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Forest information is requested at many levels and for many purposes. Sampling-
based national forest inventories (NFIs) can provide reliable estimates on national and
regional levels. By combining expensive field plot data with different sources of remotely
sensed information, from airplanes and/or satellite platforms, the precision in estimators
of forest variables can be improved. This paper focuses on the design-based model-
assisted approach to using NFI data together with remotely sensed data to estimate
forest variables for small areas, where the variables studied are total growing stock
volume, volume of Norway spruce (Picea abies), and volume of broad-leaved trees.
Remote sensing variables may be highly correlated with one another and some may
have poor predictive ability for target forest variables, and therefore model selection
and/or coefficient shrinkage may be appropriate to improve the efficiency of model-
assisted estimators of forest variables. For this purpose, one can use modern shrinkage
estimators based on lasso, ridge, and elastic net regression methods. In a simulation
study using real NFI data, Sentinel 2 remote-sensing data, and a national airborne laser
scanning (ALS) campaign, we show that shrinkage estimators offer advantages over
the (weighted) ordinary least-squares (OLS) estimator in a model-assisted setting. For
example, for a sample size n of about 900 and with 72 auxiliary variables, the RMSE was
up to 41% larger when based on OLS. We propose a data-driven method for finding
suitable transformations of auxiliary variables, and show that it can improve estimators
of forest variables. For example, when estimating volume of Norway spruce, using a
smaller expert selection of auxiliary variables, transformations reduced the RMSE by
up to 10%. The overall best results in terms of RMSE were obtained using shrinkage
estimators and a larger set of 72 auxiliary variables. However, for this larger set of
variables, the use of transformations yielded at most small improvements of RMSE,
and at worst large increases of RMSE, except in combination with ridge and elastic
net regression.

Keywords: model-assisted estimation, generalized regression estimators, data-driven transformations, lasso,
ridge, elastic net, forest inventory, remote sensing
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INTRODUCTION

Information about forests is needed for many purposes and at
various geographical levels. Large area sampling-based national
forest inventories (NFIs) provide reliable estimates of mean
values or totals on a national and regional level (Tomppo et al.,
2011; Fridman et al., 2014). These estimates are used, for example,
to form national forest policies, sustainability assessment, and
reporting to international conventions. However, terrestrial
inventory systems such as NFIs are typically designed to provide
reliable estimates on a national and regional scale and may not
provide sufficiently precise estimates for small areas without
including auxiliary information, for example remote sensing data
(McRoberts et al., 2014).

The availability of airborne laser scanning (ALS) data, and
spectral data from Sentinel 2 and Landsat 8 satellites that are
freely available, offers new possibilities for NFIs to produce more
precise statistical estimates than by using field data alone. In
order to utilize the full potential of auxiliary remote sensing
data for statistical estimates, comprehensive remote sensing
data can be combined with sample-based field measurements
utilizing sampling theory (Gregoire et al., 2011). An important
category of sample-based estimators that can be used for this
purpose are known as design-based model-assisted estimators
(Särndal et al., 1992). Such estimators use models and auxiliary
data to improve the efficiency, while maintaining design-based
properties of asymptotic design-unbiasedness and consistency
(Breidt and Opsomer, 2016). Thus, model-assisted estimators
are asymptotically design-unbiased irrespective of whether the
assigned model is correct or not, where design-unbiasedness
means that the estimator is unbiased over repeated sampling of
field data. In contrast, model-based estimators, which do not
utilize the sampling design for the inference, do not share these
desirable properties (Kangas et al., 2016; Ståhl et al., 2016). When
models are correctly assigned, model-based estimators can be
very efficient, but model misspecifications easily result in severely
biased estimators (Chambers et al., 2006).

The range of prediction techniques that can be used in a
model-assisted estimator has dramatically increased during the
last couple of decades. The main reason for this is the rapid
development in the field of statistical learning and its very close
cousin machine learning (Hastie et al., 2009, 2015; Berk, 2016).
Breidt and Opsomer (2016) provide a review of such techniques
in a model-assisted context. With a machine learning or statistical
learning perspective, model-assisted methods are judged on their
ability to produce precise estimates rather than on their ability to
build interpretable models (McConville et al., 2020).

The model-assisted framework has gained an increasing
popularity in forest inventory, and various prediction techniques
have been utilized within this framework. Breidt et al. (2005)
considered penalized spline regression together with auxiliary
information such as GIS data. Opsomer et al. (2007) applied
generalized additive models (GAMs), using three sources of
auxiliary data, digital elevation models, Landsat TM imagery,
and spatial coordinates. Baffetta et al. (2009, 2010) developed
an estimator using k-nearest neighbor regression, and used
Landsat 7 ETM+ imagery as auxiliary data. Chirici et al. (2016)

compared the performance of k-nearest neighbor regression
with linear regression, using auxiliary ALS based metrics.
Kangas et al. (2016) considered three different predictions
techniques, linear regression (where no transformations were
carried out to linearize the relationship), GAM regression,
and kernel regression, and used ALS data as auxiliary data.
Moser et al. (2017) used non-linear regression and auxiliary
ALS data, and explored variable selection techniques based on
genetic algorithms and random forests. McConville et al. (2017)
considered various lasso regression methods, using auxiliary
variables from a national land cover database and Landsat 5
TM imagery, and comparisons were made with other predictions
techniques such as linear regression and ridge regression. Further
studies on lasso regression and its close cousins ridge regression
and elastic net regression were made in McConville et al.
(2020), using auxiliary data from Landsat imagery, forest maps,
and a digital elevation model, and comparisons were made
with standard prediction techniques, including linear regression
(for continuous target variables) and logistic regression (for
categorical target variables).

Remote sensing data or data that originates from remotely
sensed data are used as auxiliary data in many forest inventory
applications. This often means that the auxiliary data are known
for the entire finite population under consideration, and that the
number of potential auxiliary variables is large. As in Moser et al.
(2017), methods for variable selection can be used for selecting
a “best” set of auxiliary variables. Ridge, lasso, and elastic net
regression shrink coefficient estimates toward zero, relative to
least-squares estimates in a standard multiple linear regression.
In the case of lasso and elastic net, coefficient estimates can be
forced to be exactly zero. Consequently, these methods can also
perform variable selection.

In this paper, we consider ridge, lasso, and elastic net
regression in a model-assisted framework. Since the relationship
between the target variable y and an auxiliary variable x can
be non-linear, transformations of x may be needed. The key
step is the identification of an appropriate transformation. In
many applications, the form of transformation is suggested by
prior experience. Unfortunately, in many cases, prior knowledge
or theory may not suggest a suitable transformation to be
used. In such situations, it would be convenient to determine
the transformation adaptively, using a data-driven method for
selecting appropriate transformations. This is especially useful
when the number of auxiliary variables is large. For this reason,
we suggest and investigate the performance of a data-driven
method for finding suitable transformations in a model-assisted
framework, where the method used is based on fractional
polynomials (Royston and Altman, 1994).

