic pattern and results in convergence to

the rhombic pattern (green line in panel c).(d-f) Snapshots of a 13 × 13 [m] domain, taken over time (left to right) showing response of

ecosystem to a drought, corresponding to green line in panel b, and red and green lines in panel c, respectively.

https://doi.org/10.1371/journal.pcbi.1009427.g003
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two additional SO modes are represented by the blue and green squares. We call the latter

“oblique modes” since each of them represents a slanted periodic stripe pattern, as the insets in

Fig 4 show. The signature of the stripe mode in the rhombic pattern appears as a periodicity in

the x direction (red lines), while the signatures of the obliques modes appear as periodicities in

slanted directions (blue and green lines). The growth of the oblique SO modes from a stripe

pattern, as precipitation is decreased, reflects vegetation mortality to form a spot (rhombic)

pattern. Each spot benefits from a larger area of surrounding bare soil, and thus from an addi-

tional source of water through source-sink relations [48]. The SO variables that quantify the

SO modes are chosen to be their time-dependent amplitudes, A(t) of the stripe mode, and a(t)
of the symmetric pair of oblique modes.

The existence of two functional ecosystem states, stripe and rhombic patterns, opens up

two options for restoring degraded vegetation, as Fig B in S1 Appendix illustrates: continuous

plantation along the modulation stripes to initiate the stripe mode and its convergence to a

stripe pattern, or fragmental plantation to initiate the two oblique modes and their conver-

gence to a rhombic pattern. We argue that although both pattern states (and the plantation

pattern they represent) are functional, they differ in their resilience to droughts, and thus in

their long-term ecological integrity. Crucial to our argument are the roles that unstable states

play in dividing the phase space into distinct domains through their stable and unstable mani-

folds. While in the grazing-management example considered in the previous section it was the

unstable uniform-vegetation state that prevented collapse to bare soil, here the unstable stripe

pattern plays a similar role.

We consider first the response of an ecosystem that has been restored in a stripe pattern to

a moderate precipitation downshift to a range where the stripe pattern is unstable but still

exists (P = P2 in Fig 3a). As the green trajectory in Fig 3b and the snapshots in Fig 3d show, the

downshift results in a smooth transition to a rhombic pattern. However, stronger downshifts,

Fig 4. Self-organized (SO) modes associated with rhombic pattern. A nearly asymptotic rhombic pattern in the (x,

y) plane (left), resulting from an instability of a stripe pattern, and the corresponding Fourier plane (kx, ky) showing the

three SO modes that comprise it (right). See Fig A in S1 Appendix for earlier snapshots. These modes include the

original stripe mode with wave-vectors ±(kf, 0) (red squares in right panel), representing periodicity in the x direction

as the inset with vertical red stripes in the right panel show. The signature of this mode in the rhombic pattern

(left panel) is illustrated by the red lines. The two additional SO modes are a pair of oblique modes with wave-

vectors ±(kf/2, ky) and ±(kf/2, −ky) (blue and green squares, respectively, in right panel), which represent slanted stripe

patterns as the insets in blue and green in the right panel show. The wave-vector component ky is determined such that

the corresponding wave-vector sits on a circle of radius k0—the wavenumber (periodicity) that the natural pattern (in

the absence of ground modulations) tends to form. The signatures of the oblique modes in the rhombic pattern (left

panel) are illustrated by the slanted blue and green lines.

https://doi.org/10.1371/journal.pcbi.1009427.g004
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to precipitation values (P = P1 in Fig 3a) below the saddle-node bifurcation at which the unsta-

ble stripe pattern disappears, can result in a collapse to bare soil, as the red trajectory in Fig 3c

and the snapshots in Fig 3e demonstrate. This is because the stripe pattern and its unstable

manifold no longer exist to direct phase trajectories towards the stable rhombic pattern. The

initial stripe pattern lies within the basin of attraction of the bare-soil state and the phase tra-

jectory converges to this state. This behavior should be contrasted with that of an ecosystem

that has been restored in a rhombic pattern. In this case, a strong precipitation downshift to P
= P1 will result in a convergence to a rhombic pattern, while a precipitation upshift to a range

where rhombic patterns are unstable or do not exist, representing rainy years after drought,

will result in a smooth transition towards a stable stripe pattern.

