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Abstract. There is a trade-off between leaving coarse woody debris (CWD) in the stand, providing desir-
able ecosystem services, and harvesting it. To consider this trade-off, forest management needs to model
describing the decomposition of CWD. When a trunk is lying on the ground, it can be attacked by microor-
ganisms faster than when it is still standing. Current decomposition models fail to account for these local
differences in processes, which may give rise to errors in the estimation of stand C balance. We extended
the Q decomposition model to represent the influences of tree species and the local position of the wood.
We utilized data from two studies on long-term deadwood decomposition in forests. We first calibrated
the model on the whole dataset, and then divided the data into different CWD decomposition classes, and
then allowed some of the parameters to vary between different CWD decomposition classes. The calibra-
tions were performed within a Bayesian framework, which allowed for a statistically sound comparison of
the calibration results. The difference between the remaining C mass predicted by the two versions of the
model, one considering one single calibration for all decomposition classes and one specific to decomposi-
tion classes, depended on the CWD class but was in general substantial. Some classes, when modeled with
a specific parameterization, resulted in C stocks after 50 yr 1–5 times less than that predicted by the single
parameterization model. Logs decayed faster than snags, and birch wood much faster than pine and
spruce wood, with little difference between the two conifers. Russian spruce wood decomposed somewhat
faster than Finnish spruce wood. Incorporating our calibration, describing specifically the processes driv-
ing the wood decay locally, into a C balance model of forests may change model estimates substantially.
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INTRODUCTION

The role of forests in meeting carbon targets
Because of the central roles of forests in the

global C cycle, a precise quantitative assessment
of the carbon (C) balance of forests is particularly
important for the global greenhouse gas balance.
Key targets set by the European Commission for
2030 are at least 40% cuts in greenhouse gas
emissions compared with 1990 levels (European

Commission 2013). Forests can provide bioen-
ergy, seen as an important component of future
energy policies in Sweden (Börjesson Hagberg
et al. 2016) and globally (Souza et al. 2017). In the
EU, at least 32% of the energy should come from
renewable sources by 2030 (European Commis-
sion 2013). However, the assumption that bioen-
ergy is carbon-neutral has been questioned in
recent years (McKechnie et al. 2011, Schulze et al.
2012, Gustavsson et al. 2015, Zetterberg and
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Chen 2015, Liu et al. 2018). Wood has also many
other uses, from short-term ones such as paper,
cardboard, and low-cost furniture (which ulti-
mately might end up in energy production for
recovery, Medeiros et al. 2017) to longer-term C
storage such as timber for construction or fibers
for insulation (Peñaloza et al. 2016). The C bal-
ance of all these possible applications of plant
materials, including being left in the forest,
depends on the residence time of the C involved.

Life cycle assessment studies suggest that the
fluxes resulting from changes in forest C stocks,
influenced by forest management, are one of the
key determinants of the climate impact of forest
products (Kilpeläinen et al. 2011, Jäppinen et al.
2014). Therefore, a proper assessment of such
impact must include the emissions from the uti-
lization of the raw materials, but also the emis-
sions that would be generated if raw materials
would be left decomposing in forests (Repo et al.
2012). Depending on how the forest C balance
is considered, the environmental impact of vari-
ous forest components can change crucially
(McKechnie et al. 2011, Stendahl et al. 2017).
There is a large reported variation in decomposi-
tion rates of organic material in forests, which
can affect the whole forest C balance and is not
considered in the current decomposition models.

Ecosystem services from coarse woody debris
Among the forest components that can be

extracted or left on-site, coarse woody debris
(CWD) refers to dead trees and large branches
and stumps on the ground. Here, we refer to
CWD as >4.5 cm diameter, including dead
standing trees (snags). If removed, this residual
biomass is a potential energy source. A consider-
able part of biomass that would become CWD
can be removed at the final harvest, as logging
residuals, but it is usually left in the forest during
thinnings. However, harvesting systems collect-
ing even small-diameter stems for bioenergy
have been designed (Sängstuvall 2018).

Recent forest management approaches have the
two opposite objectives of maximizing the amount
of CWD left in forests, and at the same time
extracting as much raw material as possible (Kab-
rick et al. 2019). Generally, CWD harvest nega-
tively affects forest biodiversity (Persson et al. 2013,
Kline et al. 2015), especially wood-dependent
organisms (such as beetles, fungi, and lichens),

under-storey vegetation (Ranius et al. 2018), and
birds (Sauerbrei et al. 2017). Pest saproxilic species
are favored more compared to other saproxilic spe-
cies by some forms of deadwood (Ranius et al.
2018). Snags in particular have a positive impact
on birds, while the amount of CWD does not seem
to affect mammals, reptiles, and amphibians (Rif-
fell et al. 2011).
Coarse woody debris also plays a crucial role

in nutrient cycles (Wiebe et al. 2014), and acts
as a nutrient buffer maintaining long-term soil
fertility (Herrmann and Bauhus 2018). In partic-
ular, CWD can act as a nitrogen (N) sink dur-
ing the decomposition process (Palviainen et al.
2010), promoting initial N immobilization fol-
lowed by a slow-release increasing the N effi-
ciency of the stand (Wiebe et al. 2012), and
increasing total N stocks (Wiebe et al. 2014).
Additionally, CWD improves soil characteristics
such as pH and physical properties (Moghi-
mian et al. 2020).

