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Control of Rough Terrain Vehicles Using Deep
Reinforcement Learning

Viktor Wiberg , Erik Wallin, Tomas Nordfjell, and Martin Servin

Abstract—We explore the potential to control terrain vehicles
using deep reinforcement in scenarios where human operators and
traditional control methods are inadequate. This letter presents a
controller that perceives, plans, and successfully controls a 16-tonne
forestry vehicle with two frame articulation joints, six wheels, and
their actively articulated suspensions to traverse rough terrain. The
carefully shaped reward signal promotes safe, environmental, and
efficient driving, which leads to the emergence of unprecedented
driving skills. We test learned skills in a virtual environment,
including terrains reconstructed from high-density laser scans of
forest sites. The controller displays the ability to handle obstructing
obstacles, slopes up to 27◦, and a variety of natural terrains,
all with limited wheel slip, smooth, and upright traversal with
intelligent use of the active suspensions. The results confirm that
deep reinforcement learning has the potential to enhance control of
vehicles with complex dynamics and high-dimensional observation
data compared to human operators or traditional control methods,
especially in rough terrain.

Index Terms—Deep learning methods, reinforcement learning,
autonomous vehicle navigation, model learning for control, robotics
and automation in agriculture and forestry.

I. INTRODUCTION

D EEP reinforcement learning has recently shown promise
for locomotion tasks, but its usefulness to learn control of

heavy vehicles in rough terrain is widely unknown. Convention-
ally, the design of rough terrain vehicles strives to promote high
traversability and be easily operated by humans. The drivelines
involve differentials and bogie suspension that provide ground
compliance and reduces the many degrees of freedom, leaving
only speed and heading for the operator to control. An attractive
alternative is to use actively articulated suspensions and individ-
ual wheel control. These have the potential to reduce the energy
consumption and ground damage, yet increase traversability and
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tip over stability [1]–[5]. The concepts have been a reappearing
topic in planetary exploration, military, construction,
agriculture, and forestry applications, but not yet reached the
maturity of practical use [6]. However, there is reason to believe
that the full potential of the vehicles is not being utilized. The
benefits of active suspension and individual wheel control can
only be unlocked if the many degrees of freedom are controlled
at sufficient speed, precision, and robustness. Traditional control
methods are not well suited to account for the vehicle dynamics
and the surrounding environment observed through high-
dimensional sensor data, which raises a need for alternatives.

Only in recent years has reinforcement learning (RL) emerged
as a candidate approach for smart control in locomotion ap-
plications. Deep learning based control of legged locomotion
demonstrate robustness over a variety of environments and learnt
behaviour not seen before [7]. The success in legged locomotion
indicates the capability of deep RL to learn control of wheeled
ground vehicles. However, only a handful of papers deal with
RL applied to wheeled ground vehicles [8], [9]. Local navigation
using RL in rough terrain is addressed in [8] with improved per-
formance over traditional planning methods. Their application
to search and rescue robots considers safe traversal but discards
energy consumption, explicit wheel slip, and ground damage;
important aspects in agriculture and forestry. In addition, they
only use a 3-dimensional, binary control signal. To the best of
our knowledge, RL has not yet been applied to wheeled ground
vehicles in rough terrain with high dimensional, continuous,
control signals.

To test the usefulness of deep RL on vehicles in rough ter-
rain, we use physics-based simulation to develop a controller
for a novel concept forwarder, with actively articulated sus-
pensions and individual control of its six wheels. Based on a
634-dimensional observation attainable from onboard sensors,
we demonstrate learned skills on challenging terrains with steep
slopes and obstacles, where performance is measured in terms
of our reward signal. A reward carefully designed to encapsulate
safety, energy consumption, environmental impact, and success
of the overall goal; to reach a specified vehicle pose. A forestry
use case is studied using a forest terrain reconstructed from
high-density laser scans, where the controller is assigned a
sequence of waypoints along a transport route. We assess model
robustness and domain transferability by varying friction and
vehicle load.
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Fig. 1. The Xt28 model with passive (black arrows) and actuated joints (green
arrows). The frame of reference is located 30 cm behind the cabin. The local
height map is represented as a 15× 10m2 grid with 30× 20 resolution.

