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Abstract: Multiple biotic and abiotic stresses challenge plants growing in agricultural fields. Most
molecular studies have aimed to understand plant responses to challenges under controlled con-
ditions. However, studies on field-grown plants are scarce, limiting application of the findings in
agricultural conditions. In this study, we investigated the composition of apoplastic proteomes of
potato cultivar Bintje grown under field conditions, i.e., two field sites in June–August across two
years and fungicide treated and untreated, using quantitative proteomics, as well as its activity using
activity-based protein profiling (ABPP). Samples were clustered and some proteins showed signifi-
cant intensity and activity differences, based on their field site and sampling time (June–August),
indicating differential regulation of certain proteins in response to environmental or developmental
factors. Peroxidases, class II chitinases, pectinesterases, and osmotins were among the proteins more
abundant later in the growing season (July–August) as compared to early in the season (June). We
did not detect significant differences between fungicide Shirlan treated and untreated field samples
in two growing seasons. Using ABPP, we showed differential activity of serine hydrolases and
β-glycosidases under greenhouse and field conditions and across a growing season. Furthermore, the
activity of serine hydrolases and β-glycosidases, including proteins related to biotic stress tolerance,
decreased as the season progressed. The generated proteomics data would facilitate further studies
aiming at understanding mechanisms of molecular plant physiology in agricultural fields and help
applying effective strategies to mitigate biotic and abiotic stresses.

Keywords: ABPP; apoplast; proteomics; serine hydrolases; β-glycosidases; potato; field-omics

1. Introduction

In an agricultural field, plants are continuously exposed to varying climate conditions
and challenged by mu below- and above-ground microbes, which can trigger morpholog-
ical and molecular changes. For example, compared to plants grown under greenhouse
conditions, Arabidopsis grown in a field displays a different leaf morphology [1] and
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apoplastic proteome profile [2] indicating changes in response to the stresses or variable
environmental condition. Therefore, molecular studies performed under laboratory-based
conditions investigating response to single stress might not translate directly to field con-
ditions where there are multiple confounding stresses [2,3]. Field experiments are an
integral component to test applicability of laboratory-based findings, and they are neces-
sary to solve agricultural challenges (for example, in relation to plant breeding and plant
protection). Therefore, field experiments are important to gain basic knowledge about
the biology of plant field performance and ecology and to understand the differences in
physiology and molecular function of plants growing under field conditions. This is crucial
to facilitate applicability of field-based studies (for instance, creating a basis for decision
support systems in agriculture based on molecular knowledge) [4].

Potatoes (Solanum tuberosum L.; 2n = 4x = 48), the third most important food crop in
the world, are exposed to multiple biotic and abiotic stresses [5]. The plant apoplast is an
important arena in plant–microbe interactions [6–8] and plays a crucial role in the plant’s
response to abiotic stresses [9], as proteins from the plant and the attacking pathogens are
secreted into the apoplast [7,8]. Apoplastic proteomic studies are crucial to understand
defense response against pathogenic microbes [10,11]. In potatoes, many proteins in the leaf
apoplast change in abundance following the application of host defense inducers [12,13]
and P. infestans inoculation [14]. An apoplastic study has also been used for predicting
activation of defense response in Solanum species growing under natural and agricultural
conditions [15].

Omics techniques have been used in laboratory-based studies to better understand
potato response to biotic [14,16,17] and abiotic stresses [18–20]. However, application
of these techniques to elucidate the molecular processes in field-grown plants, the so
called field-omics approach, is scarce [21]. Label-free quantitative proteomics, based on
sensitive and reliable mass spectrometry, has emerged as a powerful tool to investigate
plant responses to biotic stress and made it possible to investigate differential abundance
of proteins in many different systems [14,22,23]. Nevertheless, a change in abundance of a
protein identified by quantitative proteomics does not necessarily translate into a change
in activity. Recent developments in activity-based protein profiling (ABPP), a method
that uses chemical probes that irreversibly bind to the active residue of distinct protein
classes in a complex proteome sample, can be used to investigate the functional status of
the proteins [24]. This powerful tool has been successfully applied to enhance molecular
understanding of different plant–microbe interactions [25,26] and the plant’s response
to biotic stresses [27]. ABPP is used to determine the activity of certain protein families,
including serine hydrolases and β-glucosidases, in plants challenged by biotic and abiotic
stresses [26,27]. Serine hydrolases, carrying an activated serine residue in the catalytic
triad, are a large superfamily of enzymes that includes proteases, esterases, lipases, and
peptidases [24,26]. β-Glucosidases are glycoside hydrolases that carry a glutamate and
aspartate residue at the catalytic site [28]. These enzyme groups are important in cellular
processes such as cell wall remodeling, development, biotic and abiotic stress responses.
However, to the best of our knowledge, ABPP has not been applied in studies conducted
in plants under field conditions.

The objective of this study was to investigate the apoplastic proteome using label-free
quantitative proteomics and ABPP to identify apoplastic proteins under field conditions.
Therefore, we investigated the apoplastic proteome of field grown potato plants from two
different years and followed the change in the abundance of apoplastic proteins during the
course of the growing season. Moreover, we performed ABPP on serine hydrolases and
β-glucosidases, to understand the functional state of proteins involved in some biologi-
cal processes.
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2. Results and Discussion
2.1. Analysis of Apoplastic Peptides

To get insights into the proteome of field-grown plants, we collected the leaf apoplastic
fluid from fully expanded potato leaves of field-grown plants from two field sites over a
two–year period. The apoplast is in many cases the first plant compartment that directly
interact with the environment and does not contain any dominating protein such as rubisco.
Therefore, we chose to analyze this part of the potato proteins under field conditions. The
leaf apoplastic fluid was collected using our mobile laboratory [21,29,30] that allows us to
isolate, aliquot, and freeze the samples directly on the site, thus reducing the probability of
sample degradation, which can be a problem in proteome sampling [31].