The challenges in modeling the variability of CWD
decomposition kinetics
Decomposition models can be used for quanti-

tatively considering the trade-offs for CWD
dynamics between different management
options. The available models, e.g., Q or Yasso
(Hyvönen et al. 1998, Liski et al. 2005), are based
on similar kinetics, influenced by the time since
tree death and initial diameter, but do not con-
sider the position (standing or lying) of the wood
(Ågren and Hyvönen 2003a, Liski et al. 2005).
The position of the wood has a direct influence
on the local microhabitat for the decomposers
and affects their species’ abundance and distribu-
tion (Parisi et al. 2018). The diameter of the
decomposing material (Hyvönen et al. 1998),
wood properties of different species (Djukic et al.
2018, Wang et al. 2018), and CWD position
(Mäkinen et al. 2006) all affect decomposition
kinetics. Neglecting these interactions can reduce
the accuracy of predictions for deadwood pools,
as Didion et al. (2014) found for the Yasso07
model. Differentiating the decomposition of
CWD would help to develop harvesting strate-
gies based on the specific decomposition rates of
the various CWD classes.
On top of being useful for drawing conclu-

sions, the main point of a parametric model is
the possibility of using it for extrapolating

 v www.esajournals.org 2 November 2021 v Volume 12(11) v Article e03792

MENICHETTI ETAL.



quantitative predictions. For example, answering
the question “how much faster,” rather than just
a yes/no (as with a statistical approach, also a
simple case of the model), and hence opening up
for the possibility of comparing numerically dif-
ferent management alternatives.

Aims of this study
For merely testing a hypothesis (falsifying it

with a yes or no), a statistical approach would still
be definitely appropriate and robust and it has
been applied in the past to understand the impact
of tree species and wood position on the decay of
CWD in forests. The aim of this study was to
assess such impact quantitatively developing a
model that can be then used for further extrapola-
tion. We utilized the Q model (Hyvönen et al.
1998) and calibrated it on two datasets (Tarasov
and Birdsey 2001, Mäkinen et al. 2006). The data
by Mäkinen et al. (2006) come from a set of long-
term thinning experiments in Finland and the data
by Tarasov and Birdsey (2001) from a Russian
chronosequence study. The Finnish dataset con-
tains information on different decomposition
stages of CWD, tree species, namely Scots pine
(Pinus sylvestris L.), Norway spruce (Picea abies (L.)
Karst.), and silver birch (Betula pendula Roth.), and
the position of the material with respect to the
ground. The Russian dataset provides information
about different decomposition stages for spruce.
We then compared two calibrations of the model,
one considering all this information for separate
classes and one considering the same kinetic for
all classes, within a Bayesian framework (Carpen-
ter et al. 2017). The overall intention was to
contribute to the development of new forest man-
agement strategies enabling timber harvest while
optimizing the amount of ecological ecosystems
services from the CWD left on site. We developed
a model calibration considering CWD classes that
can be used as a tool for developing such manage-
ment strategies.

MATERIALS AND METHODS

The calibration dataset
The data used in the calibration consisted of

deadwood data obtained from Finnish thinning
experiments for birch, pine, and spruce (Mäkinen
et al. 2006), integrated with spruce data from
Russia (Tarasov and Birdsey 2001; Fig. 1).

The Finnish dataset originated from 58 long-
term thinning experiments in southern and
central Finland was established by the Finnish
Forest Research Institute in the 1960s and 1970s
and a few older experiments. The stands were
even-aged and were mostly pure Scots pine, Nor-
way spruce, or silver birch. At the time of the
sampling, the stand age ranged from 29 to
131 yr. The dataset contained information about:
wood type (standing:snag, lying:log), tree spe-
cies, time since death, initial and final wood den-
sity, initial diameter, and geographical
coordinates of each stand (of which we utilized
latitude). The Russian dataset contains similar
information, but it is based on chronosequence
studies, so wood parts that were fully decom-
posed (and therefore disappeared at the time of
sampling) were not identified and recorded. We,
therefore, considered it as a separate class.
In total, the datasets contained 1386 data

points (Fig. 1). We reclassified them into coarser
classes compared with the more detailed classifi-
cation in Mäkinen et al. (2006) (which distin-
guishes various types of logs) and kept only a
distinction between logs, snags where <1/3 of the
whole length was broken and snags where ≥1/3
of the whole length was broken. These classes
were combined with the tree species to produce
10 CWD decomposition classes (Fig. 1):

1. Logs, snags, and snags with <1/3 of the
length broken from the pine.

2. Logs, snags, and snags with <1/3 of the
length broken from the spruce.

3. Logs, snags, and snags with <1/3 of the
length broken from the birch.

4. The spruce data from Tarasov and Birdsey
(2001), which were considered separately.

The model
The model (Ågren and Bosatta 1998, Hyvönen

et al. 1998) considers decomposition of organic
matter (OM) based on the assumption that
microorganisms are C-limited and their growth
and death rates depend on the availability of C
sources and the assumption that C exists for
decomposers in different availability states over
a continuous quality gradient. Quality is propor-
tional to the distribution of the mean residence
time of all organic compounds in the

 v www.esajournals.org 3 November 2021 v Volume 12(11) v Article e03792

MENICHETTI ETAL.



decomposing material. The model describes how
the average distribution of quality of the organic
C in a system changes as decomposition pro-
ceeds (while part of the C is lost as respiration).
This is a generalization of the theory on which all
compartmental C models are based (Coleman
1996, Liski et al. 2005) but does not require speci-
fic C “pools” to be defined. The dynamic change
in the average C quality is instead used to repre-
sent this.

We integrated a Bayesian error model into our
predictive model. In the subsequent text, the term
“priors” denotes the prior probability distributions
while the term “posteriors,” the posterior probabil-
ity distributions (Carpenter et al. 2017).