Fig. 2. Snapshot of the vehicle and target pose given by a position and heading.
The local height map follows the translation and heading of the vehicle and all
heights are taken relative to the height under the reference frame.

II. BACKGROUND

Wheeled locomotion in rough terrain involves perceiving the
terrain features to make up time and energy-efficient motion
plans. Preferably, the motion plans are without risk of getting
stuck on obstacles or damaging sensitive parts of the vehicle.
Traversing the terrain involves controlling the actuators and
making use of sensor data for estimating the current state. Some
wheel slip is inevitable, but excessive slip is associated with
ground damage and unnecessary fuel consumption. Tipping over
is a rare but disastrous event, but with higher risk when the
vehicle carries a load.

With active suspensions, a vehicle can distribute its load on
the wheels to maximise traction or minimise ground pressure,
cross otherwise impassable obstacles, and shift its centre of mass
to handle inclined terrain. Individual wheel control can reduce
wheel slip and shearing soil surface compared to wheeled and
tracked bogies.

We address smart control applied to forestry and the Xt28 for-
warder (eXtractor AB). The Xt28 has individual wheel control
and actively articulated suspensions, designed for slopy, rough
terrain, and the aim to reduce soil compaction and shearing. A
typical forestry scenario involves an approximate route, where
we assume that a global path planner provides target locations,
see Fig. 11. In cut-to-length logging, the dominating method
in Europe [10], targets can be manually extracted from the
harvester route. Alternatively, a more general and sophisticated
way is to use a trafficability map [11]. To take into consideration
all the aforementioned rough terrain objectives, coupled with the
many control degrees of freedom of the Xt28 is a challenging

Fig. 3. Target generation. The vehicle is initialised in the green square with
random heading. The target is then placed a distance 20 m away along a limited
arc with heading ψ1.

Fig. 4. Patches from scanned terrains. a) and b) are two examples used
for training, c) is used in domain sensitivity experiments, and d) in obstacle
perception. The images are rendered with terrain colour according to height.

Fig. 5. Sequential snapshots of the vehicle traversing a 1 m tall gaussian bump,
avoiding chassis roll and wheel slip.

task. In this paper, we explore learning a control policy using
reinforcement learning.

A. Reinforcement Learning

Reinforcement learning is a process of interaction between an
agent (controller) and its environment. An environment consists
of a state space S , action space A, transition probabilities
p(s′|s, a), and a reward function r : S ×A → R. At each step,
the agent selects an action following its policy a ∼ π(·, s) and
current state s, and the environment responds with a new state s′

and reward r = r(s, a). The goal of the agent is to maximize the
expected future sum of discounted rewards Eπ[Rt|st], where
Rt =

∑∞
k=0 γ

krt+k+1 is called the return and the discount
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Fig. 6. Learning curves over four consecutive curriculum lessons with increas-
ing difficulty. The controller was evaluated every 25 k steps over 20 episodes
with deterministic action selection.

Fig. 7. Comparison of controller performance on two terrains with 18 and
27◦ incline. The arrows show target placements. A target is reached when the
vehicle is closer than 0.3 m and 9◦ relative to the target position and heading.
The vehicle is true to scale.

Fig. 8. Motion trajectories on procedurally generated terrain with semi-
ellipsoids representing boulders. The trajectories are coloured by normalized
cumulative reward in [0,1] (left) and the learnt value function estimates (right).
The controller displays the ability to perceive by driving around impassable
objects and over smaller. The vehicle and local height map is true to scale.

factor, γ ∈ [0, 1], values the importance of short-term, compared
to long-term rewards.

