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Abstract. Land degradation negatively impacts water, food, and nutrition security and is leading to increased
competition for resources. While landscape restoration has the potential to restore ecosystem function, un-
derstanding the drivers of degradation is critical for prioritizing and tracking interventions. We sampled 300–
1000 m2 plots using the Land Degradation Surveillance Framework across Nyagatare and Kayonza districts in
Rwanda to assess key soil and land health indicators, including soil organic carbon (SOC), erosion prevalence,
vegetation structure and infiltration capacity, and their interactions. SOC content decreased with increasing sand
content across both sites and sampling depths and was lowest in croplands and grasslands compared to shrub-
lands and woodlands. Stable carbon isotope values (δ13C) ranged from −15.35 ‰ to −21.34 ‰, indicating a
wide range of historic and current plant communities with both C3 and C4 photosynthetic pathways. Field-
saturated hydraulic conductivity (Kfs) was modeled, with a median of 76 mm h−1 in Kayonza and 62 mm h−1

in Nyagatare, respectively. Topsoil OC had a positive effect on Kfs, whereas pH, sand, and erosion had nega-
tive effects. Soil erosion was highest in plots classified as woodland and shrubland. Maps of soil erosion and
SOC at 30 m resolution were produced with high accuracy and showed strong variability across the study land-
scapes. These data demonstrate the importance of assessing multiple biophysical properties in order to assess
land degradation, including the spatial patterns of soil and land health indicators across the landscape. By un-
derstanding the dynamics of land degradation and interactions between biophysical indicators, we can better
prioritize interventions that result in multiple benefits as well as assess the impacts of restoration options.

1 Introduction

Land degradation is inextricably linked to livelihoods and
negatively impacts over 3.2 billion people each year glob-
ally (IPBES, 2018). Land degradation also adversely affects
the resilience of social–ecological systems to climate change
by reducing their adaptive capacity. Therefore, the combined
impacts of land degradation and climate change represent a
significant risk to global food security (Webb et al., 2017),
particularly when considering positive feedback effects be-

tween processes such as more erratic and intense rainfall
events and soil erosion. Similarly, land degradation strongly
impacts the loss of biodiversity globally, further reducing the
adaptive capacity of ecosystems in the face of climate change
(Gisladottir and Stocking, 2005), which means that we can-
not tackle any of these global challenges in isolation.

Efforts to avoid, reduce, and reverse land degradation
are therefore critical if the Sustainable Development Goals
(SDGs) are to be achieved (IPBES, 2018). SDG 15.3, Life
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of Land, has set ambitious targets for land degradation neu-
trality (LDN), combining belowground indicators, i.e., soil
organic carbon (SOC), and aboveground measures (net pri-
mary productivity and land use) (Cowie et al., 2018). In
line with this thinking, forest and landscape restoration aims
to regain ecological functions, including biodiversity and
soil function, and enhance human well-being across land-
scapes (Chazdon, 2008, 2016). The UN Decade on Ecosys-
tem Restoration (2021–2030) offers promising opportunities
to bring together the global community to scale efforts across
the globe. These efforts highlight the complexity of ecosys-
tems and that multiple biophysical and socio-economic fac-
tors need to be considered when targeting, planning, imple-
menting, and tracking restoration on the ground. This in-
cludes understanding the spatial and biogeochemical varia-
tions of the soil ecosystem, which is the foundation for bio-
physical land restoration efforts, given its role in global net
primary productivity.

The global community acknowledges the need for long-
term monitoring networks across diverse environments
(Navarro et al., 2017; Sachs et al., 2010), including those fo-
cused on soil monitoring (Guerra et al., 2021; Lehmann et al.,
2020; Vermeulen et al., 2019), in order to better understand
drivers and interactions as well as track progress of interven-
tions. However, many assessments of land degradation and
restoration suffer from (i) disagreements about the definition
of land degradation, (ii) a conundrum of indicators that are
often not feasible to measure and hence operationalize, and
(iii) a lack of rigorous science-based analytical frameworks
(Vågen, 2015). Indicators are critical when assessing ecosys-
tem health and tracking progress toward restoration targets or
climate actions and can be important communication tools
for decision makers. Indicators should be readily measurable
and quantifiable and encompass the complexity of various
drivers.

The call for soil degradation and resilience indicators is
not new (Lal, 1997); however, scientific research around the
concept of soil health continues (Lehmann et al., 2020). We
argue that a coherent set of indicators collected using con-
sistent measurement methods is needed to address the com-
plexity of the ecosystem function. SOC is widely accepted
as a key indicator of soil health due to its influence on mul-
tiple indicators and its response to aboveground processes,
including land management (Deb et al., 2015; Paustian et
al., 2019; Shikuku et al., 2017). In addition, SOC is seen as
a key indicator to monitor progress on a number of SDGs
(Lorenz et al., 2019). Soil erosion is arguably the most im-
portant indicator of land degradation and also one of the most
widespread forms of degradation worldwide (Bennett, 1939;
Lal, 2003; Pimentel, 2006; Vågen and Winowiecki, 2019).
In addition, exchangeable base cations provide a measure of
available nutrients, and soil pH provides a measurement of
potential constraints such as acidity. Land cover and vegeta-
tion structure play a key role in terms of driving soil organic
carbon dynamics in landscapes while also influencing land

degradation processes such as soil erosion. Therefore, indi-
cators such as tree density within various vegetation structure
classes and overall tree diversity provide useful information
for informing restoration interventions around reforestation
(Di Sacco et al., 2020). The use of carbon isotopes provides
further insights into vegetation shifts as δ13C values in the
soil reflect the photosynthetic pathway of the aboveground
vegetation (Boutton et al. 1998). Soil infiltration capacity is
another well-established indicator of soil health, in particular
of the soil’s physical status and its hydrological functioning
(Allen et al., 2011). Soil infiltration capacity influences the
recharge of soil and groundwater stores and the generation
of surface runoff, with implications for erosion and flooding
occurrence (Hillel, 1998).