The model describes the decomposition of
OM controlled by a set of parameters. First,
decomposers are described by a certain produc-
tion to assimilation efficiency, eq, that determines
the fraction of C that goes into new decomposer
biomass of all the C utilized. This term is con-
ceptually equivalent to carbon use efficiency
(CUE) and can be compared to it. However, the
CUE concept is in practice strongly dependent
on the measurement used and its definition can
be ambiguous (Geyer et al. 2016); so, the corre-
spondence here is rather loose. For simplicity,
we assumed that efficiency is independent of
the quality of the C assimilated (Ågren and

Bosatta 1996). The term was extended as a nor-
mal probability distribution based on that sug-
gested by Manzoni et al. (2012), eq,p = 0.30,
to which we added a standard deviation
σeq;p ¼ eq;p � 0:25:

eq ∼ N eq;p, σeq;p
� �

: (1)

We next assumed that the decomposer growth
rate per unit of C, uq, depends on the quality of
the C used, and we assumed a power function of
a standard decomposer growth rate u0 as in
Hyvönen et al. (1998). The term u0 was calculated
as a function of latitude as: u0 = 0.0855 + 0.0157�
(50.6 − 0.768�Lat) (Ågren and Hyvönen 2003b).
We extended this calculated term with a proba-
bilistic error term εu0 of mean εu0;p ¼ 1 and coeffi-
cient of variation cv ¼ ðσεu0 ;p=μεu0 ;pÞ ¼ 0:5:

uq ¼ u0qβ � εu0
εu0∼ N εu0;p, σεu0 ;p

� �
:

(2)

The parameter β is a shape parameter deter-
mining how fast the decomposer growth rate
changes with quality. It can be related to edaphic
properties, e.g., the soil texture (Bosatta and
Ågren 1997). This term was also expressed prob-
abilistically as a function of former value βp = 7
and coefficient of variation cv ¼ ðσβp=μβpÞ ¼ 0:1:

Fig. 1. In this plot, each colored point represents one data point, classified according to the 10 CWD classes
considered in this study. Numbers in the legend are the number of points in each class.
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β ∼ N βp, σβp
� �

: (3)

Microbial biomass dies and then the OM
returns to the substrate but with lower quality,
according to η1,q, extended statistically as a nor-
mal probability distribution based on the former
value from Hyvönen et al. (1998), η1,p = 0.36,
plus a coefficient of variation cv ¼ ðση1;p=μη1;pÞ ¼
0:1:

η1;q ∼ N η1;p, ση1;p
� �

: (4)

The decomposition model is defined for one
single litter cohort as:

CðtÞ ¼ 2
Tmax

� 1
α � 1� zð Þ

� ð1þ αtÞ 1�zð Þ � 1� t
Tmax

� �

þ 2
Tmax

2 �
1

α2 � 1� zð Þ � 2� zð Þ

� 1� ð1þ αtÞ 2�zð Þ
h i

þ 1� t
Tmax

� �2� �
, t<Tmax

C tð Þ ¼ 2
Tmax

� 1
α � 1� zð Þ � ð1þ αtÞ 1�zð Þ

h i

þ 2
Tmax

2 �
1

α2 � 1� zð Þ � 2� zð Þ
� ð1þ αt� Tmax Þ 2�zð Þ

� ð1þ αtÞ 2�zetað Þ, t ≥ Tmax

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

(5)

where t is the decomposition time and α is
defined as:

α ¼ fc � β � η11 � u0 � qβ0 (6)

and z is defined as:

z ¼ 1� e0
β � η11 � e0

: (7)

This single cohort model can be used to
describe one single pulse of organic material
(e.g., one log), but it can also be used to describe
a situation of constant inputs by overlapping
multiple decomposing cohorts (each correspond-
ing to one pulse of inputs). The initial quality of
the organic material q0 was defined probabilisti-
cally here, with average and deviation calculated

from Joffre et al. (2001). We utilized as average
q0,p = 1.1 and as deviation σq0;p ¼ q0;p � 0:12:

q0 ∼ N q0;p, σq0;p
� �

: (8)

The deviation for this prior was set slightly lar-
ger than for the other terms because we consid-
ered this term to be likely more variable than the
others due to the variation in the origin of the
material. Since we simulated only one OM cohort,
represented by the deadwood material, we did
not need to integrate for the OM flux at every time
step as described in Hyvönen et al. (1998).
The biomass is converted into the mass of car-

bon through the term fc, expressing the C content
of the biomass and also introduced as a normal
prior:

fc ∼ N fc;p, σ fc;p

� �
: (9)

We utilized as average fc,p = 0.5 and as devia-
tion σ fc;p ¼ fc;p � 0:1.

Representing delayed decomposition: introducing
T̂max and Δ
We introduced the parameter Tmax to represent

the initial diameter of the decaying material, and
it influences the time needed for the colonizer
microorganism to invade the wood. The model
was originally based on the deduction of Tmax

(Hyvönen et al. 1998), but since in our dataset we
had the diameter measured at time 0, we utilized
this value. Since we had data on measured wood
density ρ at time 0, which also influences the
speed at which the microorganisms colonize the
wood, we used it in the model as a linear modi-
fier of Tmax. To do so, we standardized the wood
density data between 0.8 and 1.2 as ρ̂ and uti-
lized this value to directly rescale Tmax based on
the wood density.

T̂max;0 ¼ Tmax � ρ̂ (10)

T̂max;0 is a deterministic term that was
extended with a probabilistic error term εTmax of
mean εTmax;p ¼ 1 and coefficient of variation
cv ¼ ðσεTmax; p

=μεTmax; p
Þ ¼ 0:5:

T̂max ¼ T̂max ;0 � εTmax

εTmax ∼ N εTmax; p, σεTmax; p

� �
:

(11)
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In addition, we introduced in the model a delay
term Δ (expressed in years), which simply delays
the decomposition of the wood (Appendix S1:
Fig. S7). The term Δ was extended as a uniform
probability distribution between 0 and 5 yr:

Δ ∼ U 0, 5ð Þ: (12)

The term Δ is similar to Tmax, as they both slow
down the initial phase of decomposition, but is
conceptually different: Tmax represents a physical
property of the object decaying, while Δ is
related to the position of the object (lying, stand-
ing, etc.). An increase in Tmax generates a gentle
bend of the initial shoulder of the decomposition
curve, as in Appendix S1: Fig. S6, but an increase
in Δ just postpones the start of the decomposition.

