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Antibiotic resistance in biogas processes 

Abstract 
Anaerobic digestion (AD) is a well-established technology that can play a key role 
in development of a sustainable society. In AD, organic wastes such as animal 
manure, food waste and crop residues are used as substrate and converted to biogas 
and digestate, which represent green energy and a biofertiliser. Due to intensive 
use of veterinary antibiotics, antibiotic residues, antibiotic-resistant bacteria 
(ARB), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) 
enter the AD process via the substrates and end up in the digestate. Thus, digestate 
may represent a source of spread of antibiotic resistance. Antibiotic resistance is 
one of the greatest global public health challenges of our time and is predicted to 
cause around 300 million premature deaths by 2050, so countering its spread is 
critically important. However, research on the antibiotic resistance level in AD is 
still quite limited. This thesis contributed essential new knowledge by a) 
identifying ARB communities in digestates originating from food waste, crops and 
dairy manure; b) assessing antibiotic resistance in plant-based substrates; c) 
investigating phenotypic and genotypic resistance pattern and resistance 
transferability of isolated ARB; and d) comparing molecular and culture-dependent 
methods in evaluation of antibiotic resistance. 

Bacillus and closely-related genera such as Paenibacillus and Lysinibacillus 
were found to dominate the ARB community isolated from digestate, irrespective 
of substrate type. Most ARGs identified for these ARB were located on 
chromosomes, although several ARB strains had extra-chromosomal genomes. 
Only one was identified as a plasmid (pAMαl), which proved to be non-
transferable in plasmid conjugation testing. Thus, the dominant ARB community 
from the digestates studied likely poses a limited risk of antibiotic resistance 
spread, although even plant-based substrates were found to contain variant 
antibiotic resistance components. Combined use of molecular and culture-
dependent methods was required to reveal the true antibiotic resistance situation in 
the AD process. 

 Keywords: anaerobic digestion, biogas, digestate, antibiotic resistance, antibiotic-
resistant bacteria, antibiotic resistance genes, mobile genetic elements. 
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Antibiotikaresistens i biogasprocesser 

Abstrakt 
Anaerob rötning (AD) är en väletablerad teknik som kan spela en nyckelroll i 
utvecklingen av ett hållbart samhälle. I denna process omvandlas olika typer av 
organiskt avfall (substrat), som djurgödsel, matavfall och växtrester, till biogas och 
en rötrest, som representerar grön energi och ett biogödsel. På grund av en intensiv 
användning av antibiotika kommer antibiotikarester, antibiotikaresistenta bakterier 
(ARB), resistensgener (ARG) och mobila genetiska element (MGE) in i processen 
via substraten och hamnar slutligen i rötresten. Användningen av rötresten som 
biogödsel representera därför en möjlig källa till spridning av antibiotikaresistens. 
Antibiotikaresistens är en av vår tids största globala folkhälsoutmaningar och 
förutspås orsaka omkring 300 miljoner förtida dödsfall år 2050, varför det är 
viktigt att motverka dess spridning. Forskningen om antibiotikaresistens vid 
rötning av organiskt material är dock fortfarande ganska begränsad.  

Denna avhandling bidrar med ny och viktig kunskap genom att a) identifiera 
ARB i rötrester som härrör från matavfall, grödor och kogödsel; b) analysera 
antibiotikaresistens i växtbaserade substrat; c) undersöka fenotypiskt och 
genotypiskt resistensmönster och resistensöverföring hos ARB isolerade från 
rötrester; och d) jämföra molekylära och odlingsbaserade metoder vid utvärdering 
av antibiotikaresistens.  

Resultaten visade att Bacillus och närbesläktade släkten såsom Paenibacillus 
och Lysinibacillus dominerade ARB isolerade från rötningsprocesser, oavsett 
substrattyp. De flesta ARG som identifierades för dessa ARB var lokaliserade på 
kromosomer, även om flera ARB-stammar hade extrakromosomala genom. En 
plasmid (pAMal) identifierades för ett isolat men visade sig vara icke-
överföringsbar i konjugeringstestning. Slutsatsen är därför att ARB i rötrester 
troligen utgör en begränsad risk för spridning av antibiotikaresistens. Vidare visade 
resultaten att en kombinerad användning av molekylära och odlingsbaserade 
metoder krävs för att tydligt visa omfattningen av antibiotikaresistens i en 
rötningsprocess. 

Nyckelord: anaerob rötning, biogas, antibiotikaresistens, antibiotikaresistenta 
bakterier, antibiotikaresistensgener, mobila genetiska element. 

Author’s address: He Sun, Swedish University of Agricultural Sciences, 
Department of Molecular Sciences, Uppsala, Sweden 
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Anaerobic digestion (AD) is a well-established technology with great 
potential for expansion and can play a key role in future development of a 
sustainable society (Kougias & Angelidaki, 2018). In AD, different organic 
wastes such as animal manure, food waste, sludge from wastewater 
treatment plants (WWTP), crop residues and dedicated energy crops, e.g. 
maize silage and grass silage in some countries, are degraded anaerobically 
by a variety of microorganisms working in synchrony and converted to two 
final products, biogas and digestate (Schnürer & Jarvis, 2018). Biogas is a 
renewable energy with potential to replace fossil carbon in production of 
electricity, heat and vehicle fuel (Kougias & Angelidaki, 2018). Digestate 
is commonly used for fertilisation of farmland, as it contains high 
concentrations of valuable plant nutrients (nitrogen (N), phosphorus (P), 
potassium (K), etc.). It can thus maintain agricultural productivity at a 
lower environmental cost compared with fossil-demanding conventional 
chemical fertilisers (Al Seadi et al., 2013). By using digestate as 
biofertiliser and returning food produced on the fertilised land to society, 
utilisation of nutrients is improved and nutrient recycling between urban 
and rural areas is achieved. However, prior to use of digestate as fertiliser, 
it is important to determine its quality in terms of nutrient content and 
levels of chemical and biological contaminants, e.g. heavy metals, weed 
seeds and pathogens (Risberg, 2015). In Sweden, two separate voluntary 
certification systems, SPCR 120 and Revaq, are currently used, to assure 
the quality of digestates originating from food or feed materials and WWTP 
sludge, respectively (Schnürer & Jarvis, 2018). However, neither of these 
systems requires any form of analysis to determine the levels of organic 
pollutants, e.g. pharmaceutical residues, that can potential enter the AD 
process via the substrates. Further, no risk evaluation regarding the 

1. Introduction 
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potential spread of antibiotic resistance through use of AD digestate as 
fertiliser is required in either of the current certification systems. 