Importantly, the nearly stripe pattern obtained in this process might not suffer from the

poor resilience of a restored stripe pattern, because it is likely to contain vestiges of the oblique

modes. These oblique modes can place the system above the dividing manifold, in the basin of

attraction of the stable rhombic pattern (see the green trajectory in Fig 3c and the snapshots in

Fig 3f). In conclusion, our model analysis suggests that rehabilitation of drought-prone ecosys-

tems in rhombic patterns, rather than in stripe patterns, should result in longer-term produc-

tivity and therefore represents rehabilitation of higher-integrity.

Robustness to environmental stochasticity

The results described so far were obtained by solving Eqs (1) and (2) with constant precipita-

tion rates, where precipitation downshifts were captured by initial states that were calculated

at higher constant precipitation values. To what extent do these results remain valid under

more general conditions of environmental stochasticity, such as due to fluctuating rainfall? To

answer this question we studied the model equations using a precipitation rate that changes

annually, with random values taken from a Gamma distribution [49] We compared three

cases: no noise, weak noise and strong noise, realizations of which are shown in Fig 5a. For

each case we considered initial conditions involving superpositions of two states as follows:

increasing portions of a periodic-pattern component in a superposition with uniform vegeta-

tion (“pattern share”) for the grazing management problem (vertical axis in Fig 5b), and

increasing portions of a rhombic-pattern component in a superposition with a stripe pattern

(“rhombic share”) for the rehabilitation problem (vertical axis in Fig 5c). The basic states in

these mixed initial conditions, i.e. uniform vegetation in the grazing management problem

and stripe pattern in the rehabilitation problem, were calculated at high precipitation and the

outcomes of precipitation downshifts to the prescribed mean precipitation values on the hori-

zontal axes in Fig 5b and 5c were studied under the three aforementioned precipitation cases.

The outcomes are of three types: no change in the basic state (blue domains), shift to an alter-

native functional state (green domains), and collapse to bare soil (grey domains). As the figure

indicates, the overall response remains the same, irrespective of the noise level. Higher propor-

tions of the alternative state in the initial conditions mean that the system is less liable to col-

lapse, as implied by the shrinking grey domains.

Empirical observations of SO modes

The SO modes are central to the proposed approach for high-integrity human intervention, as

the model studies described so far demonstrate. But, are there empirical indications for their

existence, and for the pattern change that their growth induces? Observations of SO modes,

indicating the development of periodic vegetation patterns from uniform vegetation following

a prolonged drought, have been reported in studies of vegetation patterning over a period of

40 years in southern Niger [50]. These results support the construction of a phase space
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spanned by a uniform SO mode and a periodic SO mode, as was done in the grazing manage-

ment example. Here we bring a new evidence for the emergence of oblique SO modes in affor-

estation projects in the northern Negev, Israel [14, 51]. These projects involved the

engineering of furrows along topographical contours, to harvest runoff water, and the planta-

tion of trees along them to make use of the increased soil-water content.

Using aerial images taken in 2010, we identified 100 small regions of 4 parallel bunds each,

where the planted trees grew to form a stripe pattern, and compared those regions in 2010 to

their state in 2019. Fig 6 presents an analysis of a sample region and, for qualitative compari-

son, also model results that show the response to a press perturbation in the form of a long

drought. In this model analysis we used a new parameter set (Table 2), that better fits the spa-

tial and temporal scales of the ecosystem, as well its precipitation regime. The data of 2019

(panel a) show a fragmentation of the stripe pattern into a spot-like pattern, which translates

in the spectral-density analysis to the appearance of oblique Fourier modes, not aligning along

the horizontal kx axis. As the model results in panel (b) (t = 10 yr) suggest, this is a transient

behavior that slowly approaches a rhombic pattern. This behavior should be contrasted with a

response that does not involve the growth of oblique modes and results in a uniform biomass