The objective of this study was to evaluate ridge, lasso, and
elastic net regression for prediction of volume per hectare of
total growing stock, Norway spruce (Picea abies), and broad-
leaved trees in a model-assisted setting, with or without data-
driven transformations of auxiliary variables. The evaluation
includes comparisons with the most well-known model-assisted
estimator, the generalized regression estimator based on a
multiple regression model, and is based on Monte Carlo
simulations using real data, from the Swedish NFI, Sentinel-2,
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FIGURE 1 | Test area (A), scanner brand (B), and scanning season (C). Three of the strata used in the Swedish NFI are shown in (A) (strata 3, 4, and 5). These
strata roughly correspond to the vegetation zones: (3) southern-middle boreal; (4) mainly hemiboreal; and (5) temperate. Copyright Lantmäteriet.

and a national laser scanning campaign. Also, an expert’s a priori
selection of a smaller set of auxiliary variables is compared to
using a full set of variables. The influence of outliers is discussed.

MATERIALS AND METHODS

Data
Test Area
In this study, we used a combination of data from a national
ALS campaign, Sentinel 2, and the Swedish NFI to estimate
volume per hectare of total growing stock, Norway spruce,
and broad-leaved trees. Our test area is in southern Sweden
and covers an area of approximately 6.0 million ha for which
Sentinel 2 images and Leica ALS data registered during leaf-
off conditions were available (Figure 1). The test area was
restricted to areas mapped as land in the Swedish National
Land Cover Database (NMD; Naturvårdsverket, 2020), except
buildings (class 51 in NMD). Coniferous forest dominates the
landscape within the test area, and the proportion of tree
species are 28, 47, and 25% for Scots pine (Pinus sylvestris),
Norway spruce (Picea abies), and broad-leaved trees, respectively,
according to the Swedish NFI.

National Forest Inventory Data
The Swedish NFI provides information about forests for regional,
national and international policy, planning, and reporting
(Fridman et al., 2014). It has been operating since 1923 and
at present more than 200 variables are recorded. The NFI
covers all forests in Sweden (55–69◦N) and the design includes
both geographical stratification and clustering of sample plots
into square-formed tracts with a side length that varies from
300 to 1,800 m among regions. There are two independent
samples, one permanent and one temporary, where trees are
measured on concentric sample plots with different radii

depending on tree diameter at breast height (Fridman et al.,
2014). On both temporary and permanent plots, trees with a
diameter less than 4 cm are measured on two 1 m radius
plots, and trees with a diameter between 4 and 10 cm are
measured on a 3.5 m radius plot (Figure 2). If the diameter
is 10 cm or more, the trees are measured on plots with
7 m or 10 m radius for temporary and permanent plots,
respectively. Sample plots located on boundaries between forest
stands or different land use classes are split and each part is
described separately.

The NFI began positioning sample plots using GPS receivers
in 1996. As of 2021, Garmin GPSMAP 64 receivers are used
for the positioning that give a horizontal positional accuracy of
approximately 5–10 m.

FIGURE 2 | Sample plot design used in the Swedish NFI.
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In this study, we used NFI data from 2012 to 2016. Split plots
were merged and volume per ha of total growing stock, Norway
spruce, and broad-leaved trees were calculated for the merged
plots (the rest of the growing stock volume was mainly Scots
pine). In total, there were 9008 NFI plots within the test area,
located in three different geographic strata (Table 1).

Airborne Laser Scanning Data
The first national ALS campaign in Sweden started in 2009 and
ended in 2019. During the campaign, the National Mapping
Agency (Lantmäteriet) collected data from flying heights between
1,700 and 2,300 m and with a point density of 0.5–1.0 pulses/m2.
A maximum scanning angle of 20◦ from nadir with a 20% overlap
between adjacent scanning strips was used. For practical reasons,
the campaign was divided into 397 blocks with a normal size
of 25 km by 50 km. A block was always scanned using one
scanner, but the scanner used varied between blocks. In total, 13
different scanners from Leica, Optech, Riegl and Trimble were
used. As mentioned above, the study was restricted to areas where
ALS data had been acquired with Leica scanners during leaf-off
conditions (Figure 1A). All blocks within the test area were laser
scanned between 2009 and 2013.

A national DEM (2 m × 2 m grid cell size), derived from
the national ALS dataset by the National Mapping Agency, was
used to calculate height above ground (normalized height) for all
returns. A set of ALS metrics were calculated for each NFI plot
using CloudMetrics (McGaughey, 2020) and used together with
Sentinel 2 spectral data as auxiliary variables (Table 2).

Satellite Data
A mosaic of Sentinel-2 data from 2015 to 2017 with top-of-the-
atmosphere (TOA) reflectance from bands 4, 5, 7, 8, 8a, 11, and
12 were used. About 95% of the test area was covered by images
registered on May 27 and July 6, 2017 (Table 3). Additional
images from 2015 to 2016 were used to cover the remaining parts
of the test area, resulting in an almost cloud free mosaic. All image
bands were resampled to 12.5 × 12.5 m pixel size and spectral
data from all seven bands were extracted for the NFI plots using
nearest neighbor interpolation. Sentinel-2 data were missing for
208 of the 9008 NFI plots due to clouds or cloud shadows. For
these plots, spectral values were imputed based on all ALS metrics
(Table 2), the sum of all daily mean temperature values exceeding
5◦ C◦ (Tsum), altitude, and plot coordinates (x and y) using

TABLE 1 | Mean volume per hectare of total growing stock, Norway spruce, and
broad-leaved trees, and number of plots by stratum.

Volume (m3/ha)

Stratum All species Norway
spruce

Broad-leaved
trees

No. plots

3 131 (143) 63 (115) 20 (41) 819

4 114 (140) 52 (98) 24 (61) 5,692

5 110 (148) 51 (114) 45 (96) 2,497

Total 114 (142) 52 (105) 29 (71) 9,008

Standard deviations are given within parentheses.

TABLE 2 | Auxiliary variables used in the study.