The calibration procedure
We performed the parameter estimation

within a Markov chain Monte Carlo (MCMC)
framework, implementing Bayesian statistical
principles (Kruschke et al. 2012) to update the
current knowledge of the model uncertainty
with the information in the dataset. The method
relied on statistics performed on a population of
multiple model realizations, starting from our
initial probabilistic knowledge of the model
parameters (from now on priors), combined with
the knowledge from the data to produce an
updated knowledge of the probability distribu-
tions (from now on posteriors). The priors can be
defined by any probability distribution derived
from various sources of information. This
allowed us to evaluate all the information in the
data with continuous non-parametric probabil-
ity distributions, retaining all the available infor-
mation and synthesizing it into posterior
probability distributions of predictions and
parameters.

The model was written in the language Stan
(Carpenter et al. 2017), a relatively recent Bayesian
framework that bases the calibration on Hamilto-
nian MC sampling. This sampling strategy is
more effective for complex spaces, as it converges
faster and reduces autocorrelation compared with
conventional Metropolis-Hastings samplers (Car-
penter et al. 2017). The Q model, like most deter-
ministic or semi-deterministic ecological models,
tends to have more parameters than the available
data can resolve (Marschmann et al. 2019). The
model, therefore, displays relatively high

equifinality (Beven and Binley 2014), and explor-
ing its space can benefit greatly from this
improvement in efficiency.
We performed numerical analyses and plot-

ting from R (R Development Core Team 2019),
including running the Stan model through
Rstan (Stan Development Team 2019). The
model fitness was evaluated as a root mean
squared error (RMSE).
We ran all calibrations in independent

quadruplets of MCMCs of 10,000 runs in each
chain. The model gives unfeasible parameter
combinations whenever z ≥ 1, as this leads to
the infinite accumulation of C. Thus, we
instructed the sampler to reject the proposal
whenever z ≥ 1. The posterior distributions
were, therefore, not influenced by unfeasible
model combinations.

Parameterization diagnostics
The calibration process was monitored

through a few diagnostic tools. First, we checked
the trace plots of the MCMCs for selected param-
eters (Appendix S1: Fig. S1). The main assump-
tion of the MCMC calibration is that the
probability of each event in the chain (in our
case, a model run with a certain parameter com-
bination) depends only on the state attained in
the previous node. This means that the sampling
algorithm should change the value of each
parameter very often, without getting stuck in
local optima. In our case, all chains seemed to
mix well. We also checked the auto-correlation of
the MCMCs, which decreased with the increas-
ing estimation window (Appendix S1: Fig. S2).
This meant that for an increase in the number of
samples, we converged toward the perfect real-
ization of the Markov chain assumption.
We then examined the R̂ of the whole calibra-

tion. This is a convergence criterion based on the
use of multiple independent chains and mea-
sures the ratio of the average variance of each
chain to the variance of the pooled draws across
Markov chains (Gelman and Rubin 1992). The R̂
value can be calculated when more than one
fully independent chain are calibrated. When the
sampling goes as it should and when the mixing
is even, the value should converge toward 1. The
conventional limit for well-mixed chains is
R̂ ≤ 1:05 (Gelman et al. 2004, Carpenter et al.
2017). In our case, R̂ was in general below this
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threshold (Appendix S1: Fig. S3), indicating
good mixing.

Global and specific calibrations
We calibrated the model by the two separate

approaches:

1. Global calibration: One single model parame-
terization was used to predict all the values.
No parameter was left free to vary with
specific wood characteristics (i.e., different
CWD classes), but one single set of values
was used to predict all the data points. All
the parameters were calibrated simultane-
ously on all the observations (Fig. 2).

2. Specific calibration: The parameters q0, T̂max,
Δ, and uq were left free to vary for specific
CWD classes, while other parameters were
still the same for all classes (Table 1). Specifi-
cally, Δ was assumed to vary with wood
being a snag or a log, q0 was assumed to
vary depending on the tree species, and the
other two parameters were assumed to vary
according to the decomposition classes. The
data used were the same as in the global

calibration approach, and all the parameters
were calibrated simultaneously on all the
observations.

Global calibration: one single set of parameters and
sensitivity analysis.—We first assessed the model
fitness response to the variation in different
parameters, to gain an indication of which param-
eter to focus on the most. We ran an MCMC
model calibration considering only one generic set
of unknown parameters to describe all the data,
producing a set of 5000 model runs. We then
utilized this set of model runs to perform a
Hornberg-Spear-Young sensitivity analysis (Beven
2008, Beven and Binley 2014). This involved split-
ting the population of model runs into two sepa-
rate bins and then, for each parameter, assessing
the difference between the distribution functions
of each parameter between the two bins.
We considered the first bin (“behavioral” mod-

els Beven 2008) composed of all the parameter sets
with the RMSE falling within the first five per-
centiles, and the second bin (“non-behavioral”)
composed of all the other parameters sets. We
assessed the distance between the probability

Fig. 2. The dataset plotted for the predictions of the fraction of remaining mass over time from the global
model calibration (where all parameters were considered the same for all the classes). The shaded area represents
the maximum and minimum of the prediction interval.
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distributions of a certain parameter value in each
bin with the Kolmogorov-Smirnov distance (Mar-
saglia and Wang 2003). The more the two distribu-
tions differed, the more that specific parameter
was considered to contribute to the increase in fit-
ness observed in the upper five percentiles, and,
therefore, the more the model fitness was consid-
ered to depend on that parameter. The analysis
indicated that the effect of the parameters was
strongly dependent on the different groups (Fig. 3;
Appendix S1: Fig. S5). These results were then

considered to select which parameters to calibrate
specifically by class.
Specific calibration: some parameters specific for

different CWD classes.—In the specific calibration,
we also considered 5000 model runs but let some
parameters vary for different CWD classes,
partly according to the sensitivity analysis and
partly based on our hypotheses on processes
influenced by the CWD classes. Our aim was to
explain most of the variance in the dataset
according to a specific decomposition parameter,
and to investigate which parameters might
explain the observed variation.
We considered the term q0 dependent on tree

species (birch, spruce, pine, and the spruce data
from Tarasov and Birdsey [2001]). The term was
defined according to Eq. 9, but with the error
term dependent on the four different species:

q0;Sp ∼ N q0;p, σq0;p
� �

Sp ¼

birch

spruce

pine

Tarasov

0
BBBBB@

1
CCCCCA:

(13)

We then considered εT̂max
as dependent on

decomposition classes, as this parameter summa-
rizes the delay in decomposition due to different
effects (e.g., contact with soil). The term was
defined according to Eq. 10, but with the error

Fig. 3. The results from the Hornberger-Spear-Young sensitivity analysis based on the global calibration
(where all parameters were considered the same for all the classes), averaged for the three coarse woody debris
positions in the dataset. The sensitivity measurement represents the Kolmogorov-Smirnov distance between the
two bins as described in the text.