In the actor-critic framework, the actor contains the policy,
which in deep RL is modelled as a neural network with pa-
rameters θ. The role of the actor is to sample actions from
its policy, πθ, and adjust its parameters as suggested by the
critic. The critic, or state-value function V π(s) = Eπ[Rt|st],
evaluates the actor by giving critique to its actions. Most often
the purpose of the state-value function is to compute the advan-
tageAπ(st, at) = Qπ(st, at)− V π(st), where the action-value
function is given byQπ(st, at) = Eπ[Rt|st, at]. The advantage
measures the benefit of taking a specific action at when in st
compared to being in that state in general and following policy
πθ. It yields almost the smallest possible variance in policy
gradient estimates, but must be approximated in practice, e.g.
using generalize advantage estimate GAE(λ) [12].

Fig. 9. Obstacle perception on a scanned rough terrain. The trajectories are
coloured by normalized cumulative reward (left) and value function estimates
(right).

Fig. 10. Top view of vehicle trajectories following a sequence of waypoints
placed on a reconstruction of real terrain from high-density laser scans. The
vehicle starts and ends at a primary road along a route similar to a real world
forestry scenario.

Fig. 11. 3D rendering of the vehicle and waypoints.

B. Proximal Policy Optimization

Proximal policy optimization (PPO) is an on-policy method
which attempts to keep policy updates close enough to the
current policy to improve performance without the risk of col-
lapse [13]. After collecting a batch of samples under the current
policy πθk , PPO performs minibatch stochastic gradient decent
to find θ which maximizes the objective [14]

L(s, a, θk, θ)

= min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ε, Aπθk (s, a))

)
, (1)

g(ε, A) =

{
(1 + ε)A A ≥ 0

(1− ε)A A < 0.
(2)

The loss motivates policy updates to encourage actions which
lead to a positive advantage and discourage the opposite. To
avoid moving too far from the old policy the objective sets a
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limit on the policy probability ratio by clipping it in relation
to the advantage, where the clipping range is controlled by the
hyperparameter ε. It is common to also include two additional
terms in the loss function. One is an error term on value estimates
which is only necessary if using a network architecture which
shares parameters between policy and value function. The other
is an entropy bonus with purpose to boost exploration.

III. SIMULATION ENVIRONMENT AND CONTROL

We model the environment in terms of rigid multibodies,
frictional contacts, joints, and motors using the physics engine
AGX Dynamics [15]. For actuation, we use hinge and linear
joints with 1D motors. A 1D motor is a speed constraint that
operates along its remaining degree of freedom by applying a
force/torque to meet a specified target speed.

A. Xt28 Forwarder Model

The Xt28 vehicle, a six-wheeled articulated forwarder, is
modelled from a CAD drawing of the actual vehicle as a rigid
multibody system with 37 bodies and 14 actuated joints, see
Fig. 1. Hinge motors act at the frame articulation and wheel
joints, and linear motors control the suspension arms that are
hinged to the chassis. The wheels are treated as rigid and mod-
elled using spheres due to the computational benefit in contact
detection.

To have the model state-space agree with the real one, we
use realistic masses and limits on torque and force. The linear
motors have a force limit of 270 kN and the torque limit at
articulation joints and wheel motors are set to 50 kNm and
20 kNm, respectively [16]. The Xt28 model has a mass of 16
800 kg [2], where the centre of mass position of each body was
estimated to match that of the physical vehicle.

B. Controller

The main goal of the controller is to drive the vehicle to a target
pose, given by a position and a heading. It receives directions
to the target (x, y,Ψ), relative to its reference frame, as well
as proprioceptive and additional exteroceptive information. The
proprioceptive information consists of velocities in the vehicle
frame, roll and pitch angles in world coordinates, articulation
frame joint angles, and the piston displacement related to each
suspension. It also receives the longitudinal wheel slip and slip
angle. Longitudinal wheel slip is measured as the difference
in forward and surface speed of the wheel normalized by its
forward speed. The slip angle is the angle between the wheel
direction and the direction it is actually travelling. Additionally,
we observe the load on each wheel, normalized by vehicle
weight.

