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Abstract
Main conclusion Droughts negatively affect sorghum’s productivity and nutritional quality. Across its diversity cent-
ers, however, there exist resilient genotypes that function differently under drought stress at various levels, including 
molecular and physiological.

Abstract Sorghum is an economically important and a staple food crop for over half a billion people in developing countries, 
mostly in arid and semi-arid regions where drought stress is a major limiting factor. Although sorghum is generally considered 
tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. 
Hence, understanding both the effects of the stress and plant response is indispensable for improving drought tolerance of 
the crop. This review aimed at enhancing our understanding and provide more insights on drought tolerance in sorghum as 
a contribution to the development of climate resilient sorghum cultivars. We summarized findings on the effects of drought 
on the growth and development of sorghum including osmotic potential that impedes germination process and embryonic 
structures, photosynthetic rates, and imbalance in source-sink relations that in turn affect seed filling often manifested in 
the form of substantial reduction in grain yield and quality. Mechanisms of sorghum response to drought-stress involving 
morphological, physiological, and molecular alterations are presented. We highlighted the current understanding about the 
genetic basis of drought tolerance in sorghum, which is important for maximizing utilization of its germplasm for develop-
ment of improved cultivars. Furthermore, we discussed interactions of drought with other abiotic stresses and biotic factors, 
which may increase the vulnerability of the crop or enhance its tolerance to drought stress. Based on the research reviewed 
in this article, it appears possible to develop locally adapted cultivars of sorghum that are drought tolerant and nutrient rich 
using modern plant breeding techniques.

Keywords Drought tolerance · Germplasm · Grain quality · Sorghum · Source-sink relations

Introduction

Myriads of biotic and abiotic stresses persistently challenge 
crops growing in the field under various environmental con-
ditions. Because of global climate change, temperature and 
atmospheric  CO2 levels are rising, and droughts are occur-
ring more frequent and widespread. Drought is one of the 
most prominent abiotic stresses limiting crop production and 
productivity. It occurs recurrently in large parts of the world 
and affects all major crops. Severe drought substantially 
reduces crop yield and quality, and it can lead to famine in 
food insecure areas. However, crops differ in their tolerance 
to drought stress, and variation exists within a crop species.
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Sorghum is a major staple crop for over half a billion 
people, mostly in developing countries in the semi-arid and 
arid tropics. It provides protein, fiber rich, and gluten-free 
nutrition (McCann et al. 2015; Impa et al. 2019). In addition 
to human nutrition, it is being used as a source of feedstock 
for bioethanol production (Mathur et al. 2017). Although 
sorghum is considered a drought-tolerant crop and can be 
productive under low-input conditions, drought stress due 
to water deficiency affects its soil-nutrient uptake capabil-
ity and nutrient mobilization and transport (Yu et al. 2015; 
Sarshad et al. 2021). Sorghum is predominantly grown in 
semi-arid and arid areas, which are prone to water scarcity. 
For instance, 60% of the land in Sub-Saharan Africa where 
sorghum is commonly grown is considered vulnerable to 
recurrent droughts (Hadebe et al. 2017) and 80% of sorghum 
cultivated in the US is grown under non-irrigated conditions, 
where water is a major limiting factor, which substantially 
reduces yield (Crasta et al. 1999). Drought stress is regarded 
as the most frequent abiotic stress that sorghum faces in its 
major production areas (Assefa et al. 2010). As a result, con-
siderable attention has been given to understand the effects 
of drought stress in sorghum and its stress tolerance mecha-
nisms, as part of efforts to develop tolerant cultivars and 
apply efficient mitigation strategies in sorghum production.

Several studies have reported the impact of drought stress 
on sorghum. The stress affects sorghum growth and devel-
opment from germination to reproductive and grain filling 
stages, as well as the plants’ physicochemical properties, 
which lead to substantial reduction in grain yield and qual-
ity (Kapanigowda et al. 2013; Sehgal et al. 2018; Bobade 
et al. 2019; Queiroz et al. 2019). Plant response to the stress 
involves changes in water use efficiency, transpiration rate, 
and remobilization of photosynthetic assimilates, as well as 
biochemical changes involving proline and other metabo-
lites (Husen et al. 2014; Fracasso et al. 2016; Badigannavar 
et al. 2018; Zhang et al. 2019a). Stress response, which is 
associated with energy and fitness costs, and direct effects 
of the stress can devastate the whole crop but it is often 
manifested in the forms of significant loss in grain yield and 
reduction in nutritional quality (Fischer et al. 2019). Hence, 
drought stress could cause malnutrition in food-insecure and 
drought-prone areas where sorghum is a major crop. The 
effects of drought on sorghum nutritional quality is particu-
larly interesting because inherently sorghum grain-protein 
has poor digestibility (Duodu et al. 2003), and drought can 
further reduce its digestibility (Impa et al. 2019) leading to 
poor nutrient absorption from consumed sorghum grown 
under drought stress.

Most of the recent review papers on sorghum-drought 
focus on specific topic, for instance on effect of the stress 
or plant response, indicating the need for a general review 
aimed to provide overview of the current knowledge and 
indicate gaps, and suggest its application in breeding 

programs. Here, we reviewed the previous and current stud-
ies about effects of drought on plant growth and develop-
ment, grain filling, yield and nutritional composition in 
sorghum. We covered the crop’s physiological mechanisms 
and genetic basis of drought tolerance, and—omics stud-
ies employed to dissect the molecular basis of response to 
the stress. We have included data from our previous stud-
ies to highlight the possibility of targeting combination of 
traits in sorghum breeding for improved drought tolerance. 
As sorghum is concurrently challenged by a multitude of 
factors under different agricultural conditions, the interac-
tions of drought with other abiotic stresses as well as biotic 
factors were also discussed. Furthermore, we highlighted 
knowledge gaps and possible challenges in the identification 
of drought-tolerant genotypes among the diverse sorghum 
germplasm for use in sorghum breeding programs targeting 
drought tolerance and broad adaptation.

Impact of drought stress on growth 
and development of sorghum

In dryland areas where drought stress is prevalent, seed-
ling death is a common problem, and is particularly high 
under combined drought and heat stress conditions, during 
seedling emergence and establishment (Ndlovu et al. 2021). 
Stand losses due to drought may occur after full emergence 
and before seedling establishment in sorghum (Queiroz et al. 
2019). The early stage of plant growth (germination, emer-
gence and seedling establishment) is potentially the most 
vulnerable to drought stress. As such, the impact of drought-
induced water deficit on early developmental stages of sor-
ghum has received significant attention. However, significant 
differences exist among sorghum genotypes in their response 
to varying degrees of drought-related stresses (Table 1).

Different studies have shown that induced drought stress 
through polyethylene glycol (PEG) significantly reduces rate 
and percentage of seed germination in sorghum (Jafar et al. 
2004; Bayu et al. 2005; Bobade et al. 2019; Queiroz et al. 
2019). Similarly, water deficit at different levels of soil water 
content (60% and 40% field capacity) significantly reduced 
percentage of seed emergence (Bayu et al. 2005). Decreasing 
the osmotic potential level from zero to − 0.8 MPa signifi-
cantly reduced percent germination (PG), and germination 
rate index (GRI) as well as the amount of water absorbed 
by seeds (Oliveira and Gomes-Filho 2009). The GRI was 
significantly greater in high osmotic potential environment, 
and the mean germination time (MGT) was longer under 
lower osmotic potential environment. Drought stress affects 
starch synthesis and energy ((adenosine triphosphate (ATP)) 
production process through increased respiration rate, 
resulting in reduced index of seedling vigor, GRI and PG 
(Queiroz et al. 2019). Research showed that differences in 
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starch content exist among sorghum genotypes. However, 
differences among these genotypes’ adaptive mechanisms 
and how the water deficit affects starch biosynthesis during 
seed germination has not been thoroughly investigated. The 
delay in germination was shown to be the result of a highly 
negative osmotic potential that negatively affected the water 
uptake of the seeds, i.e., imbibition, which is the first step 
of the germination process (Queiroz et al. 2019). For a suc-
cessful germination, seeds should reach an adequate level of 
hydration during the imbibition phase, to reactivate the seed 
metabolic processes and stimulate the growth of embryonic 
axis. Plants subjected to severe drought stress require more 
time to adjust the internal osmotic potential in accordance 
with the external environment.