In total, we identified 3960 peptides, of which 501 were identical except for the charge
differences of the intact peptide precursor ion detected by MS. Average abundance was
computed for the identical peptides resulting in 3459 unique peptides, corresponding
to 1257 proteins, which were subjected to quantitative analysis. Of the 3459 peptides,
2335 peptides were uniquely identified for a protein in the sequence database. Therefore,
they were designated as diagnostic peptides. The use of our assembled RNA-seq data ob-
tained from potato Desirée (cv.), SW93-1015 (breeding line), and Sarpo Mira (cv.) improved
peptide identification by 6% as estimated by the fraction of peptides mapped uniquely to
accessions in the RNA-seq data. This increase in peptide identification was however less
than the previously reported 17% [14], maybe due to the fact that we used a different potato
cultivar Bintje, not represented in our RNA-seq database used for peptide identification.
We identified 85 of the 104 peptides previously reported to be have prediction potential
for P. infestans resistance in leaf and tuber, as well as for tuber yield, in the potato clones
SW93-1015 and Desirée [32].

Of the 1257 proteins, 419 were predicted to contain a signal peptide as determined by
SignalP version 4.1 [33]. This is in line with the previous studies [6,26], where 30–60% of
proteins identified in the apoplast contained a classical signal peptide. Furthermore, Pfam
analysis of proteins identified in samples from field-grown plants identified 461 protein
families. Peptidases, peroxidases, glycosyl hydrolases, protein GDSL lipases, thaumatin,
heat shock proteins, Leucine rich repeat proteins, and epimerases being the predominant
protein families in the apoplast of field-grown potato cv. Bintje (Figure 1).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 18 
 

 

2. Results and Discussion 
2.1. Analysis of Apoplastic Peptides 

To get insights into the proteome of field-grown plants, we collected the leaf apo-
plastic fluid from fully expanded potato leaves of field-grown plants from two field sites 
over a two–year period. The apoplast is in many cases the first plant compartment that 
directly interact with the environment and does not contain any dominating protein such 
as rubisco. Therefore, we chose to analyze this part of the potato proteins under field con-
ditions. The leaf apoplastic fluid was collected using our mobile laboratory [21,29,30] that 
allows us to isolate, aliquot, and freeze the samples directly on the site, thus reducing the 
probability of sample degradation, which can be a problem in proteome sampling [31]. 

In total, we identified 3960 peptides, of which 501 were identical except for the charge 
differences of the intact peptide precursor ion detected by MS. Average abundance was 
computed for the identical peptides resulting in 3459 unique peptides, corresponding to 
1257 proteins, which were subjected to quantitative analysis. Of the 3459 peptides, 2335 
peptides were uniquely identified for a protein in the sequence database. Therefore, they 
were designated as diagnostic peptides. The use of our assembled RNA-seq data obtained 
from potato Desirée (cv.), SW93-1015 (breeding line), and Sarpo Mira (cv.) improved pep-
tide identification by 6% as estimated by the fraction of peptides mapped uniquely to ac-
cessions in the RNA-seq data. This increase in peptide identification was however less 
than the previously reported 17% [14], maybe due to the fact that we used a different 
potato cultivar Bintje, not represented in our RNA-seq database used for peptide identifi-
cation. We identified 85 of the 104 peptides previously reported to be have prediction 
potential for P. infestans resistance in leaf and tuber, as well as for tuber yield, in the potato 
clones SW93-1015 and Desirée [32].  

Of the 1257 proteins, 419 were predicted to contain a signal peptide as determined 
by SignalP version 4.1 [33]. This is in line with the previous studies [6,26], where 30–60% 
of proteins identified in the apoplast contained a classical signal peptide. Furthermore, 
Pfam analysis of proteins identified in samples from field-grown plants identified 461 
protein families. Peptidases, peroxidases, glycosyl hydrolases, protein GDSL lipases, 
thaumatin, heat shock proteins, Leucine rich repeat proteins, and epimerases being the 
predominant protein families in the apoplast of field-grown potato cv. Bintje (Figure 1). 

Figure 1. Word-cloud representation of the leaf apoplastic proteome from potato cultivar Bintje. 
Identified proteins were classified into families using Pfam analysis. Scale of the fonts and colors in 
the word cloud represents relative abundance of the protein family in the apoplast samples from 
field-grown plants. 

Figure 1. Word-cloud representation of the leaf apoplastic proteome from potato cultivar Bintje.
Identified proteins were classified into families using Pfam analysis. Scale of the fonts and colors
in the word cloud represents relative abundance of the protein family in the apoplast samples from
field-grown plants.
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In our dataset, the correlation between peptide abundance and proportion of samples
with missing values was r2 = −0.31 (Supplementary Figure S1). Such a negative correlation
between peptide abundance and missing values is expected and has previously been
reported [34].

2.2. Effect of Fungicide Application on Potato Apoplastic Proteome

In order to investigate whether the application of a fungicide to control a disease
change the abundance of proteins in the apoplast, we compared fungicide treated samples
with untreated ones. The fungicide application may directly or indirectly, by changing the
microbial communities [35], affect the apoplastic proteome of the plants. Some of the field
plants were treated with fungicide Shirlan (classified as non-systemic), targeting foliar and
tuber late blight infections in potato. According to the Public Release Summary on the
fungicide [36], spraying with C14-tagged fluazinam (500 g L−1), the active ingredient in
Shirlan, revealed small traces of the label in the potato pulp, showing some translocation
of the fungicide into the plant. We performed separately two-group comparison (t-test)
analysis in Qlucore for 12 samples from 2011 and 18 samples from 2012 in Mosslunda;
however, no differentially abundant protein was detected between fungicide-treated and
untreated plants in both years in Mosslunda (q < 0.1) (data not shown). Therefore, we con-
clude that the application of fungicide Shirlan did not significantly change the abundance
of the apoplastic proteins in potato leaves. Further studies investigating levels and timing
of fungicide application, and its translocation and stability in plant tissues would provide
crucial insights into its effects on apoplastic proteome.

2.3. Apoplastic Proteome Differences between Growing Sites and between Years

To further understand and describe the dynamics of apoplastic proteome in potato
leaves growing in field conditions, we compare the data set between the two sites Borgeby
in 2010 and in Mosslunda both in 2011 and 2012 growing seasons. The PCA clustered the
samples from the two growing sites together (Figure 2A).