Variable Description

x, y Plot coordinates in SWEREF 99 TM

Altitude Height above sea level (m)

TSUM Sum of all daily mean temperature values exceeding 5 C

N Total number of laser returns

N150 Total number of laser returns above 1.5 m

Nmean Total number of laser returns above mean

Nmode Total number of laser returns above mode

NFirst Total number of first laser returns

NFirst,150 Total number of first laser returns above 1.5 m

NFirst,mean Total number of first laser returns above mean

NFirst,mode Total number of first laser returns above mode

ReturnCounti Number of first, second, . . ., fifth laser returns above 1.5 m

Min, Max,
Mean, Mode

Min, max, mean and mode for all laser returns above 1.5 m

Stddeva, CV,
IQ, Skewness,
Kurtosis

Standard deviation, coefficient of variation (CV), interquartile
distance, skewness and kurtosis for all laser returns above
1.5 m

Pi The ith height percentile for laser returns above 1.5 m, i= 1,
5, 10, 20, . . ., 90a, 95b, 99

CRR Canopy relief ratio [(Mean–Min)/(Max–Min)]

QMean, CMean Quadratic mean and cubic mean for all laser returns above
1.5 m

Propb Proportion of all laser returns above 1.5 m

PropMean Proportion of all laser returns above mean

PropMode Proportion of all laser returns above mode

PropFirst Proportion of first laser returns above 1.5 m

PropFirst,Mean Proportion of first laser returns above mean

PropFirst,Mode Proportion of first laser returns above mode

PropAll Number of returns above 1.5 m/number of first returns *
100

PropAll,Mean Number of returns above mean/number of first returns *
100

PropAll,Mode Number of returns above mode/number of first returns *
100

AAD Average of the absolute deviations of laser returns from the
overall mean.

MADMedian Median of the absolute deviations of laser returns from the
overall median

MADMode Median of the absolute deviations of laser returns from the
overall mode

L1, L2, L3, L4 L-moments (Hosking, 1990)

LCV , Lskewness,
Lkur tosis

L-moment ratios corresponding to coefficient of variation,
skewness, and kurtosis

P90Vra The 90th height percentile * Prop. of all returns above 1.5 m

Bandi
b Sentinel 2, band i, i= 4, 5, 7, 8, 8a, 11, and 12

a Included in the expert’s selection of auxiliary variables for estimation of volume of
all tree species.
b Included in the expert’s selection of auxiliary variables for estimation volume of
Spruce and volume of broad-leaved trees.

the knnImputation function (k = 3) in the R package DMwR
(Torgo, 2010).

Final Auxiliary Data
Three different datasets were defined from the variables in
Table 2. The first dataset consisted of all 72 variables in the table
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TABLE 3 | Registration dates for Sentinel-2 images used in the study and the area
covered at each registration date.

Registration date Area cover in image mosaic, ha

August 19, 2015 20,600

June 14, 2016 167,600

July 21, 2016 23,800

May 23, 2017 37,200

May 27, 2017 3,947,100

July 6, 2017 1,736,500

August 11, 2017 22,500

and will be referred to as “all available auxiliary variables.” The
two other datasets were subsets of the variables in Table 2, and
will be referred to as “expert’s selections of auxiliary variables.”
The first subset was used to estimate total growing stock volume
and included 90th (P90) ALS height percentile for all laser returns
above 1.5 m, proportion of all laser returns above 1.5 m multiplied
by P90 (P90Prop), and standard deviation for all laser returns
above 1.5 m (Stddev). These variables were chosen because
they previously were used to predict the total growing stock
volume in the production of a nationwide raster database of
forest variables using data from the first national ALS campaign
(Nilsson et al., 2017). The second subset was used to estimate
volume for Norway spruce and broad-leaved trees and included
95th height percentile for all laser returns above 1.5 m (P95), the
proportion of all laser returns above 1.5 m (Prop), and Sentinel-
2 bands 4, 5, 7, 8, 8a, 11, and 12. The metrics were selected
based on experiences from an ongoing project with the aim to
predict standing volume by tree species from a combination of
ALS metrics and Sentinel 2 data.

A correlation matrix was calculated for the 72 auxiliary
variables in Table 2, containing 2556 unique correlation
coefficients. The absolute values of these were larger than 0.5 in
1209 cases. In 212 cases they were larger than 0.9, and in 39
cases larger than 0.99. The largest absolute correlation coefficient
between growing stock volume and an auxiliary variable was 0.75.
For volume of Norway spruce and volume of broad-leaved trees,
the corresponding values were 0.55 and 0.35, respectively.

Methods
To construct estimators of forest variables, the area of interest
was tessellated into a finite number of population units, labeled
by {1, 2, ...,N}, where the set was denoted by U. In our setting,
a square tessellation was used, given by the 12.5 × 12.5 m
raster cells in the wall-to-wall auxiliary data. The objective was
to estimate the population mean, Y = N−1 ∑

i∈U yi, where yi
denotes value of the target forest variable for the ith unit.

A sample s of units is selected with a view to obtain
information about the whole population. In large-area surveys
like NFIs and vegetation monitoring programs, samples are
usually taken using complex probability sampling designs that
include, for example, geographical stratification (Ekström et al.,
2018). In these designs, each population unit i typically has a
non-zero probability πi of getting included in the sample.

Design-based estimators incorporate sample design
characteristics into their formulae, typically to achieve desirable
properties such as unbiasedness. The Horvitz and Thompson
(1952) estimator (HT) of the population mean, Y , incorporates
design information through inverse-probability weighting,

Ŷ =
1
N

∑
i∈s

yi
πi

. (1)

The HT is a design-unbiased estimator, which means that the
mean of the estimator, taken over all possible samples under the
sampling design, is equal to Y . The estimator of the variance of Ŷ
in (1), suggested by Horvitz and Thompson (1952), is

V̂ =
1
N2

∑
i∈s

∑
j∈s

πij − πiπj

πij

yi
πi

yj
πj

, (2)

where πij is the probability that both units i and j are included in
the sample s, and πii = πi for all i.

Model-Assisted Estimators
One possible approach to improving the efficiency of estimators
is to incorporate auxiliary information, and model-assisted
estimation is a form of design-based estimation that incorporates
both design information (through the inclusion probabilities
πi) and auxiliary information (through a model). Many super-
population models for this purpose can be written in the form

yi = µ (xi)+ εi, (3)

with random, zero-mean εi, and a vector of auxiliary variables
for unit i, xi = (1, xi1, ..., xip). The predictor function µ ( · ) is
typically unknown, but can be estimated using the sample data.
Denoting the estimated predictor by µ̂ ( · ), a general class of
model-assisted estimators of the population mean, known as
generalized regression estimators (GREG), can be defined as

Ŷ =
1
N

∑
i∈U

µ̂ (xi)+
1
N

∑
i∈s

yi − µ̂ (xi)
πi

. (4)

It should be noted that the estimator (4) depends on the
sampling design, the form of the model, and the method used
for estimating the predictor function µ ( · ). The estimator (4)
consists of two parts, the mean of the predicted values over the
population and the design bias adjustment consisting of inverse
probability-weighted “residuals” (yi − µ̂ (xi)). This adjustment
term protects against model misspecification, and makes the
estimator approximately design-unbiased for many commonly
used prediction methods (see, e.g., Breidt and Opsomer (2016)
and the references therein).

To estimate the variance for (4) we use a common variance
estimator approach based on (2) but replacing the “raw” yi values
with the “residuals” (yi − µ̂ (xi)) (cf. Breidt and Opsomer, 2016).
Provided that the residuals have smaller variation than the raw
values, we can expect GREG to have a smaller variance than HT.