Table 1. Summary of the parameters considered in this
study.

Parameter Global Specific Prior μ Prior σ

β GL GL 7† 0.7‡
η GL GL 0.36† 0.036‡
q0,b GL GL 1.10§ 0.12§
e0 GL GL 0.30¶ 0.25‡
fc GL GL 0.5† 0.05‡
Δ GL SP 0# 5#
εTmax GL SP 1 0.5‡
εu0 GL SP 1 0.5‡

Notes: The columns “Global” and “Specific” refers to the
two calibrations, and “GL” means that the parameter is con-
sidered global, and “SP” means it is considered specific. μ is
the mean and σ is the standard deviation.

† From Hyvönen et al. (1998).
‡ Assumed in this study.
§ From Joffre et al. (2001).
¶ FromManzoni et al. (2012).
# Uniform distribution, so the values indicated here refer

to minimum and maximum.
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term dependent on the 10 different CWD classes:

εTmax ;Cl ∼ N εTmax;p, σεTmax ;p

� �

Cl ¼

log:birch

snag:birch

snag: < 1=3:birch

log:spruce

snag:spruce

snag: < 1=3:spruce

log:pine

snag:pine

snag: < 1=3:pine

Tarasov

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

:
(14)

We assumed also that the Δ term was depen-
dent on whether the CWD type was a snag or a
log.

ΔS ∼ U 0, 5ð Þ

S ¼
snag

log

 !
:

(15)

Finally, we considered the term uq, which rep-
resents the growth rate of the decomposers, as
specific and dependent on decomposition class.
The term was defined according to Eq. 9, but
with the error term dependent on the 10 different
CWD classes:

εu0;Cl ∼ N εu0;p, σεu0 ;p
� �

Cl ¼

log:birch

snag:birch

snag: < 1=3:birch

log:spruce

snag:spruce

snag: < 1=3:spruce

log:pine

snag:pine

snag: < 1=3:pine

Tarasov

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

:
(16)

Steady states
The model can be solved analytically by set-

ting the derivatives to zero to find the C stock in
an ecosystem at a steady state, assuming con-
stant inputs:

CSS ¼ 1
α
� 1
z� 1

þ T̂max;0

3

 !
� I (17)

where CSS is the C stocks at steady state and I is
the rate of input in terms of C (Hyvönen and
Ågren 2001). Determining the steady state,
although usually reached over centuries or mil-
lennia (since the system approaches the steady
state, the slower the closer it gets to it), is impor-
tant to test the consequences of the decay of the
different organic material in a comparable way
without having to assume an arbitrary time
frame. Steady states are not influenced by time
while, when comparing different materials or
input levels, comparison results might change
depending on the time perspective considered. A
dynamic simulation of C stocks requires a
known amount of C inputs. To compare the
effect of the different organic materials in terms
of C stocks at equilibrium, we assumed inputs
equal to 1 Mg�ha−1�yr−1, a number easy to han-
dle but plausible as possible scenario (similar val-
ues were measured for natural litterfall in
unmanaged forests, Bray and Gorham 1964).
These levels of input are too high for managed
forests but permitted a relative comparison
between the different types of CWD. The steady
state is an integration of the decay represented
by Eq. 5 over (very long) time, and, therefore,
small differences in decomposition end up accu-
mulating over time.

RESULTS

Global calibration and sensitivity analysis
The global calibration, with only one set of

parameter values, could not explain much of the
variance (Fig. 2). The dataset displayed a scat-
tered cloud of observations, indicating that the
decomposition is influenced by many interacting
processes not considered by the global parame-
terization of the model. For some CWD classes, it
was possible to distinguish a pattern, e.g., birch-
wood decomposed faster than the other tree spe-
cies. However, for most CWD classes, there were
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no easily identifiable patterns, in particular con-
cerning points with delayed decomposition
which were not explained by the information in
the data.

The sensitivity analysis (Fig. 3; Appendix S1:
Fig. S5) identified the parameter εT̂max

, controlling
the initial shoulder of the curve, as particularly
important, together with the initial wood quality
q0. Different CWD classes showed differing sensi-
tivity to model parameters (Appendix S1: Fig. S5),
with snags of spruce and pine being the most sen-
sitive, while the fast-decaying classes (birch,
spruce data from Tarasov and Birdsey [2001], and
pine logs) were, in general, less sensitive.

The posterior of parameter e0 did not differ
much from the prior, since this was indicated as
centered around 0.3 from Manzoni et al. (2012).

Specific calibration
The specific calibration also assumed that

some parameters were common to all observa-
tions (β, η11, e0, and fc). The posteriors for these
global parameters (Table 2, Fig. 4) seemed rather
similar to the priors or, in the case of e0, even bet-
ter determined (Fig. 4).
The local parameters expressed the variance in

the various CWD classes. The parameter q0 var-
ied with the tree species (plus the Russian spruce
dataset, Fig. 5, panel A). Pine and spruce showed
the lowest initial substrate quality (and, thus,
slower initial decomposition), while birch
showed the highest. The Russian spruce data
presented high variance, but q0 seemed in gen-
eral higher than for the Finnish spruces. The Δ
(delay) parameter was quite close to zero for
both snags and logs (Fig. 5). The parameter T̂max ,
which referred to the initial diameter, had
instead higher explanatory power (Fig. 5),
although referring to a similar process to Δ (since

Fig. 4. The result of the specific calibration (where some parameters were considered specific to each class) for
the global parameters (considered the same for all the classes also in the specific calibration). The grey dashed
area represents the prior probability distribution, while the green solid area represents the posterior probability
distribution.