Similarly, ref. [2] found an overlap in apoplastic proteome composition of Arabidopsis
plants collected from two field sites. It has been shown that the effect of weather conditions
on tuber proteome of potato grown at two different fields is minimal [37]. The overlap
between field samples observed in the PCA plot indicates the similarity between the
apoplastic protein compositions of the potato plants grown in Mosslunda and those grown
in Borgeby (Figure 2A). This indicates similar apoplastic proteome profile among the plants
grown in these sites. However, a transcriptome analysis of grapevine berries grown in
different sites identified more than 8000 differentially expressed genes [38].

To describe individual proteins that were differentially regulated between potato
plants grown at these two sites, we performed a two-group comparison (t-test) in Qlu-
core (q < 0.001) and found 314 peptides (9%) from 234 proteins (Figure 2C). These results
indicate that, despite the overlap of Mosslunda and Borgeby samples in the PCA plot,
hence similarity in apoplastic proteome, not all of the proteins had a similar pattern of
abundance at both growing sites. The abundance of subtilisin-like proteases (Q9LWA4),
endochitinase (DMP400046624), Kunitz trypsin inhibitor (DMP400046980), pectinesterase
(DMP400055021), and peroxidases (DMP400052953, Q9SD46) were higher in Borgeby plants
compared to those grown in Mosslunda and those of glucan endo-1,3-β-D-glucosidase
(DMP400051976), glyceraldehyde-3-phosphate dehydrogenase (DMP400017652), and me-
thionine synthase (DMP400048869) were lower (Supplementary Table S2).
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Figure 2. Principal components and heat map analyses of apoplastic proteome samples isolated from
potato cultivar Bintje grown at two experimental sites (Borgeby and Mosslunda) and in two different
growing seasons (2011 and 2012) in Mosslunda. (A) Unsupervised principal component analysis plot
of the samples in Mosslunda and Borgeby; (B) Unsupervised principal component analysis plot of
the samples in Mosslunda in 2011 and 2012; (C) Abundance of peptides from Borgeby respectively
compared to those in Mosslunda; (D) Abundance of peptides collected in 2011 respectively compared
to those collected in 2012 in Mosslunda. Two-group comparisons (t-test) were performed in Qlucore
with false discovery rate using Benjamini−Hochberg correction (q < 0.001). Heat maps are sorted
using hierarchal clustering and red represents higher abundance (Fold change, log2).

Similarly, to investigate the differences between the years, apoplastic samples were
collected in 2011 and 2012 from plants grown in Mosslunda. The PCA analysis grouped the
samples from the same year together, but there was an overlap between the samples from
both years (Figure 2B). A two-group comparison (t-test) analysis in Qlucore (q ≤ 0.001)
found 205 peptides (6% of total peptides, corresponding to 156 proteins) differentially abun-
dant in 2011 and 2012 in Mosslunda (Figure 2D). This indicates that relatively few apoplastic
proteins differ in abundance between the years. Compared to in 2012, osmotin-like pro-
tein (Q41350), pectinesterase (DMP400031280), PAE (DMP400041742), polygalacturonase
(DMP400021809), and β-galactosidase (DMP400026688) showed increased abundance in
2011 (Supplementary Table S3). Dal Santo et al. [38] found 625 grapevine genes differen-
tially expressed in at least one of the three growing seasons. Although investigation across
more years and locations is required to draw solid conclusions, the result indicates stability
of apoplastic proteome profile in potato. It is also possible that, given the sites are in the
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same climate conditions; the variation in weather and biotic condition was minimal thus
did not significantly alter the apoplastic proteome.

2.4. Abundance of Apoplastic Proteins across a Growing Season

Under field conditions, microbial populations and abiotic stresses change throughout
the growing season [39,40] which might accordingly alter the apoplastic proteome profile.
To understand the possible changes in the apoplastic proteome within the same growing
season, plant samples without disease symptoms collected in June, July, and August in
Mosslunda were investigated. The samples from the same month were clustered together,
and a multi-group comparison (q ≤ 0.001) identified 320 peptides (9.3%) from 240 proteins
that were differentially regulated in samples collected in at least one of these months
(Figure 3A,B).
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Figure 3. Quantitative analysis of apoplastic proteome samples isolated from potato cultivar Bintje
grown in Mosslunda in 2012. (A) Unsupervised principal component analysis plot of all the samples
collected in June (Mo_Jun_12), July (Mo_Jul_12), and August (Mo_Jul_12). Each circle represents one
biological replicate. (B) Heat maps and the number of peptides up- and down-regulated in plants
grown under field conditions in Mosslunda. We performed a multi-group comparison with false
discovery rate < 0.001 (according to the Benjamini−Hochberg procedure for determining q). Heat
map of the differentially regulated peptides (q < 0.001) was sorted using hierarchal clustering and red
represents higher abundance (Fold change, log2). (C) STEM clustering analysis of apoplastic peptides
in June, July, August of 2012 in Mosslunda. Proteins that were significantly (q ≤ 0.001) increased or
decreased in at least one of the months across the growing season were used for the STEM clustering
analysis. Top left of each box is the profile number and bottom left of each box indicates the number
of peptides that fit the defined abundance pattern in June, July, and August. The STEM analysis
identified 16 profiles, of which profiles 11 and 12 contains statistically significant number of proteins
(p < 0.05).
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STEM clustering [41] of differentially regulated proteins identified 16 abundance pat-
tern profiles for proteins that were co-regulated throughout the growing season (Figure 3C).
Of those, only two were significant profiles (p < 0.05). Profile 11 represented proteins with
lower abundance in June and their abundance increased at a similar degree in July and
August, whereas profile 13 comprised proteins with continued increase in abundance
during the season (Figure 3C).

In July and August most of the proteins with increased abundance in profile 11
were involved in plant response to specific biotic and abiotic stresses (Table 1, Figure 3C,
profile 11).

Table 1. Differentially abundant proteins in plants collected in June, July, or August in 2012 in fields in Mosslunda at false
discovery rate < 0.001 (according to Benjamini−Hochberg), corresponding to the abundance pattern identified in STEM
clustering profile 11 (Figure 3). Only unique peptides were used for the analysis. Shown are peptides with log2 fold change
≥ 4 in July and August compared to their abundance in June.