Given the heterogeneity of landscapes, spatial information
on the distribution of these indicators needs to be made at
relevant spatial scales (i.e., at the farm, landscape, and re-
gional levels). Furthermore, interactions between these indi-
cators need to be considered explicitly. Recent advancements
in spatially explicit assessment of soil and land health that
combine field-based campaigns with data analytics and earth
observation are now paving the way for improved methods of
biophysical characterization of multiple indicators (Vågen et
al., 2016) while providing an opportunity to enable science-
based monitoring approaches that can be applied in restora-
tion prioritization (Winowiecki et al., 2018) as well as for
communication with decision makers (Vågen et al., 2018).

In Rwanda, land degradation continues to be a critical
challenge. To combat this, Rwanda set a goal to achieve land
degradation neutrality by 2030 and, in 2011, Rwanda was the
first country in Africa to commit to a restoration target of de-
graded lands and forests under the Bonn Challenge, pledging
to restore 2 million ha, corresponding to 76 % of the country.
Underlying causes of land degradation in the country include
unsustainable farming and grazing practices, overexploita-
tion of forests and woodlands, and settlements and urban-
ization (Bizimana, 2018). One of the major processes of land
degradation in Rwanda is accelerated soil erosion, which is
driven by unsustainable agricultural practices, particularly in
steeply sloping lands (Karamage et al., 2016). This is further
exacerbated by intense rainfall events, resulting in increased
rainfall erosivity (Rutebuka et al., 2020), and the increasing
energy demands of a growing population, resulting in defor-
estation and loss of vegetation cover in general. Soil erosion
is severe, with mean national rates of 250 Mg ha−1 yr−1 and
studies showing as much as 421 Mg ha−1 yr−1 in croplands
(Karamage et al., 2016).

Considering that the agricultural sector contributes signif-
icantly to the national economy and that 90 % of the popu-
lation depends on agriculture for their livelihoods, tackling
land degradation and restoring degraded land is of critical
importance for Rwanda. Studies suggest that investments in
soil conservation and land productivity are contributing to re-
duced land degradation and increased agricultural productiv-
ity in Rwanda (Bidogeza et al., 2015; Byiringiro and Rear-
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don, 1996; ; Bizoza and De Graaff, 2012; Karamage et al.,
2016). For example, various forms of terracing have been im-
plemented across Rwanda to specifically curb the negative
effects of intensive farming on steep slopes on soil fertility
and soil loss (Kagabo et al., 2013). Studies also show that
terracing coupled with building organic matter has the po-
tential to be financially profitable when access to labor and
manure is facilitated (Bizoza and de Graaff, 2012). Further-
more, there is a real need for a systems approach to sustain-
able agricultural intensification that spans from appropriate
technologies to institutional and policy-level support (Schut
et al., 2016; Vanlauwe et al., 2014). In addition, agroforestry
approaches have also been suggested to meet the multiple de-
mands of farming households, including in Rwanda (Liyama
et al., 2018). However, improved targeting of interventions
and tracking of progress over time could both improve not
only the success of restoration efforts, but also demonstrate
which options work best under the various conditions.

In this study, we applied a systematic approach to col-
lecting data on soil health and land degradation indica-
tors, including the use of soil spectroscopy, using the Land
Degradation Surveillance Framework (LDSF) (Vågen and
Winowiecki, 2020) across agriculturally dominated land-
scapes in eastern Rwanda. Studied indicators included SOC,
erosion prevalence, vegetation structure, tree density and
species diversity, topsoil field-saturated hydraulic conductiv-
ity (a proxy for steady-state infiltration capacity), soil texture,
pH, and exchangeable bases. Specific objectives of this study
were to (1) assess soil and land health indicators across two
landscapes, (2) identify biophysical constraints, and (3) de-
velop maps of soil erosion hotspots and variations in SOC
for restoration interventions, based on the hypothesis that
remote-sensing (spectral) data can be used to predict erosion
and SOC. We also assessed the relationship between inher-
ent soil properties, such as texture, and SOC, the hypothe-
sis being that factors such as sand content create constraint
envelopes in terms of variations in SOC. Another hypoth-
esis addressed in the study was related to whether there is
a positive effect of SOC on field-saturated hydraulic con-
ductivity when we consider data from across diverse land-
scapes. We also assessed the influence of other soil proper-
ties on field-saturated hydraulic conductivity in addition to
human-induced processes such as soil erosion. Finally, we
assessed the current status of vegetation structure across the
landscape, in addition to tree density and tree species diver-
sity, and conducted spatially explicit assessments of SOC for
eastern Rwanda.