Antibiotic resistance is one of the most significant global public health 
challenges of our time (CDC, 2019). It is increasingly impairing the 
effectiveness of antibiotics in the outpatient and inpatient sector, resulting 
in increased morbidity and mortality but also hospital stays of excessive 
length and costs (Stewardson et al., 2016). According to a recent report by 
the United States (U.S.) Center for Disease Control and Prevention (CDC), 
more than 2.8 million antibiotic-resistant infections occur in the U.S. each 
year, and more than 35,000 people die as a result (CDC, 2019). Infections 
with antibiotic-resistant pathogens are also estimated to cause over 33,000 
attributable deaths annually (2015 data) in Europe (Cassini et al., 2019). 
Moreover, antibiotic resistance is predicted to cause around 300 million 
premature deaths by 2050, with associated losses of between 40 and 100 
trillion USD to the global economy (O’Neill, 2014). Veterinary use of 
antibiotics can result in development of antibiotic-resistant bacteria (ARB) 
and antibiotic-resistance genes (ARGs) in the gut of animals. As a result, 
antibiotic residues, ARB and ARGs often end up in livestock-derived food 
and in animal manure (Wichmann et al., 2014; Zhang et al., 2017b; Qian et 
al., 2018; He et al., 2019). When materials such as animal manure and food 
waste are used as substrates in a biogas reactor, any antibiotic residues, 
ARB and ARGs present in the substrates can be degraded to some extent, 
but are often not eliminated completely (Beneragama et al., 2013; Mitchell 
et al., 2013; Resende et al., 2014; Zou et al., 2020; Visca et al., 2021). The 
AD process may consequently represent a route of antibiotic resistance 
spread when digestate is used for fertilisation, as illustrated in Figure 1. 
Many studies have investigated the AD-associated antibiotic resistance 
situation in the AD process, but mainly focusing on biogas processes using 
animal manure or WWTP sludge as substrates (Ma et al., 2011; 
Beneragama et al., 2013; Sun et al., 2016, 2019a; Wallace et al., 2018; Zou 
et al., 2020). Less is known about the antibiotic resistance situation in AD 
processes using other substrates, e.g. food waste and crop materials. 
Moreover, previous studies on AD-associated antibiotic resistance have 
mostly been conducted using either molecular analysis or culture-
dependent methods. Both methods have their merits and limitations in 
analysis of the antibiotic resistance situation. However, little is known 
about the consistency of existing molecular and culture-dependent methods,  
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Figure 1. Schematic diagram of antibiotic resistance spread in society. Red arrows 
indicate possible routes of antibiotic resistance spread via anaerobic digestion (Inspired 
by https://www.cdc.gov/narms/faq.html and created with BioRender.com). 
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and an optimised approach, e.g. a combination of the two methods, might 
be needed to gain a fuller understanding of the true antibiotic resistance 
situation in AD processes.  

It is clear that AD digestate represents a potential antibiotic resistance 
transmission route, but research in this area is still quite limited and more 
work is needed to fully evaluate the risk of spread of AD-associated 
antibiotic resistance.   

1.1  Aim of the thesis 
The aims of this thesis were to gain deeper insights into the AD-associated 
antibiotic resistance situation and to assess the risk of antibiotic resistance 
spread from the AD process.   

 
Specific objectives were to: 
 
1. Identify the ARB community in digestates originating from different 
AD substrates and determine their antibiotic resistance patterns (I, III).  
 
2. Investigate the mechanism of antibiotic resistance for any ARB 
identified in AD digestate and the transferability of such resistance (II, 
III, IV).  
 
3. Evaluate current methods for analysis of antibiotic resistance by 
comparing phenotypic and genotypic resistance in bacteria isolated from 
AD digestate (II, IV).  
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Secretion of antibiotic compounds by microorganisms is an ancient and 
effective method to improve their survival advantage when competing for 
space and nutrients with other microbes. The emergence of resistance 
mechanisms to antibiotic compounds is also an ancient natural response 
(Dcosta et al., 2011; Warinner et al., 2014). Mechanisms that have evolved 
to overcome antibiotic compounds in co-resident natural environments are 
considered to constitute intrinsic resistance. However, intrinsically resistant 
bacteria are not the main focus of antibiotic resistance problems in the 
world. Instead, the main concern arises from expression of acquired 
resistance in a bacterial population that was originally susceptible to an 
antibiotic (Munita & Arias, 2016). Development of acquired resistance can 
result from mutations in chromosomal genes and/or acquisition of foreign 
genetic determinants of resistance, likely obtained from intrinsically 
resistant bacteria present in the environment (Munita & Arias, 2016). In 
this chapter, antibiotic classes, mechanisms of action and resistance are 
briefly introduced. 
  

2. Antibiotics and antibiotic resistance 



20 

2.1 Antibiotic classes and mechanism of action 
Antibiotics are drugs used to treat bacterial infections. They act by either 
killing bacteria (bactericidal agents) or stopping bacteria achieving growth 
or reproduction (bacteriostatic agents). Bacteria themselves can be divided 
into two broad classes, Gram-positive and Gram-negative. Gram-negative 
bacteria are more resistant to antibiotics than Gram-positive bacteria 
because of their unique outer membrane, which prevents certain antibiotics 
from penetrating the cell (Exner et al., 2017). 

There are several ways of classifying antibiotics, but the most common 
schemes are based on molecular structure and mechanism of action. An 
overview of different classes of antibiotics on the basis of molecular 
structure is presented in Figure 2.  These classes are named relevant to their 
molecular structure, e.g. β-lactams contain a β-lactam ring (Pandey & 
Cascella, 2021) and aminoglycosides contain an amino-modified glycoside 
(Mingeot-Leclercq et al., 1999). Moreover, owing to differences in 
molecular structure within each class, there are antibiotic subclasses, e.g. 
penicillins, cephalosporins, carbapenems and monobactams in the class of 
β-lactams.  

Regardless of molecular structure, antibiotics can be classified on the 
basis of mechanism of action into four groups: a) inhibitors of cell wall 
synthesis (e.g. β-lactams and glycopeptides); b) inhibitors of protein 
synthesis (e.g. aminoglycosides and tetracyclines); c) inhibitors of nucleic 
acid synthesis (e.g. quinolones and ansamycins); and d) inhibitors of folic 
acid metabolism (e.g. sulphonamides and trimethoprim) (Figure 3). 
Antibiotics within the same structural class have a similar mechanism of 
action, for instance all β-lactams (penicillins, cephalosporins etc.) inhibit 
cell wall synthesis. In contrast, antibiotics with the same mechanism of 
action can belong to different antibiotic structural classes, for instance 
inhibitors of protein synthesis include antibiotics belonging to the 
tetracyclines, aminoglycosides, macrolides etc. 
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Figure 2. Different classes of antibiotics based on molecular structure (modified from 
https://www.compoundchem.com/2014/09/08/ antibiotics/). 
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Figure 3. Different groups of antibiotics based on mechanism of action (modified from 
TheMedSchool.com (2011)). 

2.2 Antibiotic resistance 
Antibiotic resistance is generally classified into three categories based on 
mechanism of action (Munita & Arias, 2016): a) modifications of the 
antibiotic molecule, including chemical alterations or destruction of the 
antibiotic compound; b) prevention of the compound reaching the antibiotic 
target, including decreased permeability controlled by cellular outer 
membrane and efflux pumps extruding the antibiotic compounds; and c) 
changes in target sites, including target protection which prevents the 
antibiotic compound from reaching its binding site, and modification of the 
target site, which decreases affinity for antibiotic molecules.  

Acquisition of foreign genes via horizontal gene transfer (HGT) is one 
of the most important drivers of bacterial evolution, and it is frequently 
responsible for the development of antibiotic resistance (Munita & Arias, 
2016). Bacteria acquire foreign determinants of resistance through three 
main strategies: a) transformation (incorporation of free DNA), b) 
transduction (phage mediated), and c) conjugation (bacterial “sex”) (Munita 
& Arias, 2016). In most cases, conjugation uses mobile genetic elements 
(MGEs), e.g. plasmids and transposons, as vehicles for transferring the 
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genes (Munita & Arias, 2016). Thus, conjugative plasmids and transposons 
are frequently responsible for the development and dissemination of 
antibiotic resistance in different environments. In addition, antibiotic 
resistance genes can be accumulated in MGEs, represented by integrons, 
which are mostly carried by plasmids or contained within a transposon 
(Hall & Collis, 1995; Mazel, 2006).  
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In order to tackle the increasing problem of antibiotic resistance, several 
countries have launched initiatives aiming to reduce veterinary use of 
antibiotics in animal husbandry and their effects in the nutrient chain and 
the environment. Such initiatives include the Strama programme in Sweden 
(Goverment Offices of Sweden, 2016) and DART in Germany 
(Bundesministerium für Gesundheit et al., 2020). In this chapter, antibiotic 
resistance in agricultural AD substrates that are associated with veterinary 
use of antibiotics, i.e. animal manure, food waste and crops, is described. 
Although WWTP sludge is a common substrate for AD, it was not the main 
focus in this research. 
  