After germination, drought stress can significantly reduce 
radicle, hypocotyl, and plumule (including coleoptile and 
mesocotyl) growth (Bayu et al. 2005; Reiahi and Farah-
bakhsh 2013; Queiroz et al. 2019). According to Queiroz 
et al. (2019), inhibition of radicle emergence and growth 
under water deficit condition could be due to impairment of 
cell division and elongation resulting from a reduction in the 
turgor of the radicle cells. This could affect the subsequent 
stages of plant growth and development. For example, Bayu 
et al. (2005) reported that the length of the coleoptile and 
mesocotyl was reduced under mild and severe water deficit 
conditions. The mesocotyl and coleoptile are essential for 
successful emergence and early plant vigor. Poor elongation 
of mesocotyl and coleoptiles under water-deficit conditions 
implies poor seedling emergence and establishment. Fur-
thermore, water deficit significantly reduces shoot elonga-
tion and dry weight, and to some extent root growth (Takele 
2000; Jafar et al. 2004; Bobade et al. 2019; Queiroz et al. 
2019). Similarly, Bayu et al. (2005) showed an increase in 
the root to shoot ratio and the rise of osmotic potential lev-
els, probably as an adaptive response to water-deficit condi-
tions. Furthermore, the decrease in shoot growth rate could 
be due to a reduction in one or both of the primary cellular 
growth parameters: wall extensibility and cell turgor (Quei-
roz et al. 2019).

Studies have shown that the effect of water deficit on veg-
etative growth is more pronounced on drought-sensitive than 
drought-tolerant sorghum cultivars. In a study by Fadoul 
et al. (2018), under drought stress conditions shoot and root 
length were reduced in the drought-sensitive cultivar com-
pared to the drought-tolerant genotypes. This suggests that 
cultivars that can establish long and extensive root systems 
may have more successful seedling establishment as their 
root systems can rapidly penetrate the upper soil layers and 
reach moist soil layers for water uptake, thus mitigating the 
stress due to water deficit. Hence, it is crucial to consider 
traits at the early stage of plant growth and development, 
such as seed vigor, imbibition, germination potential, ger-
mination rate, plumule and radicle development as well as Ta
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root and shoot growth when screening for drought-tolerant 
sorghum genotypes.

The effect of drought stress on sorghum 
grain yield

Drought stress, explained by soil water deficit, is one of the 
major abiotic stresses severely affecting crop yield world-
wide. Drought stress has a capacity to significantly delay 
floral initiation, and affect panicle development and appear-
ance of new leaves (Ndlovu et al. 2021). It reduces photo-
synthesis, chlorophyll content (Soil Plant Analysis Develop-
ment; SPAD), translocation of photo assimilates, and soil 
nutrient uptake resulting in reduced grain yield and quality 
(Assefa et al. 2010; Kapanigowda et al. 2013; Sehgal et al. 
2018). Crops respond to drought stress conditions to vary-
ing extents through different mechanisms. Drought tolerance 
involves physiological and molecular mechanisms (Sabadin 
et al. 2012) for activation of relevant genes and pathways, 
allocation of energy and resource for cellular functioning, 
and modification in stomatal conductance and transpiration 
as well as for increasing water use efficiency and promoting 
stay-green (Tovignan et al. 2020). Thus, drought tolerance is 
a result of diverse physico-chemical alterations (Sehgal et al. 
2018; Impa et al. 2019) leading to fitness costs that ham-
pers crop productivity. Drought stress substantially affect 
grain yields by reducing seed size, number and grain weight 
per panicle as well as other agronomic traits (Sehgal et al. 
2018; Sarshad et al. 2021). In short, it increases both direct 
and indirect costs to crops, which limit their production and 
productivity.

Studies have shown that sorghum is one of the best 
drought-tolerant crop adapted to diverse agro-ecology and 
low-input agriculture, but still drought stress can cause sig-
nificant yield losses (Assefa et al. 2010; Sabadin et al. 2012) 
even in drought-tolerant cultivars (Ray et al. 2018). This can 
be regarded as the fitness cost of the tolerance mechanisms 
manifested itself as a loss in grain yield. In water insecure 
areas, erratic and insufficient precipitation often substan-
tially reduces grain yield (Hattori et al. 2005). This holds 
true even when the drought stress occurs at the seedling 
stage (Gano et al. 2021) suggesting that drought stress can 
reduce grain yields at any stage of crop development. How-
ever, almost all previous studies have focused on the effect 
of the stress occurring during a specific developmental stage 
although, under natural conditions, the stress is consistently 
present across several stages. Drought stress at the vegeta-
tive and reproductive stages reduced grain yield by more 
than 36% and 55%, respectively (Assefa et al. 2010). The 
stress imposed during booting and flowering stages caused 
87% reduction in grain yield, but only significantly longer 
and more intense drought stress at vegetative stage can lead 

to such a substantial yield loss (Crafurd and Peacock 1993). 
Hence, although drought stress at any developmental stage 
can affect grain yield, the stress during reproductive stages 
has a more drastic effect on grain yield. This is because there 
is a stronger relationship between the environment and grain 
yield and quality during reproductive stages than at the ear-
lier vegetative stages. Reproductive stages such as flowering, 
pollination, microsporogenesis, and seed filling (Sarshad 
et al. 2021) were shown to be critical that can adversely 
affect grain yield (Kebede et al. 2001). Particularly, seed 
filling, which involves a number of metabolic processes, 
diverse enzymes, and transporters located in the leaves and 
seeds, is considered the most sensitive stage to drought stress 
(De Souza et al. 2015; Sehgal et al. 2018).

The production of sorghum is affected by drought stress 
during both pre-flowering (panicle development) and post-
flowering stage (between flowering and grain develop-
ment) (Adugna and Tirfessa 2014). A study on sorghum by 
(Kapanigowda et al. 2013) showed that both pre- and post-
flowering drought stress significantly reduces grain quantity 
and quality. The occurrence of drought stress during flower-
ing stage can also cause a reduction in number of grains per 
panicle (Manjarrez-Sandoval et al. 1989), which is a trait 
directly contributing to grain yield. However, a drought dur-
ing post-flowering stages has a more severe impact on grain 
yield compared to a drought during pre-flowering stages. 
For example, sorghum growers in Ethiopia and Burkina Faso 
indicated that severe drought during post-flowering stages 
is a major sorghum production constraint (Ouedraogo et al. 
2017; Derese et al. 2018). Similarly, Burke et al. (2018) 
reported that drought stress during the post-flowering growth 
stage had drastic effects on sorghum productivity due to 
premature plant death and reduced seed size (Burke et al. 
2018). A classical study over a period of 2 years involv-
ing 30 sorghum cultivars showed that drought stress dur-
ing post-flowering stage reduced grain yield by about 50% 
(Batista et al. 2019). However, the effect of drought stress 
on different sorghum genotypes may differ due to the vari-
ability in their response to the stress. For example, drought 
stress during terminal post-flowering stage, genotypes with a 
high growth rate and short duration of grain filling produced 
larger grains compared to genotypes with longer duration 
of grain development (Tuinstra et al. 1997). Metabolic and 
enzyme assays are required to understand how water defi-
cit affect starch synthesis and subsequent germination and 
metabolic response of sorghum seeds. Drought stress at pol-
lination stage can lead to significant decrease in grain yield 
because of the deficiency of insemination of eggs inside the 
ovary (Sarshad et al. 2021). This is related to the fact that 
the transfer of pollen grains from male to female organs and 
contact with the eggs in the ovary require sufficient mois-
ture, which is a limiting factor under drought stress condi-
tions. In line with this, Manjarrez-Sandoval et al. (1989) 
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reported that severe drought stress prior to microsporo-
genesis caused a decrease in grain number per panicle (but 
with slight increase in grain size), which subsequently led 
to lower grain yield. On the other hand, a study by Sarshad 
et al. (2021) showed that drought stress after grain filling 
have no significant adverse effect on gain yield. Although 
not experimentally validated, the effect of the stress after 
grain filling might affect moisture content and alter the 
metabolism in the mature seeds resulting in transgenera-
tional effect, particularly germination rate and early seedling 
of offspring. Overall, research clearly showed that drought 
stress reduces grain yield; however, the impact level of the 
stress depends on several factors. Stress intensity and dura-
tion, development stage and genotype of the plants, pres-
ence of other confounding stresses and seasonal variations 
contribute to the differences in the magnitude of the damage 
caused by the drought stress. This is particularly important 
because drought tolerance is a multigenic trait, and hence 
these environmental conditions may led to pronounced vari-
ability among the results reported.