The exteroceptive information consists of a local height map
of 15× 10m2 with 30× 20 grid resolution, which follows the
vehicle translation and heading, see Fig. 2. In a real world
scenario, SLAM, or maps from airborne laser scans of the
terrain together with a GNSS provide similar height maps. The
heights are expressed relative to the reference frame and scaled
to be in [0, 1]. Together these form a 634-dimensional state

representation used by the controller to select a 14-dimensional
action.

For the frame articulation joints and the suspensions, the
controller action specifies target angles and piston positions
which are passed to P controllers. The P controllers compute the
appropriate target speed for each joint motor, operating within
their force and torque limits. The wheel motors are controlled
by setting each motor torque individually. If the angular speed
exceeds 1.5 rd/s the torque is clamped to not accelerate it further.
Each action is in [−1, 1] and mapped to available joint and torque
ranges.

C. Terrains

Terrains are constructed from height maps of size 70× 70 m2

and 700× 700 resolution, see Fig. 4. To form a continuous
surface, the heights are interpolated using triangular, piecewise
planar, elements into a geometric mesh. The geometry is as-
signed to the ground which is represented as a static rigid body.

There are two different types of terrains. One is procedurally
generated from Perlin noise [17] and semi-ellipsoids to rep-
resent discrete features such as boulders. The semi-ellipsoids
are [0.5, 3.5] m large, [0.25, 1.75] m tall and the terrain height
difference is limited to 5 m. The procedural terrains are useful
for designing training and testing scenarios on e.g. slopes or
terrains with impassable objects at certain locations.

The other type is reconstructions from high-density laser
scans, referred to as scanned terrains. Recently 600 Ha
of forestry sites were scanned using 600 points/m2 around
Sundsvall, Sweden [18]. The dataset is filtered to contain only
ground points (∼ 100 points/m2) and converted to a digital
elevation model, from which we extract regular height maps.

IV. LEARNING CONTROL

To learn a control policy we use PPO because it has proven
successful in other locomotion tasks, e.g. [19], [20], is easy
to parallelize, and insensitive to hyperparameter settings. The
adopted implementation uses PyTorch [21] and is based on the
original paper [13]. We let the simulation run at 60 Hz and query
the controller at fcontrol = 12 Hz.

A. Network

As the action space is continuous, a natural choice is to
use a diagonal Gaussian policy, which maps state s to mean
actions μθ(s) represented by a neural network with parameters
θ. The variance vector, σ2, is treated as a stand-alone parameter,
independent of state. Thus, the probability of action at in state
st is given by πθ(at, st) = N (μθ, σ

2I), where I is the identity
matrix.

Because part of our inputs are from 2D height maps, we
process them separately with a convolutional neural network.
To extract height features, we pass height maps through two
layers with 16 and 32 filters of 3× 3 kernel size, followed by a
fully connected layer with 64 units. We argue that height based
features of importance are similar for the actor and critic and
let them share this part of the network. In the non-shared part,
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the height map features are concatenated with the rest of the
observations and passed through two fully connected layers with
128 units each. For the actor, the action is produced by a linear
output layer of 16 units. For the critic, the value function is
produced by a linear output layer of 1 unit.

B. Reward

We formulate a reward that encourages steady progress to-
wards the target in an upright position, without wheel slip, and
with limited ground forces, energy consumption, and damaging
tyre sidewall contacts. The net reward takes the form

r = rtar + rprogrrollrspeedrforces

× rhead + rslip‖ + rslip⊥
3

+ renergy + rside, (3)

where the terms are explained below. The main goal of the
controller is met when the vehicle is closer than 0.3 m and 9◦

relative to the target position and heading. We define the target
bonus as

rtar = ktar1(Ψ, dt), (4)

where ktar is a constant set to 5 per cent of the maximum, undis-
counted return and 1 is the indicator function which evaluates
to 1 at the target and 0 otherwise.