3. Antibiotic resistance in agricultural 
substrates for anaerobic digestion 
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3.1 Antibiotic resistance in animal manure 
Veterinary antibiotics are widely used to prevent and treat diseases and, in 
large parts of the world outside Europe, to promote animal growth in the 
livestock industry (Massé et al., 2014). Countries all around the world have 
taken measures to counter the spread of antibiotic resistance. For example, 
in the European Union (EU), the use of antimicrobials for growth 
promotion has been banned since 2006. According to the latest report from 
European Surveillance of Veterinary Antimicrobial Consumption, sales in 
Europe of antibiotics for veterinary use decreased by more than 34% from 
2011 to 2018 (European Medicines Agency, 2020). However, annual sales 
of antimicrobial agents for use in animals are still considerable, with an 
estimated total of 6500 tonnes of active ingredient used in 31 European 
countries in 2018 (European Medicines Agency, 2020). The antibiotics 
administered to animals are excreted in animal faeces and urine to a large 
extent, ranging between 10% and 90% of total intake (Kumar et al., 2005). 
Moreover, the use of antibiotics can result in development of ARB and 
ARGs in the gut of animals. Consequently, animal manure and slurry are 
reservoirs of antibiotic resistance (Wichmann et al., 2014; Qian et al., 
2018).  

Among the agricultural substrates used in AD, animal manures have 
been the most widely studied in terms of antibiotic resistance (Figure 4). It 
has been shown that ARB and ARGs are diverse and abundant in different 
sources of animal manures. Specifically, clinically dangerous pathogens, 
such as antibiotic-resistant Enterobacteriaceae, antibiotic-resistant 
Campylobacter, methicillin- and vancomycin-resistant Staphylococcus and 
vancomycin-resistant Enterococcus, have been identified in dairy 
operations (CDC, 2019). Moreover, food-borne pathogens, e.g. Escherichia 
coli, Salmonella spp. etc. have been found in dairy and cattle manures 
(Blau et al., 2005; Carballo et al., 2013; Obaidat et al., 2018). In addition, 
cattle manures have been found to act as reservoirs for more than 60 
different ARGs (Qian et al., 2018), with resistomes varying from herd to 
herd (Wichmann et al., 2014). Moreover, ARG abundance in swine 
wastewater samples has been shown to be at least 31-fold higher than in 
well water and fishpond water (He et al., 2016). According to a recent 
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review, the most frequently reported genetic elements related to antibiotic 
resistance in studies of swine, cattle and poultry manure/wastewater are 
ARGs, e.g. tet (tetracycline resistance genes), erm (erythromycin) and sul 
(sulfonamides), and MGEs, e.g. integrons (Pereira et al., 2021). In parallel, 
tetracyclines, β-lactams (mostly penicillins), macrolides (e.g. erythromycin) 
and sulfonamides were the most commonly used antibiotics in global 
livestock production between 2015 and 2017 (OIE (World Organization for 
Animal Health), 2018).  

 
Figure 4. Number of publications on antibiotic resistance in common substrates for 
biogas production. Results of searches in Web of Science and Scopus using “antibiotic 
resistan*” AND “anaerobic digestion” AND “manure” or “sludge” or “food waste” or 
“*crop*” as keywords Plus and keywords, respectively. 

 

3.2 Antibiotic resistance in food waste 
Many studies have pointed out the link between use of veterinary 
antibiotics and presence of antibiotic-resistant pathogens in food from 
agricultural production (see review by Verraes et al., 2013). Specifically, 
antibiotic-resistant Salmonella spp. have been found in both pork and 
poultry meat (Depoorter et al., 2012; Van Boxstael et al., 2012), while 
cephalosporin-resistant E. coli has been found in chicken meat (Zou et al., 
2011). Presence of these opportunistic pathogens in food poses a direct risk 
to public health. Moreover, ARGs present in commensal pathogenic or 
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non-pathogenic strains of bacteria on food represent an indirect risk to 
public health, since they enrich the resistance pool from where pathogens  
can pick up resistance traits (Verraes et al., 2013). Similarly to the pattern 
of ARG types frequently detected in animal manures, the erm, tet and sul 
genes are also commonly detected in food waste (Zhang et al., 2017b; He et 
al., 2019; Wang et al., 2021a, 2021b). This can be expected, as antibiotic 
resistance patterns in animal manure and food waste are driven by the same 
original pressure, i.e. veterinary antibiotic use in the livestock industry.  

3.3 Antibiotic resistance in crops and crop residues 
Antibiotics are seldom applied to crops to prevent bacteria diseases. For 
example, the use of antibiotics on crops in the U.S., mainly apple and pear 
trees, accounted for only 0.26% of total agricultural consumption in 
2011(McManus, 2014). No measurable impact of the use of antibiotics in 
apple orchards has been identified (McManus, 2014).  

Instead, an important route of antibiotic resistance spread to crop-related 
microbes is by growing crops on farmland fertilised with animal manure or 
digestate (see Figure 1). Several studies have observed transfer of antibiotic 
resistance from soils to vegetables, e.g. lettuce, carrots and radishes (Tien et 
al., 2017; Zhang et al., 2017a, 2019c). However, the antibiotic resistance 
situation has not yet been investigated for plant-based AD substrates, e.g. 
crop silage and maize silage. Therefore, these substrates may represent a 
neglected antibiotic resistance load in biogas production. To address this 
knowledge gap, one of the studies presented in this thesis examined the 
antibiotic resistance situation in plant-based AD substrates. The genus 
Bacillus and the closely related genera Paenibacillus and Lysinibacillus 
were the dominant ARB isolated from the crop-based substrates studied 
(Paper III). These bacteria exhibited resistance to a variety of antibiotic 
classes, including β-lactams, tetracyclines, aminoglycosides etc. (III). 
Moreover, ARGs encoding resistance for e.g. β-lactams, fluoroquinolones, 
aminoglycosides etc. were identifed in the plant-based AD substrates. 
Plasmids were also found, with IncFIB being the most frequently identified 
group in the substrates (n=6), followed by IncW (n=3) and IncK and 
IncB/O (each n=2). Interestingly, identification of ARGs, especially 
carbapenemase genes and plasmid groups, was most commonly associated 
with Gram-negative bacteria, such as the pathogens E. coli and 
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Pseudomonas spp. Therefore, such Gram-negative bacteria were highly 
likely to have been present on the original crops, although no cultures were 
made of these (III). In brief, plant-based substrates were found to be 
associated with antibiotic-resistant components, including culturable Gram-
positive ARB and Gram-negative pathogenic bacteria-associated ARGs and 
plasmids (III). This suggests that, in addition to animal manure and food 
waste, the antibiotic resistance load from plant-based substrates should be 
taken into consideration in agricultural biogas processing. 
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Apart from the conventional benefits, such as valorisation of organic wastes 
and green energy production, AD has been found to be effective in 
reducing antibiotic resistance. The degree of reduction achieved during AD 
is influenced by different factors, such as operating parameters and pre-
/post-treatments (Figure 5). However, in some cases, enrichment of ARGs 
has also been observed during AD.  

 
Figure 5. Examples of factors influencing the degradation efficiency of antibiotic 
resistance. ARB: antibiotic-resistant bacteria; ARGs: antibiotic resistance genes; 
MGEs: mobile genetic elements (created with BioRender.com).  

4. Factors influencing the degradation 
efficiency of antibiotic resistance during 
anaerobic digestion 
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4.1 Operating parameters 

4.1.1 Operating temperature 
To achieve successful production of biogas, external heating of AD reactors 
is required to provide a comfortable environment for microorganisms to 
grow and function. The temperatures used for AD in agricultural biogas 
plants are mesophilic (37-42 °C) or thermophilic (50-55 °C) (Schnürer & 
Jarvis, 2018). In special cases, psychrophilic temperatures (<25 °C) are also 
used, but mostly for small-scale reactors operated by individual households 
at rural locations in developing countries (Dhaked et al., 2010).  

