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Probabilistic inference of the genetic architecture
underlying functional enrichment of complex traits
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We develop a Bayesian model (BayesRR-RC) that provides robust SNP-heritability estima-

tion, an alternative to marker discovery, and accurate genomic prediction, taking 22 seconds

per iteration to estimate 8.4 million SNP-effects and 78 SNP-heritability parameters in the UK

Biobank. We find that only ≤10% of the genetic variation captured for height, body mass

index, cardiovascular disease, and type 2 diabetes is attributable to proximal regulatory

regions within 10kb upstream of genes, while 12-25% is attributed to coding regions, 32–44%

to introns, and 22-28% to distal 10-500kb upstream regions. Up to 24% of all cis and coding

regions of each chromosome are associated with each trait, with over 3,100 independent

exonic and intronic regions and over 5,400 independent regulatory regions having ≥95%
probability of contributing ≥0.001% to the genetic variance of these four traits. Our open-

source software (GMRM) provides a scalable alternative to current approaches for

biobank data.
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As whole-genomes are collected for hundreds of thousands
of individuals, we require regression methods that are not
only computationally efficient, but which also provide

improved inference. Rather than relying on subsets of the SNPs,
methods should fully utilise the data, exploiting computational
power to facilitate discovery of additional genomic regions, to
improve understanding of the genomic architecture of common
disease, and to provide more informative genomic prediction.

For example, when estimating the proportion of phenotypic
variance attributable to different categories of genetic markers
(the SNP-heritability, h2SNP of a genomic region), recent studies1–4
highlight the importance of accounting for minor allele frequency
(MAF) and LD structure of the genomic data. Generally, assess-
ment of the relative contribution of different genomic regions is
currently made assuming that markers within a category all
contribute to the variance, with enrichment defined as the esti-
mated share of the variance explained divided by its expected
share5,6. However ideally, the estimated distribution of marker
effects for each category would be directly obtained, accounting
for MAF and LD structure and allowing for some of the marker
effects to be zero, as this would yield a better understanding of the
polygenicity of genomic effects across different genomic anno-
tation groups.

Furthermore, statistical inference usually follows a multi-step
approach. Current mixed-linear association models such as those
implemented in the software fastGWA7, BoltLMM8 and
REGENIE9, use a two-step approach, first estimating the variance
contributed by the SNP markers without the use of MAF-LD-
annotation information, and then estimating the marker effect
sizes one-by-one as fixed effects in a second step7,8,10. Following
this initial mixed-model association step, statistical inference
(variance components, fine mapping and risk prediction) is then
typically conducted on the summary statistics generated. The
advantage of a multi-step approach is that large sample size can
be easily obtained through meta-analyses, combining summary
statistics from different studies and avoiding the need for
individual-level data sharing. However, as large-scale biobank
data is increasingly available, methods that provide joint estimates
of the marker effects in a single step by estimating the effect sizes
as random under flexible prior formulations may become bene-
ficial as they: (i) can account for differences in the variance
contributed across MAF, LD or annotation groups providing
unbiased MAF-LD annotation-specific genetic effect size esti-
mates and h2SNP of different annotations, allowing for a con-
trasting of the genetic architectures of complex traits; (ii) give the
probability that each marker, genomic region, annotation, gene-
coding region, or SNP is associated with a phenotype, alongside
the proportion of phenotypic variation contributed by each,
yielding test statistics that describe the gene architecture of
complex traits and the uncertainty over the estimates; and (iii)
provide improved genomic prediction, whilst providing a pos-
terior predictive distribution for each individual.

Here, we outline the fastest Bayesian penalised regression
model to date, with a hybrid-parallel algorithm for analysing
large-scale genomic biobank using a single command-line tool
implemented in our grouped mixture regressions model
(GMRM) software. We validate our approach in large-scale
simulation study and provide an empirical example using four
traits measured in both the UK Biobank and Estonian
Biobank data.

Results
A Bayesian model for large-scale genomic data. We derive a
model that we call BayesRR-RC in Supplementary Note 1 and the
“Methods” section, which is based on grouped effects with

mixture priors, improving on the formulations of refs. 11–13. Like
these former methods, we consider a spike probability at zero
(Dirac delta function), and a scale mixture of Gaussian dis-
tributions as a slab probability density. Unlike these models, we
have genetic markers grouped into MAF-LD-annotation specific
sets, with independent hyper-parameters for the phenotypic
variance attributable to each group, so that the mixture propor-
tions, the variance explained by the SNP markers, and the mix-
ture constants are all unique and independent across SNP marker
groups. This enables estimation of the phenotypic variance
attributable to the group-specific effects, and differences in the
underlying distribution of the βφ effects among MAF-LD-
annotation groups, with different degrees of sparsity. Assuming
N individuals and p genetic markers, our model of an observed
phenotype vector y is:

y ¼ 1μþ ∑
Φ

φ¼1
Xφβφ þ ϵ; ð1Þ

where there is a single intercept term 1μ and a single error term, a
vector (N × 1) of residuals ϵ, with ϵjσ2ϵ � N 0Iσ2ϵ

� �
. An N by p

matrix of single nucleotide polymorphism (SNP) genetic markers,
centred and scaled to unit variance, which we denote as Xφ. The
effects are allocated into groups (1,…, Φ). Each group has a set of
model parameters Θφ ¼ fβφ; πφ; σ

2
Gφg, with βφ as a pφ × 1 vector

of partial regression coefficients, where βφj
is the effect of a 1 SD

change in the jth covariate within the φth group. The spike and
slab prior, contains what is called a Dirac spike14,15 for βφ, which
induces sparsity in the model through a Dirac-delta at zero,
excluding variables from the model by setting their coefficients to
zero. A finite scale mixture of normal distributions centred at zero
constitute the slab component. The slab shrinks the non-zero
coefficients towards zero according to the slab’s width, and by
having a scale mixture of Gaussians, the distribution has heavier
tails and can accommodate big and small effects16. Therefore,
each βφj

is distributed according to:

βφj � π0φδ0 þ π1φN 0; σ21φ

� �
þ π2φN 0; σ22φ

� �
þ ¼ þ πLφφN 0; σ2Lφφ

� �
;

ð2Þ
where for each SNP marker group fπ0φ; π1φ; ¼ ; πLφφg are the

mixture proportions and fσ21φ; σ22φ; ¼ ; σ2Lφφg are the mixture-

specific variances proportional to

σ21φ

..

.

σ2Lφφ

2
6664

3
7775 ¼ σ2Gφ

C1φ

..

.

CLφφ

2
6664

3
7775;

with σ2Gφ the phenotypic variance associated with the SNPs in
group φ, which, like all the other parameters, is estimated directly
from the data. Here, we use 78 MAF-LD-annotation SNP marker
groups. SNPs are partitioned into seven location annotations
preferentially to coding (exonic) regions first, then to intronic
regions, then to 1 kb upstream regions, then to 1–10 kb regions,
then to 10–500 kb regions, then to 500–1Mb regions. Remaining
SNPs were grouped in a category labelled “others" and also
included in the model so that variance is partitioned relative to
these also. Thus, we assigned SNPs to their closest upstream
region, for example if a SNP is 1 kb upstream of gene X, but also
10–500 kb upstream of gene Y and 5 kb downstream for gene Z,
then it was assigned to be a 1 kb region SNP. This ensures that
SNPs 10–500 kb and 500 kb–1Mb upstream are distal from any
known gene. We further partition upstream regions to experi-
mentally validated promoters, transcription factor binding sites
(tfbs) and enhancers (enh) using the HACER, snp2tfbs databases
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(see “Code availability” section). All SNP markers assigned to
1 kb regions map to promoters; 1–10 kb SNPs, 10–500 kb SNPs,
500 kb–1Mb SNPs are then split into enh, tfbs and others
(unmapped SNPs) extending the model to 13 annotation groups
(Supplementary Data 1). Within each of these annotations, we
have three minor allele frequency groups (MAF ≤ 0.01,
0.01 <MAF ≤ 0.05, and MAF > 0.05), and then each MAF group
is further split into two based on median LD score. This gives 78
non-overlapping groups for which our BayesRR-RC model jointly
estimates the phenotypic variation attributable to, and the SNP
marker effects within, each group. For each of the 78 groups,
SNPs were modelled using five mixture groups with variance
equal to the phenotypic variance attributable to the group mul-
tiplied by constants (0, 0.0001, 0.001, 0.01, 0.1).

One of the major limitations preventing the application of
Bayesian approaches to large-scale genomic data is the view that
the computation of a posterior distribution is too expensive. In
Supplementary Note 2, we derive a Bulk Synchronous hybrid-
parallel (BSP) Gibbs sampling scheme for large-scale genomic
data that allows both the data and the compute tasks to be split
within and across compute nodes in a series of message-passing
interface (MPI) tasks. We extend previous sparse residual
updating schemes by deriving sampling steps to utilise whole
genome sequence or SNP genetic data stored in mixed binary/
sparse-index representation (see Supplementary Note 2), redu-
cing computational complexity of a single Gibbs step from OðnÞ
to OðnzÞ, with nz the number of non-zero genotypes, as SNP-
phenotype covariance estimation (dot product calculation) is
conducted as a series of look-up tables. We provide publicly
available open source software (GMRM) that requires as little as
22 s per MCMC sample to estimate 78 group-specific h2SNP
parameters, and the inclusion probabilities and effect sizes of
8,433,421 markers in 382,466 individuals on standard Intel Xeon
CPU processors (see “Code availability” section, Supplementary
Note 2).

Simulation study. We first compare the model performance of
BayesRR-RC to existing approaches across 18 different genetic
architectures. We randomly selected 40,000 unrelated UK Biobank
individuals and used 596,741 imputed SNP markers from chro-
mosomes 19 to 22. We randomly selected either 1000, 10,000 or
100,000 LD independent (LD R2 < 0.1) causal SNP markers. For
each SNP marker set, we then simulated effect sizes from a normal
distribution with zero mean and variance of 0.1, 0.3 or 0.6 divided
by the number of causal variants and ∝N(0, [p(1−p)]−0.25), with p
the allele frequency (see “Methods” section). This simulates
stronger effect sizes for rare variants in line with recent empirical
estimates and we simulated ten replicate phenotypes for each of
the nine different genetic architectures. We then additionally
repeat each simulation, sampling the SNP marker effects this time
from 13 different distributions, one for each of 13 different
genomic annotation groups with different proportions of h2SNP to
create nine further different genetic architectures. We compare
our BayesRR-RC model to the following statistical models: (i) a
restricted maximum likelihood (REML) model implemented in
the software BoltREML17 with the same 78 MAF-LD-annotation
groups enabling a direct comparison, (ii) a Haseman–Elston (HE)
regression using the same 78 group model implemented in the
software RHEmc18, (iii) summary statistic linkage disequilibrium
score regression (LDSC)19, with LD scores calculated using the
same data, and the same 78 non-overlapping annotations in a 78
component LDSC annotation model, and (iv) summary statistic
SumHer6 (LDAK) with the same 78 non-overlapping annotations.

We find that BayesRR-RC estimates the phenotypic variation
attributable to different genomic annotation groups comparable

with the BoltREML model, with similar correlation of the
estimated and simulated values within each simulation replicate
(Fig. 1a). In comparison, RHEmc, which also uses individual-level
data, yields estimates with lower correlation with the simulated
value, but higher than both summary statistic approaches
implemented in LDSC and Sumher (Fig. 1a). We calculate
estimates of enrichment, defined as the proportion of h2SNP
attributable to the annotation divided by the proportion of SNPs
mapping to the annotation (for bayesRR-RC, because there is
sparsity in the SNP effects, we define enrichment as the
proportion of SNPs in the model that map to the annotation,
see “Methods” section) and we compare these to the true
simulated value. Compared to other approaches, we find that
BayesRR-RC gives a lower probability of false enrichment,
calculated as the proportion of times within a simulation replicate
that an annotation group was incorrectly assigned as having
enrichment greater than 2 (Fig. 1b). Thus, BayesRR-RC provides
accurate partitioning of genomic enrichment across the genome.