2 Methods

2.1 Site description

The LDSF was implemented in two districts in eastern
Rwanda, Nyagatare and Kayonza. Nyagatare is the largest
dairy district in Rwanda and is characterized by two main

seasons: one long dry season and a short rainy season. Its an-
nual average temperature varies between 25.3 and 27.7 ◦C,
and it receives an annual rainfall of 827 mm. However, rain-
fall patterns have become increasingly unpredictable and
variable. The average altitude is 1513 m. It consists of gen-
tly sloping hills separated by low granitic valleys. The veg-
etation type was originally savannah vegetation and some
gallery forests. From 2009 to 2019, there was a net loss
of forest cover, with deforestation and afforestation rates at
34 % and 18 %, respectively (MoE, 2019). The major eco-
nomic activity is subsistence farming, while the main source
of cooking energy is fuelwood. Multiple crops are cultivated
in Nyagatare, including maize, beans, groundnut, cassava,
Irish potatoes, banana, and yams. Some areas have been cul-
tivated for 100 years, but the majority of the agricultural ex-
pansion in the district took place between 1973 and 1995.
The dominant soil types in Nyagatare are Ferralsols (Oxisols)
with shallow Leptosols on hillsides, according to data from
the Ministry of Agriculture (MINAGRI).

Kayonza district has a mean altitude of 1428 m and a mean
annual rainfall of 919 mm (NISR, 2012). It is prone to long
drought events with two principal seasons, a long dry pe-
riod and a short rainy season. Crops cultivated in Kayonza
include beans, banana, cassava, maize, Irish potato, sorghum,
and cocoa yams. Most of the area has been cultivated for over
50 years, with mining activities also taking place. Dominant
soil types in the Kayonza site are Ferralsols and Leptosols,
with Histosols in lower-lying areas.

2.2 Field sampling using the Land Degradation
Surveillance Framework

The LDSF is a systematic methodology to conduct
landscape-level assessments of soil and land health based on
a consistent set of indicators and field protocols. The frame-
work was developed by World Agroforestry (ICRAF) in re-
sponse to the need for a consistent field method and indi-
cator framework to assess soil and land health at the land-
scape scale. The LDSF has been applied in several projects
across the global tropics (Vågen et al., 2016; Vågen and
Winowiecki, 2020, 2019) and is currently one of the largest
ecosystem health databases globally, with data from more
than 30 000 plots in over 40 countries. The LDSF uses a hi-
erarchical sampling design to simultaneously measure and
assess several land and soil health indicators, including veg-
etation cover and structure, current and historical land use,
erosion prevalence, soil infiltration capacity, soil texture, soil
pH, and SOC. An LDSF site is a 100 km2 area stratified into
16–1 km2 clusters, each containing 10–1000 m2 plots and 4–
100 m2 subplots (Winowiecki et al., 2016a). The hierarchical
sampling design enables robust analysis of drivers of degra-
dation as well as the production of predictive maps of soil
health indicators, for example, SOC (Vågen et al., 2018). The
two LDSF sites in this study were randomized within each of
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the districts. The field team navigated to the randomized plots
and set up the four circular subplots within the plot.

Measurements took place at the plot and subplot levels.
All plots were georeferenced to better than 5 m accuracy.
Vegetation structure was classified at the plot level using the
FAO Land Cover Classification System (LCCS), which was
developed in the context of the FAO-AFRICOVER project
(Di Gregorio and Jansen, 2000). Specifically, plots were
classified as either annual cropland, grassland, shrubland,
woodland, or forest vegetation structure. In the LDSF, trees
are classified as woody vegetation above 3 m tall, whereas
woody plants 1.5–3 m in height are classified as shrubs. All
trees were counted and identified to species level in each
of the four subplots per plot. Soil erosion was scored and
classified in each subplot (n= 4) per plot. Specifically, each
subplot was visibly assessed for erosion (i.e., rill, sheet, or
gully), otherwise the plot was marked as having no erosion.
Erosion scores (presence, 1, or absence, 0) were used in the
statistical analysis. Soil samples were collected using a soil
auger at the center of each subplot at two depths (0–20 cm,
topsoil, and 20–50 cm, subsoil). Soil samples were combined
from the four subplots into one composite sample per LDSF
plot and depth increment.

Infiltration capacity was measured at three plots per cluster
in each site using single-ring infiltrometers (Bouwer, 1986)
to assess variation across land uses and soil types. Soil infil-
tration capacity into dry soils follows a predictable temporal
pattern: it is high in the early stages of infiltration and tends
to decline gradually as the soil moisture content increases un-
til it eventually approaches a nearly constant rate known as
steady-state infiltration capacity (Horton, 1941). This steady-
state rate is independent of the initial soil water content and
approximates the soil’s saturated hydraulic conductivity. In-
filtration measurements were carried out at the center of each
plot using a metal cylinder with an inner diameter of 15.6 cm
and 20 cm in height for 2.5 h to ensure capturing of steady-
state conditions.

Field-saturated hydraulic conductivity (Kfs) (Reynolds
and Elrick, 1990) was calculated from the infiltration data us-
ing the analytical formula proposed by Nimmo et al. (2009).
First, infiltration rates were corrected for non-constant falling
head and subsurface lateral spreading effects. For each plot,
an asymptotic function was then fitted to its corrected infiltra-
tion curve using the nls.multstart package in R (Padfield and
Matheson, 2018) to obtain the asymptote, which represents
Kfs.

The effects of soil and land use and land cover variables
on Kfs were assessed with linear mixed-effects models using
the lme4 package (Bates et al., 2015) in R. Random-effect
intercept models were fitted using the lmer function, with a
random intercept for each level of the site and for each level
of the cluster within the site (nested grouping factors). To
assess the statistical significance of fixed effects, we used the
lmerTest package in R (Kuznetsova et al., 2017).