In general, a higher operating temperature can be assumed to achieve a 
greater reduction in antibiotic resistance and pathogens and this assumption 
is supported by many studies. As regards ARGs, thermophilic temperatures 
have been found to outperform mesophilic temperatures in reduction of 
tetracycline resistance genes, e.g. tetA, tetO and tetX, when processing 
WWTP sludge (Ghosh et al., 2009; Diehl & Lapara, 2010). In addition, 
erythromycin resistance genes, e.g. ermB and ermF, have been found to be 
reduced only within the thermophilic temperature range, and not at 
mesophilic temperatures, during processing of WWTP sludge (Ma et al., 
2011). A similar trend has been reported for sulfonamide resistance genes, 
e.g. sul1 and sul2, i.e. with greater reductions at thermophilic temperatures 
than at mesophilic and psychrophilic temperatures, during AD processing 
of dairy manure (Sun et al., 2016). As regards ARB reduction, thermophilic 
conditions appear to be better at reducing multi-drug resistant bacteria in 
co-digestion of dairy manure and waste milk (Beneragama et al., 2013). 
Moreover, potential pathogens such as members of the phyla Bacteroidetes, 
Proteobacteria and Corynebacterium are reported to be removed by 
thermophilic temperatures, but not by psychrophilic and mesophilic 
temperatures, in dairy manure digestion (Sun et al., 2016). In line with this 
trend, in Paper III a greater reduction in ARGs and plasmids was observed 
at higher operating temperature, e.g. at 42-44 °C and  45-48 °C (biogas 
plants B and C, respectively) compared with 40-42 °C (biogas plant A), 
during digestion of crops or crops/poultry manure. One popular explanation 
for the greater reduction in antibiotic resistance at thermophilic 
temperatures is a temperature-induced bacterial community shift during AD 
(Ma et al., 2011; Sun et al., 2016). Compared with mesophilic conditions, 
the bacterial diversity at thermophilic temperatures is markedly lower, with 
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a large proportion of mesophilic ARB, e.g. members of the Bacteroidetes 
and Proteobacteria, outcompeted during the process and with a decrease in 
ARGs carried by these ARB (Sun et al., 2016). While individual ARG 
hosts can theoretically maintain abundance despite low bacterial diversity, 
low bacterial diversity diminishes the overall probability of finding other 
compatible host bacteria through HGT (Ma et al., 2011). Thus, lower 
diversity of host microorganisms is possibly an important mechanism in 
ARG reduction in thermophilic digestion. Another possible explanation for 
the greater ARG reduction at higher operating temperatures is that ARGs 
may be discarded by host microorganisms (Zou et al., 2020). It has long 
been known that plasmid-carrying ARB, e.g. Escherichia, have much 
higher fitness costs during growth than plasmid-deficient ARB. If the traits 
expressed by plasmids were not important, for example in a high-
temperature but low antibiotic pressure environment, carrying plasmids 
encoding for antibiotic resistance would thus put bacteria at a competitive 
disadvantage and they would generally discard the plasmid (Godwin & 
Slater, 1979; Subbiah et al., 2011). This would be reflected in a reduction 
in ARG abundance (Zou et al., 2020).  

However, inconsistent results have been found in other studies, e.g. with 
mesophilic temperature achieving a greater reduction than thermophilic 
temperature. For example, in one study tetC was found to be enriched in 
thermophilic digestion of dairy manure, but with no obvious changes at 
mesophilic temperature (Sun et al., 2016). In two other studies of similar 
and comparable conditions for WWTP sludge digestion, inconsistent 
results were obtained for tetX reduction, with greater reductions in 
mesophilic (Ma et al., 2011) or thermophilic conditions (Ghosh et al., 
2009; Diehl & Lapara, 2010). According to Ma et al. (2011), this difference 
between studies in results for a particular sludge source (WWTP) possibly 
derives from differences in operations, e.g. insufficient amount and 
frequency of sludge replacement in the reactor could have imposed feast 
and famine conditions on the bacterial community, eventually resulting in 
inconsistency of ARG reduction. This suggests that factors apart from 
operating temperature may also be important in ARG reduction efficiency 
in the AD process. 
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4.1.2 Retention time  
In AD processes, retention time is usually referred to as hydraulic retention 
time (HRT), although solids retention time (SRT) is sometimes used 
instead. In many cases, HRT and SRT are equal. However, SRT becomes 
longer than HRT in cases where some digested residues are returned to the 
process in order to achieve a greater degree of biomass degradation and 
increased production of biogas (Schnürer & Jarvis, 2018).   

Several studies have investigated the effect of retention time on ARG 
removal during AD. Among these, Ma et al. (2011) achieved a greater 
degree of removal for the tetracycline resistance gene, tetX, by increasing 
SRT in mesophilic digestion of WWTP sludge. Wang et al. (2021c) found 
that the abundance of ARGs, especially ARGs related to aminoglycosides, 
multidrug and sulfonamide resistance, and of MGEs was more effectively 
reduced with increasing HRT (64 d compared with 9 d) in co-digestion of 
pig manure and food waste at a high total solids level (20%). Sun et al. 
(2019a) found that longer HRT, within a set of HRT of 4, 12, 15, 20 and 25 
d, increased the removal of ARGs and MGEs during processing of WWTP 
sludge. In contrast, ARG reduction efficiency has been found to be 
unaffected by increasing retention time in some other studies (Sun et al., 
2016; Zou et al., 2020). A possible reason for greater ARG reduction with 
increasing retention time is the decreased host range of microorganisms for 
ARGs, which is supported by findings of lower microbial diversity with 
longer retention time (Sundberg et al., 2013; Sun et al., 2019a). Notably, 
the abundance of ARGs and MGEs is driven by ARB reproduction and 
HGT (Su et al., 2015; Pei et al., 2016). Longer HRT usually leads to 
oligotrophic conditions within the reactor, resulting in inhibited 
reproduction of less adaptive ARB and lower probability of encountering a 
compatible host for mobile ARGs via HGT at lower microbial diversity 
(Sun et al., 2019a).  

Thus, essentially, temperature and HRT may affect the abundance of 
ARGs and MGEs by a similar mechanism, i.e. by shifting the microbial 
community structure. Of these two operating parameters, canonical 
correlation analysis (CCA) in a previous study revealed that temperature 
seemed likely to have a more conspicuous effect than HRT on ARG and 
MGE profiles (Sun et al., 2019a). Specifically, the effect of HRT on ARG 
profiles was more obvious for mesophilic digestion than for thermophilic 
digestion. Thus, different operational factors may impact to varying extents 
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on the reduction in ARGs and MGEs. Future studies comparing operating 
parameters, e.g. temperature, HRT, pH and volatile fatty acids (VFA), 
using a large dataset of biogas reactors would be of interest in guiding AD 
operations to achieve greater reductions in antibiotic resistance.  

 

4.2 Pre-/post-treatments 
Pre-treatments are often applied before AD, for purposes such as substrate 
disintegration or sanitisation, which is commonly needed for food waste 
but sometimes also for animal manure (Schnürer & Jarvis, 2018). The most 
common method of sanitisation in biogas plants is heating to 70 °C for one 
hour for low-risk animal waste, which aims to reduce the abundance by six- 
and three-log for pathogens and heat-resistant viruses, respectively 
(Schnürer & Jarvis, 2018). Moreover, in some cases pre-treatments are 
applied to increase the digestibility of substrates. This is commonly done in 
WWTP sludge digestion, where pre-treatments such as thermophilic 
hydrolysis, microwaving and ozone oxidation are applied (Ma et al., 2011; 
Pei et al., 2016; Tong et al., 2016, 2018). It has been found that most ARGs 
are reduced after such pre-treatments (Tong et al., 2018). Among the 
different pre-treatments tested, it has been shown that thermophilic 
hydrolysis can drastically reduce all types of ARGs and MGEs (Ma et al., 
2011; Sun et al., 2019a), and can outperform ozone oxidation in removal of 
tetracycline resistance genes (Pei et al., 2016), during WWTP sludge 
digestion. Rebounding of ARGs and MGEs can occur in the subsequent 
AD process after these pre-treatments, but it has been found that ARB 
concentrations consistently decrease during microwave pre-treatment and 
subsequent AD (Tong et al., 2016). Therefore, pre-treatment combined 
with AD can further reduce ARB, but appears to improve ARG removal 
only slightly compared with AD per se. 