The target reward yields a sparse signal unlikely to be discov-
ered in early stages of training. As guidance we provide a dense
reward which reflects the progress toward the target as

rprog = (dt−1 − dt)fcontrol, (5)

where dt, dt−1 is the current and previous distance from the
vehicle to the target projected to the horizontal plane. We reason
that heading alignment is increasingly important as the vehicle
approaches the target and introduce it as a reward multiplier

rhead = exp

[
−1

2

(
Ψ

dt/kd

)2
]
, (6)

where the constant kd = 5 m is tuned with the turning radius of
the vehicle.

In the reward shaping process we observed that a reward
r = rtar + rprogrhead is essential for learning to reach the target
quickly, but does not promote efficient, safe and environmental
friendly driving. Therefore, we introduce a set of additional
reward multipliers with range [0, 1]. To avoid risk of overturn
we define the roll reward as

rroll = exp

[
−1

2

(
φ

kφ

)2
]
, (7)

for roll angle |φ| > 5◦ and 1 else, where we use kφ = π/16. To
encourage limited vehicle speeds, we use

rspeed = min(1, exp[kspeed(vlim − |v|)]), (8)

where vlim = 0.8 m/s, and kspeed = 2 is a constant manually
tuned to control the rate of reward decay for speeds above vlim.

To limit ground pressure we consider the standard deviation
of normalized ground forces, σforces. Ground pressure is at its
lowest in case of an even distribution over the 6 wheels. Each
wheel then carries 1/6 of the vehicle weight, and σforces = 0.
We promote even weight distribution through

rforces = exp

[
−1

2

(
σforces
kforces

)2
]
, (9)

where kforces = 0.1N.
Reaching the target is not considered a success with excessive

slip during the episode. Therefore we include two terms related
to longitudinal slip λ and slip angle α as

rslip‖ =
nwheels∏

i

exp

[
−1

2

(
λi

kλ

)2
]
, kλ = 0.3 (10)

rslip⊥ =

nwheels∏
i

0.5 cos(kααi) + 0.5, kα = 6, (11)

where αi is clipped at ±π/kα such that any slip angle outside
that range yields zero reward. The slip rewards are constructed
as products to induce well behaved wheel motions for all wheels
simultaneously. The slip and heading terms are mutually con-
flicting objectives. Therefore we sum them to a single multiplier,
as seen in (3).

To promote smooth, efficient motions, energy consumption is
included as

renergy = kenergy
Wjoints

Wmax
, (12)

where Wjoints is the total work carried out by all actuated joints
over the previous action step, Wmax is its upper bound, and
kenergy = −1.

Damage to tyre sidewalls are penalized through the number
of sidewall contacts ncontacts as

rside = kswncontacts, (13)

where ksw = −0.2. We found this reward term necessary to
avoid use of the sides of the tyres for traction. A contact is
classified as being on the sidewall if the angle between the
contact point in the wheel frame and the rotational axis is less
than 60◦.

A nice feature of the reward in (3) is that the maximum
undiscounted return is easily calculated as the initial distance
to the target, times the control frequency, plus the target reward.
Although, the maximum is not attainable in practice, is serves as
good reference for designing a curriculum and evaluating policy
performance.

V. TRAINING AND EVALUATION

During training, an episode starts with the vehicle being
deployed on the terrain at random position, x0, y0 [m] ∈ [−1, 1],
and heading ψ0 ∈ [0, 2π]. We let the vehicle drop to the ground
and settle. To get natural variations of initial vehicle configura-
tions we apply a simple controller to the suspensions during a
simulated time period of 1 s.
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To enable curriculum with altered target difficulty, a target
heading parameter φmax is defined, affecting both target place-
ment and heading. The target is placed a distance r0 = 20 m
away, within an angle φ ∈ [−φmax, φmax] relative to the vehicle
heading, see Fig. 3. To put emphasis on learning stearing,
the target position along this arc is sampled from a quadratic
distribution, increasing the probability toward the edges. The
target heading is then sampled from a uniform distribution,
ψ1 ∈ [−φmax/2, φmax/2] relative to φ, i.e. the angle to the target.