The effect of drought stress on nutritional 
quality

Drought stress alters the relationship between morpho-
physiological traits on hand and the source activity and sink 
strength on the other (Yu et al. 2015), alters grain physico-
chemical characteristics (Impa et al. 2019), and reduces min-
eralization of nutrients and impair membrane permeability 
(Stagnari et al. 2016). In line with these changes in plants 
due to drought stress, various studies have shown its effect 
on nutritional content and composition in sorghum. For 
example, growing sorghum genotypes under dry conditions 
led to decreased grain micronutrient content (Zn, Fe, Mn 
and Cu) (Impa et al. 2019). Similarly, drought stress induced 
during flowering stage led to reduced total starch, amylase 
and amylopectin accumulation, which is related to compro-
mised activities on sugar nucleotide precursors by enzymes, 
such as starch synthase (SSS), granule-bound starch syn-
thase (GBSS), starch branching enzyme (SBE), and starch 
debranching enzymes (DBE) during grain filling (Yi et al. 
2014). On the other hand, Ananda et al. (2011) reported 
that drought stress imposed on sorghum at different phe-
nological stages, from flowering to late seed filling, did not 
significantly affect glucose content and concomitant ethanol 
production. However, the plants were subjected to the stress 
at each specific phenological stage separately, and hence the 
results could not be conclusive since this scenario might not 
exist under natural field conditions. The response of plants 
to water deficit involves activation of myriad of signaling 
pathways with a phytohormone abscisic acid (ABA) play-
ing a central role and leading to biosynthesis accumulation 

of some metabolites (amino acids, sugars, indoles, pheno-
lics, and glucosinolates) mainly in drought-tolerant geno-
types (Stagnari et al. 2016). For example, there was higher 
grain K and Fe concentrations in drought-tolerant genotypes 
compared to the susceptible ones (Abu Assar et al. 2002). 
In a study by Ogbaga et al. (2016), drought-induced stress 
led to increased sugar and sugar alcohol contents in a sor-
ghum genotype (Samsorg 17) and amino acid concentration 
in another sorghum genotype (Samsorg 40). Other studies 
on sorghum showed that drought stress increased the total 
protein content and positively affected the total soluble car-
bohydrate, crude protein, and proline contents (Impa et al. 
2019; Sarshad et al. 2021). The increased amount of these 
molecules indicates their role in drought stress tolerance, 
whereas the differences in the level of their accumulation 
among genotypes points to genotype-specific tolerance 
mechanisms. Drought stress could also influence nutri-
ent availability. For example, Impa et al. (2019) reported 
decreased digestibility of protein obtained from sorghum 
grown under drought stressed conditions. This could be 
associated with increased level of starches, as a response to 
the drought stress (Stagnari et al. 2016).

A highly significant variation exists among sorghum gen-
otypes in grain nutrient contents. Total starch, amylose and 
mineral content varied significantly among sorghum varie-
ties where two varieties (Tx430 and AR-3048) were found 
to contain significantly higher protein content than others 
(Ng’uni et al. 2016). Motlhaodi et al. (2018) reported signifi-
cant differences among sorghum accessions for protein and 
nutrients (Ca, Fe, K, Mg, Mn, Na, P and Zn) and these traits 
have a strong broad-sense heritability ranging from 0.62 to 
0.85. Similarly, analysis of 336 sorghum recombinant inbred 
lines (RILs) showed large variability and high heritability 
for Fe and Zn content (Phuke et al. 2017). Nevertheless, 
these studies did not investigate the effect of drought stress 
on the concentrations of these nutrients in different sorghum 
genotypes. However, Abu Assar et al. (2002) reported that 
sorghum genotypes showed considerable variation in min-
eral composition, with drought-tolerant genotypes con-
taining higher K and Fe content compared to susceptible 
ones when grown under drought stress conditions. Thus, 
the tolerant genotypes could maintain optimal mineral and 
other nutrient compositions even when grown under water 
deficit conditions. The presence of genotypes with higher 
concentration of Fe and Zn and stable heritability of the 
nutrient content (Motlhaodi et al. 2018) suggest sorghum 
genotypes with higher concentration of these nutrients can 
be utilized for enhancing micronutrient composition in elite 
sorghum materials. The strong positive correlation among 
micronutrients (Ng’uni et al. 2016; Phuke et al. 2017) and 
their high heritability in some genotypes indicate strong 
genetic control of these important quality traits. To evalu-
ate performance of sorghum accessions and identify traits 
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that are correlated across environments, we have obtained 
the raw data from previous studies in South Africa (Ng’uni 
et al. 2016) and Botswana (Motlhaodi et al. 2018), filtered 
the parameters that were measured in both studies and per-
formed PCA analysis in R statistical software version.4.0.3. 
These studies were conducted on different sorghum geno-
types grown in different years and locations but both studies 
showed strong correlation among K, Ca, and Na as well as 
among Fe, Zn, and P (Fig. 1). This indicates several quality 
traits can be targeted for a combined genetic improvement 
in sorghum. But the composition of these micronutrients 
in sorghum could vary at different maturity stages (Abu 
Assar et al. 2002). This could be due to changes in nutrient 
demands of the plants or nutrient availability in the soil, as 
well as other coexisting biotic and abiotic factors. Hence, 
gaining a deeper understanding of the inheritance of these 

nutrients and the key genes involved in nutrient accumula-
tion, particularly in sorghum grown under drought stress 
conditions, is crucial for enhancing these grain quality traits 
and help alleviate malnutrition.

Mechanisms of drought tolerance 
in sorghum

Physiological mechanisms of drought tolerance 
in sorghum

Plant response to drought stress and drought tolerance 
is a result of complex biological processes involving 
physiological, biochemical, genomic, proteomic and 
metabolomics changes (Ngara et al. 2021). An overview 

Fig. 1  PCA-biplot of sorghum 
genotypes grown a at two 
locations in Botswana in 2015 
(Motlhaodi et al. 2018) and b at 
two locations in South Africa 
in 2011 (Ng’uni et al. 2016). 
The two studies used different 
sorghum genotypes
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of drought stress and sorghum plant responses is pro-
vided in Fig. 2. Plants mitigate effects of drought through 
avoidance, recovery, survival, and tolerance mechanisms. 
Drought avoidance is the ability of plants to conserve 
water through reducing water loss from the shoots or by 
more effectively extracting water from the soil (Ludlow 
and Muchow 1990; Osmolovskaya et al. 2018). Moreo-
ver, plants survive drought stress by extending their root 
system, stomatal closure, leaf rolling, stem waxiness, stay 
green and high transpiration efficiency (Badigannavar 
et al. 2018). The more effective mechanism is drought 
escape, which refers to plants’ drought avoidance by com-
pleting their life cycles before the onset of a dry period 
to sustain reproduction (Manavalan and Nguyen 2017). 
The drought escape mechanisms are early flowering and 
maturity, high leaf  N2 level, high photosynthetic capac-
ity and remobilization of assimilates (Badigannavar et al. 
2018). Whereas, drought tolerance is the ability of plants 
to withstand water stress while keeping vital physiologi-
cal activities that stabilize and protect metabolic integ-
rity at tissue and cellular levels (Tuinstra et al. 1997). 
This can be osmotic adjustments, protective solutes, high 
proline, desiccation tolerant enzymes and high stomatal 
conductance (Badigannavar et al. 2018).

Photosynthetic rate, transpiration and stomatal 
conductance

In drought sensitive sorghum genotypes, stress-induced 
physiological modifications such as change in rate of pho-
tosynthesis were observed under stress conditions (Fracasso 
et al. 2016). Drought stress has significant effects on pho-
tosynthetic rate (A), transpiration rate (E), water use effi-
ciency (WUE) and stomatal conductance. The Fv/Fm, which 
refers to maximum quantum yield of photosystem II is an 
important tool for measuring the impact of drought stress 
on photosynthesis (Husen 2010; Husen et al. 2014). It is 
used as an indicator of the level of photosynthetic efficiency, 
which is significantly lower in sorghum grown under drought 
stress conditions (Johnson et al. 2014). Drought stress affects 
photosynthetic rate in sorghum by decreasing stomatal 
conductance and transpiration rate (Zhang et al. 2019b), 
quantum yield and increasing leaf temperature (Kapan-
igowda et al. 2014), reduction in chlorophyll and Rubisco, 
increase in  O2 evolution and decrease in PEPCase activity 
(Bao et al. 2017). Different studies have shown that, under 
drought stress conditions, tolerant sorghum genotypes have 
significantly higher values of Fv/Fm and photosynthetic rate 
(Fracasso et al. 2016; Sukumaran et al. 2016). In addition to 
plants’ ability to avoid and/or tolerate drought stress, photo-
synthetic recovery that comes following rehydration plays an 
important role in dictating their tolerance to drought as well 

Fig. 2  Diagrammatic depiction of morphological, physiological, biochemical, and molecular responses of sorghum to drought stress. This figure 
was created with BioRender (https:// biore nder. com/)

https://biorender.com/
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as in preventing reduction in grain yield (Chaves et al. 2009). 
Increased photosynthetic rate that provides raw material and 
energy required for growth and development under drought 
stress is a major mechanism through which tolerant geno-
types maintain grain yield in sorghum (Getnet et al. 2015).