Fig 5. Responses to precipitation downshifts under stochastic precipitation and different initial conditions of mixed vegetation states. Left, middle and right

columns correspond to negligible, weak and strong precipitation fluctuations, respectively. (a) Demonstration of noise level. (b) Asymptotic states (see color legend) for

the grazing management system, where initial conditions consist of increasing portions of periodic pattern in uniform vegetation (pattern share). (c) Asymptotic states

for the vegetation rehabilitation system, where initial conditions consist of increasing portions of rhombic pattern in stripe pattern (rhombic share). Each pixel in the

parameter plane (mean precipitation—share) shows the asymptotic state obtained from averaging over 20 simulations with a unique randomization of temporal noise

from a Gamma distribution per simulation, where the initial conditions correspond to mixtures of states calculated at P = 115[mm/yr] (P = 260[mm/yr]) for middle

(bottom) row. Note that this vertical axis is logarithmic.

https://doi.org/10.1371/journal.pcbi.1009427.g005
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decline along the stripes, keeping the stripe morphology unchanged. That response does not

occur, apparently because of the scale-dependent feedback between biomass and water that is

typical of dryland vegetation and results in vegetation patterning [48, 52]. Overall, 64 out of

the 100 regions surveyed had signatures of oblique modes, implying that a transition to a

rhombic pattern was indeed taking place across the planted forest. An additional 9 regions

showed significant degradation with more than half the trees dying, possibly indicating a col-

lapse to bare soil, as can occur, according to our theoretical analysis, due to lower rainfall rates

or less perturbed initial stripes. Of the remaining 27 regions, 9 did not show a significant

change, and 18 were difficult to classify—both responses possibly occurring due to stronger

heterogeneities (e.g. occurrence of rocks in soil) in those regions, that would affect the

response of vegetation to drought.

We attribute the change in tree pattern to drought pulses that occurred in 2008–2009 and

2017–2018, and involved rainfall drops of 50–70 mm/yr below the mean annual rainfall of 179

mm/yr during the period 2004–2019, combined with a press-like decline in the mean annual

rainfall from a higher value of 208 mm/yr during the years 1980–2003 (see Fig D in S1 Appen-

dix). Drought pulses can result in several responses, including a reduction in leaf area and

crown “dieback”, where only a portion of a tree’s canopy dies [53], an increase in individual

tree mortality [54], and broad-scale die-off events [55]. In the present case of a runoff harvest-

ing system of planted tress, the pattern change is likely a result of dieback and individual tree

mortality that were amplified by the cumulative stress that was built up following two succes-

sive drought pulses [56]. An amplification effect of this kind has been reported in long term

studies of woody plants in the same study area (Park Shaked LTER) [57]. We refer the reader

to the Materials and methods section and to S1 Appendix for more details about this analysis.

Fig 6. Emergence of oblique self-organized (SO) modes in afforestation projects. (a) A region of size 30x30 [m]

containing four stripes of planted trees along bunds, taken from aerial images of the northern Negev region

(Coordinates: 31.295N, 34.815E) in 2010 and 2019. (b) Model results of a comparable system, consisting of four initial

vegetation stripes that has been subjected to a precipitation downshift from P = 205 to P = 180 [mm/yr] at t = 0, and

simulated to t = 200[yr] (see full details in Materials and methods section and S1 Appendix). Note that similarly to Fig

3, but with different values of P, at high precipitation (P = 205) both stripe and rhombic patterns are stable, but at low

precipitation (P = 180) stripe patterns are no longer stable. Top row shows spatial images, while bottom row shows

spectral densities obtained from spectral (FFT) analysis, which demonstrates the periodicity of vegetation along

different directions. The empirical spectral density in 2010 (a) shows the dominance of a stripe SO mode (yellow dots

on x axis), representing the original planted pattern, while that in 2019 shows, in addition, the development of oblique

modes (light-blue dots off the x axis), which represent vegetation mortality to form a spot-like pattern. The model

simulations in (b) show a similar trend. During the transient dynamics towards a rhombic pattern the emerging pair of

oblique modes are not symmetric (compare with Fig 4) both in the empirical data and the model simulations.