In Supplementary Note 3, we propose a posterior probability
window variance (PPWV) approach20, which provides a
probabilistic determination of association of a given LD block,
genomic window, gene, or upstream region, relative to the
amount of phenotypic variation attributable to that window. Our
PPWV approach determines the posterior inclusion probability
that each region and each gene contributes at least 0.001% to the
h2SNP, with theory outlined in Supplementary Note 3 suggesting
well controlled FDR. We determine the ability of our PPWV
approach to correctly localise an association to LD blocks
(defined as groups of markers with LD R2 ≥ 0.1) that contain
causal variants, and compare this to using LD to clump mixed-
linear model association estimates obtained using the BoltLMM
software (Fig. 2a). We find that a PPWV approach identifies
associated LD blocks with higher probability as compared to
clumped MLMA associations, for all genetic architectures, with
the exception of simulated phenotypes with enrichment and low
polygenicity, where the small numbers of relatively large effect
size regions are better identified with a single-marker regression
approach (Fig. 2a). Thus, BayesRR-RC provides an alternative to
standard genome-wide association studies to localise SNP-
phenotype associations at the regional level, especially for traits
with high polygenicity.

We then also compare the prediction accuracy obtained in an
independent sample when creating genomic predictors using (i)
effect sizes estimated by BayesRR-RC, (ii) fixed-effect SNP effect
sizes estimated in the MLMA approach implemented in bolt, and
(iii) effect size estimates obtained from four different genomic
prediction models proposed in a recent paper21, implemented in
the LDAK software, which are suggested to outperform all other
current approaches. In comparison to the best LDAK predictor,
we find that BayesRR-RC obtains similar or improved prediction
accuracy across all genetic architectures, with greater prediction
accuracy gains observed under genetic architectures where the
SNP effect distributions differed across genomic annotations
(Fig. 2b). We find that given sufficient power, BayesRR-RC can
obtain or even exceed the theoretical expectation of prediction
accuracy under ridge regression assumptions (Fig. 2b, see
“Methods” section).

We then conduct a number of follow-up simulation studies.
Recent work has highlighted differences in statistical model
performance depending upon the relationship of SNP marker
effect size, LD and MAF1,3,4. We explore the performance of our
model in theory, with highly correlated genetic markers in
Supplementary Note 4. We also conducted another large-scale,
but well-powered, simulation study to explore the model
performance of BayesRR-RC as compare to existing approaches
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across a wide range of 20 different effect size, LD, and MAF
relationships as described in Supplementary Table 1. For the
estimation of h2SNP and the proportion of h2SNP attributable to
different annotation groups, we find that all statistical models
other than BayesRR-RC are sensitive to the underlying generative
genetic model, with no other approach providing consistent
estimates across the 20 generative genetic models (Supplementary
Fig. 1a). As in the previous simulation, BayesRR-RC estimates the
variance attributable to different genomic regions on the correct
scale, with higher correlation as compared with other approaches
(Supplementary Fig. 1b), and this results in the estimated average
effect size for each annotation group having high correlation with
the simulated value (Supplementary Fig. 1c). Again, summary
statistic approaches performed poorly for both variance compo-
nent estimation (Supplementary Fig. 1b) and quantification of
enrichment as compared to individual-level methods, often even
incorrectly selecting the group of highest average effect size
(Supplementary Fig. 1c).

We confirmed our genomic prediction results, finding that
BayesRR-RC outperforms all methods implemented in the LDAK
software across all generative models, with BayesRR-RC very
marginally outperforming a single variance component BayesR
model in the enrichment simulations of each of the 20 generative
genetic models (Supplementary Fig. 2).

We further explored the ability of our PPWV approach to
localise SNP-phenotype associations in the 20 generative models,
by comparing the z-scores of the marker effect estimates from
their true simulated value across the minor allele frequency
spectrum (Supplementary Fig. 3) and the area under the
precision-recall curve (AUPRC, Supplementary Fig. 4) for
BayesRR-RC and a series of MLMA methods. We find that the

z-scores of the BayesRR-RC estimates are generally stable across
generative genetic models and that the MLMA estimates have
higher estimation error, especially when the causal variant is rare,
or in high-LD with many other SNPs (Supplementary Fig. 3). We
also find that our PPWV approach outperforms MLMA methods
in their precision-recall curves across the range of genetic
architectures (Supplementary Fig. 4). We confirmed that popula-
tion stratification and relatedness are well-controlled for using a
PPWV approach, as compared to an MLMA model with the
leading PCs of the genomic data included (Supplementary Fig. 5).
We compared the ability of our approach to identify candidate
SNPs and to provide a probabilistic assessment of the most likely
associated set of SNP markers. Finally, we show that our PPWV
approach is analogous to the approach suggested in a recent
paper (SuSiE22) of selecting credible sets of markers with high
probability of association, finding that BayesRR-RC has higher
power to localise associations to sets of SNP markers (Supple-
mentary Fig. 6). The advantage of BayesRR-RC is also that
assessment of associated regions is done genome-wide, with
estimates obtained through simple summary of the posterior
distribution instead of running numerous statistical models at
different genomic regions. Taken together, these simulation
results indicate that BayesRR-RC provides accurate estimates of
the underlying effect size distribution for different genomic
groups, yielding improved genomic prediction, across a wide
range of different underlying generative genetic models.

The genetic architecture of four complex traits in the UK
Biobank. We apply BayesRR-RC to cardiovascular disease out-
comes (CAD), type-2 diabetes (T2D), body mass index (BMI)
and height measured for 382,466 unrelated individuals from the
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Fig. 1 Simulation study for the performance of our BayesRR-RC model implemented in the GMRM software against existing approaches for variance
component and genomic annotation enrichment estimation. a Correlation of the simulated and estimated SNP heritability across 13 genomic annotation
groups within each of 20 replicates for five different statistical models: a mixture of regression model with multiple group-specific variance components
described in this work (GMRM), Haseman–Elston regression with annotation-specific relationship matrices implemented in the RHEmc software (RHEmc),
a multiple group-specific variance component REML model implemented in the software bolt (BOLT), and two annotation summary statistic models
implemented in the software LDSC and LDAK. The column facets give the simulated heritability and rows give the number of causal variants. b Probability
of falsely assigning one of the 13 genomic annotation groups as explaining 2 times greater proportion of variance given the proportion of SNPs mapping to
the annotation. The column facets give the simulated heritability and rows give the number of causal variants. Boxplots give the median with 25th and 75th
percentile and 95% credible intervals for n = 20 simulation replicates in both panels.
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UK Biobank data genotyped at 8,433,421 imputed SNP markers.
These markers were selected as they overlap with the Estonian
Genome Centre data (see “Methods” section) and have minor
allele frequency >0.0002. We adjust each phenotype for age, sex,
year of birth, genotype batch effects, UK Biobank assessment
centre, and the leading 20 principal components of the SNP data.
We conducted a series of convergence diagnostic analyses of the
posterior distributions to ensure we obtained estimates from a
converged set of four Gibbs chains, each run for 6000 iterations
with a thin of five for each trait (Supplementary Figs. 7–10).

We find that 32–44% of the h2SNP is attributable to intronic
regions, 12–25% is attributable to exonic regions, 22–28% is
attributable to markers 10–500 kb upstream of genes, with
proximal (within 10 kb) promotors, enhancers and transcription
factor binding sites cumulatively contributing <10% (Fig. 3b and
Supplementary Fig. 11, with estimates summed across MAF and
LD groups Table 1, and full results in Supplementary Data 2). The
large contribution of exonic and intronic annotations to variation
is in-line with the fact that these annotations account for ~40% of
the total genome length. All four traits show the same pattern of
group-specific variation, with the exception of height, where the
proportion of h2SNP attributable to exons is almost twice as large as
the other phenotypes (Fig. 3b; Table 1 and Supplementary Fig. 11
and Supplementary Data 2). For all annotation groups in exons,
introns, and within 500 kb of genes across all traits, ≥60% of the
h2SNP attributable to these groups is contributed by many
thousands of common variants, each of small effect (Fig. 3b
and Supplementary Figs. 11 and 12).

Our estimates compare similarly to those obtained by RHEmc
and SumHer, but differ to those obtained by LDSC (Table 1 and
Supplementary Data 3, 4, and 5 for full results). In addition to
providing variance component estimates, our model facilitates
assessment of differences in the underlying effect size distribution
across annotation groups. For each group, we modelled the SNP
effects as coming from a series of five Gaussian mixtures, and we
find that at least 45% of the h2SNP attributable to both introns and
500 kb upstream regions is underlain by many thousands of SNPs
that on average each contribute 0.001% (estimates summed across
MAF and LD groups in Fig. 3b and Supplementary Figs. 11 and
12). In contrast, the variance is spread more evenly across the
mixtures for the other groups, implying that 10–500 kb upstream
regions and introns are more polygenic than other groups. This is
especially so for BMI where 35% of the h2SNP is attributable to
many thousands of intronic variants (Fig. 3 and Supplementary
Fig. 12). Therefore, we find that the polygenicity of the genetic
effects varies across different genomic regions, with remarkably
consistent patterns across traits in the partitioning of h2SNP across
the genome.

Across traits, posterior mean effect sizes scale to their
differences in h2SNP, and we find that exonic and intronic region
effect sizes were higher than the rest of the genome, across all
mixture groups, followed by 10–500 kb upstream regions (Fig. 3c).
We find little evidence that SNPs located in proximal promotors,
enhancers, and transcription factor binding sites within 10 kb of
genes showed average effect sizes that were higher than SNPs
located 1MB away from genes, or those that were not mapped to
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Fig. 2 Simulation study for the performance of our BayesRR-RC model implemented in the GMRM software against existing approaches for
localisation of associations and genomic prediction. a Probability of detecting genomic regions containing simulated causal variants by a Bayesian
regional fine-mapping approach (GMRM: blue) versus standard mixed linear model association (MLMA) testing (BOLT: green). The column facets give the
simulated heritability and rows give the number of causal variants and whether the effect sizes differed across genomic annotation groups (enrich) or were
randomly assigned (random). b Correlation of a genomic predictor and a phenotype in an independent sample when the genomic predictor is created from
GMRM effects sizes (blue), MLMA effect sizes using BOLT (green), and the optimal effect sizes obtained from individual-level and summary statistic
models implemented in the Mega-PRS LDAK approach (purple). The column facets give the simulated heritability and the number of causal variants. The
row facets give whether the effect sizes differed across genomic annotation groups (enrich) or were randomly assigned (random). The red lines give the
expected prediction accuracy based on ridge regression theory. Error bars show the SD in both panels.
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a specific category, with perhaps the exception of high MAF
variants (Fig. 3c). Generally, all phenotypes simply appear to be
predominantly underlain by very many common variants, with
SNPs within distal regulatory regions, coding and intronic regions
contributing more to the variance. We also re-scaled the marker
effects by the standard deviation of each marker, to give effect
sizes on the allele substitution effect size scale, and again we find
that rare variants have higher average allele substitution effects
than common variants for exonic, intronic, promotors and
enhancers (Supplementary Fig. 12b). An exception to these
patterns were BMI-associated intronic and 10–500 kb group
SNPs, where we find no evidence that the allele substitution effect
size differs across frequency groups (Supplementary Fig. 12b). We

also did not find evidence that the allele substitution effect size
differed across frequency groups for transcription factor binding
sites, distal SNPs 1 MB upstream of genes, or those not mapping
to an annotation group (Supplementary Fig. 12b).