The rationale behind the use of the LDSF in the current
study was that it has been applied across a wide range of
landscapes in the global tropics and has been shown to be ro-
bust in terms of assessing soil and land health in landscapes.
It uses a standardized set of indicators that are consistently
sampled and quantified, allowing for comparative studies be-
tween sites or landscapes. Also, the LDSF has been success-
fully applied in other studies for the mapping of indicators of
soil and land health when used in combination with remote-
sensing satellite data (Vågen and Winowiecki, 2019; Vågen
et al., 2013).

2.3 Laboratory methods

Upon collection, all soil samples were processed locally in
Rwanda, air-dried, and ground to pass through a 2 mm sieve.
Air-dried and ground samples were packed and shipped to
the ICRAF Soil-Plant Spectral Diagnostics Laboratory in
Nairobi, Kenya. Further grinding was then conducted on a
subsample using a Retsch motor grinder to attain a particle
size between 20 and 53 microns. This subsample was ana-
lyzed in triplicate for MIR absorbance using a Tensor 27
HTS-XT from Bruker Optics in the ICRAF Soil-Plant Spec-
tral Diagnostics Laboratory in Nairobi, Kenya. The measured
wavebands ranged from 4000 to 601 cm−1 with a resolu-
tion of 4 cm−1. Processing of the MIR spectra included com-
puting the first derivatives using a Savitsky–Golay polyno-
mial smoothing filter implemented in the locpoly function
of the KernSmooth R package (Wand, 1995) as outlined in
Terhoeven-Urselmans et al. (2010).

Wet chemistry reference analysis was conducted on 10 %
of the collected soil samples (n= 32 samples per site, 16
topsoil and 16 subsoil samples). Soil pH and exchangeable
bases were measured at Crop Nutrition Laboratory Services
in Nairobi, Kenya. Soil pH was analyzed in a 1 : 2 H2O
mixture that was shaken for 30 min at moderate speed on
a horizontal shaker then let stand for 20 min before reading
on a Eutech Cyberscan 1100 pH meter. Exchangeable bases
were extracted using the Mehlich-3 method after 5 min on
a reciprocating shaker. The filtrate was analyzed for base
cations: potassium (K), calcium (Ca), magnesium (Mg), and
sodium (Na) using an ICP OES (Model-Thermo iCAP6000
Series). Total nitrogen, organic carbon, and stable carbon
isotopes (δ13C) were measured by dry combustion using an
Elemental Analyzer Isotope Ratio Mass Spectrometer (EA-
IRMS) from Europa Scientific after removing inorganic C
with 0.1 N HCl, at the IsoAnalytical Laboratory located in
the United Kingdom. Stable carbon isotopes were expressed
as δ13C in parts per mille (‰) relative to the V-PDB (Pee
Dee Belemnite) standard. Sand content was measured using
a Laser Diffraction Particle Size Analyzer (LDPSA) from
HORIBA (LA 950) after shaking each soil sample for 4 min
in a 1 % sodium hexametaphosphate (calgon) solution at the
World Agroforestry Centre (ICRAF) Soil-Plant Spectral Di-
agnostics Laboratory in Nairobi, Kenya.
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2.4 Prediction of soil properties from MIR soil
spectroscopy

Soil samples with both MIR spectra and associated wet
chemistry data were used to train (calibrate) predictive mod-
els in order to simultaneously predict multiple soil properties
using random forest (RF) regression models (Vågen et al.,
2016). In the RF algorithm, many decision trees are built,
each on a bootstrap sample, based on a random subset of the
input MIR spectra, and these trees are combined to predict
the different soil properties. The total number of reference
samples used for model development and testing were 10 820
for SOC, 7305 for soil pH, 4322 for soil texture, and 1657
for δ13C. In training the prediction models, we randomly se-
lected 70 % of the samples for each soil property, keeping
the remaining 30 % out for testing of the models. We then
calculated R2 and root mean square error of prediction (RM-
SEP) values for the training and test dataset to assess model
performance.

2.5 Landscape-level mapping of soil erosion and SOC

We used LDSF soil and field data from a total of 30 853 sites
in 40 countries, including the two sites from this study, to
generate prediction models and map SOC and soil erosion
based on Landsat 8 reflectance data. The approach we fol-
lowed in this study is described in Vågen et al. (2013), but we
applied Landsat 8 rather than Landsat 7 and a larger database
of LDSF sites. A Landsat 8 spectral library was built for all
of the LDSF plots by extracting surface reflectance values
for each band, matching remote-sensing data acquisition to
within 6 months of field survey dates. Cloud masking was
conducted prior to surface reflectance extraction. We then
used the annual median reflectance values for each band as
input into the prediction models for SOC and erosion in order
to map SOC concentrations (gC kg−1) and the probability of
erosion (in %) for each 30 m Landsat pixel.

We assessed the performance of the prediction models in
a similar manner to for the soil MIR predictions by using
70 % of the plots to train the models and the remaining 30 %
to test performance. For erosion, we assessed model perfor-
mance by calculating the percentage of correctly classified
test instances relative to observed instances, expressed as a
confusion matrix, and by calculating the receiver operating
characteristic curve (ROC) (Bradley, 1997), which evaluates
the accuracy of a model by considering errors that are either
false positives or false negatives.

3 Results

3.1 Vegetation structure and diversity in the LDSF plots
sampled

LDSF field surveys took place between October and Novem-
ber 2018. In total, 151 plots were sampled in Kayonza and

Table 1. Prediction model performance metrics for the prediction
of soil properties from MIR spectroscopy included in the study.