To achieve better reductions in antibiotic resistance, post-treatments 
after AD have been studied, including e.g. improving digestate storage, 
composting and converting digestate to biochar (Gurmessa et al., 2020). It 
has been found that thermophilic aerobic digestion, subsequent to AD, can 
effectively further remove ARGs and Class 1 integrase gene (intI1) in 
digestate from WWTP sludge (Min Jang et al., 2019). However, other post-
treatments such as stripping off ammonia (Bousek et al., 2018), membrane 



36 

distillation (Yan et al., 2019) and composting (Ezzariai et al., 2018), are 
generally directed at reducing antibiotic residues, rather than ARB, ARGs 
and MGEs. 

 

4.3 Additives 
To improve AD performance, different additives such as granular activated 
carbon, graphite, iron nanoparticles etc. have been evaluated and have been 
found to give positive results in biogas production (Zhang et al., 2017b; Ma 
et al., 2019; Wang et al., 2021b). The reason for the positive outcome is 
considered to be that these additives facilitate contact between acid-
degrading bacteria and methanogens (Schnürer & Jarvis, 2018). 

In addition to higher production of biogas, additives have also been 
found to be effective in reduction of antibiotic resistance level and 
pathogens. For instance, activated carbon has been found to facilitate 
reductions in ARGs, including tetracycline and sulfonamide resistance 
genes, and bacterial pathogens in processing of food waste (Zhang et al., 
2017b). Among graphite-like substances (i.e. graphite, graphene and 
graphene oxide), graphene has been found to have the greatest effect on 
removal of ARGs, including blaoxa-1 (resistance to β-lactams), ermF and 
ermB (macrolides), tetQ and tetX (tetracycline), in co-digestion of WWTP 
sludge and food waste (Wang et al., 2021b). Graphene oxide is reported to 
be better in removal of MGEs, e.g. intI1, and other ARGs, e.g. sul1 and 
sul2 (sulfonamides), tetM, tetO and tetW (tetracycline) (Wang et al., 2021b). 
In addition, iron nanoparticles (e.g. magnetite nanoparticles, nanoscale 
zero-valent iron) can reportedly increase removal of ARGs and MGEs in 
processing WWTP and cattle manure (Ma et al., 2019; Zhang et al., 2020). 
Microbial community structures in particular are obviously influenced by 
these additives, with generally lower microbial diversity (Zhang et al., 
2017b). Thus, the mechanism of action of these substances is likely 
decreased biodiversity within the reactor, i.e. the main mechanism 
identified for thermophilic digestion and long retention time.   
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4.4 Other factors 
The effect of other factors in antibiotic resistance reduction, apart from 
temperature, retention time and additives, has been less well investigated. 
These factors include: a) substrate properties (e.g. total solids (TS) content); 
b) environmental factors (e.g. pH, alkalinity, soluble chemical oxygen 
demand and heavy metals); and c) intermediate products (e.g. VFA and 
ammonia (NH3)). Among these, substrate properties have been found to be 
most strongly correlated with removal of ARGs (Luo et al., 2017; Tong et 
al.; 2018; Zhang et al., 2020; Wang et al., 2021c). For instance, in one 
study dry anaerobic co-digestion (AcoD) of pig manure and food waste 
with a TS content of 20% effectively reduced ARGs by 1.24 log copies/g 
wet sample, while the reduction was only 0.54 log copies/g wet sample in 
wet AcoD with a TS content of 5% (Wang et al., 2021c). In other studies, 
heavy metals, pH, VFA etc. have also been found to be correlated with 
ARG removal (Tong et al., 2018; Zhang et al., 2020). In Paper III in this 
thesis, investigating AD processes using mainly crops as substrates, greater 
removal of ARGs and plasmids was seen at higher NH3 concentrations, i.e. 
in biogas plants B (916 g L-1 on average) and C (955 g L-1) compared with 
biogas plant A (120 g L-1). Thus the results in Paper III suggest that 
removal efficiency of ARGs and MGEs might be enhanced with increasing 
NH3 concentration. This is a reasonable assumption, as high concentrations 
of NH3 have been shown to decrease microbial diversity in the AD process 
(Müller et al., 2016; Peng et al., 2018).  
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Although efficient removal of certain ARB, ARGs and MGEs from 
different substrates has been achieved within a range of AD processes, 
biogas digestate still poses a risk of antibiotic resistance spread due to the 
residual resistance components it may contain. Critical questions in this 
regard are: What residual resistance components are present in digestate? 
and Are the resistances transferable to soil microbes once digestate is  
applied as fertiliser? These questions urgently need to be answered to 
ensure that the digestate does not pose a risk when used as biofertiliser. 
Thus, antibiotic resistance profiling of biogas digestate is important, and 
relevant findings are discussed in this chapter.  

 

 
Figure 6. Biogas digestate from a laboratory-scale reactor processing food waste. 

 

5. Antibiotic resistance in biogas digestate 



40 

 
 

5.1 Antibiotic-resistant bacteria in biogas digestate 
In general, ARB can survive AD, with reduced abundance, but enrichment 
has also been seen in some cases (Table 1). Complete removal of ARB 
during AD has been reported in a few studies, e.g. complete removal of 
multidrug-resistant bacteria during thermophilic co-digestion of dairy 
manure and waste milk (Beneragama et al., 2013). In Paper III in this 
thesis, ARB resistant to vancomycin (glycopeptides), ciprofloxacin 
(fluoroquinolones) and gentamycin (aminoglycosides) were isolated from 
crop substrates, but not from the subsequent digestate, indicating possible 
complete removal of such ARB during digestion. In addition to multi-
resistant bacteria belonging to Enterobacteriaceae, Staphylococcaceae and 
Enterococcaceae listed in Table 1, other ARB such as vancomycin-resistant 
Enterococcus (Glaeser et al., 2016), and multi-resistant Acinetobacter spp. 
(Pulami et al., 2020) have been found in digestate from farm-scale biogas 
plants processing animal manures. ARB in digestate from animal (dairy) 
manure were also identified in Paper I in this thesis, with Bacillus and 
closely related genera such as Panibacillus and Lysinibacillus being the 
dominant bacteria among the ARB isolated. These dominant bacteria 
exhibited diverse resistance to different classes of antibiotics, including β-
lactams, tetracyclines and macrolides etc. (I). In contrast to many studies 
on ARB in manure digestion, prior to this thesis work no ARB isolation 
study had been performed on digestate obtained by processing food waste 
and crops, two other important AD substrates. Thus the studies presented in 
Papers I and III were conducted to gain novel insights into these two 
substrates. As found for dairy manure, Bacillus and closely related genera 
also dominated the bacterial community isolated from digestates processed 
from food waste (I) and crops (III). Moreover, they exhibited similar 
resistance patterns to ARB isolated from manure digestate in Paper I, i.e. 
resistance to β-lactams, tetracyclines, macrolides etc. Thus, the dominant 
ARB community isolated from digestate was similar in terms of phylogeny 
and antibiotic resistance pattern, independent of substrate type (I, III).  
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Table 1. Resistance pattern and variation in abundance of antibiotic-resistant bacteria 
(ARB) in anaerobic digestion (AD) processes 

Substrate ARB resistance pattern 
in substrate*  

ARB resistance pattern in 
digestate Reference 

Pig manure Tetracyclines and 
sulfonamides 

Tetracyclines and 
sulfonamides 

(Zou et al., 
2020) 

Dairy manure 
and waste milk Multidrug-resistanta None (Beneragama 

et al., 2013) 

Cattle manure Multidrug-resistant  Multidrug-resistant  (Resende et 
al., 2014) 

Animal manure 
and slurry (e.g. 
cattle, chicken, 

pig etc.). 