Discovery of associated genomic regions. We then partitioned
the variance attributed to SNP markers across 50kb regions of the
genome, then across SNPs annotated to genes, and then to LD
blocks of the DNA using our PPWV approach. We find 1660
50 kb regions for height with ≥95% posterior probability of
explaining 0.001% of the h2SNP, 520 regions for BMI, 70 regions for
CAD and 87 regions for T2D (Fig. 4a and Table 2). We then map

Fig. 3 Genetic architecture of enrichment for height (HT), body mass index (BMI), cardiovascular disease (CAD) and type-2 diabetes (T2D) for
382,466 unrelated European ancestry UK Biobank individuals genotyped at 8,430,446 SNP markers. a We partition SNP markers into seven location
annotations (coding regions, intronic regions, and windows 1, 1–10, 10–500 kb and 500 kb–1 Mb upstream of genes, with other SNPs grouped in a category
labelled “others"). Windows 1–10 kb, 10–500 kb and 500 kb–1 Mb upstream of genes are further split into SNPs mapped to enhancers (enh), transcription
factor binding sites (tfbs) and others. Within each of the 13 annotations, we have three minor allele frequency groups (MAF≤ 0.01 annotated as rare,
0.01 <MAF≤ 0.05 annotated as low, and MAF > 0.05 annotated as common), and then each MAF group is further split into two based on median LD
score. This gives 78 groups for which our BayesRR-RC model jointly estimates the phenotypic variation attributable to, and the SNP marker effects within,
each group. For each of the 78 groups, SNPs were modelled using five mixture groups with variance equal to the phenotypic variance attributable to the
group multiplied by constants (mixture 0 = 0, mixture 1 = 0.0001, 2 = 0.001, 3 = 0.01, 4 = 0.1). b Posterior distribution of the proportion of the total
phenotypic variance attributable to the SNP markers that is contributed by each of the four non-zero mixtures within each MAF-annotation group for HT,
BMI, CAD and T2D. Within these, are boxplots of the posterior mean and 95% credible intervals. Values are summed over LD groups. c Bar plots with error
bars giving the 95% credible intervals for the average effect size of markers in the model for each MAF-annotation group, split by mixture.
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SNPs to their closest gene (+/−50 kb from SNP position) and we
use our annotations to label them (see “Methods” section). We
find 243 independent coding regions for height with ≥95% pos-
terior probability of explaining at least 0.001% of the h2SNP, 29
independent coding regions for BMI, 5 for CAD and 13 for T2D.
We find many more associations in the cis region of genes with
1254 independent cis-regions for height with ≥95% posterior
probability of explaining 0.001% of the h2SNP, 1765 independent
cis-regions for BMI, 1166 for CAD and 1221 for T2D. We
additionally find 9 independent promoter regions and 1072
independent introns for height with ≥95% posterior probability of
explaining at least 0.001% of the h2SNP, 1162 independent intronic
gene regions for BMI, 307 for CAD and 347 for T2D. When we

calculate the number of exons, introns, promotors and cis regions
with ≥95% posterior probability of explaining 0.001% of the h2SNP,
as a proportion of the total number within each chromosome, we
find that up to 24% of the genes on each chromosome are
associated with each of the four traits (Fig. 4b). Generally, we find
that only 1% or less of the available exons and promotor regions
of genes per chromosome show an association with each of the
phenotypes, but up to 14% of the available intronic regions and
up to 10% of the cis-regions surrounding genes contribute to the
phenotypic variance with ≥95% probability (Fig. 4b). The var-
iance contributed by each exonic, intronic, promotor, or cis
region is typically only a small fraction of a percent, with largest
effect sizes being the exonic region of GDF5 contributing 0.26%

Table 1 Proportion of genetic variance attributable to different genomic regions for height (HT), body mass index (BMI), type-2
diabetes (T2D) and cardiovascular disease (CAD).

Group Trait BayesRR-RC RHE-mca sLDSCa SumHera

Posterior mean
(95% CI)

h2obs (se) % h2obs (se) % h2obs (se) %

Variance attributable to SNP markers genome-wide HT 57.66 (56.09, 59.14) 63.28 (3.57) 64.16 (2.86) 98.58 (0.69)
BMI 28.74 (27.62, 30.0) 26.76 (1.06) 31.03 (0.9) 44.98 (0.53)
CAD 5.94 (5.30, 6.67) 4.49 (>100) 4.73 (0.28) 7.33 (0.43)
T2D 8.45 (7.83, 9.18) 6.90 (0.47) 6.53 (0.3) 11.65 (0.44)

Proportion of genetic variance attributable to exonic
regions of genes

HT 24.75 (23.39, 26.071) 27.09 3.00 16.74

BMI 12.98 (10.98, 14.84) 12.62 4.37 7.60
CAD 13.23 (8.40, 18.84) 18.68 1.69 15.34
T2D 14.49 (10.74, 18.54) 14.60 2.46 10.12

Proportion of genetic variance attributable to intronic
regions of genes

HT 41.54 (39.91, 43.39) 41.60 46.07 43.03

BMI 44.17 (41.36, 47.25) 47.87 44.61 48.19
CAD 32.05 (24.98, 39.51) 41.15 47.22 41.94
T2D 37.28 (32.22, 42.57) 48.66 38.52 48.02

Proportion of genetic variance attributable to snps 1
kb upstream of genes

HT 2.81 (2.24, 3.42) 1.76 1.46 1.74

BMI 1.62 (0.75, 2.69) 0.36 1.90 1.15
CAD 4.20 (1.71, 7.55) 2.49 <0.00 1.26
T2D 3.58 (1.77, 5.86) 3.40 <0.00 1.57

Proportion of genetic variance attributable to snps 10
kb upstream of genes

HT 6.60 (5.84, 7.40) 6.73 4.29 12.87

BMI 5.28 (3.92, 6.87) 3.19 6.58 4.10
CAD 13.06 (8.70, 18.16) 5.70 6.02 8.91
T2D 9.08 (5.90, 13.28) 4.02 20.44 7.56

Proportion of genetic variance attributable to snps
500 kb upstream of genes

HT 22.13 (21.00, 23.40) 21.53 37.23 24.14

BMI 28.58 (26.41, 31.01) 28.81 35.86 31.17
CAD 28.02 (21.24, 35.04) 30.23 38.90 29.58
T2D 27.42 (22.68, 32.36) 24.33 32.49 27.47

Proportion of genetic variance attributable to exonic
regions that is explained by common variants

HT 72.09 (69.77, 74.14) 62.62 75.35 51.22

BMI 69.41 (62.60, 76.42) 59.67 16.43 54.31
CAD 64.97 (43.08, 83.16) 61.72 >100 49.17
T2D 68.57 (56.00, 79.82) 66.33 >100 64.11

Proportion of genetic variance attributable to intronic
regions that is explained by common variants

HT 81.19 (79.30, 83.02) 79.96 70.88 66.12

BMI 85.05 (78.28, 91.49) 86.10 70.62 69.68
CAD 84.68 (65.64, 95.91) 96.55 61.11 78.17
T2D 87.62 (75.65, 94.85) 87.63 67.93 71.39

Proportion of genetic variance attributable to snps
500 kb upstream of genes that is explained by
common variants

HT 81.59 (78.91, 83.96) 80.66 71.86 77.28

BMI 86.78 (80.56, 91.60) 89.95 67.38 74.81
CAD 66.49 (49.11, 81.79) 88.51 60.52 79.91
T2D 72.35 (58.71, 83.75) 94.91 69.48 75.12

aRHEmc18, LDSC19 and SumHer6 provide the total SNP heritability observed (%) and single heritability estimates per genetic component (see Supplementary Data 2–5) that we summarised to obtain the
proportion of genetic variance attributed to exonic regions, intronic regions and windows 1, 1–10 and 10–500 kb upstream of genes.
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(95% CI 0.21, 0.32) to the phenotypic variance of height, the
intronic region of FTO contributing 0.48% (95% CI 0.29, 1.12) to
BMI, both the exonic-region and intronic-region of LPA con-
tributing a combined 0.08% (95% CI 0.04, 0.13) to the risk of
CAD, and the intronic region of TCF7L2 contributing 0.28%
(95% CI 0.23, 0.35) to the risk of T2D (Fig. 4c, full results in
Supplementary Data 6–9). Taken together, these results support
an infinitesimal contribution of many thousands of genes to
common complex trait variation and give joint estimates of the
proportions of variance contributed by each gene and their
probability of association.

For each gene, we also calculated the phenotypic variance
contributed by exonic, intronic, promotor region, and cis SNPs
and then calculated the correlation among the variances
explained by the groups across genes. Across traits, we find small
positive correlations of the variance attributable to exonic and
intronic regions of 0.17 (0.09, 0.24 95% CI) for height, 0.02
(0.001, 0.05 95% CI) for BMI, 0.103 (−0.007, 0.71 95% CI) for
CAD, and 0.064 (0.01, 0.19 95% CI) for T2D. Similarly, we find
small positive correlations between introns and cis regions

(Fig. 4d). With the exception of height, there was no evidence
for a relationship among the following groups: (i) SNPs in the
exons of each gene and SNPs +/−50 kb outside of the exon and
promotor regions; (ii) SNPs in the exons of each gene and SNPs
in proximal promotors; and (iii) intronic SNPs and SNPs in
promotor regions (Fig. 4d). This implies that trait associated
SNPs in proximal and distal regulatory regions are largely
independent of the effects of SNPs in their closest exon, as they
do not align in terms of the variance they explain (Fig. 4d). For
height, small weakly positive correlations across all gene regions
in their contribution to variance, implies a degree of alignment
across genes in regulatory variants and the closest exon (Fig. 4d).
These results suggest a regulatory link between introns and distal
cis regions outside of the promotor, or that introns may be
correlated with structural variation. They also imply that the
variance contributed by regulatory regions and those in the
closest coding regions are not strongly coupled for these common
complex traits.

Finally, our approach provides automatic fine-mapping of SNP
loci, and of these region-level and gene-level associations, 360
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Fig. 4 Contribution of genes and 50kb regions to height (HT), body-mass-index (BMI), cardiovascular disease (CAD) and type-2-diabetes (T2D).
a We grouped SNPs in 50 kb-regions genome-wide and estimated the sum of the squared regression coefficient estimates for each 50 kb-region. We then
select the number of 50 kb regions that explain at least 0.001% of the variance attributed to all SNP markers in 80, 90 and 95% of the iterations. This gives
a measure called the posterior probability that the window variance (PPWV)20 exceeds 1/10,000 of the phenotypic variation attributed to SNP markers.
bWemapped SNPs to the closest gene+/−50 kb from the SNP position and labelled them as located in a coding region, an intron, 1 kb upstream of a gene
using our functional annotations (Fig. 3a). Remaining snps are labelled as located in a cis-region (up to +/−50 kb from a gene). We then select the number
of regions where PPWV is higher than 95% and explains at least 0.001 % of the phenotypic variance attributed to all SNP markers. We then calculate the
number of significant coding regions, introns, 1 kb regions and cis regions as a proportion of the total number of genes for each chromosome. Genic
associations that explain at least 0.001% of the phenotypic variance attributed to all SNP markers are again spread across chromosomes according to the
chromosome length. c Shows the mean of the phenotypic variance attributed to intron and cis regions (y-axis) and coding regions (x-axis) that explain at
least 0.001% of the phenotypic variance attributable to SNP markers in ≥95% of the iterations (PPWV > 0.95). These results provide joint estimates of the
proportions of variance contributed by different gene bodies and automatic fine-mapping of gene bodies and their cis-regulatory regions. For example,
introns and cis-regulatory regions of FTO respectively contribute 0.48% (95% CI 0.29, 1.12) and 0.01% (95% CI 0, 0.01) to the phenotypic variance of
BMI. d We calculated the phenotypic variance contributed by exonic, intronic, promoter region and SNPs +/−50 kb outside of the exon and promotor
regions (cis) for each gene. Bar plots show the correlation among the variance explained by the groups across genes. Error bars show the SD.
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SNPs for height, 20 for BMI, 2 for CAD and 9 for T2D could be
mapped to a single SNP with greater than 95% inclusion
probability across all four chains (Supplementary Data 10 and
Supplementary Fig. 13). Of these fine-mapped SNPs, only 53.45%
are top loci with a p-value < 5 × 10−8 from the fastGWAS UK
Biobank summary statistic data for standing height, BMI, angina/
heart attack and type-2 diabetes (fastGWA, see “Code avail-
ability”). This highlights that selecting on the top SNP markers
identified by standard association studies would give a different
set of variants than those obtained from selecting high PIP SNPs.