Under a multiple linear regression model with µ (x) = xTβ,
the parameter vector β = (β0, β1, ..., βp) can be estimated using
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weighted least-squares. This approach gives the predictor µ̂ (x) =
xT β̂, where

β̂ = arg min
β

∑
i∈s

(
yi − xTi β

)2

πi
=

(∑
i∈s

xixTi
πi

)−1 ∑
i∈s

xiyi
πi

,

where arg min means the value of β which minimizes the sum
of design-weighted squared residuals. With µ̂ (xi) = xTi β̂ plugged
into (4), we refer to (4) as the regression estimator (REG).

For our analyses, β̂ is computed using the glm function in R
(R Core Team, 2020). If some auxiliary variables are perfectly or
nearly perfectly collinear, the glm function automatically excludes
at least one of them and sets the corresponding coefficients to NA
(not available). For this reason, we investigate the following two
variants for handling this problem:

(i) calculate pairwise correlations among the variables in the
sample and, among each pair of variables correlated above
a given threshold, exclude the variable least correlated with
the target variable;

(ii) if a coefficient is NA, then simply set it to 0.

If, for example, the second variant is used, we refer to (4) as
REGii. A benefit of the first variant is that it decreases the danger
of multicollinearity, but as argued in Vaughan and Berry (2005),
multicollinearity is “not quite as damning” when linear modeling
is used for prediction rather than explanation. That is, in case of
(severe) multicollinearity, coefficient estimates and their standard
errors can become (very) sensitive to small changes in the model,
but this usually has little effect on the prediction capability of the
model. However, if the fitted model is used to predict values for
new data, and the pattern of multicollinearity in the new data
differs from that in the data that was fitted, this may introduce
large errors in the predictions (Chatterjee et al., 2012).

Another possibility is to estimate the parameter vector β using
penalized weighted least squares. Elastic net regression (Zou and
Hastie, 2005; McConville et al., 2020), introduced as compromise
between lasso and ridge regression, is an approach that uses a
penalty. Here, the parameter vector is estimated by

β̂α = arg min
β

∑
i∈s

(
yi − xTi β

)2

πi
+ λ

p∑
j=1

{(1− α)β2
j + α|βj|}

,

(5)

where 0 ≤ α ≤ 1. When α = 0, elastic net regression becomes
ridge regression, and when α = 1 it becomes lasso regression.
Ridge regression tends to give similar coefficient values to
highly correlated auxiliary variables, whereas lasso regression
tend to give quite different coefficient values to highly correlated
variables. Unlike ridge regression, lasso regression performs
variable selection by forcing some of the coefficient estimates to
be exactly equal to zero (this happens if the “tuning parameter” λ

is sufficiently large). Elastic net regression, with α equal to a value
between 0 and 1, shrinks together the coefficients of correlated
auxiliary variables like ridge, and performs variable selection like
the lasso (Zou and Hastie, 2005). Thus, the α value in (5) is the
“mixing proportion” that toggles between a pure lasso penalty

(when α = 1) and a pure ridge penalty (α = 0). The parameter
λ controls the total amount of penalization. Both penalties
shrink the coefficient estimates toward zero, relative to the usual
(weighted) least-squares estimates, and the more so the larger
λ is. As λ increases, the shrinkage of the coefficient estimates
reduces the variance of the predictions, at the expense of an
increase in bias (James et al., 2021). Selecting a good value for
λ is therefore critical for finding a good balance between variance
and bias, and cross-validation is commonly used for this purpose.

With the estimator function µ̂ (xi) set to the generalized
penalized estimator xTi β̂α, we refer to (4) as RIDGE, ELNET,
and LASSO, for α = 0, 0.5, and 1, respectively. These three are
available through the R package mase (McConville et al., 2018),
which uses cross-validation to choose the tuning parameter λ. If
there are issues with multicollinearity, McConville et al. (2020)
recommend using RIDGE or ELNET rather than REG or LASSO.

In our study and for a given set of auxiliary variables, the
parameter vector β is estimated using all data from a sample s.
In Supplementary Material, results are presented also for the
case where outliers in the sample s are removed before β is
estimated. The identified outliers are those where field measured
tree height and the 95th height percentile in the ALS data
deviate more than 7 m.

Data-Driven Choices of Transformations
A model with µ (xi) = xTi β assumes a linear relationship between
the expected value of the target variable yi in (3) and each
auxiliary variable (when the other auxiliary variables are held
fixed). If linearity fails to hold, it is sometimes possible to
transform the auxiliary variables in the model to improve the
linearity. Examples of a non-linear transformation of variable
xij are the square root or the reciprocal of xij. Suitable
transformations can be found through studies of residual plots,
but this is tedious work when the number of variables is large.
For this reason, we investigate the performance of a data-driven
method for finding suitable transformations. The method is based
on fractional polynomials (FPs; Royston and Altman, 1994). FP
is an approach that uses a function selection procedure to check
whether a non-linear function fits the data significantly better
than a linear function. We use the level of significance 5% for
the function selection. To reduce the computational burden, the
function selection is done for one auxiliary variable at a time.

The class of FP functions is an extension of power
transformations of a variable, and in this study the attention is
restricted to FPs of the first degree. That is, the powers are selected
from the collection {−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3}, where
0 denotes the log transformation, using the sample data and the
fp and mfp functions in the R package mfp (Ambler and Banner,
2015). FPs are defined only for positive auxiliary variables, but
real data may contain non-positive observations. Therefore, at
population level, if non-positive values are encountered (or the
range of values of the auxiliary variables is unreasonably large),
the auxiliary variables are shifted (and rescaled). The method for
doing this is adopted from the mfp algorithm (Sauerbrei et al.,
2006; Sabanés Bové and Held, 2011).

In our study, outliers in the sample data are not used in
the selection procedure of transformations. Again, the identified
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outliers are those where field measured tree height and the 95th
height percentile in the ALS data deviate more than 7 meters. (In
Supplementary Material, results are presented also for the case
where transformations are selected based on all sample data).

Evaluation of the Estimators
The performances of estimators were compared using Monte
Carlo simulations. The population units were defined by the 9008
pixels that we matched with the corresponding plots given in
Table 1. Three strata were defined according to Table 1, and
Monte Carlo simulations were implemented with a stratified
simple random sampling design. With this design, a simple
random sample without replacement is drawn from each strata,
the drawings being made independently in different strata. In
comparison with the Swedish NFI, the main difference is that
we ignored that plots are grouped into tracts. The number of
sampled units in each stratum was proportional to the size of the
stratum. Two sample sizes were considered in the simulations,
n = 901 and n = 2703. In the former case, the sample sizes in
the three NFI strata within the study area (Figure 1A) were
82, 569, and 250, and in the latter case, 246, 1708, and 749,
respectively. For each forest variable to be estimated and for each
estimator considered, we used the same set of samples of size
n = 901 or n = 2703. In total, m = 10000 samples of each sample
size were drawn.