Soil property R2 RMSEP

Training Testing Training Testing

SOC 0.99 0.92 1.3 3.3
δ13C 0.97 0.72 0.8 1.8
pH 0.97 0.84 0.2 0.4
Sum of exchangeable bases 0.96 0.84 3.9 8.2
Sand 0.98 0.84 3.1 8.9
Clay 0.98 0.82 3.5 10.1

149 plots were sampled in Nyagatare. Both sites were domi-
nated by annual cropping systems, with 68 % of the sampled
plots in Kayonza classified as cultivated and 89 % in Nya-
gatare. Other vegetation structure classes included shrubland
(19 % in Kayonza, 3.4 % in Nyagatare), woodland (9.3 %
in Kayonza and 7.4 % in Nyagatare), and grassland (3.3 %
in Kayonza). Mean tree density was higher in Nyagatare
(120 tree ha−1) compared to Kayonza (68 tree ha−1). Overall,
this level of tree density is low, and the higher tree densities
only occurred in woodlots of Eucalyptus spp. (Fig. 1). Mean
tree density in croplands was 57 tree ha−1 in Kayonza and
35 tree ha−1 in Nyagatare. The plots with higher tree density
in croplands were dominated by Eucalyptus spp. In total, 62
unique tree species were identified in the two LDSF sites.
The most common species was Eucalyptus spp., followed
by Grevillea robusta, Euphorbia tirucalli, Ricinus commu-
nis, Mangifera indica, Carica papaya, and Senna spectabillis
(Fig. 2). Differences were observed between the two LDSF
sites, most notably that Jatropha curcas was only found in
Kayonza and Senna singueana was only found in Nyagatare
(Fig. 2). In summary, 48 unique tree species were observed
in Kayonza and 39 species in Nyagatare. This level of tree di-
versity is considered quite low, with a low occurrence of most
species, low occurrence of only a few indigenous species,
and dominance of Eucalyptus spp. For example, 171 (56 %)
of the sampled plots had Eucalyptus spp., including 125 of
the cropland plots (53 %).

3.2 MIR prediction results for soil properties

Prediction performance was good for the soil properties in-
cluded in the study, including for the prediction of δ13C,
as summarized in Table 1. The prediction model perfor-
mance for δ13C is similar to that reported by Winowiecki
et al. (2017) when predicting δ13C based on near-infrared
(NIR) spectroscopy. Figure 3 shows predicted versus mea-
sured SOC and δ13C, respectively, for Nyagatare and Kay-
onza, showing good model performance across a wide range
of SOC and δ13C values, respectively.
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Figure 1. Violin plots showing the variation in tree densities across the vegetation classes at the Kayonza and Nyagatare LDSF sites, Rwanda.
The dotted line is the overall median (25 tree ha−1).

3.3 Soil properties and erosion prevalence

Soil properties for topsoil and subsoil samples for the Kay-
onza (n= 151, 136) and Nyagatare (n= 149, 145) LDSF
sites are presented in Table 2. Density plots for the soil vari-
ables demonstrate the variability between and within the sites
(Fig. 4). Overall, pH values were low across the two sites,
with statistical differences in topsoil pH values between sites
(P<0.001); mean topsoil pH was 5.65 in Kayonza and 5.89
in Nyagatare. This level of pH can potentially limit agri-
cultural production. Both sites had low overall exchange-
able bases (Ca, K, Mg, Na), as 8 cmolc kg−1 is considered
critically low for agricultural productivity. Kayonza had sig-
nificantly higher clay content and lower sand content com-
pared to Nyagatare (P<0.001). Kayonza had statistically
higher topsoil OC content (20.9 g kg−1) compared to Nya-
gatare (17.3 g kg−1) (P<0.001). Figure 5 shows the relation-
ship between sand content and SOC content, with SOC in-
creasing with decreased sand content for both sites and depth
intervals. This demonstrates the important control of inher-
ent soil properties, i.e., sand content, on SOC. The same pat-
tern was observed in each vegetation structure class. How-
ever, SOC was lowest in the cropland and grassland plots
compared to shrublands and woodlands (P<0.001). Average
δ13C was 18.9 ‰ in Kayonza and −19.2 ‰ in Nyagatare,

which indicates that these are mixed C3–C4 systems. We
also assessed the variation of stable carbon isotopes within
and between the vegetation structure classes (Fig. 6). While
there were some distinctions between classes, namely more
negative isotope values in woodlands compared to croplands,
overall δ13C values were relatively similar. The observed
overlap is likely due to the high occurrence of Eucalyptus
spp. (even in cropland plots) and the fact that woodland plots
were previously cultivated, resulting in the mixed C3–C4 sig-
nal.

Kayonza had a higher soil erosion prevalence, with 45 %
of the plots considered severely eroded compared to 27 % of
the sampled plots in Nyagatare. The dominant erosion cat-
egories were rill and sheet. Severe erosion was more preva-
lent in woodland (91 %) and shrubland and grassland (77 %)
compared to cropland (25 %). This is most likely given the
high prevalence of terracing in the region as well as the loca-
tion of the cropping fields compared to woodland and bush-
land. For example, the average slope for the plots classi-
fied as cultivated was 7 degrees compared to 19 degrees for
the other vegetation structure classes. There was no statisti-
cal difference in SOC in severely eroded and non-severely
eroded plots; however, cropland plots were the dominant cat-
egory across the landscape, and only 24 % of cropland plots
were classified as severely eroded.
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Figure 2. Tree species across the Kayonza and Nyagatare LDSF sites, Rwanda. Sixty-two different species were recorded, with low occur-
rence of most species and few indigenous tree species.

Figure 3. Predicted vs. measured SOC and δ13C based on MIR spectra for the Kayonza and Nyagatare LDSF sites, Rwanda.