Out-of-sample prediction into another European healthcare
system. We generated a full posterior predictive distribution for
each trait in each of 32,500 individuals from the Estonian Gen-
ome Centre data, which allows the transmission of uncertainty in
the marker effect estimates from the UK Biobank to the genomic
predictors created in Estonia. First, despite this study having
almost half the sample size, we show improved genomic predic-
tion as compared to recently proposed summary statistic
approaches23, when taking the mean of the predictor across
iterations and correlating this with the phenotype with correla-
tion of 0.62 for height, 0.34 for BMI, 0.16 for T2D, and 0.07 for
CAD (Supplementary Fig. 14a). The area under the receiver
operator curve (AUC) for T2D was 0.67 and 0.57 for CAD. In
comparison, using the 64 BLD-LDAK annotations recommended
by a recent study21, the highest prediction accuracy obtained
from MegaPRS was 0.55 for height, 0.32 for BMI, 0.10 for T2D,
and 0.05 for CAD.

We then estimated the distribution of the partial correlations
between the trait and genomic predictors created from our
different annotation groups and find that exonic, intronic, and
10–500 kb upstream regions contribute proportionally more to
the prediction accuracy than other genomic groups, replicating
our results from the UK Biobank (Supplementary Fig. 14). We
find evidence for zero/low correlations of genomic predictors
created from different annotation groups, which supports our
results from the UK Biobank (Supplementary Fig. 14e). This
suggests that individuals have a different portfolio of risk variants,
with different genomic regions contributing for different

individuals to their overall genetic value, as expected under a
highly polygenic model.

Additionally, for height and BMI we also determined the
proportion of the posterior predictive distribution for each
individual that was within +/−1 SD of their true phenotypic
value. On average 67.5% of an individuals posterior predictive
distribution is within +/−1 SD of their true phenotype for BMI
and 75% for height, with similar prediction accuracy across
individuals (Supplementary Fig. 14c). For T2D and CAD, we
extended the PCF metric, typically defined as the proportion of
cases with larger estimated risk than the top pth percentile of the
distribution of genetic risk in the general population. For each
individual, we calculated the proportion of their posterior
predictive distribution that falls above the top 25% of the
distribution of genetic risk in the general population. The
distribution of these probabilities is shown for confirmed cases
and those without diagnosis in the Estonian Biobank (Supple-
mentary Fig. 14d). We find 25 individuals for T2D and 15
individuals for CAD where ≥90% of their posterior predictive
distribution is within the high risk group of which 40 and 18% are
currently defined as cases for T2D and CAD, respectively based
on recent medical records. This is compared to 1% and 2% case
rate for those with ≤10% probability of being in the high risk
group for T2D and CAD respectively, giving an odds ratio of 20
and 18 between the ≥90% and ≤10% groups. However, our results
clearly show that the individual-level sensitivity and specificity of
genomic prediction for these common complex diseases is very
poor, as 75% of T2D cases and 92% of CAD cases have ≤50% of
their distribution within the high-risk category. These results
highlight how variation contained within a posterior predictive
distribution that is typically ignored in human genomic
prediction can be used. We show that genomic prediction for
personalised medicine with patient-specific predictions or
stratification of patients is currently extremely limited.

Discussion
There is no single statistical model appropriate for all settings and
thus there will always be a situation where a model poorly fits the
data. We have provided theoretical and empirical evidence that a
grouped Dirac spike-and-slab model (which we term BayesRR-
RC), has a prior that is flexible enough to show robust model
performance across the data analysed here, improving inference
in many settings over commonly applied approaches. We develop
a range of computational and statistical approaches which allow
this, or any similar Gibbs sampling algorithm, to scale to whole
genome sequence data on many hundreds of thousands of indi-
viduals. This has enabled us to compare and contrast the inferred
underlying genetic distribution for four complex phenotypes
under this prior, providing novel insight into the genetic archi-
tecture of these traits. We observe that all phenotypes simply
appear to be predominantly underlain by very many common
variants, with SNPs within distal regulatory regions, coding and
intronic regions each contributing more to the phenotypic var-
iance and having higher allele substitution effects.

There has been debate on how to best estimate SNP heritability1,3,4

and here we validate that one approach could be to split SNP mar-
kers by LD to improve genetic effect size estimates. Our results
suggest that the proportion of genomic variation attributable to
mutations in regulatory regions and mutations in the closest genic
regions are largely independent. Additionally our model tests asso-
ciation within groups in a probabilistic way and we find 290 inde-
pendent coding, 2888 independent intronic, and 5406 independent
cis regions with ≥95% probability of contributing at least 0.001% of
the SNP heritability. Understand how these coding, intronic and
proximal and distal regulatory regions combine to contribute to

Table 2 Summary of findings for height (HT), body mass
index (BMI), type-2 diabetes (T2D) and cardiovascular
disease (CAD).

Findings Method HT BMI CAD T2D

Associated SNPs COJO-plink2 1673 517 34 85
COJO-
BoltLMM

2131 565 34 84

COJO-
Regenie

2134 555 34 82

50 kb regions
(PPWV≥ 95%)

BayesRR-RC 1660 520 70 87

Genic regions
(PPWV≥ 95%)

BayesRR-RC 2578 2956 1478 1581

Exons 243 29 5 13
Introns 1072 1162 307 347
cisa 1254 1765 1166 1221
SNPs (PIP ≥ 95%) BayesRR-RC 360 20 2 9
Exons 216 16 1 4
Introns 73 2 1 5
10–500 kb 48 1 0 0
LD clumps with r2= 0.1
(PPWV ≥ 95%)

BayesRR-RC 1220 206 16 19

aSNPs located up to +/−50 kb from the closest gene.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27258-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6972 | https://doi.org/10.1038/s41467-021-27258-9 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


phenotypic variance remains a substantial challenge and our results
suggest a predominant role for introns and for distal, and thus likely
more global enhancers, rather than locally dominant proximal
expression QTL. The recent “omnigenic”model24, suggests that trait-
associated variants in regulatory regions influence a local gene which
is not directly causal to the disease, and also co-regulate other disease
causal genes (or “core” gene). Our findings of little correlation of
exonic and proximal regulatory variance and a large number of trait-
associated intronic and cis regions do not rule this out, but suggest a
more complex infinitesimal picture with differences occurring among
traits, potentially due to their evolutionary history.

There are important caveats and limitations to consider. Here,
we present an approach for analysing large-scale biobank data,
which is becoming increasingly available, However, a substantial
number of GWAS have already been conducted, with associated
published genome-wide summary association statistic estimates.
Many methods have been developed to take advantage of these
estimates, with downstream analysis models making use of var-
ious summary statistics resources in efficient and flexible ways.
We show here that two leading summary statistic approaches
perform poorly as compared to individual-level models for esti-
mation of enrichment and genomic prediction. Despite this, the
sample sizes obtained in consortia study meta-analyses will
exceed those from single biobanks, especially for disease, and thus
the genomic prediction accuracy of consortia study meta-analysis
summary statistic prediction models may exceed those from
individual-level analyses. Combining the posterior distribution
obtained from BayesRR-RC across different individual-level bio-
bank studies would alleviate this issue.

Additionally, in this work we do not extend past a limited
number of functional annotations and thus we do not provide a
model capable of further partitioning the variation into specific
regulatory functions (eQTL, mQTL, pQTL etc.) or directly
modelling the relationships among components. LDSC functional
methods take the approach that SNPs can be assigned to different
categories (e.g., both coding and conserved), with the categories
competing against each other to explain the signal, with the
downside that enrichment is relative and that the total variance is
not partitioned. Here, the total variance is partitioned but this is
based on preferential allocation of SNPs to coding regions, then
introns, and then to their nearest upstream gene position. These
SNPs are most likely to be allocated accurately, with 1 and
1–10 kb groups being more ambiguous in high gene density
regions and likely mislabelled. However, if this was the case then
variance would still be partitioned to these mislabelled groups and
it would just be evenly split across them, with experimentally
validated promotor, enhancer and tfbs regions assisting to some
degree in alleviating this. Rather, here we see a clear pattern of
increasing variance contributed, increasing average effect size,
and an increasing pattern of higher rare allele substitution effects
by individual markers as distance from the nearest gene increases.
10–500 kb distal regions may contribute more variance as marker
density and marker coverage is higher in these regions, with
missing variation within 10 kb upstream as causal variants are
poorly correlated with SNPs. The posterior distributions for the
variance explained by 1 kb, 1–10 kb regions, and 10–500 kb
regions are negatively correlated (Supplementary Fig. 8, meaning
that these groups are competing with each other, as if variance
goes to one then it is being taken away from the other because
they are in LD), and thus there is the risk that the model cannot
separate these effectively. However, this is true of any enrichment
analysis conducted to date and we can only make inference in the
data that we have currently available. Resolving this requires the
application of this model to whole genome sequence data where
the total variance can be partitioned across upstream regions
without marker coverage concerns. Irrespective of exactly which

upstream region variance is allocated to, our inference that genic
regions are uncorrelated in their contribution to variance with the
promotor and upstream regions still holds as does our prob-
abilistic inference on the associations of each gene and their
contribution to the phenotypic variation.

Our results provide evidence for an infinitesimal contribution
of many thousands of common genomic regions to common
complex trait variation and for a predominant role of intronic,
exonic, and distal regulatory regions. This highlights the immense
challenge of understanding the molecular underpinning of each
association and the difficulties in improving the estimation of
many tens of thousands of small-effect associations that are
required to improve genomic prediction. This work represents a
step toward maximising the probabilistic inference that can be
obtained from large-scale Biobank studies.

Methods
BayesRR-RC model. We extend the BayesR model to a BayesRR-RC model as
follows

y ¼ 1μþ ∑
Φ

φ¼1
Xφβφ þ ϵ; ð3Þ

where there is a single intercept term 1μ and a single error term ϵ but now SNPs
are allocated into groups (φ1, …, φΦ), each of which having it’s own set of model
parameters Θφ ¼ fβφ; πβφ ; σ2Gφ

g. As such, each βφj is distributed according to:

βφj
� π0φ δ0 þ π1φN 0; σ21φ

� �
þ π2φN 0; σ22φ

� �
þ ¼ þ πLφN 0; σ2Lφ

� �
; ð4Þ

where for each SNP marker group fπ0φ ; π1φ ; ¼ ; πLφ g are the mixture proportions

and fσ21φ ; σ22φ ; ¼ ; σ2Lφ g are the mixture-specific variances prop ortional to

σ21φ

..

.

σ2Lφ

2
6664

3
7775 ¼ σ2βφ

C1φ

..

.

CLφ

2
6664

3
7775

Thus the mixture proportions, variance explained by the SNP markers, and
mixture constants are all unique and independent across SNP marker groups. This
extends previous models (known as BayesRC25 and BayesRS26), which have used
additional mixtures for different SNP groups, but kept a single global variance
component. Importantly, a single variance component with more mixtures serves
only to change the amount of mass allocated at different sizes of the distribution,
but does not alter the sizes of the effects themselves as there is still a single
distribution. In contrast, the formulation presented here of having an independent
variance parameter σ2βφ per group of markers, and independent mixture variance

components, enables estimation of the amount of phenotypic variance attributable
to the group-specific effects and enables differences in the distribution of effects
among groups. In this work, we use 78 SNP marker groups, each with five mixture
components (including 0).