Table 2. Results of the specific parameterization on the
common parameters.

Parameter Mean Min Max

β 6.72 5.65 8.03
η11 0.34 0.28 0.41
e0 0.29 0.24 0.35
fc 0.48 0.41 0.57

Note: Values are calculated on all four MCMC.
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they both express an initial slowdown in the
decomposition rate). The posterior probability
distribution for the delayed decomposition of
logs was slightly higher, but still on average
below 1 yr (Table 3). The error parameter εTmax

varied according to the 10 CWD decomposition
classes (Fig. 5, panel C). Most classes had an
average εTmax value of less than 1 (Tables 2, 3),
except the Russian spruce data. Short pine snags
and long birch snags had the lowest T̂max .
Moreover, the error parameter εu0 varied accord-
ing to the 10 decomposition classes (Fig. 5, panel

D) but was generally above 1. It was clearly
below 1 only for short snags of spruce and pine
(Tables 2, 3).

Calibration diagnostics
The specific calibration, being at the same time

the most accurate and the main product of the
study, was tested with diagnostic criteria to
ensure its robustness. All diagnostic values indi-
cated a good calibration procedure. The calibra-
tion indicated excellent mixing of the chains
(Appendix S1: Fig. S2) and consequent low

Fig. 5. The result of the specific calibration (where some parameters were considered specific to each class) for
the local parameters (the parameters considered to vary among classes). The grey dashed area represents the
prior probability distribution, while the colored solid areas represent the posterior probability distribution for
each decomposition class.
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autocorrelation (Appendix S1: Fig. S2). The
Gelman-Rubin potential scale reduction statistic
R̂ (Gelman et al. 2004) was also good for all the
chains (Appendix S1: Fig. S3).

Simulation results and steady states
The parameterization generated by the global

calibration missed many of the points in the
datasets (Fig. 2). The local calibration captured a
larger share of the variance, although some
classes did not show a relevant improvement in
fitness (Appendix S1: Fig. S4). Pine and spruce
exhibited similar trends over time and similar
parameters (Figs. 5, 6), and for both species, the
pattern caused by the decomposition class was
the same, with logs decaying quickly and stand-
ing snags decaying more slowly. Birch showed a
similar pattern, but with faster rates. The Russian
spruce data had different kinetics from the Fin-
nish spruce data, decomposing much faster. This
might be due to the different determination of
time since death in these two datasets.

The different CWD decomposition classes
showed clearly distinguishable kinetics (Figs. 5, 6),
in particular depending on tree species but also
between logs or snags. The locally calibrated
model was more accurate, with an RMSE of
0.153, compared with 0.169 for the globally cali-
brated model (also Appendix S1: Fig. S4).
The difference in the predicted remaining C

between the general and local calibrations was
large, with an average absolute difference of 11%
at 50 yr, 10% at 80 yr, and 15% at 120 yr. These
differences were larger for some specific decom-
position classes, in particular for spruce snags
(Appendix S1: Fig. S4). The difference was rela-
tively large also for logs (Fig. 7). This resulted in
over- or underprediction depending on the speci-
fic CWD class, while the general calibration was
mostly over-predicting.
The differences in the C stocks accumulated at

the steady state were substantial between the
slow and fast decaying materials (Table 4). In
general, the steady states were characterized by
considerable uncertainty and wide boundaries,
but the uncertainty was nevertheless consider-
ably less than that during the initial phases of
decomposition. While approaching the steady
state, the uncertainty of all simulations decreased
(Fig. 6). This seems to be due to fewer parame-
ters influencing the steady states, i.e., Eq. 17 has
considerably few parameters than the dynamic
version of the model (Hyvönen et al. 1998). In
particular, the OM quality converges toward
similar values over time (Menichetti et al. 2019).

DISCUSSION

The model and its two parameterizations
The effects of tree species and wood position

on CWD decomposition were studied by
extending and parameterizing the Q decompo-
sition model. The posteriors for the global
parameters did not differ much from the values
previously reported in the literature (Hyvönen
et al. 1998) and from the priors. The global
parameterization of the model in most cases
resulted in lower C stocks at steady states com-
pared with the specific parameterizations. The
specific calibrations predicted different C stocks
for each CWD class for both the steady states
and predictions over time, and some cases were
much lower (mostly birch) but other cases

Table 3. Results of the specific parameterization on
locally calibrated parameters.

Parameter Mean Min Max

q0,b 1.1 1 1.22
q0,s 0.82 0.76 0.88
q0,p 0.87 0.82 0.92
q0,t 0.98 0.86 1.11
ΔS 0.16 0 0.54
ΔL 0.39 0.01 1.37
εTmax ;1 0.68 0.5 1.05
εTmax ;2 0.85 0.51 1.46
εTmax ;3 0.72 0.51 1.21
εTmax ;4 0.96 0.53 1.43
εTmax ;5 0.78 0.51 1.32
εTmax ;6 0.93 0.52 1.44
εTmax ;7 1.06 0.57 1.48
εTmax ;8 0.68 0.51 1.12
εTmax ;9 0.89 0.52 1.4
εTmax ;10 1.14 0.65 1.49
εu0;1 1.18 0.82 1.48
εu0;2 1.03 0.62 1.47
εu0;3 0.7 0.51 1.04
εu0;4 0.67 0.5 1.06
εu0;5 1.15 0.73 1.48
εu0;6 1.05 0.55 1.47
εu0;7 0.97 0.53 1.44
εu0;8 0.99 0.55 1.44
εu0;9 1.04 0.59 1.47
εu0;10 0.92 0.52 1.43

Note: Values are calculated on all four MCMC.
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much higher than in the global calibration of
the model. This indicates that there could be
large errors in calculating the stand C balances
if CWD classes are not considered separately, in
particular, an underprediction of the C stocks
for spruces and pines. This would be particu-
larly critical for processes dependent on specific
CWD classes, e.g., beetle colonization.