Several studies have indicated significant genetic varia-
tion in sorghum in terms of net carbon assimilation rate (A), 
transpiration rate (E), A:E ratio and WUE under normal and 
drought stress conditions. Different studies reported that a 
rise in A:E and WUE improve drought tolerance during pre-
flowering stage in sorghum (Balota et al. 2008; Vadez et al. 
2011b). In drought-tolerant sorghum genotypes, transpira-
tion efficiency did not differ between the control and drought 
stressed plants while there was a statistically significant 
difference between the control and drought stressed plants 
in the case of drought sensitive genotypes (Fracasso et al. 
2016). Furthermore, drought-tolerant genotypes showed a 
significantly higher WUE than drought sensitive genotypes 
during drought stress period (Fracasso et al. 2016). Transpi-
ration efficiency and water extraction were reported to be 
significantly associated with grain yield in sorghum (Vadez 
et al. 2011b). A study by showed that the average heritability 
estimates for A:E were 0.9 at 40% field capacity (FC) and 
0.8 at 80% FC indicating strong genetic basis for the trait. 
Thus, given the role of genetic basis of the tolerance mecha-
nisms (Fig. 2), selection of desirable genotypes based on this 
trait is important for developing drought-tolerant sorghum 
genotypes. Genotypes with reduced stomatal conductance 
and reduced transpiration rate (E) throughout the vegetative 
phase conserve water that may be used during grain filling 
stage in water-limited environments (Lopez et al. 2017), and 
hence can be categorized as drought tolerant. This interest-
ing study by Lopez et al. (2017) showed that QTL identified 
for stomatal conductance was associated with reduced E but 
not A or shoot biomass.

Chlorophyll content and stay green

The ability of a plant to maintain normal chlorophyll content 
under drought stress conditions contributes to its drought 
adaptability (Chen et al. 2016). The total chlorophyll con-
tent as well as chlorophyll a and b contents directly affect 
the plant capacity to absorb light for photosynthesis. Differ-
ent studies have reported a significant reduction in chloro-
phyll content in sorghum grown under drought stress (Xu 
et al. 2000; Reddy et al. 2014; Fracasso et al. 2016; Fadoul 
et al. 2018; Amoah and Antwi-Berko 2020). For instance, 
there was 23% reduction in total chlorophyll content in a 
stay green genotypes and 75% reduction in senescent geno-
types grown under drought stress conditions, compared to 
corresponding genotypes grown under control conditions 
(Xu et al. 2000). Another study reported 4.3% reduction in 
total chlorophyll content in stressed plants as compared to 

the control plants (Devnarain et al. 2016). In addition to 
chlorophyll, decreased concentration of some carotenoids 
under severe drought stress conditions has been reported 
(Munné‐Bosch et al. 2001). Takele (2010) reported that 
drought tolerance reduced both chlorophyll and carotenoid 
contents during pre- and post-flowering stages in drought-
tolerant sorghum. A decrease in carotinoids is probably due 
to the down-regulation of genes involved in the terpenoid 
and carotenoid biosynthesis in drought sensitive genotypes 
(Fracasso et al. 2016). Drought stress induces down-regu-
lation of genes related to carotenoids and chlorophyll bio-
synthetic pathways, which drastically affects light reaction 
and carbon fixation pathways. The chlorophyll content at 
maturity had a significant positive correlation with green 
leaf number and green leaf area at flowering and maturity 
stages. In turn, both leaf traits at both stages correlated sig-
nificantly with grain yield (Reddy et al. 2014).

Leaf senescence is characterized by a loss of chlorophyll 
and progressive decline in photosynthetic capacity (Borrell 
et al. 2000; Tao et al. 2000). Stay-green is a well-character-
ized trait contributing to the adaptation of sorghum to post-
flowering drought conditions that confers delayed leaf senes-
cence and improved grain yield. Several scholars have tried 
to understand the physiological mechanism of stay green in 
sorghum. Early hypotheses and studies suggested that stay 
green is associated with a higher leaf nitrogen concentration, 
cytokinin and chlorophyll content under drought stress con-
ditions. For example, Borrell et al. (2000) reported the asso-
ciation of stay green with higher leaf nitrogen concentration, 
mainly at flowering stage. Another study showed that stay 
green sorghum genotypes maintain high levels of cytokinin 
indicating a lower senescence rate of the stay green geno-
types (Thomas and Howarth 2000). Furthermore, the stay 
green genotypes show higher levels of chlorophyll content 
than senescent genotypes (Xu et al. 2000).

The stay green trait of sorghum as a response to drought is 
associated with higher leaf chlorophyll content, slower rate 
of loss of green leaf area (Kassahun et al. 2010), decreased 
tillering and size of upper leaves (Borrell et al. 2014a, b; 
George-Jaeggli et al. 2017). The trait is also linked with 
increased transpiration efficiency (TE) and water extraction 
(Vadez et al. 2011a). Under drought stress conditions, the 
introgression of stay green QTLs from B35 to senescent 
variety R 16 showed higher leaf chlorophyll levels at flow-
ering and a greater percentage green leaf area during grain 
filling stages and associated with a higher relative grain yield 
during the post-flowering stages (Kassahun et al. 2010). The 
Stg QTL control canopy size in the form of reduced tillering 
and the size of upper leaves, enlarged size of lower leaves, 
and in some cases reduced number of leaves per culm, at 
flowering stages. The reduced canopy size at flowering 
decreases pre-flowering water demand, thereby leads to 
increased water availability during grain filling stage, which 
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in turn lead to increased biomass production and grain yield 
(Borrell et al. 2014a, b). Accelerated age-related senescence 
of lower leaves in stay green lines before flowering results in 
shedding of old leaves at flowering stage thereby contributes 
to having smaller canopy (George-Jaeggli et al. 2017). Any 
water savings during pre-flowering stages increases water 
availability during post-flowering stages, which allows 
plants retain photosynthetic capacity for longer period of 
time and “staying green” during grain filling (George-Jae-
ggli et al. 2017). Based on these and related research results, 
stay green could be considered as a post flowering drought 
tolerance mechanism that facilitates the availability of water 
required for overall growth and grain production.

The genetic basis of drought tolerance traits

Association mapping for drought tolerance traits

Many important traits for drought tolerance like stay green, 
chlorophyll content, leaf number, leaf length, leaf width and 
leaf area as well as root traits are controlled by multiple 
genes located within genomic regions referred to as quantita-
tive trait loci (QTLs). The identification and understanding 
of the QTLs associated with these traits are highly important 
for the development of drought-tolerant sorghum cultivars. 
A number of drought related traits have been identified and 
several QTLs associated with these traits were mapped in 
sorghum (Table 2). However, most of these QTLs were 
identified using bi-parental linkage mapping. In this regard, 
future studies should focus on genome wide association 
mapping with high dense SNP markers to accurately identify 
QTLs associated with the traits. Among drought tolerance 
related traits in sorghum, stay-green, which is associated 
with chlorophyll content is the best characterized, and is 
considered a very important trait for sustainable grain yield 
under drought stress particularly during grain filling period.