We can sketch the difference in the models by looking at the respective
conditional posteriors, again, assuming a single component for simplification
purposes. We have a BayesRC or BayesRS estimator by assuming different groups
of effects as described in Supplementary Note 4 Eq. 35, which yields:

f α; γjπβφ
; σ2β; σ

2
ϵ ; y

� �
/ exp 1

2σ2ϵ
jjy � Xγ≠0αγ≠0jj22 � 1

2σ2
β
jjαjj22 � log

1�πβφ
πβφ

� �
jjγφjj0

� 	
;

ð5Þ
where πβφ are the group-specific mixture proportions and ∣∣γφ∣∣0 is the cardinality
of the group. The corresponding MAP estimate would amount to adding extra
penalisation on sparsity through the πφ terms, while keeping the same level of
shrinkage as the baseline BayesR.

In our model the conditional posterior is:

f α; γjπβφ ; σ
2
βφ
; σ2ϵ ; y

� �
/ exp

1
2σ2ϵ

jjy � Xγ≠0αγ≠0jj22 �
1

2σ2βφ
jjαjj22 � log

1� πβφ
πβφ

 !
jjγφjj0

( )

ð6Þ
now each marker has a group-specific shrinkage σ2βφ , which translates to a specific

λφ per group in the MAP estimate. This amounts to markers being shrunk
according to the scale of the effects of their group, instead of the scale of all other
markers. So instead of solving a single model selection and regularisation problem
we are solving Φ model selection and regularisation problems, with shared
information only through the residuals. If we subset by MAF and LD bins, the
resulting groups of columns will have a correlation pattern similar to an
exponential decay (LD decays with distance). If we take the whole genotype matrix,
the pattern would be closer to a block diagonal matrix of correlations, in refs. 16,27
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it is showed that the former case requires weaker conditions in order to recover the
true vector β consistently than the latter. Although the sampling scheme was
different, we have shown that a similar model with only two groups: genetic
markers and epigenetic markers, is successful in identifying BMI and smoking
epigenetic signatures13. The baseline model derivations for this model are outlined
in Supplementary Note 1, a BSP Gibbs sampling scheme and an assessment of its
performance is outlined in Supplementary Note 2, and an assessment of the model
performance with correlated covariates is outlined in Supplementary Note 4.

Simulation study
Genetic architecture. We first compare the model performance of BayesRR-RC to
existing approaches across 18 different genetic architectures. We randomly selected
40,000 unrelated UK Biobank individuals and used 596,741 imputed SNP markers
from chromosomes 19 to 22. We randomly selected either 1000, 10,000, or 100,000
LD independent (LD R2 < 0.1) causal SNP markers. For each SNP marker set there
were two settings.

In the first setting, we simulated effect sizes from a normal distribution with zero
mean and variance of 0.1, 0.3, or 0.6 divided by the number of causal
variants∝N(0, [p(1−p)]−0.25), with p the allele frequency. We sampled individual-level
environmental (residual) variance from a normal distribution with zero mean and
variance equal to 1 minus either 0.1, 0.3, or 0.6 to give phenotypes with zero mean
and unit variance. This gave h2SNP = 0.1, 0.3, or 0.6 and simulates stronger effect
sizes for rare variants in line with recent empirical estimates. We simulated ten replicate
phenotypes for each of the nine different genetic architectures. In the second setting,
we repeat each simulation, sampling the SNP marker effects from 13 different normal
distributions, one for each of 13 different genomic annotation groups described in
the main text. The 13 groups were allocated different proportions of the h2SNP as follows:
for exonic variants Pðh2SNPÞ = 0.167, intronic variants Pðh2SNPÞ = 0.334, 1 kb promotor
variants Pðh2SNPÞ = 0.0835, 1–10 kb enhancer variants Pðh2SNPÞ = 0.04175, 1–10 kb
transcription factor binding sites Pðh2SNPÞ = 0.04175, 1–10 kb other variants Pðh2SNPÞ
= 0, 10–500 kb enhancers Pðh2SNPÞ = 0.0835, 10–500 kb transcription factor binding
sites Pðh2SNPÞ = 0.0835, 10–500 kb other variants Pðh2SNPÞ = 0, 500 kb–1Mb enhancers
Pðh2SNPÞ = 0.0835, 500 kb–1Mb transcription factor binding sites Pðh2SNPÞ = 0.0835,
500 kb–1Mb other variants Pðh2SNPÞ = 0, and other non-annotated SNPs Pðh2SNPÞ = 0.
For each of the 13 groups marker effects were simulated as∝N(0, [p(1−p)]−0.25) to give
h2SNP = 0.1, 0.3, or 0.6, with stronger effect sizes for rare variants. Four of these 13
groups had zero variance indicating that no associations were created for these groups.

Thus, in the first setting we simulate variance explained by annotation groups
that is on average proportional to the number of SNPs within each annotation (due
to the random allocation of SNPs and effect sizes). In the second setting, the
variance and average effect size differ across annotation groups. We refer to these
as two different enrichment settings: “random”, or “enriched”.

For these 180 phenotypes, we ran the following individual-level models:

● A restricted maximum likelihood model implemented in the software
GCTA with a single relationship matrix providing an estimate of the
variance attributable to SNPs genome-wide.

● A restricted maximum likelihood model implemented in the software
BoltREML17. Here, we used a 78 MAF-LD-annotation group model using
the non-overlapping genomic annotation groups described below in the
UK Biobank analysis providing an estimate of the variance attributable to
SNPs genome-wide and an estimate of the variance attributable to SNP
markers of each annotation group.

● A Haseman-Elston regression using the same 78 group model implemented
in the software RHEmc18, providing an estimate of the variance
attributable to SNPs genome-wide and an estimate of the variance
attributable to SNP markers of each annotation group.

● Mixed linear association model (MLMA), which is a two-stage approach
where the variance attributable to the SNP markers genome-wide is
estimated and this estimate is then used in a second generalised least
squares step to test for SNP-phenotype associations one marker at a time.
There are two forms of this model. In the first, the SNP is fitted twice as it is
included in both the fixed and random terms (MLMAi). In the second, the
SNP to be tested as fixed is removed from the random term alongside those
on the same chromosome (MLMA). We used the software BoltLMM8,
Regenie9, and GCTA to fit these models. These approaches provided
estimates of the SNP regression coefficients (marker effect sizes).

● Single marker marginal least squares regression using plink228, whilst
fitting 20 principal components of the marker data as covariates.

● Linkage disequilibrium score regression (LDSC19), with LD scores
calculated using the same data, and the same 78 non-overlapping
annotations in a 78 component LDSC annotation model. We included
SNPs with MAF > 1% following the software instructions. This model is
intended to approximate an individual-level REML analysis with 78
annotations and provides an estimate of the variance attributable to SNPs
genome-wide and an estimate of the variance attributable to SNP markers
of each annotation group.

● We used the software SumHer6. We calculated marker taggings under the
same 78 component annotation model. We ignored the LD weights when

calculating the taggings as we found this gave the best estimates we could
obtain from the simulated data across all scenarios. We set the relationship
of effect size and minor allele frequency to be −0.25 as suggested by the
authors and which matches the simulation setting. This model is intended
to approximate an individual-level REML analysis with 78 annotations, but
using a different scaling of the relationship matrix, and provides an
estimate of the variance attributable to SNPs genome-wide and an estimate
of the variance attributable to SNP markers of each annotation group.

● Our BayesRR-RC model implemented in GMRM with 78 SNP-marker
groups and run for 5000 iterations with a burn-in period of 2000 iterations.

● Our BayesRR-RC model implemented in GMRM with only a single SNP-
marker group, which is equivalent to BayesR, run for 5000 iterations with a
burn-in period of 2000 iterations.

We then ran the following prediction models, using a testing set of 10,000 UK
Biobank unrelated individuals, that were also unrelated to the training data, and
focusing on the models proposed in a recent paper21. These methods contain two
approximations to our BayesRR-RC model and the authors claim to outperform all
other existing methods, including individual-level models. The models are:

● An individual-level bayesR model using genomic annotation SNP variance
estimates from the SumHer models as implemented in the software
MegaPRS21. This provides estimates of the SNP marker effects for creating
a genetic risk predictor.

● An individual-level boltREML model using genomic annotation SNP
variance estimates from the SumHer models as implemented in the
software MegaPRS21. This provides estimates of the SNP marker effects for
creating a genetic risk predictor.

● A summary statistic bayesR model using genomic annotation SNP variance
estimates from the SumHer models as implemented in the software
MegaPRS21. This provides estimates of the SNP marker effects for creating
a genetic risk predictor.

● A summary statistic boltREML model using genomic annotation SNP
variance estimates from the SumHer models as implemented in the
software MegaPRS21. This provides estimates of the SNP marker effects for
creating a genetic risk predictor.

First, we compared the correlation of the simulated and estimated proportion of
phenotypic variance attributable to the 13 genomic annotation groups across all
models in Fig. 1. We determined the ability of the approaches to correctly identify
enriched regions of the DNA by estimating the probability within each simulation
replicate that a SNP marker group would have an estimated enrichment of ≥2 (i.e.,
being described as having average effect sizes that are twice as large as expected)
when the simulated value was ≤1.1. As BayesRR-RC induces sparsity in the SNP
effect estimates, with some markers always remaining in the variance = 0 spike, we
propose a different enrichment definition where the proportion of h2SNP is divided
by the proportion of markers that are in the model for the SNP group, rather than
the proportion of markers mapping to the SNP group.

In Supplementary Note 3, we propose a posterior probability window variance
(PPWV) approach20, which provides a probabilistic determination of association of
a given LD block, genomic window, gene, or upstream region, relative to the
amount of phenotypic variation attributable to that window. Our PPWV approach
determines the posterior inclusion probability that each region and each gene
contributes at least 0.001% to the h2SNP, with theory and small-scale simulations
outlined in Supplementary Note 3 suggesting well controlled FDR. We partitioned
the 596,741 imputed SNP markers in LD blocks, defined as groups of markers with
LD R2 ≥ 0.1. Within each simulation replicate, we estimated the probability that LD
blocks containing a causal variant were identified by PPWV. We compared this to
MLMA estimates obtained using the BoltLMM software, by estimating the
probability that LD blocks containing a causal variant were identified as having a
SNP with p-value ≤ 5 × 10−8, the standard genome-wide significance threshold. We
present these results in Fig. 2a.

We then compare the prediction accuracy obtained in a testing set of 10,000 UK
Biobank unrelated individuals, that were also unrelated to the training data. We
predicted phenotype using SNP marker effect sizes obtained from BayesRR-RC, MLMA
effect sizes from BoltLMM, and the four MegaPRS methods outlined above
implemented in the LDAK software. While we would suggest that fixed-effect MLMA
estimates are improper for prediction we include this comparison as polygenic risk
scores have often been created from fixed-effect SNP estimates. We calculate the
correlation between the simulated phenotype in the testing set and the genomic
predictor within each simulation replicate and we compare the mean correlation across
the 18 different genomic annotations in Fig. 2. Additionally, to provide a benchmark,
we compare to the theoretical expectation under ridge regression approximations29,
with the number of markers set to the number of causal variants.

Relationship between effect size, minor allele frequency and LD. We then conducted
another large-scale, but this time well-powered simulation study, where we
ascertained the causal variant SNP markers in different ways and varied the rela-
tionship between effect size, minor allele frequency and LD. We used the same
randomly selected 40,000 unrelated individuals and all 596,741 imputed (version 3)
genetic markers from chromosomes 19 through 22 from the UK Biobank. We

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27258-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6972 | https://doi.org/10.1038/s41467-021-27258-9 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


simulated a wide-range of different possible underlying genetic effect size dis-
tributions as follows:

● We chose either 5000 or 10,000 imputed SNP markers for which to assign a
genetic effect size, providing two different levels of polygenicity.