β-lactams, 
fluoroquinolone, 
tetracyclines, 
trimethoprim/sulfameth
oxazole and 
sulfonamides (for 
Enterobacteriaceae) 

β-lactams, 
fluoroquinolone, 
tetracyclines, 
trimethoprim/sulfametho
xazole and sulfonamides 
(for Enterobacteriaceae) 

(Schauss et al., 
2016) 

β-lactams (ceftiofur; 
amoxicillin and oxacillin), 
fluoroquinolone, 
tetracyclines, 
trimethoprim/sulfamet-
hoxazole and 
sulfonamides (for 
Staphylococcaceae) 

β-lactams, 
fluoroquinolone, 
tetracyclines, 
trimethoprim/sulfamet-
hoxazole and 
sulfonamides (for 
Staphylococcaceae) 

β-lactams, tetracyclines, 
trimethoprim/sulfamet-
hoxazole and 
sulfonamides (for 
Enterococcaceae) 

Tetracyclines, 
trimethoprim/sulfamet-
hoxazole and 
sulfonamides (for 
Enterococcaceae) 

Crops  

β-lactams, polymyxins, 
glycopeptide, 
fluoroquinolone, 
aminoglycosides, 
tetracyclines  

β-lactams, polymyxins, 
tetracyclines 

 (Paper III) 

Crops and 
poultry manure 

β-lactams, polymyxins, 
fluoroquinolone,  
aminoglycosides, 
tetracyclines  

β-lactams, polymyxins, 
tetracyclines 

*Green, red and black font represents decreased, increased and not assessed abundance, 
respectively, of the relative ARB during AD. a Presence of antibiotics in substrate, but not in 
digestate in the same study, indicates complete removal during AD.  
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Interestingly, very few profiling studies have been performed on ARB 
cultivated in anaerobic conditions, even though AD refers to anaerobic 
digestion. Under anaerobic conditions, Derongs et al. (2020) isolated 
Clostridium perfringens, an anaerobic spore-forming bacterium, from dairy 
manure and subsequent digestate, and found that it had multiple resistance, 
even to imipenme (cabapenemes), which is considered the most reliable 
last-resort treatment for multidrug-resistant bacterial infections (Meletis, 
2016). Tong et al. (2016) investigated variations in ARB abundance under 
anaerobic cultivation and found that ARB (non-identified) resistant to 
tetracycline and β-lactams were reduced during sludge digestion with 
microwave pre-treatment. To the best of my knowledge, these are the only 
previous publications on ARB cultivated from biogas digestate under strict 
anaerobic conditions. Thus, a profiling study on anaerobic ARB in food 
waste digestate is currently ongoing as a continuation of this thesis work. 
Preliminary results show that Lentilactobacillus is the most abundant 
genus, followed by Paenibacillus, Bacillus, Clostridium, Enterococcus, 
Limosilactobacillus, Lacrimispora, Lactobacillus, Paraclostridium and 
Vagococcus. These bacteria show resistance to β-lactams, tetracyclines, 
macrolides etc., with similar resistance patterns to the ARB cultivated 
under aerobic conditions in Papers I and III.   

Some pathogens cultivated from digestates, such as 
Escherichia/Shigella spp., Staphylococcus spp. and Enterococcus spp. with 
multi-resistance (Schauss et al., 2016), vancomycin-resistant Enterococcus 
(Glaeser et al., 2016) and multi-resistant Acinetobacter spp. (Pulami et al., 
2020), pose direct health threats to the environment. For other non-
pathogenic ARB, the ARGs they carry must be evaluated in terms of 
mobility, which can result in transfer of resistance to pathogens. This is 
discussed in the following section.  
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5.2 Antibiotic resistance genes and mobile genetic 
elements in biogas digestate and their transferability 
to the environment 

The fate of ARGs and MGEs throughout the AD process has been widely 
studied, as this can provide an overview of changes in resistance level and 
to some extent indicate the transferability of resistance. In order to achieve 
a greater reduction in ARGs and MGEs, optimisation of AD processes has 
been attempted (Table 2), using e.g. thermophilic digestion (Zou et al., 
2020), high solids digestion (TS 22%) (Sun et al., 2019b) and additives, 
e.g. powdered activated carbon (Zhang et al., 2019a) and nano-magnetite 
(Zhang et al., 2019b). However, most ARGs and MGEs have been able to 
survive the optimised processes, albeit with reduced abundance.  

Among the ARGs subtypes, sul1 and sul2 (genes for resistance to 
sulfonamides) have been found to be present in almost all digestates listed 
in Table 2. These two genes are mediated by transposons and plasmids, and 
often found at equal frequencies among sulfonamide-resistant Gram-
negative clinical isolates (Rådström et al., 1991; Sköld, 2001). Moreover, 
the gene sul1 is mostly found linked to other resistance genes in Class 1 
integrons (intI1) (Sköld 2001), which is in line with the observed co-
occurrence of genes sul1 and intI1 in all studies listed in Table 2. 
Collectively, these findings indicate that genes sul1 and sul2 are 
transferable, and thus that ARB carrying these genes are capable of 
spreading sulfonamide resistance to other previously susceptible 
opportunistic pathogens. Other ARGs identified in digestates, such as tetO 
(Luna & Roberts, 1998), tetM (Akhtar et al., 2009) and blaCTX-M  

(Livermore et al., 2007), have also been found to be associated with MGEs. 
Furthermore, presence of MGEs such as intI1 (integrons), Tn916/1545 
(transposons) and ISCR1 (insertion sequence common region) (Table 2) 
provides vehicles for transfer of ARGs, indicating transferability of 
resistance from digestate. In addition to digestate processed from animal 
manure and food waste, presence of ARGs and plasmids in digestate 
derived from crops and crops/poultry manure was investigated for the first 
time in Paper III. Plasmid groups such as IncW, IncK and IncF etc. were 
found in the digestates, and these plasmids have previously been shown to 
be associated with a wide range of ARGs encoding for different antibiotic 
classes, including β-lactams, quinolones and aminoglycosides (Galimand et 
al., 2005; Fernández-López et al., 2006; Lascols et al., 2008; Villa et al., 
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2010). Thus, digestate derived from digestion of agricultural crops may 
pose a risk of antibiotic resistance spread.  
Table 2. Presence and variation in abundance of antibiotic resistance genes 
(ARGs) and mobile genetic elements (MGEs) in anaerobic digestion (AD) 
processes 

 

Substrate Presence in substrate* Presence in digestate Reference 
Pig 

manure 
sul1, sul2, tetA, tetO, tetX, 
IntI1 

sul1, sul2, tetA, tetO, tetX, 
IntI1 

(Zou et al., 
2020) 

Cattle 
manure 

sul1, sul2, tetC, tetG, tetW, 
tetX, ermQ, ermX, qnrA, 
aac(6′)-ib-cr, IntI1, IntI2, 
ISCR1, Tn916/1545 

sul1, sul2, tetC, tetG, tetW, 
tetX, ermQ, ermX, qnrA, 
aac(6′)-ib-cr, IntI1, IntI2, 
ISCR1, Tn916/1545 

(Sun et al., 
2019b) 

Swine 
manure 

sul1, sul2, tetG, tetM, tetX, 
ermB, ermF, mefA, ereA, 
blaCTX-M, blaTEM, mcr1, IntI1 

 sul1, sul2, tetG, tetM, tetX, 
ermB, ermF, mefA, ereA, 
blaCTX-M, blaTEM, mcr1, IntI1 