A training episode runs until the target is reached, or termi-
nated after 400 or 500 steps, depending on the curriculum. Early
termination occurs if the vehicle moves beyond the target, if it
reaches a roll beyond 25◦, or if a terminal contact is detected. A
terminal contact is when any part of the chassis comes in contact
with the terrain.

Training is done on 10 parallel environments on a cluster
with 28 cores, where each environment uses a different terrain.
After every 25 k steps the controller is evaluated in a separate
environment on a terrain not used in training, with deterministic
initial vehicle positions, target placements, and action selection
based on the latest policy.

A. Curriculum

In our experience, a curriculum is essential for the controller
to reach its full potential. Our goal is to form a curriculum such
that there is a solid foundation in basic driving skills after the first
lesson, e.g. acceleration, turning, and speed control. The purpose
of the following lessons is to specialize driving skills towards
preference. To emulate natural forest environments, we focus on
boulder-like obstacle avoidance, unevenness, and slopes.

Our approach is to use a fixed order boundary curriculum [19]
for the terrain and target placements, where the learning process
is divided into four lessons with increasing difficulty according
to our intuition. In the simplest, initial lesson, the terrain is
level with Perlin noise to mimic features of natural terrain.
To put emphasise on sharp turns we set the target heading
parameter to φmax = π/3 already in the first lesson. The sec-
ond lesson focuses on learning height map features to avoid
impassable objects. We use the same terrain base with Perlin
noise but add 8 semi-ellipsoids placed randomly between the
initial vehicle position and the target. To both avoid obstacles
and reach the target is challenging, so we simplified the task by
setting φmax = π/9. The third level uses a similar setting with
tougher Perlin noise to form a hilly/slopy terrain, but with only
6 impassable semi-ellipsoids and 6 smaller ones. In the final
level, the controller practices driving on scanned terrains with
φmax = π/3 and 500 max steps. We chose terrain patches that
appeared trafficable, yet challenging with steep slopes, boulders,
and ditches, see Fig. 4.

B. Hyperparameters

For the PPO related hyperparameters we use a horizon of
1280, minibatch size of 800, and 10 epochs. We use the Adam
optimizer with a gradually decreased step size between lessons.
A step size of 25× 10−5 is used in the first, 10× 10−5 in the
second and third, and 1× 10−5 in the fourth lesson respectively.

The discount is γ = 0.99 and the GAE parameter λ = 0.95. The
value function and policy both have clipping range 0.2. The value
function coefficient for the loss calculation is 0.5 and the entropy
coefficient 0.01.

VI. RESULTS AND DISCUSSION

We present a controller that shows smooth progression to-
wards the target while adapting to terrain irregularities. When
turning, torques are adjusted so that the outer wheels rotate faster
than the inner, thereby moving with limited slip and effort. The
suspensions are used conservatively and kept in fixed position
unless the vehicle is challenged by slopes or unevenness in the
terrain. When faced with a Gaussian bump of 1 m height, the
controller makes intelligent use of the suspensions for levelling
and ground compliance, as shown in Fig. 5. The maximum slip
is 1.5% and the average slip per wheel is only 0.15%. To see
highlights of the learnt driving skills on a number of different
terrains we refer to the supplementary video.

Training is done according to the curriculum in Section V-A,
where the best policy in the preceding lesson is used as starting
point for the next, see Fig. 6. In total, the controller is trained
for 19.22 M steps and 108 h CPU hours. Learning is rapid
during the first lesson except during a plateau. We found that
penalizing energy consumption was key to develop strategies to
limit speed and keep progressing, but it also eliminated jerky
and unnecessary movements.