The estimators of the population mean were evaluated with
respect to root mean square error (RMSE), standard deviation
(SD; also commonly referred to as the standard error), and
bias, obtained with the m = 10000 repeated samples under the
aforementioned stratified simple random sampling design. With
Ŷ denoting an estimator of a population mean Y , and Ŷ i denoting
an estimate based on the ith sample, these quantities were
computed as

b̂ias(Ŷ) =
1
m

m∑
i=1

Ŷ i − true value,

ŜD(Ŷ) =

√√√√√ 1
m− 1

m∑
i=1

Ŷ i −
1
m

m∑
j=1

Ŷ j

2

,

and

R̂MSE(Ŷ) =

√
ŜD(Ŷ)

2
+ b̂ias(Ŷ)

2
.

For the ease of comparisons across variables, all values of bias, SD,
and RMSE are presented as percentages of Y . That is, as

b̂ias% = 100
b̂ias(Ŷ)

Y
, ŜD% = 100

ŜD(Ŷ)

Y
,

and R̂MSE% = 100
R̂MSE(Ŷ)

Y
.

Likewise, let V̂i denote an estimate of the variance of
Ŷ based on the ith sample. For example, in the case

of the HT estimator, V̂i is computed using formula (2).
Then

ŜD%, i = 100

√
V̂i

Y

is the value of an estimated standard deviation, using data
from the ith sample, and presented as a percentage of the
corresponding population mean. Let

ave
(
ŜD%,i

)
=

1
m

m∑
i=1

ŜD%,i,

where “ave′′ denotes average. If ave
(
ŜD%,i

)
is approximately

equal to ŜD%, then this suggests that the estimator of the standard
deviation of Ŷ is nearly unbiased.

For comparing the RMSE of one estimator (with auxiliary
variables in their original scale) to the RMSE of another estimator
(with power transformed auxiliary variables), the basic bootstrap
confidence interval (e.g., Davison and Hinkley, 1997) for their
difference is applied. Let Ŷ1,i and Ŷ2,i denote the two estimates
based on sample i, where the first is based on auxiliary variables
in the original scale while the other uses power transformed
auxiliary variables. A bootstrap sample

{
(Ŷ
∗

1,i,Ŷ
∗

2,i)
}m
i=1

is taken

as a random sample with replacement from
{
(Ŷ1,i,Ŷ2,i)

}m
i=1

.
Based on the bootstrap sample, bootstrap replicates of the
two estimated RMSEs are computed. Based on R = 9999 such
bootstrap replicates, a basic bootstrap 95% confidence interval for
the difference of the two RMSEs is computed using the boot.ci
function in the R package boot (Davison and Hinkley, 1997). In
these computations, all RMSEs are expressed as percentages of
the corresponding population means. A 95% confidence interval
that does not cover zero means that the use of power transformed
auxiliary variables significantly changes the efficiency of the
estimator at the 5% significance level. If the interval contains
only positive values, the conclusion is that the transformations
significantly improves the efficiency of the estimator at the
5% level. Thus, as in, for example, Samuels et al. (2012), if
we find significant evidence for a change, our conclusion can
be directional. Some authors prefer not to draw a directional
conclusion in these cases (Samuels et al., 2012).

RESULTS

The results for HT are presented in Table 4, i.e., the results for
the case where no auxiliary data were used in the estimation.
Since the HT estimator is unbiased, as expected, the values of
(estimated) bias in Table 4 were close to zero. In addition, and
also as expected, the values of ave

(
ŜD%, i

)
were all close to the

corresponding values of ŜD%, suggesting that the estimator of
the standard deviation of Ŷ [i.e., the square root of the variance
estimator (2)] is nearly unbiased.

When comparing the RMSEs in Table 4 with the RMSEs
in Table 5 for the various model-assisted estimators based on
an expert selection of auxiliary variables, notice that the use
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TABLE 4 | Monte Carlo results for the Horvitz and Thompson estimator (HT).

Forest variable b̂ias% ŜD% ave
(

ŜD%, i

)
R̂MSE%

(a) n = 2703

Volume (m3/ha) of total growing stock 0.020 2.017 2.002 2.017

Volume (m3/ha) of Norway spruce 0.011 3.223 3.206 3.223

Volume (m3/ha) of broad-leaved trees 0.037 3.904 3.863 3.904

(b) n = 901

Volume (m3/ha) of total growing stock 0.097 3.958 3.935 3.959

Volume (m3/ha) of Norway spruce 0.118 6.311 6.300 6.313

Volume (m3/ha) of broad-leaved trees 0.143 7.615 7.577 7.618

Estimated values of bias, SD, and RMSE (b̂ias%, ŜD%, and R̂MSE%) are given as
percentages of the corresponding population mean, and are based on m = 10000
stratified samples of size n = 2703 or 901 from the population. For each sample,
an estimate of standard deviation of the HT was computed, and ave

(
ŜD%, i

)
is the

average of these estimates.

of assisting models and auxiliary information improved the
efficiency of estimation. For volume of total growing stock,
the reduction in RMSE was larger than 40% for each model-
assisted estimator used and for both sample sizes considered.
Moreover, the confidence intervals in Table 5 show that the use
of data-driven choices of transformations of auxiliary variables
significantly improved the RMSEs of the estimators. However, the
improvements were quite small, except for Norway spruce, with
reductions of RMSE by 7.7–10.0%. The performances of REG,
LASSO, RIDGE, and ELNET were very similar.

The results when all 72 available auxiliary variables in Table 2
were used are shown in Table 6. For REGi and the larger sample
size, results are presented for the case where we excluded auxiliary
variables with correlations above thresholds ± 0.90 and ± 0.95.
When we tried± 0.99 as threshold, then for many of the samples
not all model coefficients could be estimated. For many samples
of the smaller size (n = 901), this was the case even if the
threshold was as low as ± 0.70. Therefore, no results for REGi

were presented for the smaller sample size.
For the larger sample size (n = 2703), the estimators based

on auxiliary data in their original scale in Table 6 had lower
RMSEs than the corresponding estimators based on the smaller
selection of auxiliary variables in Table 5. For example, for
Norway spruce the RMSEs were about 15% lower and for broad-
leaved trees about 7% lower, except for RIDGE where the gain
was somewhat smaller. For the smaller sample size (n = 901)
and LASSO, RIDGE, and ELNET, the corresponding reductions
of RMSEs were 11% or larger for Norway spruce. For total
growing stock and broad-leaved trees, the reduction was only 2
and 4%, respectively, for RIDGE, and even smaller than that for
LASSO and ELNET. For the smaller sample size, REGii based
on all the 72 auxiliary variables had RMSEs 22–34% larger than
when using REG and a small expert selection of variables. For
volume of broad-leaved trees, its performance was worse than the
Horvitz-Thompson estimator.