(Zhang et 
al., 2019b) 

Dairy 
manure 

sul1, sul2, tetC, tetM, tetQ, 
tetW, tetX, gyrA, IntI1, IntI2  

sul1, sul2, tetC, tetM, tetQ, 
tetW, tetX, gyrA, IntI1, IntI2 

(Sun et al., 
2016) 

Food 
waste 

sul1, sul2a, tetA, tetM, tetW, 
tetQ, tetO, tetX, cmlA, floR, 
IntI1 

sul1, tetA, tetM, tetW, tetQ, 
tetO, tetX, cmlA, IntI1 

(Zhang et 
al., 2017b) 

Food 
waste 

sul1, sul2, sul3, tetC, tetM, 
tetQ, tetX, ermB, mefA, IntI1, 
tnpA,  IS26, ISCR3 

sul1, sul2, tetC, tetM, tetQ, 
tetX, ermB, mefA, IntI1, tnpA, 
traA b, IS26, ISCR3 

(He et al., 
2019) 

Chicken 
manure 

and food 
waste 

sul1, sul2, tetA, tetB, tetM, 
tetO, tetQ, tetW, tetX, cmlA, 
floR, IntI1 

sul1,sul2, tetA, tetB, tetM, 
tetO, tetQ, tetW, tetX, cmlA, 
floR, IntI1 

(Zhang et 
al., 2019a) 

*Green and red font represents, respectively, decreased and increased abundance of the 
respective gene during AD. aPresence of genes in substrate, but not in digestate in the same 
study, indicates complete removal during AD. bPresence of genes in digestate, but not in 
substrate, indicates emergence of new genes detected in digestate. sul, tet and erm represent 
sulfonamide resistance genes, tetracycline resistance genes and erythromycin resistance 
genes, respectively. Other ARGs listed are for resistance to: aminoglycosides (aac(6′)-ib-
cr), fluoroquinolones (aac(6′)-ib-cr, gyrA), macrolides (ereA, mefA), colistin (mcr1), β-
lactams (blaCTX-M and blaTEM), chloramphenicol (cmlA), phenicol (floR). The MGEs are: 
IntI1, IntI2, IS26, ISCR1, ISCR3 and Tn916/1545. 

However, identification of ARGs and MGEs, and even correlation of ARGs 
and MGEs based on network analysis (Sun et al., 2019b; Wang et al., 
2021c), are merely indications of resistance transferability in digestate. 
Further convincing evidence would be identification of ARGs and MGEs in 
individual ARB isolated from digestate. To my knowledge, no such studies 
had been performed prior to this thesis work, but in clinical studies Gram-
negative species such as E. coli have been found to achieve resistance 



45 

transfer via HGT (Nagachinta & Chen, 2008).  However, these pathogens 
are not a dominant community in digestates (Schauss et al., 2016; Zou et 
al., 2020; I). Instead, Bacillus appears to be a dominant ARB genus in 
digestate, but no information is available for this genus regarding antibiotic 
resistance transferability. Thus, the studies described in Papers II and IV 
were conducted to shed some light on this topic. In Paper II, a strain of 
Bacillus oleronius that is resistant to β-lactams (ampicillin, ceftazidime, 
meropenem) and tetracycline was investigated for mechanism of resistance 
and transferability. A plasmid, pAMαl, was identified as carrying three 
copies of the tetL gene, which explained the tetracycline resistance. 
However, no genes responsible for resistance to β-lactams were found on 
the whole genome. Meropenem and tetracycline resistances were tested for 
transferability, but were found not to be transferable by plasmid 
conjugation to competent recipient E. coli K12xB HB101. Therefore, the 
strain of B. oleronius posed a limited risk of resistance spread to the 
environment. In Paper IV, 18 antibiotic-resistant Bacillus and closely-
related genera such as Paenibacillus and Lysinibacillus were investigated in 
terms of mechanism of resistance and transferability based on whole-
genome analysis. Several strains with extra-chromosomal genomes were 
found, but none was identified as a plasmid. Thus the dominant ARB 
community likely represents a limited risk of spread of antibiotic resistance.  
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Assessment of the antibiotic resistance situation in AD processes is mainly 
conducted using one of two categories of method: molecular analysis or a 
culture-dependent approach. The culture-dependent method for selection of 
ARB is reliable in revealing variations in the antibiotic resistance situation 
during AD. However, culture in the laboratory often underestimates the 
diversity of ARB compared with cultivation in natural environments, since 
some bacteria can switch to a viable but non-culturable state under 
environmental stress (Del Mar Lleò et al., 2003; Zandri et al., 2012). With 
the development of sequencing technology, the culture-dependent method 
has gradually been replaced by high-throughput DNA sequencing 
(molecular analysis). Using molecular analysis, most of the work involved 
in identification of variations in microbial composition and ARGs can be 
done by simply extracting DNA directly from AD samples. However, 
considering the complexity of gene expression and substantial numbers of 
unknown genes, it is unclear whether molecular analysis can reveal the full 
antibiotic resistance situation. Thus in this chapter, the consistency in 
results obtained with molecular analysis and the culture-dependent method 
is discussed.  
  

6. Methods for evaluating antibiotic 
resistance in anaerobic digestion 
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Several molecular methods have been used to date for analysis of the 
antibiotic resistance situation in AD environments, including: a) 
polymerase chain reaction (PCR) and quantitative PCR (qPCR) (Sun et al., 
2019b; Zou et al., 2020), b) DNA chip approaches, such as ArrayMate 
Reader (Braun et al., 2014) and Resistomap (Muurinen et al., 2017), and c) 
metagenomic analysis (Zhang et al., 2015, 2019a). All these methods can 
be used for identification/quantification of ARGs and MGEs in different 
scenarios, depending on the research aims. Metagenomic analysis is 
especially popular as it is a high-throughput method that efficiently 
provides an overview of antibiotic resistance in the AD process in terms of 
patterns and abundance of ARGs and MGEs, regardless of the cultivability 
of the bacteria. In addition, correlations can be calculated between 
microbial community and ARGs based on network analysis, in order to find 
potential bacterial hosts for ARGs (Zhang et al., 2015, 2019a). However, 
finding potential hosts for genes based on network analysis was challenged 
in a recent study, which found no tetO gene in Streptococcus clones even 
though there was a significant correlation between the two (coefficient 
0.909, p<0.01) (Zou et al., 2020). 