Peptide Sequence Protein IDs Protein Name Genome Signal P Log2 Fold Change

Location July August

TDPNQNTGIVIQK DMP400016183 Pectinesterase chr03 Yes 4.72 4.73

DGQPSEQHFGLFYPDQR Q70BW9 1,3-beta-glucan
glucanohydrolase 4.71 4.81

GQTWVIDAPR DMP400005465 Osmotin chr08 Yes 4.68 4.83
GLTWSVPTGR DMP400022299 Peroxidase chr01 Yes 4.68 4.63

RLDPGQTWVIDAPR Q5XUH0 Osmotin-like protein 4.65 4.84

MLNEGFVPDDVSLK Q9FHR3
Putative pentatricopeptide
repeat-containing protein

At5g37570
4.65 4.56

NIQNAISGAGLGNQIK DMP400051976 Glucan
endo-1,3-beta-D-glucosidase chr10 Yes 4.64 4.64

TSNLYAIGEMEIEENKK DMP400023312 DUF26 domain-containing
protein 2 chr12 Yes 4.62 4.67

LLALSDTPYK DMP400046980 Kunitz trypsin inhibitor chr06 Yes 4.62 4.57
VCWPVPNK DMP400033260 Xylem serine proteinase 1 chr10 No 4.61 4.65

SPSAYLNNPAGER DMP400007784 Ceramidase chr03 Yes 4.61 4.24
RYCGMLNVPTGEN-

LDCNNQR DMP400002757 Class II chitinase chr02 Yes 4.6 4.72

QRCPDAYSYPQDD-
PTSTFTCPSDSTNYR DMP400005463 Osmotin OSML13 chr08 Yes 4.59 4.34

GVIFFGDSPYVFLPGMDVSK DMP400015799
Xyloglucan-specific

endoglucanase
inhibitor 4

chr01 Yes 4.58 4.49

IFESCSTDTFQIR DMP400041178 Embryo-specific 3 chr01 Yes 4.57 4.51
YCGICCEECK DMP400037307 Snakin-1 chr04 Yes 4.57 4.45

ALPTYTPESPADATR DMP400038185 Transketolase, chloroplastic chr10 No 4.56 4.62

VITSSTEAQAYTPGR Q43143 Pectinesterase/pectinesterase
inhibitor U1 4.53 4.54

GFEAAPSVSFTVDGEEK DMP400000884 Serine carboxypeptidase III chr11 No 4.52 4.62

FVVVVDDSK M1BPR5 Uncharacterized protein
(Solanum tuberosum) 4.52 4.58

AETWVQEETRALISLR Q43326 Box II Factor 4.52 4.56
KFGLTVDNVLDAR DMP400031346 Reticuline oxidase chr02 Yes 4.52 4.52

LCPQGGDGGTFANLDK DMP400055305 Peroxidase chr01 Yes 4.51 4.61

CLCGSPLPDCK DMP400038422 Polygalacturonase inhibitor
protein chr07 Yes 4.51 4.49

TVTNLGDGQSTYTAK DMP400027005 Subtilisin-like protease
preproenzyme chr12 Yes 4.48 4.51

LCGEIPKGEYMK DMP400014905 Polygalacturonase inhibiting
protein chr09 Yes 4.45 4.17

ADNLDTCYR DMP400025990
41 kD chloroplast nucleoid

DNA
binding protein (CND41)

chr08 Yes 4.43 4.23
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Table 1. Cont.

Peptide Sequence Protein IDs Protein Name Genome Signal P Log2 Fold Change

Location July August

GTGDFTGR SW_g323.t1
Pathogenesis-related

protein 1b
(Solanum tuberosum)

4.41 4.49

RIVDIPAGAFSFNSNT-
GAGTIIDSGTVFTR DMP400009572 Aspartic proteinase

nepenthesin-1 chr01 Yes 4.38 4.55

VIIADIQNDLGNSLVK DMP400032777 Short chain alcohol
dehydrogenase chr12 No 4.37 4.56

TLPESTTNENK K7WVA0 Acyl-CoA-binding protein
(Solanum tuberosum) 4.37 4.42

CHAVQCTANINGECPGQLK DMP400023388 Osmotin Yes 4.35 4.68
TNCNFDGDGR Q01591 Osmotin-like protein TPM-1 4.35 4.41

LSEDGQVLEVLEDVEGK DMP400030201 Strictosidine synthase chr07 Yes 4.31 4.59
SMVGTPLMPGISVDTYIF-

ALYDEDLKPGPGSER DMP400001406 Glucan
endo-1,3-beta-glucosidase chr01 Yes 4.3 4.65

GNLDIFSGR DMP400035839 Wound/stress protein chr04 Yes 4.27 4.6
ITGNDYSSGVR DMP400007118 Citrate binding protein chr11 Yes 4.26 4.54

AVGEAGLGNDIK DMP400062364
Glucan

endo-1,3-beta-glucosidase,
basic isoform 2

chr01 No 4.24 4.58

HAGPQFDYLEK DMP400019521 Glutathione S-transferase
omega chr10 No 4.23 4.58

SSSTDVFGR DMP400043338 Subtilisin-like protease chr02 Yes 4.21 4.61
YLVTIGGVEGNPGR DMP400017956 Miraculin chr03 Yes 4.21 4.52

MYQLSFK DMP400050666 Unidentified chr08 Yes 4.21 4.48
ADAGHVLVEK DMP400022826 MRNA binding protein chr09 No 4.15 4.49

GQGTVGTEINR DMP400023006 Threonine dehydratase
biosynthetic, chloroplastic chr09 No 4.14 4.52

WQPSGADQAANR P52405 Endochitinase 3 4.1 4.45

Proteins with increased abundance in July and August included peroxidases
(DMP400022299, DMP400055305), serine carboxypeptidase III (DMP400000884), class
II chitinase (DMP400002757), pectinesterases (DMP400016183, Q43143), and osmotins
(DMP400005465, DMP400005463, Q5XUH0). In addition, ceramidase (DMP400007784), 1,3-
β-glucan glucanohydrolase (Q70BW9), glucan endo-1,3-β-D-glucosidase (DMP400051976),
and Kunitz trypsin inhibitor (DMP400046980) also showed increased abundance (log2 fold
change ≥ 4) in July and August compared to that in June (Table 1; Figure 3C, profile 11).
This was corroborated by our finding that the number of potato plants with activated
immunity increased (as measured as PR protein accumulation) at the end of the growing
season, which might be associated with increased presence of pathogens as the season
progressed [15].