The model we selected as a starting point rep-
resented the decomposition delay with T̂max . In
our model, for calibration, we added two addi-
tional decomposition modifiers, and the term Δ
is relatively similar to the term εT̂max

. Both have
delayed the decomposition in the initial phase,
but the former postpones decomposition for
some time, while the latter describes an initial
slowing down of decomposition (Appendix S1:
Figs. S6, S7). The slow initial decomposition
recorded in some of the data points was repre-
sented more often in the calibration with T̂max
than with the delay term Δ, although both terms
describe similarly a slowing down of the decom-
position process. The slow decomposition in the
early phases after tree death was also variable
within the CWD classes. There are many possible
causes for the slow decomposition rate and,
therefore, the considerations about potential
affecting factors remain speculative. One possible
contributor not accounted for by the available
classifiers is the sapwood/heartwood ratio,
which is variable between tree species but also
among individual trees.

The parameter u0, describing the decomposer
growth rate, influenced the initial part of the
curve most strongly (Appendix S1: Fig. S6), and
the parameter value was higher for wood char-
acterized by faster decomposition. This might be
related to microbial community effects, with
some substrates (e.g., different availability of
nitrogen) influencing the general decomposers’
growth rate or even favoring a particular micro-
bial class (Bani et al. 2018). The parameter q0
reflects the differences between the tree species,
in particular between the birch and both spruce
and pine. The much faster decomposition of
birch compared with pine and spruce seemed to
be due to intrinsic wood characteristics.
Although with broad variation, the previous
studies have reported comparable differences in
chemical wood properties between tree species
(Kahl et al. 2017). For example, Weedon et al.

(2009) found large differences in decomposition
kinetics related to tree species. Accordingly, in a
laboratory study, (Lasota et al. 2018) were found
differences in the release of organics from the
wood of eight different tree species (including
spruce and birch). All these results suggest that
tree species have an impact on wood decompos-
ability (represented in our model by the initial
quality q0).
The posterior distributions of the common

parameters of the local parameterization (Fig. 4)
were symmetrical. This means that the unex-
plained variance is normally distributed and that
there are no regular biases in the model errors,
which in turn suggests that the degrees of free-
dom introduced with the local parameter
allowed the model to represent most of the key
processes involved in decomposition.

Impact of CWD characteristics on decomposition
Coarse woody debris is usually left in the

stand until final felling when it is often har-
vested, but it can be harvested earlier for utiliza-
tion (Brenøe and Kofman 1990, Kärhä 2011).
The large variation in wood decomposition
rates is heavily affected by tree species and by
contact between the wood and the forest floor
(Zhou et al. 2007). Once we introduced these
factors in the model, the prediction error was
reduced, confirming that the wood characteris-
tics (species and position) affect both long- and
short-term decomposition kinetics. This also
caused differences in the predictions for long-
term C stocks.
A clear effect of the position of the wood on

their decomposition has also been reported.
Logs lying on the ground are more easily
attacked by microorganisms, decomposing fas-
ter than snags (Mäkinen et al. 2006, Harmon
et al. 2020). This can be due to faster coloniza-
tion by fungal hyphae, but also the local micro-
climate, e.g., higher moisture when the organic
material is in contact with the ground (Joly
et al. 2017).
The data points were scattered in all our CWD

decomposition classes (Fig. 6), suggesting an
impact of some local conditions or processes.
This could be, e.g., a fallen tree broken at the
base, but which remains for some time hanging
against other trees, delaying decomposition, or
isolated from the ground by the roots at the base.
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Fig. 6. The predictions of remaining mass as a function of time from the specific calibration (where some
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Our approach compared with current SOC
models

Current forest decomposition models do not
represent the influence of local micro-
environments on decomposition kinetics. In gen-
eral, current CWD decomposition models, while
performing well for lying organic material, tend
to overestimate the decomposition of standing
dead trees (Didion et al. 2014). For example, con-
sidering micro-environments, defined by temper-
ature and moisture and tree species, affecting
CWD decomposition (Zhou et al. 2007, Her-
rmann et al. 2015) impacts the accuracy of C bal-
ance calculations (Harmon et al. 2020).

The impact of tree species on wood decomposi-
tion is represented in other models by defining
the initial quality by tree species, which in com-
partmental models correspond to the proportions
between the pools, while in Q, the initial quality is
represented by a single parameter. This informa-
tion is not easily available. For example, the Yasso
model (Tuomi et al. 2011) is based on the decom-
position classes defined from the size of the wood
residual and determined by analyzing the chemi-
cal properties of wood. The classes only represent
the chemical recalcitrance of the material, which
might neglect other effects related to the tree spe-
cies (such as porosity or bark structure) and local

Fig. 7. The difference in model predictions between the global calibration (where all parameters were consid-
ered the same for all the classes) and specific calibrations (where some parameters were considered specific for
classes) for three time points (50, 85, and 120 yr). Error bars represent the standard deviation calculated over the
whole MCMC. Values refer to the difference in the estimated remaining C concentration between the two calibra-
tions (global-specific).

parameters were considered specific to each class) by classes (minimum and maximum are calculated based on
all the MCMC population). The shaded area represents the maximum and minimum of the prediction interval.

(Fig. 6. Continued)
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micro-environments. The Century model, one of
the most used compartmental decomposition
models for OM and in use also for forests, has a
similar approach, predicting decomposability
based on the lignin content of the substrate (Par-
ton 1996). Both models, as well as the current ver-
sion of the Q model, do not consider the impact of
local microclimate. More mechanistic models such
as ROMUL (Chertov et al. 2001), which represents
fauna effects in detail, also neglect local micro-
environments (Komarov et al. 2017). The same
applies to the forest DNDC (Kurbatova et al.
2008). Applications of the detailed Coup model
(Svensson et al. 2008) consider kinetic modifiers
only at the stand level. All these models (includ-
ing Q) could be tuned with kinetic modifiers
dependent on local conditions and calculated
according to the parametric functions of some
local ecological variable, but this would increase
the complexity of the model and require local
fine-scale data to run the model.