● We selected these 5000 or 10,000 markers in two different ways. Either, we
selected SNPs at random, or we selected the marker of highest minor allele
frequency per LD block of the genome, with an LD block defined as a
group of SNP markers with absolute LD of at least 0.05. Randomly
allocating markers creates a set of associated variants with the same
distribution of LD and MAF as the SNP data, which is composed of
predominantly low frequency variants. Selecting only the highest frequency
marker per LD block creates a setting where for each set of markers in LD
with each other, there is only one causal genetic variant, and where the
distribution of associated markers differs to that of the SNP markers as
a whole.

● Having created four different ways of selecting associated markers (5000 or
10,000 and high-MAF or random) we then created five different ways of
assigning effect sizes to them:

– We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) with no
relationship to the LD or MAF of the markers. Thus, effects had
variance ∝N(0,w0[p(1−p)]0) with w the LD score of the marker and p
the allele frequency.

– We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) ∝N(0, w
−0.25[p(1−p)]−0.25). This simulates stronger effect sizes for rare variants
and those in low LD.

– We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) ∝N(0,
w0.25[p(1−p)]−0.25). This simulates stronger effect sizes for rare variants
and those in high LD.

– We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) ∝N(0, w
−0.25[p(1−p)]0.75). This simulates equivalent effect sizes for common and
rare variants, and greater effects for markers in low LD.

– We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) ∝N(0,
w0.25[p(1−p)]0.75). This simulates equivalent effect sizes for common and
rare variants, and greater effects for markers in high LD.

● For each of the four different sets of markers, each with five different effect
size sampling schemes, we then created two additional settings. In the first
setting markers were sampled from the various normal distribution, as
described above, for the five different effect size sampling schemes. In the
second setting, for each of the five different effect size sampling schemes we
simulated effects from 13 different distributions, one for each of 13
different genomic annotation groups with different proportions of total
SNP heritability (h2SNP). For each of the five different effect size sampling
schemes the relationship to LD and MAF remained the same, but the total
variance attributed to the SNP markers was partitioned across annotation
groups as follows for exonic variants (h2SNP = 0.1), intronic variants (h2SNP
= 0.2), 1 kb promotor variants (h2SNP = 0.05), 1–10 kb enhancer variants
(0.025), 1–10 kb transcription factor binding sites (h2SNP = 0.025), 1–10 kb
other variants (h2SNP = 0), 10–500 kb enhancers (h2SNP = 0.05), 10–500 kb
transcription factor binding sites (h2SNP = 0.05), 10–500 kb other variants
(h2SNP = 0), 500 kb–1Mb enhancers (h2SNP = 0.05), 500 kb–1Mb
transcription factor binding sites (h2SNP = 0.05), 500 kb-1 Mb other variants
(h2SNP = 0), and other non-annotated SNPs (h2SNP = 0). Four of these
distributions had zero variance indicating that no associations were created
for these groups. In the first setting, this simulates variance explained by
annotation groups that is on average proportional to the number of SNPs
within each annotation. In the second scheme, the variance and average
effect size differs across annotation groups. We refer to these as two
different enrichment settings: “random”, or “enriched”.

● This created four different sets of associated markers (5000 or 10,000 and high-
MAF or random), each with five different marker effect size sampling schemes,
which we refer to in the main text as the 20 different generative genetic models
(Table 1), each of which has two enrichment settings. This gave 40 different
sampling schemes for the genetic effects and we simulated ten replicates for
each setting, giving a total set of 400 simulated phenotypes.

● For each generative model the total genetic variance was 0.6 and we
sampled individual-level environmental (residual) variance from a normal
distribution with zero mean and variance 0.4 to give phenotypes with zero
mean and unit variance.

This range covers generative genetic models discussed in the literature and
provides models that both fit and violate the assumptions of the range of variance
component statistical models. This includes both individual-level and summary
statistic approaches, that are currently applied in the literature for estimation of the

variance attributable to the SNP markers, for testing association of genetic markers
with phenotypes genome-wide, and for genomic prediction.

This simulation provides a range of different scenarios for which we can explore
the model performance of BayesRR-RC and compare it to existing approaches. In
Supplementary Fig. 1, we compare the h2SNP estimation, estimation of the
annotation genetic variance along with the RMSE of the estimates, and the
estimated average effect size.

We then extend our model comparisons in a number of ways. While direct
comparisons of frequentist and Bayesian approaches are difficult and often ill
advised, we wished to show that BayesRR-RC provides accurate effect size
estimation in the presence of LD. We provide three simple comparable metrics to
assess model performance of BayesRR-RC against frequentist mixed linear
association models (MLMA) applied as two-stage approaches, where either the
SNP is fitted twice as it is included in both the fixed and random terms (MLMAi
implemented in GCTA), or the SNP to be tested as fixed is removed from the
random term alongside those on the same chromosome (MLMA implemented in
BoltLMM and Regenie).

First, we calculated z-scores of the marker effect estimates from their true
simulated value. As MLMA approaches estimate marker effects one-at-a-time, we
calculated the z-score of the estimate from the true simulated value for the causal
variants in each simulation replicate, across generative genetic models. For the
Bayesian methods, at any one iteration, LD among the markers is controlled for
(see Supplementary Note 4). However across iterations as the chain mixes, markers
in LD will enter and leave the model, with their posterior inclusion probabilities
reflecting their association with the trait. Thus, we summed the squared regression
coefficient estimates of SNPs in the model at each iteration for each LD block
(markers in LD R2 ≥ 0.1 within 1MB) of each simulation replicate, took the
posterior mean across iterations, and then calculated the z-score of the estimate
from the simulated value. This metric provides an assessment of the ability of
BayesRR-RC to accurately estimate the contribution of a genomic region to the
phenotypic variance as compared to MLMA approaches. We present these results
in Supplementary Fig. 2, where we find that the z-scores of the estimated BayesRR-
RC effects are generally stable across generative genetic models and comparable to
those obtained from BayesR but with slightly elevated variance in many cases as the
model is less sparse (Supplementary Fig. 2a). We find that SNP effect size estimates
from MLMA models have higher estimation error, especially when the causal
variant is rare, or in high-LD with many other SNPs (Supplementary Fig. 2a).
MLMAi models show lower estimation error than MLMA approaches, likely as
they control for both distant and local LD (Supplementary Fig. 2a). We explore this
further in Supplementary Note 4.

Second, to further test our PPWV approach we calculated precision-recall
curves, where associations are defined as LD blocks with PPWV of ≥95% at 0.001%
proportion of variance explained. True positives were the number of identified
5000 or 10,000 LD blocks that contained a causal variant. False positives were the
number of identified LD blocks that did not contain a causal variant. Precision was
defined as the ratio of true positives to the sum of true positives and false positives.
Recall was defined as the ratio of true positives to the sum of true positives plus
false negatives. The FDR was defined as the proportion of LD blocks with PPWV of
≥95% at 0.001% proportion of variance explained that did not contain a causal
variant. For the MLMA methods, following standard practice, we clumped the
marker effect estimates using Plink, as local LD is not controlled for, selecting LD
independent markers (LD R2 ≤ 0.01 with other markers) across the genome. True
associations were defined as selected SNPs that were in LD with a simulated causal
variant (LD R2 ≥ 0.01). False associations were defined as selected SNPs that were
not in LD (LD R2 ≤ 0.01) with a simulated causal variant. Precision and recall were
calculated across thresholds of the chi-squared statistics of the selected markers,
and the area under the curve was calculated using the trapezoid rule for calculating
the integrals, assuming the curve is linear between the points. FDR is then
calculated as the proportion of markers with p-value ≤ 5 × 10−8 that were not in
LD with a causal variant (LD R2 ≥ 0.01). This provides a way to directly compare
model performance for the discovery of associated genomic regions across Bayesian
and frequentist approaches and tests our hypothesis that a PPWV approach
controls FDR well in comparison with Bonferroni p-value correction
(Supplementary Fig. 2b, c). For both MLMA and Bayesian approaches our
definition of FDR is not strictly the FDR. Markers in LD R2 ≤ 0.01 with the
clumped selected markers may still show a weak correlation with the simulated
causal variants, and likewise blocks of SNPs in LD R2 ≤ 0.1 may still be in weak LD
with the causal variants. Our approach instead captures the ability of MLMA and
Bayesian approaches to localise an effect within R2 ≥ 0.01 and R2 ≥ 0.1 respectively.
We present these results in Supplementary Fig. 2.

Third, we wished to determine the out-of-sample phenotypic prediction
performance of BayesRR-RC. We used the same randomly selected 10,000
individuals from the UK Biobank that were unrelated to those used in the
simulation. Using the same SNP markers and the simulated marker effects we
calculated a simulated genetic value for each individual across the replicates. Then,
using the effects generated by BayesR and BayesRR-RC, we calculated the predicted
genetic value and determined the correlation with the simulated genetic value. We
took the marker effect estimates from the MLMA approaches and conducted LD
clumping with p-value thresholding using Plink to find the set of markers that gave
the highest correlation of the genetic predictor and the simulated genetic value
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within the 10,000 UK Biobank individual selected for out-of-sample prediction. We
also used the MegaPRS methods implemented in the software LDAK running the
four different models described above. We compared the correlation of predicted
and simulated genetic value across approaches for each of the 400 simulated
phenotypes (Supplementary Fig. 2d).

The influence of population structure and relatedness. We then investigated the
importance of controlling for multicollinearity for the control of population genetic
and data structure effects. In principle, a MLMA approach will control for bias with
correlated markers (either local or long-range LD) fitted as random when testing
for the effects of a focal SNP. For two markers, X1 and X2 in LD correlation ρX1 ;X2

,
with β2= 0 we can express the MLMA fixed effect solution as a partial regression
coefficient of the phenotype regressed onto the focal SNP after adjusting for X2

estimated as uX2
¼ XT

2 y
XT
2 X2þλI

. Following our derivation above for a shrinkage esti-

mator of a partial regression coefficient the effect size of X1 is estimated as

β̂y;X1 jX2
¼ N

XT
1 X1

´ ρy;X1
�

ρX1 ;X2

1
NX2y

1�ρX1 ;X2

and in this two-SNP example the bias is

accounted for in the term
ρX1 ;X2

1
NX2y

1�ρX1 ;X2

when the fixed effect is estimated. Multi-

collinearity acts to increase the σG term of λ, reducing the denominator XT
2X2 þ λI

in the estimation of uX2
, and increasing the variance of the estimates of common

markers in high LD, those with the highest average FST.
We conducted a simulation study using real genomic data from chromosome 22

where 10,000 individuals were selected from two UK Biobank assessment centres
(Glasgow and Croydon). First, causal variants were allocated to 5000 high-LD SNPs
with effect sizes simulated from a normal distribution with variance proportional to the
FST among the two populations at each SNP. Second, we selected the same high-LD
SNPs as the causal variants, but simulated effect sizes to have correlation 0.5 with the
allele frequency differences of the SNPs among the two populations, and thus not only
is the effect size proportional to the FST, but there is also directional differentiation (trait
increasing loci tend to be those with higher allele frequency in Croydon, trait decreasing
alleles have lower frequency in Croydon). For each of these two scenarios, we simulated
50 replicate phenotypes where the phenotypic variance attributable to the causal SNPs is
0.5, there is a phenotypic difference in which Croydon individuals have a phenotype
that is 0.5 SD higher than Glasgow individuals (contributing variance 0.05), and residual
variance was simulated from a normal with variance 0.45, to give a phenotype with
mean of zero and variance of 1. The data were then analysed using a mixed-linear
model association (MLMAi implemented in GCTA) and a grouped Bayesian dirac
spike and slab models (BayesR implemented in GMRM). In the analysis, we either
adjusted the phenotype by the first 20 PCs of the genetic data used in the simulation
study, or we did not adjust the phenotype for the PCs, to examine the effects of this
common methods of population stratification control. In a two-population scenario the
leading eigenvector encapsulates the allele frequency differentiation between the
populations and thus the expectation is that this should adjust for these differences
when estimating the marker associations. The results are presented in Fig. S5a, where
we find that an MLMA approach overestimates the variance attributable to the SNPs
under all scenarios, both with and without adjustment for PCs. BayesR returns accurate
estimates when the variance of the marker effects is proportional to FST and
underestimates the variance when there is a directional associations, with this
underestimation being less severe with PC adjustment.