2.5. Difference in Protein Abundance under Field and Greenhouse Conditions

To investigate the apoplastic proteome differences between plants grown under green-
house and those grown under field conditions, we first conducted an unsupervised PCA.
The resulting PCA plot showed a clear clustering of the field- and greenhouse-grown
samples into different groups (Figure 4A), regardless of the sampling year and growing site,
suggesting distinct apoplastic proteome profiles for field- and greenhouse-grown plants.
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Figure 4. Quantitative analysis of apoplastic proteome samples isolated from potato cultivar Bintje
grown under greenhouse and field conditions. (A) Unsupervised principal component analysis plot
of all the samples. Each circle represents one biological replicate; (B) heat maps and numbers of
peptides up- and down-regulated under greenhouse and field conditions according to a two-group
comparison in Qlucore with a false discovery rate < 0.001 (according to the Benjamini−Hochberg
procedure for determining q). The heat map of the differentially regulated peptides (q < 0.001) was
sorted using hierarchal clustering and red represents higher abundance (Fold change, log2).

This is in agreement with a study that compared apoplastic proteome profiles between
field- and laboratory-grown Arabidopsis using a limited number of samples [2]. Our data
also strengthens the notion that peptide biomarkers developed using apoplastic proteome
of field-grown potato can be a powerful tool for trait prediction [32].

A two-group comparison (t-test) in Qlucore, field vs. greenhouse, identified 1208 pep-
tides that belong to 606 proteins, making up to 48% of all the proteins identified in
the apoplast, to be differentially abundant in plants grown in the field and greenhouse
(q ≤ 0.001). Of those, 781 peptides were diagnostic, assigned to only one protein in our
database. The abundance of 805 peptides was lower in field-grown samples compared
to those grown in the greenhouse (Figure 4B). This difference in abundance of most of
the proteins in greenhouse samples might be due to differences in extraction efficiency
associated with variation in leaf anatomy between plants grown in greenhouse and field
conditions [1], or a limited sampling of the greenhouse samples.

To describe the identified proteins that were differentially abundant under field and
greenhouse conditions, we carried out a MapMan analysis [42] using 350 differentially
abundant proteins with PGSC identity numbers (Supplementary Figure S2). The analysis
identified many stress-related proteins such as proteins associated with proteolysis, proteins
involved in cell wall synthesis or degradation, proteins classified as pathogenesis-related
proteins (PR-proteins), peroxidases, and proteins involved in signaling; most of these
proteins were at lower abundance in field-grown plants than in plants grown in the
greenhouse (Supplementary Figure S2A). However, most of the redox and heat shock
proteins were more abundant in field-grown plants (Supplementary Figure S2B).
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2.6. ABPP Reveals Seasonal Effects

Serine and glycosyl hydrolase protein families are commonly found in the apoplast [6];
both families were among the most abundant in our samples (Figure 1). Similarly, we
also found that most of the differentially regulated proteins in field-grown plants vs.
greenhouse-grown plants were associated with catalytic and hydrolytic activities, as shown
using MapMan pathway analysis (Figure 5, Supplementary Figure S2). Therefore, we
studied the activity profile of serine hydrolase and β-glucosidase proteins in the apoplast
using ABPP. The labeling of the apoplast for active serine hydrolases identified a signal
(#1) at 100 kDa only in the field-grown potato plants (Figure 5A). In contrast, a signal (#3)
at 40 kDa had higher intensity in greenhouse- than in field-grown plants.
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Figure 5. Serine hydrolase and β-glycosidase activity profiling of potato cultivar Bintje grown under
greenhouse and field conditions in Mosslunda in June, July, and August 2012. Apoplastic proteins
were labeled by 2 µM probe for (A) serine hydrolase and (B) β-glycosidase. The probe-labelled
proteins were separated on 12% sodium dodecyl sulfate-polyacrylamide electrophoresis gels and
detected using a fluorescence scanner.

Surprisingly, we found that the activity of serine hydrolases and β-glycosidases was
generally decreasing as the growing season progressed (Figure 5). The intensity of the
signal (#4) below 40 kDa for active serine hydrolases decreased from June to August in field-
grown plants (Figure 5A). Using a probe for β-glycosidases, we identified that intensity
signal (#1) at 70 kDa and signal (#2) at 40 kDa decreased later in the season (Figure 5B),
showing decreasing activity of these proteins as the season progressed.

2.7. Serine Hydrolases and β-Glycosidases Identified by ABPP and MS

ABPP has been applied in a limited number of protein families (van der Hoorn
et al., 2011). In this study, to investigate the proteins identified in the activity profile of
the potato apoplastic fluid, the samples were purified after labelling with a mix of two
biotinylated probes targeting serine hydrolases and β-glycosidases. The detected protein
bands in ABPP were excised and analyzed using MS. The results of the MS analysis of
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the apoplastic proteome, which was used to identify the composition of protein signals,
revealed that serine hydrolase signal (#1) at 100 kDa corresponded to subtilisin-like proteins,
such as P69B (DMP400056894), P69E (DMP400007008), P69F (DMP400006964), subtilase
(DMP400011990), and serine protease (DMP400006965) (Figure 6).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 6. Identification of serine hydrolases and β-glycosidases proteins that were captured by ac-
tivity-based probes. Leaf apoplastic proteome of the potato sample was co-labelled by 5 µM bioti-
nylated probes for β-glucosidase (JJB111) and serine hydrolases (FP-biotin). Biotinylated proteins 
were then affinity-purified with streptavidin beads and separated on 12% sodium dodecyl sulfate-
polyacrylamide electrophoresis gel. The gel was stained by SYPRO Ruby staining. 