Our modeling approach, using calibrated
parameters linked to specific CWD classes, con-
tains most of the necessary information and is
easier to apply. The calibration of the parameters
on empirical data is more robust than in an
approach based on wood chemistry, as it consid-
ers effects described by the information in the
data, but which are not necessarily just chemical.
The inclusion of these effects in models is
important because it represents the impact of

management (e.g., how wood residuals are trea-
ted, if left in place or piled, and how) on forest C
balance. Moreover, the utilization of specific
parameters linked to decomposition classes is
simple to implement, since it does not require
additional functions to model complex ecological
interactions. The approach we propose can also
be directly incorporated in other wood decompo-
sition models by utilizing the decomposition
equation (Eq. 5).

The impact of decomposition kinetics on forest C
stocks in the long term (decades) and very long
term (millennia)
Managed forests do not present “steady states,”

sincemanagement causes them to fluctuate around
an average C stock. Steady states are still useful to
apply tomanaged forests by indicating relative dif-
ferences between the treatments independently of
time. Steady states are conceptually similar to the
mean C stock that a stand with certain manage-
ment accumulates over a very long time. At a
steady state, our model predicted 4–12 times more
OM accumulation for spruce and pine than for
birch. In general, steady states were characterized
by considerable uncertainty, with wide upper and
lower boundaries. In particular, microbial parame-
ters, such as efficiency (e0), lack precise quantitative
estimates in the literature, and even more so β and
η11, which are estimated by the inverse modeling.
These parameters impact the steady state uncer-
tainty (Hyvönen et al. 1998), and in our study, this
impact was particularly large because of the lack of
reliable data on the latter parts of the decomposi-
tion curves (Harmon et al. 2020).
The absolute C stocks we calculated depended

also on the input levels, varying between the
management regimes and biomes, but the rela-
tive differences between the management
regimes provide indications about their influence
on the C balance of a stand. If the aim is the
extraction of forest energy while still increasing
CWD stocks stored in the forest, birch wood is
more suitable to be removed than coniferous spe-
cies since it decays faster. Pine and spruce residu-
als and logs left in forests have a higher potential
for C storage, in particular, if left standing. So,
for the same mass of wood extracted from a
mixed-species forest, the higher C accumulation
is achieved by extracting the birch and leaving
coniferous trees on site.

Table 4. Steady states (C stocks, Mg/ha) calculated
assuming 1 Mg�ha−1�yr−1 of input for each class,
with uncertainty boundaries (95% CI, min = lower
bound, max = upper bound. Values calculated on
all four MCMC. Due to the nonparametric nature of
the error estimation, boundaries are asymmetric).

Decay class Mode Min Max

log.Pine 212 92 4218
snag.Pine 264 111 4856
snag <1/3 broken.Pine 343 141 6526
snag <1/3 broken.Spruce 561 224 11,592
log.Spruce 319 133 7327
snag.Spruce 474 165 11,701
snag <1/3 broken.Birch 58 27 1152
snag.Birch 67 26 1139
log.Birch 56 25 1222
Tarasov et al. 147 56 2925
General 52 40 517
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The uncertainty we detected in the estimation
of the long-term C stocks stresses the importance
of longer-term decomposition observations.
Without decomposition time series spanning 5–
10 decades, it is difficult to constrain the model
for steady states, which are typically reached
after thousands of years (Hyvönen et al. 1998).
Until longer-term data about the consequence of
specific management become available, the only
way to extrapolate from short-term data is
through modeling. For this reason, representing
all key processes influencing the decomposition
kinetics in decomposition models is crucial when
simulating the long-term effects of forest man-
agement approaches.

CONCLUSIONS

Calibration of the model based on global
parameters generated less accurate predictions
and explained less variance than calibration
specific for the CWD classes, which captured dif-
ferences in decomposition caused by CWD posi-
tion and tree species. The amount of C remaining
predicted after 50 yr for different classes with
local parameterization was highly different from
that predicted by the global parameterization
(Table 5). The tree species had different decom-
position rates, and the position of wood (lying on
the ground or standing) affected the decomposi-
tion delay (supposedly proportional to the time
needed for microbial colonization) and, thus, the
forest C balance.

Considering CWD classes separately reduced
the uncertainty of the predictions, but still left some
unexplained variance in the decomposition kinetics

within each class due to some other processes not
considered in our data or model. To improve the
reliability of CWD decomposition models, there is
still a need for more detailed studies considering
more ecological covariates, and for updates to
monitoring programs and methods (e.g., the intro-
duction of proximal sensing via three-dimensional
laser scans and automatic monitoring stations).
Such data are needed to explore proxies of decom-
position that could be used to map and predict the
unexplained variance in the kinetics.
The differences in decomposition associated

with CWD classes that our model predicted
affect the C balance of a stand already over a few
decades. The amount of CWD in a stand can be
influenced by forest management, either by har-
vesting certain classes or by retaining specific
slowly decomposing CWD classes, and our
model can be utilized to predict how much. In
the future, extraction of biomass will become
increasingly important, increasing the pressure
on CWD harvest. Therefore, reliable modeling of
the decomposition of different CWD classes will
be urgently needed to decide what to harvest
and not harvest, or even how to harvest (e.g.,
with the alternative thinning techniques such as
girdling Riffell et al. 2011). Our model calibration
is potentially useful for developing biomass har-
vesting strategies involving thinning residuals
and other CWD and including them in a precise
quantitative assessment of a stand C balance.
This tool can be used together with high-
resolution data on wood biomass, such as the
ones from low-altitude laser exploration (at the
moment, an experimental technique in active
development), to calculate a precise C balance of
vast areas of the forest. In addition, the decompo-
sition of different CWD classes left in forests can
be better taken into account when considering
their role in maintaining biodiversity.
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Ranius, T., A. Hämäläinen, G. Egnell, B. Olsson, K.
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