However, simulations to longer times (t = 200[yr]) indicate the eventual emergence of a symmetric pair of oblique

modes.

https://doi.org/10.1371/journal.pcbi.1009427.g006
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Discussion

We presented here a general theoretical approach for high-integrity human intervention in

ecosystems, using dryland vegetation as a case study. The novelty in this approach lies in the

identification of the few inherent self-organization (SO) modes that drive the system from one

state to another, the derivation of their dynamics, and the utilization of these modes to study

human intervention forms that result in fast convergence to functional states, despite the addi-

tional stresses that these interventions often exert. This approach has been motivated by an

earlier model study of rehabilitation by water harvesting [46], where a simple toy model of pat-

tern formation—the Swift-Hohenberg equation [14]—was used to derive the reduced dynam-

ics of the SO modes. Here, we use a fairly elaborate water-vegetation model (Eq 3) to derive

these dynamics, and demonstrate the generality of the approach by considering an additional

example—grazing management in drought-prone grasslands. The analysis of the grazing

example has led to a surprising novel result, namely, that nonuniform management of grazing

increases the resilience to droughts, as compared with uniform grazing that exerts an addi-

tional stress on already vulnerable ecosystems.

In implementing this approach, special attention has to be paid to unstable states and their

stable and unstable manifolds, which affect the dynamics in phase space, and thereby, the

asymptotic state that the system approaches. Thus, in the example of grazing management in

drought-prone grasslands we have identified vulnerability to desertification, associated with

the disappearance of an unstable uniform vegetation state. We further found that managing

grazing non-uniformly can reduce the risk of desertification by creating a component along a

periodic SO mode, which directs the ecosystem towards a functional patchy vegetation state.

From an ecological point of view, the increased resilience to droughts, achieved with non-uni-

form grazing, can be understood as a consequence of the positive water-biomass feedback loop

[48] that gives competitive advantage to ungrazed (higher-biomass) patches over their grazed

(lower-biomass) neighbors in capturing the limiting water resource. This competitive advan-

tage results in reduced competition and increased resilience to potential droughts.

A similar situation appears in the vegetation-rehabilitation problem, where the common

practice of rehabilitation in stripes (Fig B in S1 Appendix) results in vulnerability to strong

droughts, whereas fragmental rehabilitation (Fig B in S1 Appendix) that contains components

of oblique modes, results in the more resilient rhombic patterns. Here too, the vulnerability of

stripes to desertification is associated with the disappearance of an unstable state—the stripe-

pattern state—and the creation of components along the oblique modes is a means to reduce

the competition, this time along the ground modulations. The analysis of this example high-

lights the significance of distinguishing between the ground modulation pattern and the vege-

tation planting pattern; the two need not coincide in variable environments where state

transitions are likely to occur.

The analyses of these two examples highlight a novel mechanism of abrupt regime shifts

that is not associated with the commonly conceived tipping-point behavior. The mechanism

involves two instabilities, a primary instability of a dysfunctional state to a functional state, as

environmental conditions ameliorate, and a secondary instability of the functional state to

another functional state as environmental conditions worsen. Abrupt shifts are then associated

with the disappearance of the unstable functional state. This mechanism is expected to apply

to any system that shares this bifurcation structure, and, in particular, to ecosystems that have

developed other forms of ‘defense mechanisms’ that play similar roles to that of spatial pattern-

ing in the present case, in order to cope with environmental stresses and remain functional. It

shares with the simpler tipping-point mechanism the abrupt, global nature of the transition,

but differs in two respects: (a) the transition requires a significant downshift of the
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environmental parameter (e.g. down to P< P2 in Fig 1), (b) the transition to the dysfunctional

state can occur well before the tipping point, in a parameter range where the system still has a

stable functional state, e.g., the transition to bare soil that follows the precipitation downshift

to P1 in Fig 1c where a functional periodic pattern still exists as a stable state.