Mapping stay green and chlorophyll content

Various drought-tolerant sorghum genotypes have been iden-
tified, which include 00MN7645 (Sukumaran et al. 2016), 
QL41 (Tao et al. 2000), B35 (Crasta et al. 1999; Subudhi 
et al. 2000; Xu et al. 2000), BTx642 (Harris et al. 2007), 
SC-56 (Kebede et al. 2001), and E-36-1 (Haussmann et al. 
2002). These genotypes have served as sources of drought 
tolerance genes, and used as parents to develop recombi-
nant inbreed lines (RILs) and near-isogenic line (NILs) map-
ping populations for identification of QTLs encompassing 
the stay green genes. Through this approach, several QTLs 
associated with stay green have been identified in sorghum 
using different markers (Sabadin et al. 2012; Sukumaran 
et al. 2016) (Table 2). Among the known drought-tolerant 

sorghum genotypes, B35, which is derived from genotype 
BTx642 (a durra sorghum from Ethiopia), has been used 
as a major source of stay green genes in sorghum breeding 
programs aimed at improving its drought tolerance, in the 
United States, Australia, India and other parts of the world 
(Evans et al. 2013).

Using 98 RILs developed from a cross between TX7078 
(pre-flowering-tolerant, post-flowering susceptible) and 
B35 (pre-flowering susceptible, post-flowering-tolerant), 
(Tuinstra et al. 1997) identified three QTLs associated with 
stay green. Three major stay-green QTLs that explained 
42% of the total phenotypic variance were identified using 
96 RILs derived from a B35 × Tx430 cross (Crasta et al. 
1999). In another study, four QTLs (Stg1, Stg2, Stg3, and 
Stg4) associated with stay green were identified using 98 
RILs (derived from B35 × Tx7000 cross) grown under post-
flowering drought stress conditions (Xu et al. 2000). Subse-
quently, by planting the same genotypes for 2 years at two 
sites, Subudhi et al. (2000) confirmed that four of these stay 
green QTLs (Stg1, Stg2, Stg3 and Stg4) are indeed associ-
ated with the trait. Similarly, using NILs mapping population 
derived from BTx642 × RTx7000, alleles that contribute to 
stay green were mapped to the four major QTLs (Stg1, Stg2, 
Stg3 and Stg4) (Harris et al. 2007). These QTLs have been 
introduced in several genetic backgrounds through marker-
assisted breeding (MAB) and were shown to enhance post-
flowering drought tolerance (Kassahun et al. 2010; Kamal 
et al. 2017).

The comparison of the four stay green QTL profiles 
showed that Stg1, Stg2 and Stg3 are more important contrib-
utors to the expression of stay green trait, as they explained 
higher phenotypic variance and showed consistency across 
different genetic backgrounds (Subudhi et al. 2000). Stg1 
and Stg2, which accounted for 20% and 30% of the pheno-
typic variance, respectively, were mapped to SBI-03 while 
Stg3 and Stg4, which explained 16% and 10% of the phe-
notypic variance, respectively, were mapped to SBI-02 and 
SBI-05 in that order (Xu et al. 2000; Sanchez et al. 2002). 
Furthermore, the Stg1 and Stg2 regions also contain genes 
responsible for key enzyme regulating photosynthesis, heat 
shock proteins (HSPs) and abscisic acid (ABA), which are 
important for drought and heat stress tolerance and grain 
yield in sorghum (Xu et al. 2000). Further characterization 
of these stay green QTL regions may lead to discovering 
new genes that will deepen our understanding about drought 
tolerance mechanisms, which in turn facilitates the manipu-
lation of the stay green trait in sorghum and other cereal 
crops.

The chlorophyll content SPAD readings at booting 
(SPADB) and maturity (SPADM) were associated with stay 
green ratings in sorghum (Xu et al. 2000). QTLs for chlo-
rophyll content SPAD readings overlapped with QTLs for 
stay green under drought stress conditions (Xu et al. 2000; 
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Table 2  Quantitative trait loci (QTLs) mapped for drought tolerance related traits in sorghum

Trait No./Population No of markers Type of Markers Chr/LG Methoda Envb References

Stay green 98 RI (TX7078 and 
B35)

170 RAPD, RFLP B, F, G, H, I LM DS (Tuinstra et al. 1997)

248 RILs (Tx436 and 
00MN7645)

7144 SNP 4, 5, 6, 7, 10 LM DS (Sukumaran et al. 
2016)

160 RILs (QL39 and 
QL41)

2 SSR, RFLP A, B, C, G, I LM DF (Tao et al. 2000)

96 RILs (B35 and 
Tx430)

142 RLFP A, B, D, J, I LM DS (Crasta et al. 1999)

98 RILs (B35 and 
Tx7000)

142 RLFP A, D, J LM DS (Xu et al. 2000)

2000 NIL (BTx642 and 
RTx7000)

113 AFLP, SSR A, D, J LM DS (Harris et al. 2007)

125 RILs (SC56 and 
Tx7000)

170 RFLP G, J, C, B, D, F LM DS (Kebede et al. 2001)

98 RILs (B35 × Tx7000) 91 RFLP, SSR, RAPD A, D, J LM DS (Subudhi et al. 2000)
226 RILs 

(IS9830 × E36-1 and 
N13 × E36-1)

225 AFLP, SSR, RFLP, 
RAPD

A, E, G LM DS (Haussmann et al. 
2002)

100 RILs (BR007 and 
SC2839)

344 DArT, SSR, STS, 
RFLP

3, 4, 8, 10 LM DS (Sabadin et al. 2012)

Chlorphyll content
at flowering

245 RILs (M35-1 and 
B35)

237 SSR and morpho-
logical

9, 1, 3, 5, 6, 7 LM DS (Reddy et al. 2014)

Chlorphyll content 
at maturity

245 RILs (M35-1 and 
B35)

237 SSR 1, 2, 7, 9, 10 LM DS (Reddy et al. 2014)

98 RILs (B35 and 
Tx7000)

142 RLFP A, D, J LM DS (Xu et al. 2000)

188 RILs 
(Tx436 × 00MN7645

7144 SNP 4 LM DS (Sukumaran et al. 
2016)

70 RILs (Tx430 and 
Tx7078)

261 SNPs 4 LM DS (Kapanigowda et al. 
2014)

Green leaf number 
at flowering

245 RILs (M35-1 and 
B35)

237 SSR 1, 2, 3, 4, 9 LM DS (Reddy et al. 2014)

Green leaf number 
at maturity

245 RILs (M35-1 and 
B35)

237 SSR andmorpho-
logical

1, 2, 3, 4, 7, 9 LM DS (Reddy et al. 2014)

Total leaf number 168 RILs (296B and 
IS18551)

152 SSR, morphologi-
cal

1, 3, 7 LM DS (Srinivas et al. 2009)

Leaf number 70 RILs (Tx430 and 
Tx7078)

6128 SNP 6 LM DS (Lopez et al. 2017)

184 RILs 
(E36-1 × SPV70)

104 EST-SSR, SSR, 
SNP

1, 10 LM DS (Fakrudin et al. 
2013)

Percent green 
leaves retained at 
maturity

245 RILs (M35-1 and 
B35)

237 SSR, morphologi-
cal

1, 2, 3, 4, 7, 9 LM DS (Reddy et al. 2014)

226 RIP (IS9830 × E36-
1) and N13 × E36-1)

128 AFLP, RFLP, SSR, 
RAPD

A, D, G, H, B, 
C, E

LM DS (Haussmann et al. 
2002)

Green leaf area at 
flowering

245 RILs (M35-1 and 
B35)

237 1, 2, 3, 9 LM DS (Reddy et al. 2014)

168 RILs (296B and 
IS18551)

152 SSR, morphologi-
cal

1, 3, 4, 5 LM DS (Srinivas et al. 2009)

chlorophyll fluores-
cence  (Fv/Fm)

188 RILs 
(Tx436 × 00MN7645)

7144 SNP 3, 4 LM DS (Sukumaran et al. 
2016)

226 RIP (IS9830 × E36-
1) and

N13 × E36-1)

28 AFLP, RFLP, SSR, 
RAPD

C, D, E, G, A, B LM DS (Haussmann et al. 
2002)
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Table 2  (continued)

Trait No./Population No of markers Type of Markers Chr/LG Methoda Envb References

Total leaf area at 
seedling

141 RILs (B923296 and 
SC170-6–8) and 44 
diverse inbred lines

337 DArT 8 LM – (Mace et al. 2012)

Green leaf area at 
maturity

245 RILs (M35-1 and 
B35)

237 2, 3, 9 LM DS (Reddy et al. 2014)

168 RILs (296B and 
IS18551)

152 SSR, 1, 6 LM DS (Srinivas et al. 2009)

648 SC lines and Chro-
matin breeding lines 
and hybrids

131,544 SNP, morphologi-
cal

GWAS DS (Spindel et al. 2018)

Flag leaf area 70 RILs (Tx430 and 
Tx7078)

261 SNP 6, 1 LM DS (Kapanigowda et al. 
2014)

70 RILs (Tx430 and 
Tx7078)

261 SNP 7 LM DS (Kapanigowda et al. 
2014)

Percent green leaf 
area at maturity

245 RILs (M35-1 and 
B35)

237 2, 3 LM DS (Reddy et al. 2014)

168 RILs (296B and 
IS18551)

152 SSR, morphologi-
cal

3, 9 LM DS (Srinivas et al. 2009)

Rate of leaf senes-
cence

245 RILs (M35-1 and 
B35)

237 SSR, morphologi-
cal

10 LM DS (Reddy et al. 2014)

Grain yield per 
panicle

245 RILs (M35-1 and 
B35)

237 SSR, morphologi-
cal

3, 4, 6, 9 LM DS (Reddy et al. 2014)

200 MAGIC 79,728 SNP 1, 5, 7 GWAS DS (Ongom 2016)
248 RILs (Tx436 and 

00MN7645)
7144 SNP 1, 6, 8 GWAS DS (Sukumaran et al. 