Notably, molecular analysis is database-dependent, which means that it 
is limited by recognition of novel genes and thus may overlook existing 
resistance. Besides, ARGs may be not expressed even though the genes and 
their promoters are intact (Enne et al., 2006), while in some cases gene 
expression may not reach sufficient levels to confer resistance (Chen et al., 
2003). In cases of non-expression and weak expression of ARGs, the 
antibiotic resistance situation might be overestimated by a single molecular 
analysis. Collectively, inconsistency may arise between genotypic and 
phenotypic resistance. Few comparisons have been made of genotypic and 
phenotypic resistance. Although not explicitly stated by the authors, 
inconsistent results were seen in Zou et al. (2020), with no targeted tet 
genes (tetA, tetO and tetX) found in tetracycline-resistant bacteria. A study 
by Pulami et al. (2020) found six strains of Acinetobacter baumannii 
susceptible to ciprofloxacin and tetracyclines, but carrying relative 
resistance genes abeM and adeIJK. The results from these two studies 
illustrate some of the limitations of molecular analysis. In Papers II and IV, 
direct comparisons of genotypic and phenotypic resistance were made 
using whole-genome sequence (WGS) analysis and antibiotic susceptibility 
test (AST) (Figure 7). In Paper II, one strain of Bacillus oleronius with  
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Figure 7. Comparison of genotypic and phenotypic antibiotic resistance. A) Whole-
genome sequencing by Oxford Nanopore. B) Antibiotic susceptibility test by E-strip. 
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phenotypic resistance to β-lactams (ampicillin, ceftazidime and 
meropenem) and tetracycline was investigated. The ARGs responsible for 
resistance to tetracycline (tetL), rifampicin (rpfC) and trimethoprim (dfrG) 
were identified by WGS. For this strain of Bacillus oleronius, tetracycline 
resistance was consistent with identification of tetL. However, no genes 
responsible for β-lactam resistance were found. Moreover, the Bacillus 
strain was susceptible to rifampicin, although rpfC was identified. In Paper 
IV, a similar inconsistency was found for every one of 18 bacterial strains 
isolated from digestate processed from food waste and dairy manure. Note 
that the molecular method applied in Papers II and IV was whole-genome 
sequencing for single isolates, rather than metagenomics for mixed culture 
(e.g. substrates and digestates) and the sequencing quality in terms of 
sequence coverage and accuracy is higher in WGS than in metagenomics. 
In brief, WGS analysis is capable of identification of all ARGs collected by 
databases if present in a bacterial genome. However, this method was 
unable to match to phenotypic resistance, possibly owing to limitations of 
databases and expression issues with genes. Thus, the antibiotic resistance 
situation in the AD process as evaluated by metagenomics may still not be 
the true situation. For this reason, the culture-dependent method, which is 
independent of database content and gene expression, is still the gold 
standard for assessing antibiotic resistance pattern and variations in ARB 
during AD. In fact, the results in Papers II and IV indicate that a 
combination of the two methods is necessary to reveal the full extent of 
antibiotic resistance in the AD process. 
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The ARB community in digestates originating from dairy manure, food 
waste and crops was isolated and characterised in terms of phylogenic 
identity and phenotypic antibiotic resistance pattern. Notably, the ARB 
community in digestates processed from food waste and crops was 
identified for the first time. Independent of substrate type, Bacillus and 
closely-related genera such as Paenibacillus and Lysinibacillus dominated 
the ARB community. These ARB exhibited resistance to a variety of 
antibiotic classes, including β-lactams, tetracyclines and macrolides. Crops 
used as AD substrate were also evaluated for the first time in terms of the 
antibiotic resistance load they confer to the biogas system. The plant-based 
substrates were found to be associated with antibiotic-resistant components, 
including culturable Gram-positive ARB and Gram-negative pathogenic 
bacteria-associated ARGs and plasmids. Thus, the antibiotic resistance load 
from plant-based substrates should be taken into consideration in 
agricultural biogas processing. 

Transferability of resistance was evaluated by WGS analysis for a total 
of 18 strains of ARB (mostly belonging to Bacillus and closely-related 
genera) isolated from digestates based on dairy manure and food waste 
substrates. Most ARGs identified were located on chromosomes, although 
several strains were found to have extra-chromosomal genomes. Only one 
of these was identified as a plasmid (pAMαl), for a strain of Bacillus 
oleronius. One tetracycline-resistant gene, tetL, was found on pAMαl, 
while no gene was identified on any other extra-chromosomal genome. 
Besides, pAMαl, the only plasmid identified in the dominant ARB 
community, was found not to be transferable to a competent recipient 
strain, E. coli K12xB HB101, by plasmid conjugation. Collectively, 

7. Conclusions  
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therefore, the dominant ARB community in AD digestate likely represents 
a limited risk of spread of antibiotic resistance.  

Phenotypic and genotypic antibiotic resistance for the same 18 strains of 
ARB were compared using antibiotic susceptibility test (Estrip) and WGS 
analysis. Inconsistency was seen for every single strain, e.g. presence of an 
ARG but phenotypically susceptive, or no ARG present but phenotypically 
resistant. This inconsistency in antibiotic resistance pattern was observed 
for different antibiotic classes, including β-lactams, tetracyclines and 
macrolides. Thus, a combination of molecular and culture-dependent 
methods may be needed to reveal the true antibiotic resistance situation in 
AD processes. 
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Anaerobic digestion (AD) is a well-established technology and can play a 
key role in development of a sustainable society. Through AD, organic 
wastes produced in industry, agriculture and daily life, such as sewage 
sludge from wastewater treatment plants, animal manure and slurry from 
livestock farms, crop residues, and food waste are converted into green 
energy and a fertiliser. The green energy can be used for production of 
electricity, heat and vehicle fuel. The fertiliser has a high plant nutrient 
content and is more environmentally friendly than chemical fertiliser. 
However, in recent years, this fertiliser has been found to contain antibiotic 
resistance (AR) elements. AR is one of the most significant global public 
health challenges of our time, since it can be difficult to find a cure for 
patients infected with antibiotic-resistant bacterial strains. It is predicted 
that AR will cause around 300 million premature deaths by 2050. Thus, 
many countries have taken actions to control the spread of AR. The 
fertiliser produced from AD represents one potential transmission route of 
AR and therefore this thesis investigated different questions related to AR 
in digestate. In particular, it examined antibiotic-resistant bacteria and 
genes present in organic waste materials and in AD digestate. The results 
showed that the AR elements present in all original waste types were 
similar in terms of bacterial community and that they likely represent a low 
risk of AR spread, due to low transferability. Agricultural crops used for 
biogas production were found to carry variant AR elements. The best 
approach for evaluating the AR situation in digestate was found to be a 
combination of different methods, including identification of both resistant 
bacteria and antibiotic resistance genes. 
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Biogasprocessen, eller rötning som den också kallas, är en väletablerad 
teknik som spelar en nyckelroll i utvecklingen av ett hållbart samhälle. 
Genom denna process omvandlas olika typer av organiskt avfall från 
industri, jordbruk och vårt dagliga liv, såsom avloppsslam från reningsverk 
djurgödsel och flytgödsel från djurgårdar, skörderester och matavfall, till 
grön energi och ett gödselmedel. Den gröna energin kan användas för 
produktion av el, värme och fordonsbränsle. Gödseln har en hög 
växtnäringshalt och är mer miljövänlig än konstgödsel. Under de senaste 
åren har dock detta gödselmedel visat sig innehålla antibiotikaresistens 
(AR). AR är en av vår tids största globala folkhälsoutmaningar. Om en 
person är infekterad av en antibiotikaresistent bakterie kan det vara svårt att 
hitta ett botemedel för denna patient. I värsta fall kan patienten dö av 
infektionen. Det har uppskattats att AR kommer att orsaka omkring 300 
miljoner förtida dödsfall år 2050. Många länder har därför vidtagit åtgärder 
för att kontrollera spridningen av AR. Gödselmedel som produceras genom 
rötning, representerar en potentiell överföringsväg för AR, men 
forskningen inom detta område är fortfarande ganska begränsad och mer 
arbete krävs för att utreda detta. 
Denna avhandling har undersökt olika frågor relaterade till 
antibiotikaresistens i biogödsel från biogasprocesser, det vill säga vilka är 
de antibiotikaresistenta bakterierna och generna som finns i de organiska 
avfallsmaterialen och i biogödslet? Mer specifikt identifierades olika AR-
element (bakterier och gener) från olika organiska avfall, gödsel, matavfall 
och grödor. Resultaten visade att AR-elementen var likartade när det gäller 
bakteriesamhället, oavsett ursprungliga avfallstyper, och att de sannolikt 
representerar en låg risk för spridning av resistens, på grund av låg 
överförbarhet. Resultaten visade också att grödor innehåller AR-element, 
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vilket tyder på att gödselmedel som produceras från grödor också utgör en 
potentiell källa för AR-spridning. Slutligen föreslås i denna avhandling att 
den bästa utvärderingsmetoden för att avslöja den verkliga AR-situationen i 
biogasprocesser är att använda en kombination av olika metoder, dvs både 
identifiera antibiotikaresistenta bakterier och gener ansvariga för 
resistansen.   
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