3.4 Saturated hydraulic conductivity

Median topsoil field-saturated hydraulic conductivity (Kfs)
in Kayonza was 76 mm h−1, whereas in Nyagatare it was
62 mm h−1 (Fig. 7). In Kayonza, Kfs was not only higher,
but also more variable than in Nyagatare, with an interquar-
tile range (upper quartile–lower quartile) of 77 mm h−1 and
42 mm h−1, respectively.

Results from the linear mixed effects (lme) models showed
that the presence of erosion and pH both had a signifi-
cant negative effect on Kfs (P<0.025 and P<0.016, respec-
tively). Topsoil OC had a nearly significant (P<0.082) pos-
itive effect on Kfs, whereas sand content had a significant
negative effect (P<0.033). We could not assess the effect of
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Figure 4. Density plots of soil organic carbon (SOC), clay, exchangeable bases (ExBases), and pH for the topsoil and subsoil samples at the
Kayonza and Nyagatare LDSF sites, Rwanda.

Table 2. Soil properties for topsoil and subsoil samples at the two LDSF sites (SD: standard deviation; ExBases is exchangeable bases).

Site Depth N Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
SOC SOC δ13C δ13C pH pH ExBases ExBases sand sand clay clay

cm g kg−1 ‰ cmolc kg−1 %

Kayonza 0–20 151 20.9 8.83 −18.9 1.15 5.65 0.68 10.3 8.69 19.8 9.29 58.4 11.5
20–50 136 16.9 7.96 −18.4 1.26 5.65 0.65 10.6 9.10 19.4 9.27 60.6 11.4

Nyagatare 0–20 149 17.3 6.07 −19.2 0.92 5.89 0.54 8.74 4.80 30.0 10.2 44.5 10.5
20–50 145 13.3 5.49 −18.7 0.97 5.88 0.55 8.44 5.77 30.0 10.5 45.8 11.4

vegetation structure on Kfs, as most of the plots where infil-
tration was measured were on cropland.

3.5 Soil mapping

Soil erosion prevalence was predicted with a high degree of
accuracy using Landsat 8 satellite data, with an out-of-bag
prediction (OOB) error of 14 %. The OOB prediction error

rate is based on a bootstrap sample of about 37 % of un-
used test observations and represents a robust assessment of
accuracy. Further to the calculation of the OOB error rate,
the ROC curve also indicates good model performance, with
the area under the ROC curve (AUC) calculated at 0.86.
These results are consistent with previous studies using re-
mote sensing to predict erosion (Vågen et al., 2013; Vågen
and Winowiecki, 2019). Given the level of accuracy, we ap-
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Figure 5. Relationship between sand content and SOC for both topsoil and subsoil samples at the Kayonza and Nyagatare LDSF sites,
Rwanda.

Figure 6. Box plots of δ13C values and SOC content in topsoil for each vegetation structure class at the Kayonza and Nyagatare LDSF
sites, Rwanda. Dotted vertical lines at −22 ‰ and −14 ‰ δ13C indicate the C3- and C4-dominated systems, respectively. The dotted line at
20 g kg−1 SOC is to indicate a threshold for agricultural productivity in humid areas.

plied the random forest model to Landsat 8 imagery for 2018,
generating a map of soil erosion at 30 m resolution for the
study area. Hotspots of erosion are shown in red and yellow
on the map in Fig. 8, representing areas where erosion preva-
lence is predicted to be over 75 % in 2018, some areas also
having extreme erosion (>75 %). As we can see from this
map, there is high spatial variability of erosion across east-
ern Rwanda.

The prediction model performance for SOC was also
good, with an R2 of 0.82 based on the OOB prediction re-
sults from the random forest model and testing of the pre-
diction model on an independent test dataset (Fig. 9). The
map of SOC (Fig. 10) shows high levels of variation in SOC
across the study area with particularly low SOC in Nyagatare
district, except for wetlands along rivers and in forested areas
in the west of the district. Similarly, in Kayonza district, the
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Figure 7. Box and violin plots of field-saturated hydraulic conduc-
tivity (Kfs) for the Kayonza and Nyagatare LDSF sites, Rwanda.
The three horizontal lines in the box plot show the lower quartile,
the median, and the upper quartile. Whiskers extend to the outer-
most data point that falls within 1.5 box lengths. The violin plots
show the distribution of the Kfs data.

map shows higher SOC in protected areas and in lower-lying
areas, including in wetlands in the eastern part of the district.

4 Discussion

The LDSF was used to assess soil and land health indicators
across two landscapes in eastern Rwanda. Both sites (Kay-
onza and Nyagatare) were dominated by annual cropping
systems, and both sites had overall low tree densities and low
tree diversity. Eucaltypus spp. dominated both the woodland
and cropland systems in both sites, followed by Grevillea ro-
busta. Jatropha curcas was observed only in Kayonza and
Senna singueana was only observed in Nyagatare. These data
have important implications for restoration activities. For ex-
ample, tree planting is in the global spotlight as a restora-
tion activity with high potential for climate change mitigation
while providing multiple other ecosystem services (Bastin
et al., 2019). However, the global community acknowledges
that tree planting and reforestation must do, taking into ac-
count multiple environmental and socio-economic considera-
tions. For example, prioritize appropriate areas to restore, use
natural regeneration, and maximize biodiversity (Di Sacco et
al., 2021). In Rwanda, there are multiple tree-planting cam-
paigns funded by the government as well as within the de-
velopment sector. These data demonstrate a real opportu-
nity to improve tree biodiversity across the landscape, in-
cluding on cultivated fields. While woodlands reportedly had
higher SOC content compared to the other vegetation struc-
ture classes, woodlands also had mixed land use history, from
native vegetation to being cultivated, leading to the high vari-
ation in SOC values. Our findings of low tree species diver-
sity are similar to those of other studies from other regions
of Rwanda (Bucagu et al., 2013; Liyama et al., 2018), high-
lighting the opportunity for the strategic inclusion of useful

and appropriate species that fulfill multiple ecosystem ben-
efits, including the inclusion of indigenous tree species on
farms.