The projection for increased likelihood of extreme events, such as severe droughts, makes

the new mechanism particularly relevant in the current era of climate change. However, the

existence of an alternative functional stable state paves the way for devising preventive mea-

sures that direct the ecosystem towards this state, following an extreme event, by creating com-

ponents of the appropriate SO mode. Such interventions may often integrate with needs for

provisioning ecosystem services. This appears to be the case with non-uniform grazing or

clear-cutting that build up components of periodic SO modes and induce transitions, follow-

ing severe droughts, to functional patchy-vegetation states rather than collapse to bare soil.

Empirical evidence in support of the ideas presented here is still very limited, possibly

because of the lack of studies intended to test them. Evidence for the improved resilience of

non-uniform grazing may come from studies of rotational grazing, a practice that has been

reported to be more sustainable than continuous grazing [58]. In rotational grazing, grazers

are moved periodically among paddocks rather than let to graze on a single plot for the entire

grazing season, thereby producing spatial periodicity. Further model and empirical studies are

needed in order to explore optimal practices in terms of paddock size, grazing time in a pad-

dock, number of paddocks simultaneously grazed, etc.

While vegetation restoration by periodic ground modulations is a common practice, long-

term studies of restored areas that focus on large-scale spatial patterning are still lacking. Yet,

indications of spatial self-reorganization along human-made ground modulations do exist, as

we demonstrate in our remote-sensing data analysis (see Fig 6). As we show, long-term moni-

toring of such areas using remote sensing data can be used to calculate spatial spectral densities

and identify the SO modes that drive the dynamics. In our aerial image analysis, we could see

in many of the areas the development of oblique-mode peaks in the course of time, similarly to

the simulation shown in Fig 3d and 3f. Although it is by no means conclusive, this result pro-

vides empirical support for the emergence of the pair of oblique SO modes and for the transi-

tion from stripe to rhombic pattern, as the theoretical analysis predicts. The model prediction

that rehabilitation in rhombic patterns is more resilient than rehabilitation in stripe patterns,

unfortunately, cannot be tested as relevant data are not available. This prediction, however,

can serve as an informed hypothesis to be test in dedicated rehabilitation experiments with

long-term monitoring. We note that our model (Eq 3) describes flat terrains whereas the

empirical data are taken from gently slopped terrains. Adding a gentle slope is not expected to

change the general results, as has been shown in an analysis of a simpler pattern formation

model [59]. Moreover, the fact that the general response we see in our aerial image analysis is

similar to model prediction hints at a universal behavior of such human modified ecosystems,

and demonstrates that understanding the pattern formation properties of simple models can

help understand complex dynamics in real ecosystems.

We focused here on dryland vegetation as a case study, but the general approach should be

applicable to many other ecological contexts showing instabilities of uniform and periodic states.

Candidate systems of immediate interest are those for which mathematical models have already

been suggested. Example of such contexts are vegetation patterns in wetlands [60], spatial pat-

terns in seagrass meadows [61], patterns in benthic bacteria-nutrient systems [62, 63], tidal mor-

phodynamics [64], patterns in young mussel beds [65, 66] and others. In the case of drylands,

we considered two components—the biomass of a dominant plant species and water—and the

associated human intervention, e.g., grazing and water harvesting, in the form of pulse or press

perturbations. Because of the tendency of dryland ecosystems to self-organize in spatial patterns
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these systems are still high dimensional, and the reduction to low-dimensional dynamics [67],

as shown in Figs 1b and 1c and 3b and 3c, has been obtained by focusing on SO modes associ-

ated with instabilities that have incurred in the system. That approach is likely to be applicable

to other contexts involving pattern-forming species, such as those noted above.

However, the consideration of additional elements of ecosystem complexity may require

further development of the approach. One example are diverse plant communities that self-

organize in space as a result of plant-resource feedbacks or plant-soil feedbacks [37]. Here, a

trait-based approach, where vegetation biomass depends not only on physical space but also

on trait space [32], may prove useful. Another example is evolutionary dynamics that involve

spatial self-organization. Here, applying theoretical frameworks, such as adaptive dynamics

[68], to vegetation models that capture spatial instabilities can be useful.