A. Sloped Terrains

The controller shows the ability to traverse steep slopes and
uses different strategies depending on the slope direction. We use
two perfectly even terrains with 18◦ and 27◦ incline, and place
the vehicle around the centre, with equally spaced heading in
40 directions following a full rotation, see Fig. 7. The success
rates are 92.5% and 65% with undiscounted mean normalized
return 0.64± 0.09 and 0.40± 0.13 for the 18◦ and 27◦ terrains,
respectively. As reference, the terrains are rated as 4/5 and
5/5 in difficulty according to the terrain classification system
for forestry work in nordic countries [22]. On side slope, the
controller utilizes one of the claimed benefits of the Xt28 and
adjusts the suspensions to shift the centre of mass and maintain
an upright position in an attempt to minimize ground forces,
wheel slip, and roll. We note that the maximum side slope which
allows for complete levelling is 27.5◦ due to the range limits of
the suspensions. Even so, the mean rolls are 1.93± 0.94◦ and
3.83± 2.59◦, respectively, including the unfavourable initial
configurations. Although the success rate is not as high for the
steeper terrain, there are no complete failures, and the missed
targets are typically due to side slip. Curiously, it is more
demanding to drive downhill than uphill. The loss in reward
is mainly due to the inability to maintain speed below the upper
limit.

B. Obstacle Perception

If faced with objects of different sizes, the controller shows
an ability to distinguish between passable and impassable ones
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and places the wheels to avoid sidewall contacts. To see the
strategies we test the controller on a terrain similar to those
with semi ellipsoids used in training, see Fig. 8. Targets and
initial vehicle positions are the same as for the sloped terrains,
resulting in a 90% success rate and undiscounted mean normal-
ized return of 0.62± 0.15 over 40 episodes. Impassable objects
that appear within the range of the local height map are well
reflected in the value function estimates, far before reaching
the problematic location. States with impassable objects straight
ahead are expected to result in poor performance unless easy to
circumvent, at which the trajectory is planned by taking out turns
enough to avoid contact and reach the target placement. Smaller
objects are easily overcome without significant loss in reward
due to efficient use of the suspensions. Because some episodes
are practically impossible and require going in reverse, a driving
skill not practised during training, we cannot expect full success.
The four episodes with terminal chassis-ground contacts occur
when the vehicle is directly facing large objects and is unable to
choose which way to turn.

To test if the learnt skills generalize to natural environments
we repeat our previous experiment on a terrain patch extracted
from the real data set. The selected area (Fig. 4 d) contains the
highest density of large boulders (> 1 m tall) from the 600 Ha
test site and poses a severe challenge. The target is reached
70% of episodes with a mean normalized return of 0.48± 0.14,
see Fig. 9. The results are similar to the artificial terrains,
where the controller surpasses smaller boulders, circumvents
others, and the majority of unsuccessful episodes is due to
chassis-ground collisions. We note that most terminal contacts
occur when the target is in the vicinity of a large boulder or
when several boulders obstruct the passage, e.g. east in Fig. 9.
Without a clear passage, the expected return is immediately
small, indicating that the controller recognizes when put to a
task it cannot successfully complete. To further study the value
function is valuable if we want to enhance obstacle perception.
However, when it comes to obstacle avoidance, it is not clear if
the responsibility should lie completely in a low level controller
or one at higher level doing path planning.

C. Smart Control on Real Forest Terrain

To simulate the use of the controller in a purposeful forestry
application we test its driving skills on scanned terrains. We
emulate a higher level planner and manually place a sequence
of targets, or waypoints, starting and ending at a primary road
to complete a full cycle, see Figs. 10 and 11. The terrain has a
mean slope of 12◦, a deep ditch alongside the road, and enough
roughness to serve as a challenging test.