The results for the larger sample size in Table 6 show that
the estimators based on all available auxiliary variables in their
original scale had about the same performance in terms of RMSE.

The corresponding results for the smaller sample size show that
LASSO, RIDGE, and ELNET were very close in terms of RMSE,
and that they performed much better than REGii. More precisely,
the latter estimator had RMSEs 34–41% larger than those for
LASSO, RIDGE, and ELNET.

When for example estimating total growing stock volume
(both sample sizes) or volume of Norway spruce (the larger
sample size), the confidence intervals in Table 6 show that
the use of data-driven choices of transformations of auxiliary
variables significantly improved the RMSEs of LASSO, RIDGE,
and ELNET. Although there were significant improvements
when using transformations, the improvements in Table 6 were
never larger than 5%. When estimating volume of broad-leaved
trees using a large number of auxiliary variables, the data-driven
method for selecting transformations did not perform well. For
REGii and LASSO, the use of transformations sometimes resulted
in extreme and unreasonable estimates of volume of broad-leaved
trees, which in turn resulted in very large values of RMSE. This
was also the case for the REGii estimator of total growing stock
and volume of Norway spruce when using the smaller sample
size. In comparison, RIDGE was quite robust against poor choices
of transformations, and to a lesser degree, ELNET.

In Tables 5, 6, each value of ave
(
ŜD%, i

)
is smaller than the

corresponding value of ŜD%. This implies that the estimated
standard deviations, ŜD%, i, i = 1, . . . , n, were somewhat too
small, on average, which is quite typical in model-assisted
estimation (cf. Kangas et al., 2016). As suggested by simulation
results in McConville et al. (2020), it is better to estimate
standard deviations (or variances) of model-assisted estimators
by using a bootstrap method, especially as the number of
explanatory variables grows. However, because of the additional
computational burden generated by bootstrapping, we did not
use this estimator in our study.

In summary for the larger sample size, when estimating total
growing stock volume or volume of Norway spruce, the best
results in terms of RMSE were obtained when using all available
auxiliary variables. Here, for LASSO, RIDGE, and ELNET, the use
of data-driven choices of transformations significantly improved
the RMSEs, but the improvements were small. For volume of
broad-leaved trees, LASSO, ELNET, and REGii based on all
available auxiliary variables in their original scale produced the
best results, and were slightly better than the corresponding REGi

(with threshold± 0.95) and RIDGE estimators. Finally, the use of
data-driven choices of transformations was most successful when
estimating volume of Norway spruce, using an expert selection
of auxiliary variables. Here, the transformations reduced the
RMSEs by up to 10%.

In summary for the smaller sample size, when estimating
total growing stock volume or volume of Norway spruce,
LASSO, RIDGE, and ELNET, with or without the use of data-
driven choices of transformations, performed the best and
were close in terms of RMSE. For volume of broad-leaved
trees, LASSO, RIDGE, and ELNET with auxiliary variables
in their original scale showed the best results. For all target
variables, REGii based on all available auxiliary variables in
their original scale had 34–41% higher RMSEs than the
corresponding LASSO, RIDGE, and ELNET estimators, and
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TABLE 5 | Monte Carlo results for REG, LASSO, RIDGE, and ELNET, when based on an expert selection of auxiliary variables.

Auxiliary variables in original scale Power transformed auxiliary variables

Estimator b̂ias% ŜD% ave
(

ŜD%, i

)
R̂MSE% b̂ias% ŜD% ave

(
ŜD%, i

)
R̂MSE% LCL UCL

(a) Volume (m3/ha) of total growing stock; n = 2703

REG −0.005 1.167 1.155 1.167 0.000 1.160 1.148 1.160 0.004 0.010

LASSO −0.005 1.167 1.155 1.167 −0.001 1.160 1.148 1.160 0.004 0.010

RIDGE −0.002 1.186 1.173 1.186 0.001 1.177 1.165 1.177 0.006 0.012

ELNET −0.005 1.167 1.155 1.167 0.000 1.160 1.148 1.160 0.004 0.010

(b) Volume (m3/ha) of Norway spruce; n = 2703

REG 0.009 2.637 2.621 2.637 0.086 2.375 2.359 2.376 0.242 0.277

LASSO 0.009 2.637 2.621 2.637 0.075 2.376 2.362 2.377 0.243 0.277

RIDGE −0.010 2.644 2.630 2.644 0.029 2.381 2.374 2.381 0.248 0.279

ELNET 0.009 2.637 2.621 2.637 0.074 2.376 2.362 2.377 0.243 0.277

(c) Volume (m3/ha) of broad-leaved trees; n = 2703

REG −0.016 3.515 3.462 3.515 −0.092 3.444 3.389 3.445 0.053 0.086

LASSO −0.013 3.514 3.463 3.514 −0.099 3.444 3.391 3.446 0.053 0.084

RIDGE 0.000 3.515 3.465 3.515 −0.050 3.448 3.396 3.449 0.052 0.081

ELNET −0.013 3.513 3.463 3.513 −0.098 3.444 3.391 3.445 0.053 0.084

(d) Volume (m3/ha) of total growing stock; n = 901

REG 0.034 2.281 2.262 2.281 0.046 2.275 2.252 2.275 0.000 0.012

LASSO 0.034 2.284 2.263 2.284 0.047 2.276 2.252 2.277 0.001 0.013

RIDGE 0.049 2.319 2.300 2.319 0.056 2.307 2.286 2.307 0.007 0.017

ELNET 0.035 2.283 2.263 2.283 0.048 2.275 2.252 2.276 0.002 0.013

(e) Volume (m3/ha) of Norway spruce; n = 901

REG 0.098 5.151 5.133 5.152 0.476 4.732 4.610 4.755 0.356 0.436

LASSO 0.092 5.153 5.136 5.153 0.385 4.729 4.630 4.745 0.372 0.445

RIDGE 0.047 5.154 5.154 5.155 0.269 4.692 4.652 4.700 0.424 0.485

ELNET 0.093 5.152 5.136 5.153 0.382 4.726 4.629 4.742 0.375 0.447

(f) Volume (m3/ha) of broad-leaved trees; n = 901

REG 0.032 6.924 6.766 6.924 −0.231 6.812 6.627 6.816 0.074 0.143

LASSO 0.050 6.909 6.772 6.909 −0.190 6.811 6.642 6.814 0.063 0.129

RIDGE 0.077 6.905 6.778 6.905 −0.121 6.807 6.662 6.809 0.068 0.126

ELNET 0.049 6.908 6.772 6.909 −0.192 6.806 6.642 6.808 0.068 0.133

Estimated values of bias, SD, and RMSE (b̂ias%, ŜD%, and R̂MSE%) are given as percentages of the corresponding population mean, and are based on m = 10000
stratified samples of size n = 2703 or 901 from the population. For each sample, an estimate of SD was computed, and ave

(
ŜD%, i

)
is the average of these estimates.