The results reported here highlight the significance of incorporating concepts of dynam-

ical-system and pattern-formation theories into studies of high-integrity human intervention.

These concepts can readily be used when faithful mathematical models are available, but

should remain useful also in the absence of mathematical models, when detailed empirical

data, such as high-resolution airborne images, are available. Highly resolved spatial time series,

for example, may be used to extract the dynamics of the few primary spatial Fourier modes—

the SO modes—and construct the structure of the phase space they span, as was done in creat-

ing Figs 1 and 3 using model simulations. More general contexts of ecosystem dynamics, not

necessarily involving spatial patterning, call for the development of additional methods of

dimension reduction, such as principal component analysis and others [69], for identifying SO

modes and tracking their dynamics.

Combining mathematical analysis with empirical observations to uncover the phase-space

dynamics of self-organization modes, using advanced methods of dimension reduction, can

pave the way for novel high-integrity human-intervention forms and new practices of sustain-

able ecosystem management.

Materials and methods

Mathematical models

A general model platform for dryland vegetation [32] is applied to two different contexts,

thereby producing two model variants: pattern-forming grassland ecosystem (Model A), and

vegetation restoration by water harvesting (Model B). The application of the general model

platform to the two specific contexts results in model simplifications, which facilitate model

analysis but do not involve loss of essential information. The general platform consists of

PDEs for the areal densities of above-ground biomass of all species (or functional groups)

Bi(r, t)(i = 1, . . ., N), soil water W(r, t), and surface water H(r, t), all in units of [kg/m2], where

r = (x, y) [m] represents the spatial coordinates in the plane, and t [yr] represents time. We

note that PDE modeling can be justified even for small plant populations, as is often the case

in drylands [70]. In all contexts we assume flat horizontal terrains and plant species with lat-

erally confined root systems for which the integral terms in the general platform, which

describe nonlocal water uptake by laterally extended roots, can be calculated and transformed

into algebraic forms [32]. Under these conditions, vegetation-water interactions, as well as

water flow, are limited to small spatial scales, of the order of a few meters for the parameters

used in our models [71, 72].

Model A—Grassland ecosystem

In this context we assume a single grass species and a sandy soil for which the infiltration rate

of surface water into the soil is high both in bare and vegetated areas. As a consequence,
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overland water flow is insignificant, and the equation for surface water can be eliminated. The

general platform then reduces to the following simplified system of PDEs:

@tB ¼ GBB 1 �
B
K

� �

� MBþ DBr
2B; ð1aÞ

@tW ¼ P � LW � GWW þ DWr
2W; ð1bÞ

where,

GB ¼ LWð1þ EBÞ2; GW ¼ GBð1þ EBÞ2; L ¼
N

1þ
RB
K

ð2Þ

are biomass growth rate, water-uptake rate, and soil-water evaporation rate, respectively.

Explanations about all model parameters, and their values, appear in Table 2. Parameter values

are based on [73] and [34].

Model B—Vegetation restoration

Here we still assume a single plant species, woody or herbaceous, but consider a crusted soil

with low infiltration rate of surface water, except at vegetation patches. The surface-water

equation cannot be eliminated in this case and the model equations read

@tB ¼ GBB 1 �
B
K

� �

� MBþ DBr
2B; ð3aÞ

@tW ¼ IH � LW � GWW þ DWr
2W; ð3bÞ

@tH ¼ P � IH þ DHr
2ðH2Þ; ð3cÞ

where GB, GW and L are given by (2), and

I ¼ A
Bþ Qf
Bþ Q

ð4Þ

is the surface-water infiltration rate that captures the different infiltration rates in bare-soil

(low) and in vegetated soil (high) for f� 1. Stripe-like ground modulations by removed soil

crust are modeled by modulating the infiltration contrast, f:

f ¼ f0

(

1þ
gf

2
cos kf x
� �

þ 1
h i

)

ð5Þ

with f0 the baseline infiltration contrast, γf the modulation strength, and kf (2π/kf) the spatial

wavenumber (wavelength) of the modulation. Explanations about values for all model parame-

ters appear in Table 2. Parameter values for Figs 3 and 5 are based on dimensionalization of

parameter values from a previous study [46]. Parameter values for Fig 6 were taken to repre-

sent a dryland ecosystem of woody vegetation, similar to the system for which aerial images

were analyzed. These values were based on [73] and [34].