Despite being a difficult route on demanding terrain 6 out
of 9 waypoints are reached, where the misses are small and do
not affect the higher level goal of completing the route. The
controller displays an ability to cross ditches, a challenging
real world scenario, and handles target placements not seen in
training with ease. The mean normalized return is 0.60± 0.12
where, as discussed with sloped terrains, the vast majority of
lost reward comes from driving too fast downhill. Still, there is
no tendency towards unsafe traversal and we note that the top
speed was no more than 0.37 m/s above limit.

Fig. 12. a) Undiscounted mean normalized return over 40 episodes as a
function of tyre-ground friction coefficient, μ, where the error bars show one
standard deviation. The vehicle is either unloaded or carries 10000 kg. b) Episode
termination. The left bar in each pair corresponds to an unloaded vehicle and
the right, slightly brighter, to one with 10000 kg load.

D. Domain Sensitivity

The controller is insensitive to variations in ground-terrain
friction coefficientμ, and able to adapt to load cases not seen dur-
ing training. In natural environments, surface friction varies over
space and time, while variable load is relevant in any transport
application, e.g. forestry, agriculture. We chose a typical forestry
site from the real dataset (Fig. 4 c) and letμ ∈ {0.2, 0.3, . . . , 1.1}
for two vehicle load cases: one with nominal weight and another
where a static 10000 kg load (60% weight increase) is placed on
the load bunk. The targets are placed 20 m away with random
heading [−π/3, π/3], relative to the vehicle starting position.
For each of the 20 cases we simulate 40 episodes and compute the
undiscounted mean normalized return and standard deviation,
see Fig. 12(a).

As expected, the controller performs at its best around the set-
tings used for training, i.e., unloaded with μ = 0.7, and equally
well for higher friction. Performance is not significantly affected
until μ drops below 0.4, which roughly corresponds to the
average sliding friction between tyres and wet earth roads [23].
From Fig. 12(b), it is clear that the target is frequently reached at
μ = 0.3, but more seldom for μ = 0.2. The loaded case shows
similar behaviour but with 10% lower episodic return. To some
degree this is due to the higher energy consumption with the
increase in weight, but Fig. 12(b) shows that in 10-20% of
the cases, the heavier vehicle fails to reach the target. Notably,
performance drops for friction above 0.8, where a fair portion
of episodes terminate due to maximum roll being exceeded. The
high friction and load resists turning at moderate speed and the
controller compensates by tilting to increase traction on the outer
wheels. With no experience in similar states, it proceeds until
failure occurs.

To further understand the effect of different vehicle load
and ground-tyre friction on performance we look at individual
reward contributions. Fig. 13 shows renergy, rslip‖, and rslip⊥ for
the two cases with lowest mean return, and training settings. Not
surprisingly, low friction and added load leads to an increase
in energy consumptions and slip. We observe that a loaded
vehicle in high friction setting drives with significantly less
slip compared to low friction, but similar side slip except in
the first quarter of episodes. This again is due to the resis-
tance in turning, and also the difficulties to control the frame
articulation.
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Fig. 13. Mean reward contributions and standard deviation over 40 episodes
for different friction and vehicle load. Number of steps was truncated at the
shortest episode.

VII. CONCLUSION

We conclude that deep RL is more than capable of learn-
ing control for rough terrain vehicles with continuous, high
dimensional, observation, and action space. We have presented
a controller that perceives, plans, and individually controls six
suspensions, six wheels, and two frame articulation joints, with-
out the use of frame stacking or recurrent networks as memory
support. The controller relies on a local height map to perceive
which obstacles to circumvent, how to handle steep slopes, etc.,
and then couples its perception with proprioceptive features to
efficiently traverse rough terrain. The traversal is done with
minimal slip, roll, and energy consumption, to reach a target
placement. The controller is robust to friction between tyre and
ground, as long as it does not fall below a critical value. It is more
sensitive to changes in the vehicle weight, which poses a problem
when collecting and transporting heavy objects. We suggest that
deep RL will be a future cornerstone for control of vehicles
with high dimensional state space, especially in environments
where it is easier to react to the dynamics than predict them with
sufficient accuracy.
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