2016)
184 F8 RILs 

(E36-1 × SPV70)
104 EST-SSR, SSR, 

SNP
3, 8 LM DS (Fakrudin et al. 

2013)
100 (BR007 and 

SC283)
344 DArT, SSR, STS 2, 3, 6, 8, 10 LM DS (Sabadin et al. 2012)

Stress tolerance 
index

200 MAGIC 79,728 SNP 6, 1, 8, 9 GWAS DS (Ongom 2016)

CO2 assimilation 
rate (A)

70 RILs (Tx430 and 
Tx7078 F6)

261 SNP 1, 5, 9 LM DS (Kapanigowda et al. 
2014)

Transpiration rate 
(E)

70 RILs (Tx430 and 
Tx7078 F6)

261 SNP 1, 7 LM DS (Kapanigowda et al. 
2014)

A:E ratio 70 RILs (Tx430 and 
Tx7078 F6)

261 SNP 6, 9, 10 LM DS (Kapanigowda et al. 
2014)

Stomatal conduct-
ance

28,107 (Early 
HegariSart and BK7)

6128 SNP 7, 10 LM DS (Lopez et al. 2017)

Stomatal density 70 RILs (Tx430 and 
Tx7078)

6128 SNP 2, 7 LM DS (Lopez et al. 2017)

70 RILs (Tx430 and 
Tx7078 F6)

261 SNP 7 LM DS (Kapanigowda et al. 
2014)

Nodal root angle 141 RILs (B923296 and 
SC170-6-8) and 44 
diverse inbred lines

337 DArT 5, 8, 10 LM – (Mace et al. 2012)

Root dry weight 141 RILs (B923296 and 
SC170-6-8) and 44 
diverse inbred lines

337 DArT 2, 5, 8 LM – (Mace et al. 2012)

184 F8 RILs 
(E36-1 × SPV70)

104 EST-SSR, SSR, 
SNP

4 LM DS (Fakrudin et al. 
2013)

Leaf drying after 
drought

107 (Sorghum associa-
tion panel)

98 SSR 1, 3 GWAS DS (Sakhi et al. 2013)

leaf and stem 
biomass

70 RILs (Tx430 and 
Tx7078 F6)

261 SNP 6 LM DS (Kapanigowda et al. 
2014)
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Harris et al. 2007; Borrell et al. 2014b). This indicates the 
possibility of developing drought-tolerant sorghum cultivars 
combining these important traits. Three QTLs (Chl1, Chl2 
and Chl3) explaining 20–30% of the phenotypic variability 
in chlorophyll content were identified through exposing 98 
sorghum RILs to post-flowering drought stress (Xu et al. 
2000). All the three QTLs overlapped with the three stay 
green QTL regions (Stg1, Stg2 and Stg3) and accounted 
for 46% of phenotypic variance (Xu et al. 2000) suggesting 
that these traits may be at least partly regulated by the same 
genes.

Several QTLs linked to chlorophyll SPAD were identified 
in different studies. For instance, Reddy et al. (2014) identi-
fied 7 QTLs in 245 RILs, including major QTLs on SBI-09 
and SBI-10 accounting for 15% of the total SPADB vari-
ation and 14.1% of SPADM variation, respectively. QTLs 
linked to chlorophyll contents measured at three different 
stages of plant growth were also found (Sukumaran et al. 
2016; Gelli et al. 2017). In another study, a QTL associ-
ated with chlorophyll concentration in the flag leaf, which 
explained 13% of the phenotypic variance was detected on 
SBI-04 (Kapanigowda et al. 2014). The results suggest that 

through transferring favorable alleles representing these 
QTLs, improving chlorophyll content of drought sensitive 
sorghum genotypes is possible using crossbreeding and 
marker assisted selection approaches.

Genes involved in drought stress tolerance

The transcriptional response of sorghum exposed to drought 
stress includes sets of differentially expressed gene prod-
ucts, such as Late Embryogenesis Abundant (LEA) proteins, 
Delta 1-pyrroline-5-carboxylate synthase (P5CS2), high-
affinity  K+ transporter 1 (HKT1) and proteins associated 
with response to ABAs (Johnson et al. 2014). Genes encod-
ing a dehydration-responsive element-binding (DREB1A) 
transcription factor, salt and drought-induced RING finger 
1 (SDIR1) and a CBL interacting serine/threonine-protein 
kinase 1 (CIPK1), trehalose-6-phosphate synthase (TPS) and 
P5CS2 was highly expressed in the stay-green line compared 
to the senescent line (Johnson et al. 2015). The increased 
expression of P5CS2 gene in the stay-green line was asso-
ciated with higher proline levels and is localized in Stg1 
QTL region Johnson et al. (2015), which was previously 

Table 2  (continued)

Trait No./Population No of markers Type of Markers Chr/LG Methoda Envb References

Root fresh weight 184 RILs 
(E36-1 × SPV70)

104 EST-SSR, SSR, 
SNP

4 LM DS (Fakrudin et al. 
2013)

Shoot dry weight 141 RILs (B923296 and 
SC170-6-8) and 44 
diverse inbred lines

337 DArT 1, 5 LM – (Mace et al. 2012)

Root to shoot ratio 141 RILs (B923296 and 
SC170-6-8) and 44 
diverse inbred lines

104 EST-SSR, SSR, 
SNP

10 LM DS (Fakrudin et al. 
2013)

Root length (cm) 184 F8 RILs 
(E36-1 × SPV70)

104 EST-SSR, SSR, 
SNP

4 LM DS (Fakrudin et al. 
2013)

Root volume 184 RILs 
(E36-1 × SPV70)

104 EST-SSR, SSR, 
SNP

1, 4 LM DS (Fakrudin et al. 
2013)

Number of roots/
plant

184 RILs 
(E36-1 × SPV70)

104 EST-SSR, SSR, 
SNP

10 LM DS (Fakrudin et al. 
2013)

Crown root angle, 
mature

28,107 RILs (Early 
HegariSart and BK7)

6128 SNP 3 LM DS (Lopez et al. 2017)

Nodes with brace 
roots

611 RILs (Sansui and 
Jiliang)

109 SSR 6, 7 LM DS (Li et al. 2014)

QL39 = Drought susceptible but midge-resistant line; QL41 = Stay green drought tolerant derived from the cross QL33/B35; Tx436 = Food 
grain type; 00MN7645 = drought tolerant; M35-1 = Drought susceptible; B923296 = narrow nodal root angle nodal; SC170-6–8 = wide nodal 
root angle; E36-1 = high yielding line from guinea-caudatum hybrid race with Ethiopian origin, well adapted to tropical environment and has 
thin and short roots; SPV570 = Good grain and fodder quality, a promising restorer line on Milo cytoplasm and has the thick and long roots. 
TX7078 = Pre-flowering-tolerant, post-flowering susceptible; B35 = Pre-flowering susceptible, post-flowering-tolerant, Tx430 = high yielding, 
susceptible to post flowering drought stress; RT37000 = Senescent; T7000 = pre-flowering-tolerant, post-flowering susceptible and high yield-
ing, sensitive to lodging; SC56 = Caudatum-nigricans from Sudan, is a post-flowering drought-tolerant (stay green) and lodging-tolerant line, 
but susceptible to pre-flowering drought stress. E36-1, the source for the stay-green trait is a high-yielding breeding line assigned to the guinea-
caudatum hybrid race with Ethiopian origin. Line IS9830 is a tall Sudanese feterita belonging to the caudatum race. Line N13 from India is a 
durra sorghum
a LM = Linkage mapping, GWAS = Genome-wide association study
b Env = Environment, DS = Drought stress, RF = Rainfed
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identified as stay-green QTL (Subudhi et al. 2000; Xu et al. 
2000). Furthermore, a comparative transcriptome study on 
sorghum genotypes with contrasting WUE in response to 
drought revealed higher number of differentially expressed 
genes (in “response to stress” and “abiotic stimulus”, as well 
as for “oxidation–reduction reaction) in the sensitive geno-
type (Fracasso et al. 2016). The transcriptome analysis on 
sorghum seedlings exposed to drought stress for 1 h (early) 
and 6 h (late) identified early and the late responsive genes 
for drought tolerance, as well as genes expressed only in 
drought-tolerant genotypes (Abdel-Ghany et al. 2020). Two 
ethylene-responsive transcription factor (ERF) genes were 
upregulated under mild and severe drought stress conditions 
and down-regulated under re-watering treatment (Zhang 
et al. 2019a).