Numerical analysis

The spatial distributions of the biomass density (Figs 1, 2, 3 and 6) and the phase-space trajec-

tories (Figs 1 and 3) shown are the results of integrating in time the equations of the different

models. This integration was done numerically using the Euler method for advancing time,

while spatial derivatives were resolved using a finite difference scheme (a five-point stencil for
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the Laplacian in the two-dimensional system). Typical grid sizes used were 100 by 100 points

for the two-dimensional system and 500 points for the one-dimensional system.

Each phase-space trajectory was simulated once, starting with an initial condition around

the stable state at high precipitation (uniform vegetation at P = 115[mm/yr] for Fig 1, a stripe

pattern at P� 300 [mm/yr] for Fig 3), and integrating in time with the relevant precipitation

value (P1, P2). Approximations to stable and unstable manifolds of a saddle point were found

by starting with similar initial conditions to those of the phase-space trajectories, except that

many different trajectories were scanned as part of a binary search for trajectories that spend

increasingly long times near the saddle points, diverging, eventually to one side of the saddle

or to the other side.

The SO variables shown in the phase planes (A0 and Ak in Fig 1, A and a in Fig 3) were

found using spatial spectral densities [74, 75]. These spectral densities were calculated by tak-

ing the absolute value of a discrete Fourier transform (in one dimension in Fig 1, in two

dimensions in Fig 3). More specifically, Numpy’s “ifft” function was used (FFT module), in

order to ensure a correct normalization, independent of grid size. The SO modes where identi-

fied with the primary Fourier modes, disregarding harmonics. The SO variables were then

associated with the absolute value of the Fourier modes.

The bifurcation diagram of Fig 1 was computed using the numerical continuation software

AUTO [76]. The bifurcation diagram of Fig 3 was computed using the numerical continuation

software pde2path [77]. Stability properties shown in these diagrams were calculated by

extracting solutions and performing numerical linear stability analysis, and then validating

these results using time integration. The parameter planes (mean precipitation—share) in Fig

5 were calculated by running 20 simulations per pixel shown in the panels (36x11 and 46x11

pixels per panel, for middle and bottom rows, respectively). In each simulation, a random time

series for precipitation was generated (uncorrelated to time series of other simulations) with

100 values representing precipitation for each year. The values were taken from a Gamma dis-

tribution [49, 78] of average value p0 and standard deviation σ = p0 σ0, where σ0 is 0, 0.02, 0.1

for the left, middle and right columns, respectively. Examples of time series are shown in the

top panels of Fig 5. Gamma distribution has been shown to be appropriate for representing the

stochasticity associated with precipitation in drylands [78], and we also show in S1 Appendix

that our results do not depend on the specific distribution, by using a Gaussian distribution,

giving us the same qualitative results (Fig C in S1 Appendix).

For each simulation, an initial state is constructed from a mixture of two states of high pre-

cipitation. For the middle row these are the uniform vegetation and periodic pattern states (8

peaks in domain of 20[m]), taken at P = 115. For the bottom row these are the rhombic pattern

and stripes pattern states (similarly to Fig 2), taken at P = 260. The mixture is determined by

the position along the vertical axis of the panel, where 0.01 means a mixture of 1% of the peri-

odic pattern (rhombic pattern) state and 99% of the uniform vegetation (stripe pattern) state,

for the middle (bottom) row. This initial state is then integrated in time for 100 years using the

time series as explained above, and the resulting pattern at the end of this time is evaluated

using an automatic algorithm, based on biomass thresholds (for differentiation between pat-

terns and uniform states) and detection of patch number (for differentiation between different

types of patterns), with the color of the pixel chosen accordingly (see color legend in the left

side of Fig 5).