Proteins corresponding to signals #3 and #4 included carboxylesterase 
(DMP400011864), esterase (DMP400026614), serine-type peptidase (DMP400000966), and 
GDSL-lipase 1 (DMP4000-12851) (Figure 6); GDSL-lipase 1 is involved in plant defense 
against pathogens such as Pseudomonas syringae [43]. Moreover, β-glycosidases were iden-
tified at 100 kDa (β-galactosidases [DMP400004621, DMP4000-15895, and 
DMP400016780]) and at 70 kDa (polygalacturonase [DMP400037552], β-glucosidase 
[DMP400033415], β-mannosidase [DMP400009956]), and β-galactosidase (DMP400014264 
and DMP400014267) and α-galactosidase (DMP400018078) were detected at 40 kDa (sig-
nal #4) (Figure 6).  

3. Materials and Methods 
3.1. Plant Material and Field Sites 

Potato cultivar Bintje was used in this study, and field experiments were conducted 
at two experimental sites in southern Sweden: Mosslunda (55°58′ N, 14°6.3′ E) in 2011 and 
2012 and Borgeby in 2010 (55°45′ N, 13°23′ E). The experiment site in Borgeby had a sandy 
clay soil with 2.8 % humus, 16 % clay content, and 55% fine sand, with pH 7.1. The nutrient 
concent were Phosphorus (9.9 mg), Potassium (9.9 mg), Magnesium (10 mg), and Calcium 
(310 mg) per 100 g soil. In Mosslunda in 2011, the soil was sandy (79%), with a low clay 
content (7%) and humus (4.2%), and the chemical property was pH was 7.2, and Phospho-
rus (31 mg), Potassium (12 mg), Magnesium (13 mg), Calcium (490 mg) per 100 g of soil. 
In 2012 in Mosslunda, the soil was sandy (84%), with a low clay content (3%) and humus 
(4.1%), the pH was 6.5, and Phosphorus (21 mg/100 g), Potassium (11 mg), Magnesium 
(10 mg), Calcium (200 mg) per 100 g of soil. The average temperature, relative humidity 
and precipitation during this study was in Borgeby (17.6 °C, 73.8% RH, and 357 mm), and 
in Mosslunda in 2011 (16.9 °C, 79.9% RH, and 293 mm) and in 2012 (16.0 °C, 78,0% RH, 
and 213 mm). Furthermore, the monthly weather condition in Mosslunda in 2012 was in 
June (13.0 °C, 76 % RH, and 190 mm), July (17.1, 79% RH, and 242 mm) and August (17.0 
°C, 80.0% RH, and 265 mm). Plants were grown following good experimental practice in 

Figure 6. Identification of serine hydrolases and β-glycosidases proteins that were captured by
activity-based probes. Leaf apoplastic proteome of the potato sample was co-labelled by 5 µM
biotinylated probes for β-glucosidase (JJB111) and serine hydrolases (FP-biotin). Biotinylated proteins
were then affinity-purified with streptavidin beads and separated on 12% sodium dodecyl sulfate-
polyacrylamide electrophoresis gel. The gel was stained by SYPRO Ruby staining.

Proteins corresponding to signals #3 and #4 included carboxylesterase (DMP400011864),
esterase (DMP400026614), serine-type peptidase (DMP400000966), and GDSL-lipase 1
(DMP4000-12851) (Figure 6); GDSL-lipase 1 is involved in plant defense against pathogens
such as Pseudomonas syringae [43]. Moreover, β-glycosidases were identified at 100 kDa (β-
galactosidases [DMP400004621, DMP4000-15895, and DMP400016780]) and at 70 kDa
(polygalacturonase [DMP400037552], β-glucosidase [DMP400033415], β-mannosidase
[DMP400009956]), and β-galactosidase (DMP400014264 and DMP400014267) and
α-galactosidase (DMP400018078) were detected at 40 kDa (signal #4) (Figure 6).

3. Materials and Methods
3.1. Plant Material and Field Sites

Potato cultivar Bintje was used in this study, and field experiments were conducted
at two experimental sites in southern Sweden: Mosslunda (55◦58′ N, 14◦6.3′ E) in 2011
and 2012 and Borgeby in 2010 (55◦45′ N, 13◦23′ E). The experiment site in Borgeby had
a sandy clay soil with 2.8 % humus, 16 % clay content, and 55% fine sand, with pH 7.1.
The nutrient concent were Phosphorus (9.9 mg), Potassium (9.9 mg), Magnesium (10 mg),
and Calcium (310 mg) per 100 g soil. In Mosslunda in 2011, the soil was sandy (79%), with
a low clay content (7%) and humus (4.2%), and the chemical property was pH was 7.2,
and Phosphorus (31 mg), Potassium (12 mg), Magnesium (13 mg), Calcium (490 mg) per
100 g of soil. In 2012 in Mosslunda, the soil was sandy (84%), with a low clay content (3%)
and humus (4.1%), the pH was 6.5, and Phosphorus (21 mg/100 g), Potassium (11 mg),
Magnesium (10 mg), Calcium (200 mg) per 100 g of soil. The average temperature, relative
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humidity and precipitation during this study was in Borgeby (17.6 ◦C, 73.8% RH, and
357 mm), and in Mosslunda in 2011 (16.9 ◦C, 79.9% RH, and 293 mm) and in 2012 (16.0 ◦C,
78,0% RH, and 213 mm). Furthermore, the monthly weather condition in Mosslunda in 2012
was in June (13.0 ◦C, 76 % RH, and 190 mm), July (17.1, 79% RH, and 242 mm) and August
(17.0 ◦C, 80.0% RH, and 265 mm). Plants were grown following good experimental practice
in accordance with EU directive 93/71, KIFS 2004:4, STAFS 2001:1, and standard operative
procedures, SLU 2004 [44]. Plants in the greenhouse were grown at SLU Alnarp (55◦65′ N,
13◦07′ E), under conditions described previously [44]. Some plants were treated with
a fungicide Shirlan (ISK Biosciences Europe S.A., Machelen, Belgium; active ingredient:
fluazinam 500 g L−1) according to manufacturer’s recommendation (0.3 L ha−1). No
pathogen-related symptoms were visible on any of the analyzed leaves.