The values of LCL and UCL denote the lower and upper confidence limits of the 95% confidence interval for the difference in RMSE between the estimators based on
auxiliary variables in original scale and power transformed auxiliary variables, respectively. If the interval contains only positive values, it suggests that the use of power
transformed auxiliary variables improves the efficiency of the estimator.

performed worse in terms of RMSE than using REG and
an expert selection of variables. For REGi it was often not
possible to estimate the model coefficients. Data-driven choices
of transformations reduced the RMSEs by about 8% for Norway
spruce when using an expert selection of auxiliary variables. For
all other cases, the transformations resulted in at best minor
improvements of RMSE, and at worst very large increases of
RMSE. Of the estimators considered, RIDGE, and to a lesser
extent, ELNET, were found robust against poor choices of
transformations.

Remark: In our population, 18% of the units (raster cells) had
a height difference larger than 7 m between the field measured
tree height and the 95th height percentile in the ALS data. We
may consider these units as outliers, and we may ask ourselves:
(i) Is it better to perform data-driven choices of transformations
of auxiliary variables with these outliers present in the sample?
(ii) Is it better to estimate the parameter vector β (after possible
transformations of auxiliary variables) with these outliers present
in the sample? In order to find out, we performed Monte Carlo
simulations for each of the four possible combinations of answers
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TABLE 6 | Monte Carlo results for REGi , REGii , LASSO, RIDGE, and ELNET, when based on all auxiliary variables.

Auxiliary variables in original scale Power transformed auxiliary variables

Estimator Threshold b̂ias% ŜD% ave
(

ŜD%, i

)
R̂MSE% b̂ias% ŜD% ave

(
ŜD%, i

)
R̂MSE% LCL UCL

(a) Volume (m3/ha) of total growing stock; n = 2703

REGi
± 0.95 −0.033 1.149 1.126 1.150 0.023 1.152 1.096 1.153 −0.030 0.043

REGi
± 0.90 −0.026 1.153 1.134 1.154 0.002 1.183 1.119 1.183 −0.062 0.018

REGii 0.025 1.148 1.094 1.148 0.069 1.191 1.072 1.193 −0.103 0.053

LASSO −0.028 1.143 1.112 1.144 0.023 1.116 1.089 1.116 0.021 0.033

RIDGE −0.038 1.151 1.133 1.152 0.007 1.118 1.100 1.118 0.029 0.039

ELNET −0.027 1.143 1.112 1.143 0.023 1.116 1.089 1.116 0.020 0.033

(b) Volume (m3/ha) of Norway spruce; n = 2703

REGi
± 0.95 −0.045 2.236 2.215 2.236 0.156 2.241 2.162 2.246 −0.044 0.034

REGi
± 0.90 −0.072 2.335 2.312 2.337 0.083 2.290 2.222 2.291 0.003 0.099

REGii
−0.007 2.229 2.153 2.229 0.148 2.297 2.074 2.301 −0.205 0.135

LASSO −0.013 2.227 2.177 2.227 0.193 2.166 2.090 2.174 0.035 0.071

RIDGE −0.067 2.316 2.294 2.317 0.123 2.214 2.186 2.218 0.085 0.114

ELNET −.014 2.227 2.177 2.227 0.195 2.167 2.091 2.176 0.033 0.068

(c) Volume (m3/ha) of broad-leaved trees; n = 2703

REGi
± 0.95 −0.107 3.315 3.171 3.317 8.338 25.026 3.191 26.378 −25.20 −20.75

REGi
± 0.90 −0.074 3.387 3.262 3.388 9.292 25.019 3.242 26.688 −25.39 −21.07

REGii
−0.082 3.248 3.017 3.249 9.279 36.230 3.002 37.399 −36.37 −31.88

LASSO −0.107 3.248 3.067 3.250 1.385 10.75 3.078 10.839 −8.715 −6.466

RIDGE −0.047 3.306 3.189 3.306 −0.056 3.324 3.206 3.324 −0.036 −0.001

ELNET −0.104 3.250 3.067 3.251 0.508 3.968 3.083 4.001 −0.833 −0.665

(d) Volume (m3/ha) of total growing stock; n = 901

REGii 0.035 3.061 2.055 3.062 4.015 195.081 2.011 195.123 −307.1 −100.8

LASSO −0.065 2.285 2.169 2.286 0.111 2.215 2.118 2.218 0.054 0.082

RIDGE −0.069 2.272 2.195 2.273 0.084 2.209 2.134 2.211 0.052 0.073

ELNET −0.070 2.278 2.170 2.279 0.108 2.212 2.119 2.214 0.051 0.078

(e) Volume (m3/ha) of Norway spruce; n = 901

REGii
−0.057 6.309 4.074 6.309 1.571 30.957 3.91 30.997 −29.70 −19.65

LASSO −0.190 4.457 4.237 4.461 0.734 4.450 4.081 4.510 −0.099 0.005

RIDGE −0.170 4.548 4.439 4.551 0.547 4.417 4.224 4.451 0.066 0.135

ELNET −0.214 4.461 4.232 4.466 0.731 4.440 4.084 4.500 −0.079 0.011

(f) Volume (m3/ha) of broad-leaved trees; n = 901

REGii
−0.508 9.136 5.594 9.150 119.412 5273.475 5.567 5274.827 −8776 −2318

LASSO −0.397 6.696 5.977 6.707 1.501 19.866 5.994 19.923 −15.27 −11.18

RIDGE −0.206 6.604 6.164 6.607 −0.285 6.667 6.233 6.673 −0.102 −0.029

ELNET −0.378 6.706 5.978 6.716 −0.068 7.500 6.011 7.500 −0.931 −0.629

Estimated values of bias, SD, and RMSE (b̂ias%, ŜD%, and R̂MSE%) are given as percentages of the corresponding population mean, and are based on m = 10000
stratified samples of size n = 2703 or 901 from the population. For each sample, an estimate of SD was computed, and ave

(
ŜD%, i

)
is the average of these estimates.