Specifically, for the one-dimensional system, vegetated states had average biomass between

0.1 and 0.45, and almost all patterned states had variation of biomass between 0.4 and 0.6.

Thus a biomass threshold of 0.05 was used for this system (average biomass smaller than

threshold is bare soil, variation in biomass larger than threshold is patterned state, everything

else is uniform vegetation). For the two-dimensional system, vegetated states had average
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biomass between 0.02 and 0.16, so that states with less than a threshold of 0.01 was deemed as

bare soil. Stripe pattered states have multiple (4 in our case) regions of bare soil that are not

connected, while all rhombic patterned have only 1 since the breakup of the pattern connected

the bare soil regions into one large one. Thus patterns with more than one bare region were

deemed as rhombic patterns, and other regions as stripe patterns.

Analysis of remote sensing data

We chose for the case study an afforestation project in the northern Negev, Israel (coordinates:

31.295N, 34.815E). Aerial images were taken from the website of the Survey of Israel depart-

ment (govmap.gov.il) at both 2010 and 2019, and were concatenated together to form two

large images. The large image of 2010 is shown in Fig E in S1 Appendix. Within this domain

150 locations were chosen manually, each at the center of a small region of 4 stripes of vegeta-

tion. This region size of 4 stripes allows us to capture the main properties of the spatial patterns

(e.g., rhombic structure), yet small enough to enable us to have many non-overlapping regions.

Given that the scale of the trees and their roots are of a few meters (compared to an order of

30x30 [m] for a region), and water flow is also limited (in particular due to the physical modifi-

cation of the landscape), this means that we this scale is also relevant for the main processes of

interest [71]. The choice of locations was based on viewing of aerial images from 2010 alone,

and locations were chosen such that they mark the center of regions where stripes are relatively

regular in shape, so that they do not overlap, and so that they are spread out throughout the

domain.

For each of these 150 regions, an automatic algorithm was then run, to find the best center

point of the region (i.e. between the two middle vegetation stripes), and the angle of the stripe.

This was manually corrected for 17 regions, where the algorithm partially failed.

All 150 regions were now comparable (despite different size and angle), in that they all rep-

resent square-shaped regions of four parallel vegetation stripes aligned in the same direction.

At this point they were given a score based on their spectral densities, to assess how regular

their vegetation stripes are, and ordered from the most regular to the least one. This score is

the ratio between the total intensities (of FFT-image) of the 2 pixels at (kx, ky) of (-4,0) and

(4,0), which represent the mode of four stripes in the image, and all the pixels in the FFT-

image within a radius of 8, excluding the central pixel (0,0). The 50 lowest-score regions (with

least regular stripes) were discarded (shown by black dots in Fig E in S1 Appendix), and the

rest of the 100 regions in this new ordering were now analyzed. In particular, images of the

regions from 2010 and 2019 were compared to see the change in vegetation that took place

within that time frame.

These 100 regions were classified into 5 categories: 1) Regions with a clear transition to a

rhombic pattern. 2) Regions with substantial change, with strong marks of a rhombic pattern.

3) Regions with minimal change. 4) Regions with collapse of most vegetation. 5) Regions with

unclear change. See S1 Appendix for details of this classification and analysis. The double set

of images of these 100 regions (from 2010 and 2019), and its analysis using spectral densities,

is also shown in S1 Appendix.

Supporting information

S1 Appendix. Supplementary figures, glossary and analysis details. Further illustrations of

self-organization modes, a glossary of technical terms, and more information about the analy-

sis of aerial images. Fig A: Instabilities and associated SO modes for vegetation restoration. Fig

B: Schematic illustration of different vegetation plantation patterns. Fig C: Responses to pre-

cipitation downshifts under stochastic precipitation using a Gaussian distribution. Fig D:
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Annual precipitation data from the city of Be’er-Sheva, Israel. Fig E: Map of case study

domain.
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