3.2. Apoplast Isolation and Protein Digestion

Apoplastic fluid was isolated, between 10 a.m. and 3 p.m., from five fully expanded
leaves of a single plant by vacuum infiltration-centrifugation using a mobile field laboratory
as previously described [21,29,30]. Isolated samples were aliquoted on site, frozen in liquid
nitrogen, and kept at−80 ◦C until used for either label-free quantitative proteomics analysis
or activity-based protein profiling (ABPP). For quantitative proteomics analysis, a 30 µL
aliquot of each apoplastic sample was cleaned and trypsin-digested as described in [32]
before analysis by mass spectrometry.

3.3. Mass Spectrometry

For high-performance liquid chromatography-tandem mass spectrometry (HPLC-
MS/MS) analysis, 5 µL of the peptide solution was injected into Eksigent nanoLC-2D HPLC
system coupled to a LTQ Orbitrap XL ETD (Eksigent Technologies, Dublin, CA, USA).
Peptides were separated using a linear gradient for 90 min at a flow rate of 300 nL min−1.
The eluted peptide spectra were acquired, analyzed, and the four most intense ions were
selected for fragmentation in linear trap quadrupole (LTQ) [45]. The raw data were con-
verted to mzML [46] and Mascot generic format (MGF) files using ProteoWizard [47]
and uploaded to the Proteios software environment (ProSE) [48], where the MGF and
mzML files were used for MS/MS identification and feature detection, respectively. Protein
identification was performed in Mascot (www.matrixscience.com) (accessed on 1 Novem-
ber 2021) and X!Tandem (www.thegpm.org/tandem) (accessed on 1 November 2021)
by searching a protein sequence database containing all Solanum proteins in Uniprot
(http://www.uniprot.org/) (accessed on 1 November 2021) and potato genome project
(https://solgenomics.net/) (accessed on 17 June 2015). Protein sequences based on de
novo assembled transcripts of potato clones Desirée, Sarpo Mira, and SW93-1015 were
included in the database [14]. Reversed sequences of all the proteins in the database
(449,968 protein entries) were included as decoys. For MS/MS searches, MS mass toler-
ance was set to 5 ppm and MS/MS fragment tolerance to 0.5 Da. One missed cleavage,
fixed cysteine carbamidomethylation, and variable oxidation of methionine were allowed.
All search results at the peptide spectrum level were subsequently filtered at a false dis-
covery rate (FDR) of 1% [48]. Feature detection to quantify peptides was performed on
the mzML files from Proteios using Dinosaur [49]. An alignment algorithm was used in
Proteios to propagate peptide identities between LC-MS/MS runs [50] and the report was
exported for further analysis. After feature matching across all runs with a recall of 0.99
and a precision of 0.80 based on common identifications, the peptide feature level FDR
could be estimated to 4% from the fraction of decoy identifications. The proteomics data
used for quantitative analysis have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) (accessed on 1 November 2021) via the
PRIDE partner repository with the dataset identifier PXD006392.

www.matrixscience.com
www.thegpm.org/tandem
http://www.uniprot.org/
https://solgenomics.net/
http://proteomecentral.proteomexchange.org
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3.4. Quantitative Analysis of Peptides

The quantitative dataset with peptide precursor intensities was analyzed using Nor-
malyzer v1.1.1 [51], and after comparing 12 normalization methods the Loess-G was
used for normalization [52]. The log2-transformed normalized data were used for visual-
ization and statistical tests for identification of differentially abundant proteins; miss-
ing values were treated as described in [12]. Qlucore Omics Explorer v3.2 software
(http://www.qlucore.se/) (accessed on 1 November 2021) was used to generate prin-
cipal components analysis (PCA) plots and perform comparative analysis. Unsupervised
PCA plots were generated to show similarities or differences between the samples. To
identify peptide and proteins with differential abundance, comparative analyses were
performed two group comparison (t-test) in Qlucore with the Benjamini−Hochberg false
discovery ratio (FDR) procedure (q ≤ 0.001). Heat maps sorted with hierarchical clustering
were generated and the list of peptide and proteins differentially regulated among the
samples was exported for bioinformatics analysis. If the protein was represented by two or
more peptides, a median abundance value was calculated.

3.5. Labelling of Apoplastic Proteome Activity

For the activity-based profiling, 5 µL of 500 mM sodium acetate (NaAc, pH = 5)
and 1 µL of 250 mM dithiothreitol (DTT) were added to 43 µL of ice-thawed apoplastic
fluid. Two micromoles of each probe for serine hydrolases (FP-Rh) [53] and Glycosyl
hydrolases (JJB70) [28] were added to the labeling reaction. For the inhibition tests, equal
amounts of labeling reactions were pre-incubated for 30 min at room temperature (RT)
with 100 µM of inhibitor 3,4 dichloroisocoumarin (DCI) against each probe. In samples
without the inhibitor, DMSO was added instead and all labeling reactions were incubated
for 1 h in darkness at RT. The reactions were stopped by adding 15 µL of 4X gel loading
buffer, and the whole samples were boiled at 95 ◦C for 5 min. Proteins were separated on
12% sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) gels and probe-
labelled proteins were detected using a Typhoon 9400 fluorescence scanner (GE Healthcare,
Bio-Sciences AB, Uppsala, Sweden).

3.6. Affinity Purification and Identification of Serine Hydrolases and β-glycosidases

Apoplastic fluid of Bintje (2.5 mL) was incubated with 5 µM biotinylated probes for
β-glycosidase (JJB111) [28] and serine hydrolases (FP-biotin) [53], 50 mM NaAc, and 1 mM
DTT for 1 h in the dark at RT. The labelled proteins were affinity-purified as described
previously [26,28], eluted from streptavidin beads by adding 30 µL of 4X gel loading buffer
and boiling at 95 ◦C for 10 min. The samples were centrifuged and 15 µL of the supernatant
was loaded and separated on 12% SDS-PAGE gel. The gel was incubated with SYPRO fix
for 30 min and stained overnight in the dark with SYPRO Ruby Protein Gel Stain (Thermo
Fischer Scientific, Waltham, MA, USA). Protein bands were detected and excised from the
gel using scalpel, and gel pieces were subjected to in-gel tryptic digestion [26,28].