This paper highlights the importance of assessing key soil
and land health indicators, most notably SOC and soil ero-
sion. The concept of soil health goes beyond individual indi-
cators and is more about building and maintaining a function-
ing soil ecosystem to provide and support multiple ecosys-
tem services and functions. Lehmann et al. (2020) discussed
the shift of focus of soil assessments from crop productivity
to human health, climate change adaptation and mitigation,
and water quality and quantity. This shift acknowledges the
linkages across multiple indicators, and this information can
be used to prioritize interventions to maximize benefits and
minimize tradeoffs.

For example, inherent soil properties, such as soil texture,
are influenced by parent material, yet they can impact dy-
namic soil properties. For instance, while sand content is not
sensitive to management, it does limit the ability of the soil
to store or sequester carbon. In Fig. 5, we show the relation-
ship between sand content and SOC in the two LDSF sites
included in the study. The trend of decreasing SOC with in-
creasing sand content in these data is well established and has
been reported in other studies using the LDSF from Tanzania
(Winowiecki et al., 2016a). This relationship is related to fac-
tors such as the surface area of soil mineral particles, which
decreases with increasing sand content, leaving less area that
SOC can be absorbed onto. Acknowledging this influence on
SOC and other key properties is important for understanding
restoration potential in terms of soil health as well as climate
change mitigation potential.

The box plots in Fig. 6 show both predicted δ13C and SOC
across vegetation structure classes in the two LDSF sites.
Generally, we found the lowest SOC contents and also higher
δ13C values in cropland, indicating SOC derived from C4
vegetation such as maize (Zea mays). In contrast, in areas
where SOC is derived from vegetation with a C3 photosyn-
thetic pathway, such as woodlands and shrublands, we found
higher SOC values. These results indicate an opportunity to
increase SOC through management practices. This is espe-
cially apparent when assessing the effect of soil erosion on
SOC. Soil erosion prevalence was more prominent in wood-
land, shrubland, and grassland LDSF plots in the two sites as
compared to cropland plots. This might indicate that farm-
ers are already managing for erosion, which is an essential
first step in building soil health, including maintaining and
building SOC. Seventy-six percent of cropland plots were
scored as not having severe erosion, with 24 % having severe
erosion. Despite SOC variation in both categories (severely
eroded and not severely eroded), there was no statistical dif-
ference in SOC content between these two. This finding dif-
fers from other studies that found erosion to have a strong
effect on SOC content and stocks (Vågen and Winowiecki,
2013; Winowiecki et al., 2016b). Both the Nyagatare and
Kayonza sites had low overall soil pH and exchangeable
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Figure 8. Map of soil erosion prevalence (%) across Nyagatare, Gatsibo, and Kayonza districts (Eastern Province, Rwanda) predicted based
on Landsat 8 satellite imagery and field data from the LDSF plots. The two LDSF sites are also shown on the map (Nyagatare in the north
and Kayonza in the south), with the sampling plots shown as white circles.

bases. However, these data are in line with what Vågen et
al. (2016) reported using data from 114 LDSF sites across
sub-Saharan Africa (SSA); e.g., their results showed an over-
all mean topsoil OC of 22 g kg−1, a mean pH value of 6.1,
and a mean sum of bases of 15 cmolc kg−1. Since very few
plots were sampled under naturally vegetated, undisturbed
sites, our analysis is limited in terms of extending this into
semi-natural systems. This was also reflected in the C3–C4
signal in the δ13C data, which mostly indicated mixed C3–C4
systems. This highlights the need to use multiple indicators
to understand drivers of SOC dynamics, including interac-
tions between plant communities, management, and inherent
soil properties.

Field-saturated hydraulic conductivity (Kfs) was highly
variable in the two study sites, as shown in Fig. 7, with Nya-
gatare having slightly lower Kfs rates than Kayonza. SOC
positively influenced Kfs, which is in agreement with previ-
ous findings highlighting the importance of soil organic mat-
ter for soil aggregation and water infiltration (Franzluebbers,
2002a, b). Our results indicate that sand content influences

Kfs negatively, which is counterintuitive, as coarse-textured
soils tend to have higher Kfs compared to more fine-grained
soils (Hillel, 1980; García Gutiérrez et al., 2018). However,
soil hydraulic properties of soils with finer textures have been
shown to be less dependent on particle size distribution (Gar-
cía Gutiérrez et al., 2018), which could partially explain our
results considering that sand content in the plots where infil-
tration was measured was relatively low. It is also likely that
the negative relationship between sand content and Kfs we
have found reflects the positive effect of SOC onKfs, as SOC
and sand content had a strong negative relationship. On the
other hand, soil pH and the presence of erosion had a nega-
tive effect onKfs. Erosion and land degradation often lead to
reduced soil infiltration capacity due to a decline in SOC and
subsequent deterioration of soil structure (Valentin and Bres-
son, 1997), which in turn can result in increased infiltration-
excess overland flow and further erosion (Blake et al., 2018).
Our findings indicate the complexity in determining hydro-
logic controls across landscapes, which is something that
will need to be studied in more detail in the future. Main-
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Figure 9. Predicted vs. measured SOC based on predictions made
from Landsat 8 reflectance for the Kayonza and Nyagatare LDSF
sites, Rwanda. The black dots are training data, while the red
crosses show independent validation results.

taining and promoting soil hydrological functioning is criti-
cal for food and water security and for building resilience to
climate change (Bossio et al., 2010; Falkenmark and Rock-
ström, 2008; Cole et al., 2018), but this is often overlooked in
the discussions around restoration. Findings from this study
highlight the importance of human-induced drivers for Kfs
and, therefore, the potential to actively maintain and restore
soil hydrological functioning.