Transcripts encoding for the mitochondrial Transcrip-
tion tERmination Factor (mTERF) family, anion-transport-
ing ATPase family proteins and LEA, hydroxyproline-rich 
glycoprotein family protein were highly up-regulated under 
mild stress whereas proteins with putative homology to 
ABscisic acid- Insensitive 2 (ABI2) and mannosyltransferase 
were among the most highly elevated during severe drought 
stress (Devnarain et al. 2019). Moreover, major transcription 
factors including heat stress transcription factor (HSF), eth-
ylene-responsive transcription factor (ERF), Petunia NAM, 
Arabidopsis ATAF1/2 and CUC2 (NAC), WRKY transcrip-
tion factor (WRKY), homeodomain leucine zipper transcrip-
tion factor (HD-ZIP) were highly upregulated under drought 
stress conditions (Varoquaux et al. 2019). Genes encoding 
for heat shock protein (HSPs), LEAs, chaperones, aquapor-
ins, and expansins might play important roles in sorghum 
drought tolerance (Varoquaux et al. 2019). Upregulation of 
the above-mentioned genes under drought stress indicates 
their potential role in drought tolerance. These genes could 
be important targets for improvement of drought tolerance 
in sorghum and other cereals.

APETALA2-Ethylene Responsive Factors (AP2-ERFs) 
are plant-specific transcriptional regulators characterized by 
one or more DNA binding AP2/ERF domains. AP2/ERFBP 
TFs perform diverse roles in plant biological processes, such 
as cell proliferation, vegetative and reproductive develop-
ment, plant hormone and abiotic/biotic stress responses 
(Sharoni et al. 2011; Xu et al. 2011). A genome-wide analy-
sis of the ERF gene family in sorghum, identified 105 sor-
ghum ERF (SbERF) genes (Nakano et al. 2006). In another 
study, 158 ERF genes with 52 of them encoding DREB 
while 106 code for ERF subfamily proteins were reported 
in sorghum (Mathur et al. 2020). Genes encoding DREBs, 
AP2/ERF and MYB transcription factors (TFs) are amongst 
the early response genes in sorghum when plants are stressed 
under PEG (Abdel-Ghany et al. 2020). The DREB1A tran-
scription factor gene was also expressed at higher levels in a 
stay green sorghum line (Johnson et al. 2015). Interestingly, 

sorghum DREB2 expression in rice improved both toler-
ance and yield under drought stress (Bihani et al. 2011). In 
response to severe stress, WRKY transcription factor gene 
was highly over-expressed in sorghum (Devnarain et al. 
2016) and these transcription factors were largely inhibited 
at pre-flowering stress, but less so to post-flowering drought 
stress in sorghum root samples (Varoquaux et al. 2019).

Proteome response to drought stress 
in sorghum

Genes are better characterized by proteins they encode that 
directly recognize relevant stresses, activate signaling trans-
duction, and regulate the expression and translocation of the 
proteins required for responding to the stresses. Proteomics 
studies are therefore crucial to understand plant response and 
identify key proteins that determine the outcomes of plant 
response to particular stresses. As such, proteomics studies 
have received increasing attention to deepen our understand-
ing at molecular-level with regard to sorghum response to 
drought stress (Ngara et al. 2021). The proteomic analysis 
of drought tolerant (El9) and sensitive sorghum genotypes 
exposed to drought stress identified proteins only expressed 
in drought-tolerant genotype, such as HSPs, GrpE protein 
homolog and Glycine-rich RNA-binding protein (GR-RBP) 
(Fadoul et  al. 2018). HSP is regulated by stress induc-
ible protein called GrpE protein, and its expression under 
drought stress conditions were reported in different crops 
(Sato and Yokoya 2008; Kim et al. 2015; Piveta et al. 2021). 
Under drought stress, GR-RBP was reported to involve in the 
regulation of ABA and stress responses and also play a role 
in RNA transcription (Kim et al. 2010). In another study, 
multiple HPSs and dehydrins were significantly upregulated 
in pre-flowering drought tolerant (RTx430) and sensitive 
(BTx642) sorghum genotypes grown under drought stressed 
field conditions (Ogden et al. 2020). The chloroplastic form 
of HSP 60 and disulfide isomerase were also upregulated in 
drought-tolerant genotype after 24 h of recovery following 
exposure to drought stress (Jedmowski et al. 2014).

The protein profile of organelles and cytosolic response 
for drought stress were different and the drought response 
of organelles may be more genotype-specific compared to 
that of cytosol. A study by Ogden et al. (2020) showed that 
organelle-localized proteins such as proteins associated 
with ABA metabolism and signal transduction, Rubisco 
activation, reactive oxygen species scavenging, flowering 
time regulation, and epicuticular wax production were only 
upregulated in the drought-tolerant genotypes. The protein 
profiles of cytosolic and organelle-enriched cellular com-
partments in sorghum genotypes with regard to the plants’ 
response to drought stress have not been well studied. Such 
studies can definitely generate interesting information on 
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the mechanism of drought tolerance in sorghum and other 
crops. ABA is a well-characterized stress hormone typically 
synthesized de novo in response to drought (Roychoudhury 
et al. 2013; Sah et al. 2016).

Root proteomic profiles of two sorghum genotypes 
responding to water stress showed that both genotypes 
raised the expression level of thioredoxins, peroxidases, glu-
tathione-s-transferase and germins, which are vital in reac-
tive oxygen species (ROS) metabolism. Eleven transcrip-
tion-related proteins (six histone proteins and three nascent 
polypeptide-associated complex (NAC) subunit beta proteins 
were expressed in root proteome of only drought-tolerant 
genotype in response to water deficit condition (Goche 
et al. 2020). NAC is one of the most important TF fami-
lies involved in plant senescence and response to drought 
stress (Guo et al. 2004; Tran et al. 2004; Wu et al. 2016) and 
other biotic and abiotic stresses (Fujita et al. 2004). Expres-
sion analysis of NAC transcription factors gene family in 
sorghum identified 13 proteins involved in drought stress 
tolerance at the post-flowering stage in sorghum (Sanjari 
et al. 2019) suggesting their involvement in plant response 
to drought stress. Hence, studies in sorghum that involve 
their overexpression and functional characterization could 
shed more light on the role of NAC genes in plant response 
to drought stress. The proteomic analyses of drought stress 
response in sorghum root at the seedling stage, revealed that 
proteins associated with changes in energy usage; osmotic 
adjustment; ROS scavenging; and protein synthesis, pro-
cessing, and proteolysis play important roles in maintaining 
root growth under drought stress (Li et al. 2020). Ribulose 
Bisphosphate Carboxylase (RuBisCo), Oxygen-evolving 
enhancer protein, Acidic endochitinase, a defense- and 
immunity-related proteins were upregulated in the sorghum 
Btx642 leaf tissue under post-flowering drought stress 
(Woldesemayat et al. 2018) suggesting their involvement in 
the plant response to drought stress.