Finally, we also assess the influence of relatedness on the estimates obtained
from a BayesR model using real genomic data from chromosome 21 and 22
(226,662 SNP markers) and 10,000 families randomly selected from the UK
Biobank (26,034 individuals). Here, we selected 2000 LD blocks with a single causal
SNP per block at random, where an LD block is defined as a group of SNP markers
with absolute LD of at least 0.01. We assigned effect sizes to these 2000 selected
SNPs, drawing them from a normal distribution with zero mean and variance 0.5/
2000. We then multiplied effect sizes by the simulated marker values scaled to zero
mean and unit variance to create the genetic values with variance 0.5. In addition to
the genetic component, we added a common environment component to simulate
effects coming from shared familial environment. We simulated four scenarios
where each family was assigned the same common environment effect drawn from
a normal distribution with variance 0 (no common environment), 0.1, 0.2, and 0.3.
Finally, we added an environmental component simulated from a normal
distribution with mean zero and variance 1 minus the genetic variance and minus
the common environment variance. We analysed 20 replicates of each of the four
scenarios with BayesRR-RC with six MAF-LD groups (terciles of MAF, each split
into two groups based on median LD score within each MAF tercile). In
Supplementary Fig. 5, we summarise 800 samples of the posterior distribution from
5000 iterations with a thin of five and removing the first 1000 iterations as burn-in.
We find that the variance attributable to the SNPs, the regression coefficients and
the posterior probability of window variance (PPWV) remain unchanged with
relatedness and with increasing family effects.

Localisation and fine-mapping of SNP-phenotype associations. We further validate
the use of PPWV in an another simulation study with 500 replicate data sets of
10,000 SNP markers for 5000 individuals for each of two scenarios. In the first
scenario, 1000 SNPs are randomly selected to be causal variants and all 10,000 SNP
markers are LD independent. In the second, the 1000 causal variants are each in LD

with four other variants with LD = 0.95, with the remaining 5000 variants having
zero effect size and LD = 0. For each scenario, we simulate effect sizes as an equally
spaced sequence from an effect size of −0.04 SD, to 0.04 SD giving genetic variance
of 0.55, and we simulate residual variance from a normal distribution with zero
mean and variance 0.45, to give a phenotype with zero mean and unit variance. For
the first scenario, we calculate the posterior inclusion probability of each causal
SNP. For the second scenario, we calculate the PPWV for each 5-SNP group.
Across the 500 replicates of each scenario, we take the mean PPWV and mean PIP
for each of the 1000 different effect sizes and compare these in Fig. S6a. Addi-
tionally, we grouped SNPs in 50kb regions and selected the number of regions that
explain at least 0.1, 0.01 and 0.001% of the variance attributed to all SNP markers
in 0.8–100% of the iterations using the simulated data described above for the
multiple group enrichment scenario for chromosome 22 in the UK Biobank. We
then calculated the false discovery rate (FDR), defined as the proportion of 50 kb
regions identified that do not contain a causal variant, at PPWV thresholds ranging
from 0.8 to 100%. We compare these in Supplementary Fig. 6b where as we lower
the PPWV variance threshold, the number of false discoveries in the model
increases but remains at ≤5% when the PPWV is ≥95%. This further demonstrates
that our proposed PPWV approach is an appropriate metric of summarising the
posterior distribution to identify associated genomic regions, irrespective of the
genomic region used.

We also focused on the ability of our approach to fine-map associated regions to
identify candidate SNPs and to provide a probabilistic assessment of the most likely
associated set of SNP markers. To do this we used our large-scale simulation data
and focused on seven focal regions within a blocks of chromosome 22. We
allocated effect sizes to the following SNPs: rs131529 with MAF 0.32 which had LD
R2 ≥ 0.15 with 348 other SNPs, rs2096537 with MAF 0.14 which had LD R2 ≥ 0.15
with 295 other SNPs, rs131538 with MAF 0.05 which had LD R2 ≥ 0.15 with 82
other SNPs, rs141962840 with MAF 0.007 which had LD R2 ≥ 0.15 with 11 other
SNPs, rs117873986 with MAF 0.02 which had LD R2 ≥ 0.15 with 12 other SNPs,
rs9606483 with MAF 0.005 which had LD R2 ≥ 0.15 with 1 other SNP, and
rs78881648 with MAF 0.009 which had LD R2 ≥ 0.15 with 1 other SNP. To these
seven SNPs, we assigned the same effect sizes in four different scenarios, either
0.05, 0.025, 0.0125, or 0.01 on the SD scale. On the remainder of chromosomes 19,
20, 21 and 22, we randomly selected 1000 SNPs as causal variants to give a
polygenic background, sampling their effects from a normal distribution with zero
mean and variance 0.5/1000. We repeated each of the four scenarios 20 times. We
selected these regions to compare the performance of BayesRR-RC to the fine-
mapping approach SuSiE as outlined in a recent paper22. For BayesRR-RC, we
calculate the PPWV of the LD blocks containing the seven focal SNPs, and then
prune these blocks based on the LD among the markers in the block (described as
“purity" in the SuSiE paper22) to identify a credible set with LD R2 ≥ 0.9. We then
count the proportion of times across the simulations that each causal variant was
contained with one of the credible sets. For SuSiE, we ran the model from the
individual-level data of the whole block of chromosome 22 using the suggested
settings and setting K= 10. We then calculate the proportion of times that the
identified credible sets contained one of the seven causal variants. We present these
results in Supplementary Fig. 6c.

UK Biobank data. We restricted our discovery analysis of the UK Biobank to a
sample of European-ancestry individuals. To infer ancestry, we used both self-
reported ethnic background (UK Biobank data code 21000-0) selecting coding 1
and genetic ethnicity (UK Biobank data code 22006-0) selecting coding 1. We also
took the 488,377 genotyped participants and projected them onto the first two
genotypic principal components (PC) calculated from 2504 individuals of the 1000
Genomes project with known ancestries. Using the obtained PC loadings, we then
assigned each participant to the closest population in the 1000 Genomes data:
European, African, East-Asian, South-Asian or Admixed, selecting individuals with
PC1 projection < absolute value 4 and PC 2 projection < absolute value 3. This gave
a sample size of 456,426 individuals.

To facilitate contrasting the genetic basis of different phenotypes, we then
removed closely related individuals as identified in the UK Biobank data release.
While the BayesRR model can accommodate relatedness similar to mixed linear
models, we wished to simply compare phenotypes at markers that enter the model
due to LD with underlying causal variants. Relatedness leads to the addition of
markers within the model to capture the phenotypic covariance of closely related
individuals, and this will vary across traits in accordance with the genetic and
environmental covariance for each phenotype. For these unrelated individuals, we
used the imputed autosomal genotype data of the UK Biobank provided as part of
the data release. We used the genotype probabilities to hard-call the genotypes for
variants with an imputation quality score above 0.3. The hard-call-threshold was
0.1, setting the genotypes with probability ≤0.9 as missing. From the good quality
markers (with missingness less than 5% and p-value for Hardy–Weinberg test
larger than 10-6, as determined in the set of unrelated Europeans) were selected
those with minor allele frequency (MAF) > 0.0002 and rs identifier, in the set of
European-ancestry participants, providing a data set 9,144,511 SNPs, short indels
and large structural variants. From these, we took the overlap with the Estonian
Genome centre data to give a final set of 8,430,446 markers. From the UK Biobank
European data set, samples were excluded if in the UKB quality control procedures
they (i) were identified as extreme heterozygosity or missing genotype outliers; (ii)
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had a genetically inferred gender that did not match the self-reported gender; (iii)
were identified to have putative sex chromosome aneuploidy; (iv) were excluded
from kinship inference. Information on individuals who had withdrawn their
consent for their data to be used was also removed. These filters resulted in a data
set with 382,466 individuals.

We then selected the recorded measures of BMI (UK Biobank variable identifier
21001-0.0) and height (variable identifier 50-0.0) collected during initial assessment
visit (year 2006-2010). BMI and height phenotypes six standard deviations (SD)
away from the mean were not included in the analyses. For Type 2 Diabetes (T2D)
in UKB, we selected cases very broadly as individuals who have main or secondary
diagnosis (UKB fields 41202-0.0–41202-0.379 and 41204-0.0–41204-0.434) of “non-
insulin-dependent diabetes mellitus” (ICD 10 code E11) or self-reported non-cancer
illness (UKB field 20002-0.0–20002-2.28) “type 2 diabetes” (code 1223). From
respondents self-reporting just “diabetes” (code 1220), we selected as cases those
who did not self-report “type 1 diabetes” (code 1222) and had no Type 1 Diabetes
(ICD code E10) diagnosis. Individuals with self-reported “diabetes” and “type 1
diabetes”/E10 were also left out from controls. We also defined coronary artery
disease (CAD) cases broadly as participants with one of the following primary or
secondary diagnoses or cause of death: ICD 10 codes I20 to I28; self-reported angina
(code 1074) or self-reported heart attack/myocardial infarction (code 1075).
Participants with self-reported “heart/cardiac problem” (code 1066) were not
included as cases but also excluded from controls. This gave a sample size for each
trait of 25,773 T2D cases and 359,730 T2D controls, 39,766 CAD cases and 344,054
CAD controls, 382,402 measures of height and 381,899 measures of BMI.

UK Biobank has approval from the North West Multi-centre Research Ethics
Committee (MREC) to obtain and disseminate data and samples from the
participants (http://www.ukbiobank.ac.uk/ethics/), and these ethical regulations
cover the work in this study. Written informed consent was obtained from all
participants. Data from this project were held under UK Biobank project ID 35520.

All phenotypes were adjusted for age of attending assessment centre (UKB code
21003-0.0, factor with levels for each age), year of birth (UKB field 34-0.0, factor
with levels for each year), UK Biobank recruitment centre (UKB field 54-0.0, factor
with levels for each centre), Genotype batch (UKB field 22000, factor with levels for
each batch) and final 20 leading principal components of 1.2 million LD clumped
markers from the 8,430,446 markers included in the analysis, calculated using
flashPCA (see “Code availability” section). The residuals were then converted to z-
scores with 0 mean and variance of 1. Similarly as for relatedness, population
stratification is also accounted for within the BayesRR model through the addition
of a background of marker effects entering the model, however we also wished to
account for this in the standard manner by adjusting for the leading 20 PCs of the
SNP data to get as close as possible to the inclusion of markers in the model that
reflect LD with the causal variants. We note that as with any association model,
while we take steps to adjust for known spatial (UKB centre), batch, and ancestry
effects, and that the effects of each SNP is estimated jointly (and thus conditionally
on the effects of all the other SNPs) environmentally induced covariance between
SNP markers and a phenotype is still possible.