Findings from this study demonstrate that by applying
a consistent indicator framework such as the LDSF, which
combines systematic field measurements with innovative lab-
oratory methods, advanced data analytics, and remote sens-
ing, we are able to conduct spatial assessments of SOC, ero-
sion, and other land health indicators with high levels of ac-
curacy. Such assessments and maps have applications not
only for targeting land restoration interventions, but also for
tracking changes in soil and land health over time. For ex-
ample, by mapping SOC at 30 m resolution, we can pick up
spatial patterns related to both land management and inher-
ent soil properties to identify both drivers of land degradation
and land restoration potential, including SOC sequestration.

In a case study from the Lake Kivu area of Rwanda,
Akayezu et al. (2020) showed the utility of erosion hotspot
mapping for spatial targeting of soil and water conservation

measures. The results of the study presented here can be used
in a similar manner to identify hotspots within the study area
where erosion is occurring (Fig. 8). These hotspots can in
turn be combined with spatial assessments of SOC (Fig. 10)
to more effectively target areas for land restoration, particu-
larly where there is high erosion prevalence and low SOC.
This is critically important, particularly if we consider the
often high economic costs of restoring degraded land (Quil-
lérou and Thomas, 2012) and the importance of land restora-
tion for achieving the Sustainable Development Goals (Her-
rick et al., 2019). Furthermore, by combining spatially ex-
plicit indicators of land and soil health, spatial prioritization
of restoration potential based on biophysical characteristics
can enable decision making (Winowiecki et al., 2018).

Land degradation and restoration of degraded lands are
complex processes that cannot be addressed effectively with-
out considering multiple factors determining soil and land
health. In this study we have assessed multiple indicators that
can be readily quantified and are widely accepted as impor-
tant in determining soil and land health. Further, we used a
sampling design that allowed us to measure these indicators
consistently. This is critical for the design of interventions
that target multiple aspects of land restoration, including soil
erosion, species diversity, and SOC. Specifically, this study
identified low tree diversity and high occurrence of exotic
timber species, highlighting an opportunity to explore the in-
clusion of indigenous tree species in both landscapes. In ad-
dition, the maps of soil erosion can be used to spatially target
soil water conservation measures as well as set a baseline for
tracking degradation over time. We argue that assessing these
multiple indicators within a robust yet rapid sampling design
will improve the effectiveness of restoration interventions as
well as provide a baseline for tracking progress over time.

5 Conclusions

We demonstrate the utility of systematic, multi-scale assess-
ments of soil and land health across landscapes to target and
monitor ecosystem restoration interventions, including the
importance of understanding the interactions between indi-
cators. By using a robust set of soil and land health indicators
that are consistently sampled and characterized, we are able
to provide analysis and spatial assessments at scales relevant
to smallholder farmers. In the current study, we illustrate the
approach with examples of SOC and erosion, although addi-
tional indicators may be included to address the complexity
of land degradation and tailor land restoration interventions
that consider interactions of multiple indicators in a spatially
explicit way. We also demonstrate the importance of under-
standing both inherent and human-induced drivers of indi-
cators such as SOC, which is critical for landscape restora-
tion. We highlight the link between SOC, erosion, and hydro-
logic function. Using these data, we suggest land managers
implement restoration options that reduce erosion, increase
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Figure 10. Map of SOC across Nyagatare, Gatsibo, and Kayonza districts (Eastern Province, Rwanda) predicted based on Landsat 8 satellite
imagery and soil data from the LDSF plots. The two sites are also shown on the map (Nyagatare in the north and Kayonza in the south), with
the sampling plots shown as white circles.

soil organic carbon and soil infiltration capacity, and increase
aboveground biodiversity. Doing so has the potential to reach
multiple goals, including food and nutrition security, climate
change mitigation and adaptation, and biodiversity. We ar-
gue that there is an urgent need for systematic assessments
of SOC as well as aboveground biodiversity (e.g., tree diver-
sity) combined with hydrologic properties and other indica-
tors of land degradation such as soil erosion to effectively tar-
get interventions across landscapes. This will not only ensure
that appropriate interventions for land restoration are imple-
mented, but also provide the evidence base to assess their
effectiveness.

Rwanda is one of the most progressive countries in the
region in terms of acknowledging the importance of land-
scape restoration for sustainable livelihoods. The country has
set ambitious targets over the next decade, aiming to restore
more than 76 % of its land area. Given the importance of the
agricultural sector in the country and widespread land degra-
dation due to a combination of deforestation and unsustain-
able agricultural practices, there is a need for evidence to

support the targeting of land restoration efforts as well as to
track the effectiveness of such interventions over time. By
combining systematic field-based surveys with advances in
soil spectroscopy and earth observation data, we can model
and map SOC concentrations with high accuracy, allowing us
to identify areas for restoration and track interventions over
time.
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