Rubisco is a vital photosynthetic enzyme responsible 
for  CO2 fixation (Fernie and Bauwe 2020). If the rubisco 
catalytic activity is ineffective, the photosynthesis capacity 
of a plant become limited (Galmés et al. 2019). The trans-
fer of sorghum small subunit Rubisco (RbcS) considerably 
boosted catalytic rate of Rubisco in transgenic rice (Ishikawa 
et al. 2011). The higher photosynthetic rate under elevated 
 CO2 conditions in rice were observed in the overexpression 
of RbcS sorghum and knocked-out rice RbcS by CRISPR/
Cas9 system (Matsumura et al. 2020). Sorghum Rubisco has 
a considerably higher catalytic rate and comparatively high 
amino acid sequence identity to that of rice (Fukayama et al. 
2019). Given the results of these studies, sorghum may serve 
as a novel source of proteins that boost photosynthetic effi-
ciency and increase crop yield under forthcoming elevated 
 CO2 levels due to its high activity-type Rubisco. Sufficient 
information is not yet available on sorghum genetic variation 

in terms of catalytic rate of rubisco. Hence, identification of 
sorghum genotypes that differ in their rubisco catalytic rates 
followed by their genetic analyses is important for deeper 
understanding of sorghum rubisco in relation to that of other 
crops. In addition, overexpression of sorghum rubisco genes 
in other crops could prove helpful in coping with drought 
stress and improving productivity.

Combined effects of drought stress 
and other major biotic and abiotic factors 
on plant growth and development

Drought interaction with other abiotic stresses

Multitude of stress factors, which may aggravate the effects 
of drought-induced stress or enhance plant tolerance, con-
tinuously challenge plants growing under natural condi-
tions. Several abiotic stresses such as nutrient deficiency, 
aluminum toxicity, water logging, salinity, and low and high 
temperature stresses (Tari et al. 2013) are known to nega-
tively affect sorghum grain yield and quality. Understanding 
the effects of these stresses occurring concomitantly with 
drought stress is crucial to optimize management strategies, 
induce drought stress tolerance, and accelerate sorghum 
breeding for enhancing tolerance to these stresses.

It has been shown that elevated  CO2 concentration 
reduced stomatal conductance that allows maintained whole-
plant metabolism and enhanced grain protein content in 
drought stressed sorghum (De Souza et al. 2015). This indi-
cates that sorghum is a resilient crop that can maintain its 
importance as a food security crop for subsistence farmers in 
the face of climate change. However, only two levels of  CO2 
concentrations were used and the study was not conducted 
across contrasting environments to address the variation due 
to other environmental factors that might have affected the 
interactions between drought and heat stresses. Evaluation of 
drought and heat stresses imposed at different growth stages 
of sorghum affects ethanol production (Ananda et al. 2011). 
Similarly, Impa et al. (2019) studied the effects of drought 
and heat stresses separately and showed that both affect sor-
ghum yield and nutritional quality. Although drought and 
heat are prominent stresses in sorghum production, in the 
studies by Impa et al. (2019) and Ananda et al. (2011), the 
sorghum genotypes were grown at two environments that 
received either drought or heat stress, and thus it is not pos-
sible to make inferences about the interactions between the 
two stresses.

Simultaneous application of drought and heat stresses 
reduced soil water content (SWC), leaf relative water content 
(RWC), leaf water potential (Ψ), and leaf osmotic potential 
(π) in sorghum (Machado and Paulsen 2001). The co-occur-
rence of these stresses may have a greater negative impact 
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on the plants as compared to their separate effects. Both 
drought and heat stresses affect functional biochemistry and 
reduce grain yield and nutritional quality of several crops 
including sorghum (Sehgal et al. 2018). A study by Hattori 
et al. (2005) showed that application of silicon enhanced 
root growth, maintained photosynthetic rate and stomatal 
conductance in sorghum cultivars grown under drought 
stress conditions, with varying level of drought tolerance. 
This indicates that soil silicon amendments can minimize 
the effects of drought on plant growth and development. 
Drought stress during post-flowering stage increased sus-
ceptibility to charcoal rot and water lodging, as reviewed in 
Burke et al. (2018). The severity of stalk and charcoal rot 
disease in sorghum plants was lower under drought stress 
conditions when compared with the case in well-irrigated 
plants (Kapanigowda et al. 2013). These results suggest that 
interaction between drought and other abiotic stresses is 
complex, particularly under natural conditions as it involves 
several factors. However, the presence of sorghum genotypes 
that are tolerant to drought and other abiotic stresses (Burke 
et al. 2018) indicates the possibility of developing cultivars 
combining these important traits.

Microbes‑induced drought stress tolerance 
in sorghum

Domestication of crops has led to the loss of genetic diver-
sity in plants and the microorganisms associated with them 
(Perez-Jaramillo et al. 2016). Many studies have demon-
strated that microorganisms found in nature can improve 
plant health, disease resistance, tolerance to abiotic stresses 
and increase yields (Trivedi et al. 2020). Moreover, it is also 
shown that the plant genotypes determine microbiomes to 
be recruited (Wagner et al. 2016). The interplay of a specific 
plant genotype with its microbiome is fundamental for their 
fitness by buffering environmental constraints. However, 
current sorghum genotypes and varieties may not have been 
developed for utilizing the beneficial impact of microorgan-
isms found in nature. There is thus a tremendous potential 
of microbes to explore for inducing drought tolerance for 
sorghum cultivation. Studies by Carlson et al. (2020) have 
demonstrated that the addition of rhizobacteria to sorghum 
seedlings induced systemic tolerance to drought by the early 
activation of signaling hormones such as brassinolides, sali-
cylic acid and jasmonic acid. This study also hinted about 
the possibility of bacterial ACC deaminase lowering plant 
ethylene levels through cleaving ACC into α-ketobutyrate 
and ammonia and promoting plant growth under adverse 
conditions. Therefore, modulation of the sorghum microbi-
ome can be one strategy for overcoming drought stress. As 
a first step before microbiome manipulation, it is essential 
to understand the sorghum-associated microbiomes under 
different stresses. Xu et al. (2018) observed the increased 

presence of monoderm bacteria with a thick cell wall that 
lacks an outer cell membrane and positively influences plant 
growth in drought-stressed sorghum. The possible expla-
nation for the increased abundance of monoderm bacteria 
microbiome in drought-stressed sorghum was the exudation 
of a specific plant metabolite, glycerol-3-phosphate (G3P), 
an essential precursor to peptidoglycan biosynthesis of 
monoderm bacteria. Furthermore, monoderm bacteria such 
as Actinobacteria were enriched in drought and heat stresses, 
affecting plant development positively, further stressing the 
importance of the microbiome in drought tolerance (Wipf 
et al. 2021). Furthermore, studies are needed to understand 
the role of fungal communities in drought tolerance in sor-
ghum and their interplay with bacterial communities. To 
harness the sorghum microbiomes for drought-resilient sor-
ghum production, it is vital to focus on longer-term experi-
ments under field conditions for an improved mechanistic 
understanding of the complex relationships between sor-
ghum and microbes during drought conditions.

Conclusion and future work

Drought is a key limiting factor in major sorghum grow-
ing areas, which substantially reduces the productivity and 
hence production of the crop. In the face of climate change 
and decreasing water availability, the effects of drought 
stress imposed at different growth and developmental 
stages on grain yield and quality of sorghum are well 
established. Although drought stress spanning across sev-
eral plant developmental stages is a common occurrence in 
major sorghum growing areas, most studies have focused 
only on the effect of drought stress that occur during spe-
cific plant growth stages. Hence, in order to gain a more 
definitive understanding of the overall effect of drought 
on sorghum and the characteristics of plant responses 
to drought, it is imperative to conduct well-planned and 
detailed studies that cover the entire plant growth and 
development stages. Overall, developing drought-tolerant 
cultivars that suit a range of agro-climatic conditions, 
especially in the arid and semi-arid regions, is crucial to 
avert the negative impacts of drought stress. In this regard, 
the identification of sorghum genotypes with strong toler-
ance to drought stress is the first step towards the develop-
ment of drought-tolerant cultivars bearing various desir-
able characteristics. However, identification of acceptable 
drought-tolerant genotypes requires well-planned studies 
that represent spatiotemporal patterns, variable intensity 
and duration of drought stress during crop growing sea-
son, and variation in edaphic conditions across major sor-
ghum growing areas. Dissecting molecular mechanisms 
of drought tolerance using genetics, genomics, proteomics 
and metabolomics studies would lead to the identification 
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of molecular signatures that can be targeted for improv-
ing the drought tolerance of desirable sorghum germplasm 
using molecular breeding techniques.
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