Peptide and protein identification was performed using LC-MS/MS of the in-gel
digests on an Orbitrap Elite instrument (Thermo, [54]) that was coupled to an EASY-nLC
1000 liquid chromatography (LC) system (Thermo). The LC was operated in the one-
column mode. The analytical column was a fused silica capillary (75 µm × 36 cm) with
an integrated PicoFrit emitter (New Objective) packed in-house with Reprosil-Pur 120
C18-AQ 1.9 µm resin (Dr. Maisch). The analytical column was encased by a column oven
(Sonation) attached to a nanospray flex ion source (Thermo). The column oven temperature
was adjusted to 45 ◦C during data acquisition. The LC was equipped with two mobile
phases: solvent A (0.1% formic acid, FA, in water) and solvent B (0.1% FA in acetonitrile,
ACN). All solvents were of UPLC grade (Sigma-Aldrich, St. Louis, MO, USA). Peptides
were directly loaded onto the analytical column with a maximum flow rate that would not
exceed the set pressure limit of 980 bar (usually around 0.4–0.6 µL/min). Peptides were
subsequently separated on the analytical column by running a 50 min gradient of solvent
A and solvent B (start with 7% B; gradient 7 to 35% B for 40 min; gradient 35 to 100% B

http://www.qlucore.se/


Int. J. Mol. Sci. 2021, 22, 12033 14 of 17

for 5 min and 100% B for 5 min) at a flow rate of 300 nl/min. The mass spectrometer was
operated using Xcalibur software version 2.2 SP1.48. The mass spectrometer was set in
the positive ion mode. Precursor ion scanning was performed in the Orbitrap analyzer
(FTMS; Fourier Transform Mass Spectrometry) in the scan range of m/z 300–1500 and at a
resolution of 60,000 with the internal lock mass option turned on (lock mass was 445.120025
m/z, polysiloxane) [55]. Product ion spectra were recorded in a data dependent fashion
in the ion trap (ITMS) in a variable scan range and at a rapid scan rate. The ionization
potential (spray voltage) was set to 1.8 kV. Peptides were analyzed using a repeating cycle
consisting of a full precursor ion scan (1.0 × 106 ions or 50 ms) followed by 12 product ion
scans (1.0 × 104 ions or 100 ms) where peptides are isolated based on their intensity in the
full survey scan (threshold of 500 counts) for tandem mass spectrum (MS2) generation. The
MS2 permits peptide sequencing and identification. Collision induced dissociation (CID)
energy was set to 35% for the generation of MS2 spectra. During MS2 data acquisition
dynamic ion exclusion was set to 60 s with a maximum list of excluded ions consisting of
500 members and a repeat count of one. Ion injection time prediction, preview mode for
the FTMS, monoisotopic precursor selection and charge state screening were enabled. Only
charge states higher than 1 were considered for fragmentation.

Peptide and Protein Identification was performed using MaxQuant. RAW spectra
were submitted to an Andromeda [56] search in MaxQuant version 1.5.3.30 using the
default settings. [57] Label-free quantification was activated. MS/MS spectra data were
searched against the Uniprot S. tuberosum (UP000011115_4113.fasta; 53104 entries) [58],
as well as assembled RNA-seq datasets of Solanum dulcamara (DUL.fasta; 26392 entries)
and Solanum tuberosum cv. Desiree (DES.fasta; 24703 entries) [14,16]. Further analysis and
filtering of the results was carried out in Perseus version 1.5.5.3 [59]. Proteins unique or
with higher spectral count in a specific protein band in the SDS-PAGE are reported herein.
The identified proteins with their spectral counts are listed in Supplementary Table S1.

3.7. Bioinformatics Analysis

We used Pfam enrichment analysis [60] for investigation of protein families in the
apoplastic proteome. SignalP 4.1 was used to predict the presence of secretion signals in
identified proteins [33]. In order to identify proteins with a similar differential regulation
pattern, we performed STEM structure analysis in STEM v1.3.8 with default parameters [41].
Location of the identified proteins in potato genome was predicted using SPUD DB Genome
browser version 1.70 (http://solanaceae.plantbiology.msu.edu/) (accessed on 1 November
2021). Functional categories of identified proteins were determined by gene ontology (GO)
enrichment analysis in agriGO version 2.0 [61]. MapMan version 3.6.0 [42] was used for
pathway analysis based on the potato mapping file obtained from GoMapMan [62]. To
establish a correlation between the quantitative profiling and ABPP, proteins and peptides
found by both approaches were identified based on the sequence similarity analysis.
The Potato Genome Sequencing Consortium (PGSC) protein numbers throughout this
report have been abbreviated for readability; for example, protein PGSCDMP400044750 is
abbreviated to DMP400044750.

4. Conclusions

Proteomics can be useful for understanding the physiology of field-grown plants, and
we found similarities between years and sites. We show that fungicide may not affect the
apoplastic proteome significantly, but this requires a more detailed investigation on the
translocation and stability of the fungicide applied and changes in phyllosphere microbial
community as well as induction of plant defense responses. Variation in proteomics
profile including presence of proteins with differential abundance and activity among
samples grown in different sites, growing season, as well as across the months within
the growing season indicates dynamic regulation of parts of the apoplastic proteome
in response to biotic and abiotic factors. Indeed, most of the differentially regulated
proteins were associated with stress related processes. Nevertheless, this warrants further

http://solanaceae.plantbiology.msu.edu/
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investigation to identify proteins that can be useful for molecular-assisted decision making
in management strategies of these stresses. The study combines quantitative analysis
with ABPP to gain insights into the actual activity of certain protein classes. This study
also shows the importance of collecting apoplastic proteomes in field conditions and that
understanding the proteome in agricultural fields would be a new dimension in order to
understand the physiological state of field-grown plants (field-omics) and support biotic
and abiotic stress mitigation strategies.
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