We partition SNP markers into seven location annotations using the
knownGene table from the UCSC browser data (see “Code availability” section).
We preferentially assigned SNPs to coding (exonic) regions first, then in the
remaining SNPs, we preferentially assigned them to intronic regions, then to 1 kb
upstream regions, then to 1–10 kb regions, then to 10–500 kb regions, then to
500–1Mb regions. Remaining SNPs were grouped in a category labelled “others”
and also included in the model so that variance is partitioned relative to these also.
Thus, we assigned SNPs to their closest upstream region, for example if a SNP is
1 kb upstream of gene X, but also 10–500 kb upstream of gene Y and 5 kb
downstream for gene Z, then it was assigned to be a 1 kb region SNP. This means
that SNPs 10–500 kb and 500 kb–1Mb upstream are distal from any known nearby
genes. We further partition upstream regions to experimentally validated
promoters, transcription factor binding sites (tfbs) and enhancers (enh) using the
HACER, snp2tfbs databases (see “Code availability” section). All SNP markers
assigned to 1 kb regions map to promoters; 1–10 kb SNPs, 10–500 kb SNPs,
500 kb–1Mb SNPs are split into enh, tfbs and others (un-mapped SNPs) extending
the model to 13 annotation groups. Within each of these annotations, we have
three minor allele frequency groups (MAF < 0.01, 0.01 >MAF > 0.05, and
MAF > 0.05), and then each MAF group is further split into two based on median
LD score. This gives 78 non-overlapping groups for which our BayesRR-RC model
jointly estimates the phenotypic variation attributable to, and the SNP marker
effects within, each group. For each of the 78 groups, SNPs were modelled using
five mixture groups with variance equal to the phenotypic variance attributable to
the group multiplied by constants (mixture 0 = 0, mixture 1 = 0.0001, 2 = 0.001, 3
= 0.01, 4 = 0.1). We conducted a series of convergence diagnostic analyses of the
posterior distributions to ensure we obtained estimates from a converged set of
four Gibbs chains, each run for 6000 iterations with a thin of five and burn-in of
500 for each trait (Supplementary Figs. 7–10).

We calculate PPWV for LD blocks of the genome, by first calculating the minor
allele frequency of each SNP (p) and using 1− p in a Plink clumping procedure to
select LD independent (correlation2 ≤ 0.1) blocks of SNPs. We then repeat the
estimation of the PPWV of 50 kb regions across the genome, then map SNPs to the
coding region of genes, and to the closest gene +/− 50 kb from the SNP position.
These are labelled as located in a coding region, an intron, 1 kb upstream of a gene
using our functional annotations. Remaining SNPs are labelled as located in a cis-

region (up to +/−50 kb from a gene, Supplementary Data 6–9). Finally, we
mapped SNPs with greater than 50% posterior inclusion probability (PIP) across all
four chains labelling them using our seven location annotations (Supplementary
Fig. 13). We report SNPs with PIP > 95% and their corresponding p-value from
reported GWAS summary statistics (fastGWA, see “Code availability”) with “body
mass index” entry for BMI, “standing height” for HT, “angina/heart attack” for
CAD and “diabetes” for T2D (Supplementary Data 10).

We then compared our BayesRR-RC estimates for height, BMI, T2D and CAD
to RHEmc18 which also relies on individual level data. We ran RHEmc with ten
independent random vectors and 100 jackknife blocks on the 382,466 individuals
and 8,430,446 SNP markers assigned to our 78 non-overlapping groups. SNP
heritability estimates, enrichment and standard errors per genetic component are
reported in Supplementary Data 3. We intended to include SNP heritability
estimates from Bolt-REML17 in the method comparison but the run time and
memory usage exceeded 7 days and 900 GB which is the limiting run-time and
memory for our HPC system. Among the summary statistic methods, we ran
sLDSC19 and SumHer6. To do so, we created summary statistics containing
marginal associations for each of the 8,430,446 markers using plink228 for height,
BMI, T2D and CAD. For sLDSC, we computed univariate LD scores and
annotation-specific LD scores for the 78 non-overlapping groups using a window
size of 10,000 kb and a subset of 20,000 individuals randomly selected from the full
data set. We then partitioned heritability with our annotations and no restriction
on MAF. SNP heritability estimates, proportions of heritability, enrichment and
standard errors per genetic component are reported in Supplementary Data 4. For
SumHer, we computed LDAK weightings and created tagging files separately by
chromosomes using the full data set (M= 8,430,446 and N= 382,466) as reference
and a window size of 1000 kb. Because SNPs included in groups others and rare
1Mb tfbs are not present in all chromosomes, tagging files are constructed using 70
non-overlapping annotations only. The remaining SNPs are modelled together in
an extra partition. Finally, we merged the tagging files and regressed the summary
statistics onto this file assuming the LDAK model. SNP heritability estimates,
proportions of heritability, enrichment and standard errors per genetic component
are reported in Supplementary Data Table 5. The proportion of genetic variance
estimated genome-wide with RHE-mc, sLDSC, and SumHer are shown in Table 1.
We also report the proportion of genetic variance attributed to SNPs located in
exons, introns, 1, 1–10 and 10–500 kb regions and the proportion of common
SNPs located in exons, introns and 10–500 kb regions computed from the single
heritability estimates observed (Table 1).

In addition to plink228 summary statistics, we also applied Bolt-LMM8 and
Regenie9 to height, BMI, T2D and CAD. In the first step, we pruned SNPs using
plink30 with a pairwise r2 threshold of 0.5 and a window size of 1000 kb, resulting
in a subset of 1,362,013 SNPs markers. We restricted the random effects in the
mixed model for bolt-LMM and the ridge regression predictors for Regenie to this
subset of pruned SNPs. In the second step, all 8,430,446 SNPs from the full
genotype data were then tested for association in both methods. Following
recommendations, we used the provided hg19 genetic map file and 1000 Genomes
LD scores reference for Bolt-LMM and performed the default mixed linear model
association test. For Regenie, the 1,362,013 SNP markers are split in blocks of 1000
consecutive SNP markers and ridge regression predictors are computed for a range
of five shrinkage parameters within each block. For the association testing, we split
the 8,430,446 SNP markers in blocks of 400 consecutive SNP markers and set the
Firth correction p-value threshold to 0.01. We then applied an approximate and
joint association analysis called GCTA-COJO31 to the summary statistics obtained
with Bolt-LMM, Regenie and plink2. We ran GCTA-COJO using a subset of 20,000
individuals randomly selected from the 382,466 individuals as reference with a
window size of 10,000 kb and a r2 cutoff value of 0.5 for the LD among the SNPs in
the data. Finally, we set a p-value threshold to 5e−8 to report significant SNPs
associated with height, BMI, CAD an T2D in Table 2.

Estonian Genome Centre data. For the Estonian Genome Centre Data, 32,594
individuals were genotyped on Illumina Global Screening (GSA) arrays and we
imputed the data set to an Estonian reference, created from the whole genome
sequence data of 2244 participants32. From 11,130,313 markers with imputation
quality score >0.3, we selected SNPs that overlapped with the UK Biobank,
resulting in a set of 8,433,421 markers.

We selected height and BMI measures from the Estonian Genome Centre data,
in 32,594 individuals genotyped on GSA array and converted them to sex-specific
z-scores after applying the same outlier removal procedure as in UKB and
adjusting for the age at agreement. Prevalent cases of CAD and T2D in the
Estonian Biobank cohort were first identified on the basis of the baseline data
collected at recruitment, where the information on prevalent diseases was either
retrieved from medical records or self-reported by the participant. The cohort was
subsequently linked to the Estonian Health Insurance database that provided
additional information on prevalent cases (diagnoses confirmed before the date of
recruitment) as well as on incident cases during the follow-up.

All Estonian biobank participants have signed a broad informed consent form and
the study was carried out under ethical approval 1.1 12/2856 from the Estonian
Committee on Bioethics and Human Research (Estonian Ministry of Social Affairs).

As the UK Biobank marker effects are estimated from traits that were
standardised to a z-score prior to analysis, all effect sizes obtained are on the SD
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scale. Thus when we create a genomic predictor, for say coding SNPs, by
multiplying SNPs mapped to coding regions genotyped in Estonia to the effect sizes
obtained in the UK Biobank for each iteration, we obtain a genetic predictor for
each iteration, providing a posterior predictive distribution that is also on the SD
scale. For each trait, we created 2000 genomic predictors for each individual in the
Estonian Biobank, at each of the 13 annotation groups, by selecting effect size
estimates obtained every tenth iteration from the last 3000 iterations of each of the
four Gibbs chains and combining them together in a single posterior. We
calculated prediction accuracy as the proportion of phenotypic variation explained
by the genomic predictor, and area under the receiver operator curve (AUC) for
T2D and CAD using each individual’s mean genetic predictor. For each of the 13
annotation groups, we calculated the partial correlation of the genetic predictor of
each of the 2000 iterations and the phenotype. We then used this to estimate the
independent proportional contribution of each group to the total prediction
accuracy, providing a metric of replication for our UK Biobank enrichment results.

For height and BMI, we determined the probability that each Estonian
individual’s predictor accurately reflected their phenotypic value. To do this, we
calculated the proportion of posterior samples with abs ðĝ � yÞ of less than 1 for
each individual, which gives a measure of the degree to which each posterior
predictive distribution overlaps with the phenotype within +/−1 SD.

For T2D and CAD, we extended the PCF metric, typically defined as the
proportion of cases with larger estimated risk than the top pth percentile of the
distribution of genetic risk in the general population. We calculated the proportion
of posterior samples for each individual with values in the top 25% of the
distribution of genomic predictors for each trait. Thus for each individual, we
calculate the probability that the posterior predictive distribution is in the top 25%
of the distribution of genetic risk in the general population.

As a comparison, we also estimated a boltLMM prediction model using
MegaPRS21 as recommended by the authors and as shown to have the best
prediction performance out of the MegaPRS approaches in our simulation study.
We clumped SNPs with r2 threshold of 0.5 resulting in 1,508,624 SNP markers to
be included in the analysis and randomly selected 20,000 individuals to compute
the LDAK weights. We then computed the tagging file using the same data set as
reference and the 64 BLD-LDAK annotations. Here, weights are models as an extra
annotation and we save the heritability matrix. We then regress the plink228

summary statistics for height, BMI, CAD and T2D onto the tagging file, saving the
per-predictor heritabilities. We then created four reference panels with the same
1,508,624 SNP markers but randomly selecting different 5000 related individuals
from the UK Biobank and we used these to: (i) calculate predictor-predictor
correlations with a window size of 3000 kb to estimate the LD structure; (ii)
compute pseudo summaries from the plink2 summary statistics including
ambiguous alleles, which creates pseudo training and test summary statistics to be
used in the construction of the prediction model; (iii) estimate effect sizes
specifying a Bolt-LMM model for height, BMI, CAD and T2D, using the
predictor–predictor correlations, the per-predictor heritabilities, the
plink2 summary statistics and training pseudo summary statistics, whilst including
ambiguous allele and specifying a 1000 kb window; (iv) test prior distributions to
determine the most accurate model and obtain the best effect sizes. These steps
resulted in 1,397,514 predictors for height, 1,471,586 for BMI, 1,397,514 for CAD
and 1,389,364 for T2D and we ensured that at no point was the Estonian genome
centre data used, nor was any overlapping individuals in the UK Biobank subsets
used to train the models and the data used to generate the summary statistics.
Finally, we then calculated genomic predictors for each individual in the Estonian
Biobank using the best effect sizes. We report the squared correlations between the
genomic predictor and phenotypes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This project uses UK Biobank data under project 35520. The Estonian Genome Centre
data are protected and are not available due to data privacy laws. The Estonian Genome
Centre data can be made available under restricted access upon request from the cohort
author R.M. with appropriate research agreements. Summaries of all posterior
distributions generated in this study are provided in Supplementary Data tables. Full
posterior distributions of the SNP marker effects sizes and estimated variance
components for each trait are deposited on Dryad with https://doi.org/10.5061/
dryad.sqv9s4n51.

Code availability
Our BayesRR-RC model is implemented within the software GMRM, with full open
source code available at: https://github.com/medical-genomics-group/gmrm. UCSC
Table Browser https://genome.ucsc.edu/cgi-bin/hgTables. flashPCA https://github.com/
gabraham/flashpca. Plink1.90 https://www.cog-genomics.org/plink2/. GCTA https://
cnsgenomics.com/content/software. HACER database http://bioinfo.vanderbilt.edu/AE/
HACER/. snp2tfbs database https://ccg.epfl.ch//snp2tfbs/. fastGWA database http://
fastgwa.info/ukbimp/phenotypes/. Computing environment https://www.epfl.ch/
research/facilities/scitas/hardware/helvetios/.
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