The values of LCL and UCL denote the lower and upper confidence limits of the 95% confidence interval for the difference in RMSE between the estimators based on
auxiliary variables in original scale and power transformed auxiliary variables, respectively. If the interval contains only positive values, it suggests that the use of power
transformed auxiliary variables improves the efficiency of the estimator. In Table 6, no results are presented for the REGi estimator when n = 901. The reason is that for
many of the samples, not all model coefficients could be estimated (not even if the threshold was as low as ± 0.70).

to questions i and ii (No-No, Yes-No, Yes-Yes, or No-Yes), and
for both the sample sizes, n = 2703 and n = 901. The case No-
Yes is presented in Tables 5, 6. Results for all other possible cases
are given in Supplementary Material. For each sample size and

in terms of RMSE, it turned out that it was generally better to
remove the outliers in the sample prior to performing data-driven
choices of transformations, but to estimate the parameter vector β

without removing the outliers in the sample of auxiliary variable
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data values (where variables may have been transformed before
the estimation is performed). For auxiliary variables in their
original scale, the following increases of RMSEs were obtained
if outliers were removed before the parameter vector β was
estimated: (a) 0.5–1.7% when the models were based on an
expert selection of auxiliary variables; (b) 0.9–6.0% when using
all available auxiliary variables and n = 2703; and (c) 1.4–68%
when using all available auxiliary variables and n = 901. In (c),
the increases of RMSEs were in the range 35–68% for REGii, but
less than 9% for LASSO, RIDGE, and ELNET.

DISCUSSION

In this paper, we have compared the performances of the
Horvitz-Thompson estimator and several model-assisted
estimators, using Monte Carlo simulations and real data,
from the Swedish NFI, Sentinel-2, and a national laser
scanning campaign. The model-assisted estimators were
based either on modern prediction techniques (lasso, ridge, and
elastic net regression), or on a traditional working model of
multiple regression.

When based on an expert selection of a rather small set
of auxiliary variables, the performances of the model-assisted
estimators were quite similar in terms of RMSE. Our proposed
data-driven method for finding suitable transformations of
auxiliary variables was shown to improve the efficiency of these
estimators. For Norway spruce, improvements by up to 10% were
obtained. Rather than using an expert selection of a smaller set of
auxiliary variables, it can be tempting to use auxiliary information
contained in a larger set of variables. In such cases, a standard use
of REG often fails due to (near) collinearity, and some auxiliary
variables may need to be excluded before the estimate can be
computed. We considered two different approaches of excluding
“problematic” auxiliary variables, and the variant of the REG
estimator that excluded as few variables as possible (the REGii

estimator) provided the best results (with a few exceptions).
The simulations showed that the efficiency in terms of RMSE
improved when using the large set of auxiliary variables for
LASSO, RIDGE, and ELNET, but that this was not necessarily
the case for REG estimators. When estimating, for example, total
growing stock volume (for both sample sizes considered) or
volume of Norway spruce (for the larger sample size), the data-
driven method for selecting transformations of auxiliary variables
further improved the efficiency of LASSO, RIDGE, and ELNET.
Although these improvements were statistically significant at the
5% level, they were all small.

When estimating total growing stock volume or volume of
Norway spruce, LASSO, RIDGE, and ELNET based on the large
set of auxiliary variables were the best in terms of RMSE. For
the smaller sample size, they performed much better than the
corresponding REGii estimator. For volume of broad-leaved
trees, LASSO, RIDGE, and ELNET based on the large set
of auxiliary variables in their original scale showed the best
performance. Here, for the smaller sample size, they performed
much better than REGii, which in this case had an RMSE even
larger than the Horvitz-Thompson estimator.

The suggested data-driven choices of transformations
performed the best when estimating volume of Norway spruce,
using an expert selection of auxiliary variables, where they
reduced the RMSEs by 7–10%. Although the transformations
resulted in statistically significant reductions of RMSE in many
other cases, too, these improvements cannot be regarded as
practically significant. In addition, for the smaller sample size,
the data-driven choices of transformations sometimes resulted
in huge increases of RMSE, in particular when combined with
REGii, and to a lesser degree with LASSO. In comparison,
RIDGE (and to some extent also ELNET) was found to be
quite robust against poor choices of transformations. Thus,
the data-driven method for selecting transformations has not
been proven promising enough to be recommended for the
type of applications considered in this paper, except possibly in
combination with RIDGE and ELNET.

Cook’s distance is a commonly used metric to indicate the
influence of a data point when performing a multiple regression
analysis. In an attempt to make the data-driven method more
robust and in an additional simulation study not presented
here, we disallowed transformations that caused an excessive
increase in Cook’s distance. This improved the performance of
the estimators of volume of broad-leaved trees, but it was still
found that for broad-leaved trees it is better to use auxiliary
variables in their original scale.

In our proposed data-driven method for finding suitable
transformations, the transformation selection was done for one
auxiliary variable at a time. To improve the method, and the
efficiency of the resulting model-assisted estimators, one can
use multivariable fractional polynomials, which simultaneously
determine a functional form for continuous auxiliary variables
and delete uninfluential auxiliary variables (Sauerbrei et al., 2006;
Sauerbrei and Royston, 2017). For our simulation study, however,
the additional computational burden of using multivariable
fractional polynomials was considered too high. Another topic
for further studies is the inclusion of interaction terms in
the models. Except for one interaction term in the model for
total growing stock volume based on an expert selection of
auxiliary variables, only main effects were included in our models.
Potentially, many interactions can be used. To avoid overfitting,
and not only for models with interactions, a possibility is to use an
information criterion, such as the Akaike information criterion
(Akaike, 1974).

Although the methods might be further improved, our results
indicate that model-assisted methods like LASSO, RIDGE, and
ELNET could be used by the Swedish NFI to provide reliable
estimates for smaller areas than possible using field data alone.
Today, counties are the smallest unit for which the NFI present
reliable estimates. The smallest area for which reliable results can
be presented depends in large part on how the model-assisted
estimators perform when using smaller sample sizes than the ones
used in this study (n < 901). Thus, it remains to be investigated
how small areas can be to produce reliable estimates of different
forest variables with a sufficiently low RMSE.

A relatively large proportion of the units (raster cells) in
our population (18%) had a difference between P95 and field
measured tree height that was greater than 7 m. These units
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were considered as outliers. Many of them were units that were
clear felled after the field survey, but before the laser scanning
took place. The large proportion of outliers could also be a
consequence of using merged split-plots for which the linkage
with laser data is more sensitive to plot location errors compared
to un-split plots. In the Monte Carlo study, it was found better to
perform the data-driven choices of transformationswithout using
these outliers in a sample, but to estimate model parameters with
the outliers in a sample of auxiliary variable data values (where
variables may have been transformed before the estimation is
done). In addition to these outliers, there were additional units
in the population with an unusual relationship between field data
and laser metrics. This could be, for example, due to thinning
cuttings, wind-thrown trees, and other changes. It was noticed
that the proportion of such units was higher for plots with
a high proportion of broad-leaved trees. To some extent, this
can be an effect of using laser data acquired during leaf-off
conditions, which gives lower laser density metrics for broad-
leaved forests than using data acquired during leaf-on conditions
(White et al., 2013). Although the number of such units was
relatively low, they might have a large influence on the selection
of transformations, and may explain why the use of data-driven
choices of transformations was not successful when estimating
volume of broad-leaved trees.
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