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Abstract Opportunistic reporting of species observations

to online platforms provide one of the most extensive

sources of information about the distribution and status of

organisms in the wild. The lack of a clear sampling design,

and changes in reporting over time, leads to challenges

when analysing these data for temporal change in

organisms. To better understand temporal changes in

reporting, we use records submitted to an online platform

in Sweden (Artportalen), currently containing 80 million

records. Focussing on five taxonomic groups, fungi, plants,

beetles, butterflies and birds, we decompose change in

reporting into long-term and seasonal trends, and effects of

weekdays, holidays and weather variables. The large surge

in number of records since the launch of the, initially taxa-

specific, portals is accompanied by non-trivial long-term

and seasonal changes that differ between the taxonomic

groups and are likely due to changes in, and differences

between, the user communities and observer behaviour.

Keywords Citizen science data � Motivation �
Observer behaviour � Sampling bias

INTRODUCTION

Online portals through which volunteers submit reports of

observations of wildlife gather large amounts of data

worldwide. The majority of such species occurrence data

are collected opportunistically with little or no underlying

sampling design, but often with much higher temporal and

spatial resolution compared to designed studies (Ruete

et al. 2017). The wide availability and cost-effectiveness of

opportunistic data, and the public engagement benefits they

can provide, leads to stakeholder interest from govern-

mental agencies, non-governmental organisations, univer-

sities and research institutes. For instance, governmental

agency staff may use the data for infrastructure develop-

ment planning or red-listing of species (Maes et al. 2015),

and researchers may be interested in distributional range

shifts (Prieto-Torres et al. 2020).

The opportunistic nature of the data leads to large

variability in reporting that is due to a largely unknown mix

of variation that can be ascribed to observer behaviour

(August et al. 2020) and variation due to ecological pro-

cesses. This variation poses challenges when data are used

for inference about populations, and also leads to lack of

trust in inferences (Burgess et al. 2017). To gain a solid

understanding of how variation in effort affects inference

about ecological processes, and to be able to incorporate

variation in effort in statistical models to correct for bias

(Altwegg and Nichols 2019), we need to first understand

the nature of variation in reporting. Previous studies have

looked at how reporting varies spatially with anthropogenic

variables such as road access (Mair and Ruete 2016; Zhang

2020) and human population density (van der Wal et al.

2015), and among observers (August et al. 2020). Few

studies have investigated the details of temporal variation

(but see Otegui et al. 2013; Zhang 2020). Reporting is,

however, expected to vary in time due to variation in

availability of organisms over seasons and years; with

factors affecting observer behaviour and movements,

including weekends ( _Zmihorski et al. 2012), holidays and

weather; and with factors affecting observer reporting

behaviour such as database reporting gaining in popularity

(Amano et al. 2016), targeted efforts to increase reporting

engagement (Sullivan et al. 2014), changes in reporting
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interfaces and functionality (August et al. 2015), and with

changes in the community of active users. Temporal vari-

ation in effort arising from changes in observation and

reporting behaviour need to be considered when making

inferences about ecological processes in time, such as

when estimating trends in occurrence or abundance, range

shifts and trends in spatial distribution, and seasonal

patterns (phenology) or their long-term trends. Studies

using opportunistic citizen science data to estimate tem-

poral trends have stressed the importance of correcting

estimates for variation in effort, but results of attempts to

validate estimated trends against trends derived from

studies with stronger designs have been mixed (Snäll

et al. 2011; van Strien et al. 2013; Kamp et al. 2016;

Boersch-Supan et al. 2019). A better understanding of

reporting patterns might eventually shed some light on

when correction attempts may be successful, how to do

them, and what might be done to the reporting system to

increase the usefulness of data. For instance, knowledge

of variation in reporting may be used to inform simula-

tions manipulating specific mechanisms believed to cause

bias and then checking the effects of those mechanisms on

trend estimates (Isaac et al. 2014). Some methods to

correct for observer bias also rely directly on an under-

standing of variables influencing variation in effort

(Johnston et al. 2020).

Our aim in this study is to investigate broad temporal

patterns in reporting of birds, butterflies, beetles, vascular

plants and fungi to the Swedish Species Observation Sys-

tem (Artportalen; Shah and Coulson 2021). We examine

patterns at a daily resolution to understand how reporting

has changed during the period from 2000, when online

reporting for birds was first launched, to 2018. Specifically,

we decompose change in reporting into long-term and

seasonal patterns, effects of weekdays and holidays, and

simple weather variables, and compare these patterns

among the taxonomic groups.

MATERIALS AND METHODS

Data

Response variables

The Swedish Species Observation System (Artportalen;

https://www.artportalen.se/) is a web portal and database to

which the public can submit reports of species observations

across taxa from plants to animals, covering all multicel-

lular taxa, currently holding 80 million records. The main

reporting user group is the general public, but the system is

also integrated with the authorities reporting of survey-

based biodiversity data.

The data are largely ‘presence-only’, i.e., records of

what has been observed, not of what has not been observed

(Gelfand and Shirota 2019; an option for checklist report-

ing has, however, recently been added to the system).

There is no requirement on adhering to any specific sam-

pling design: observers choose which species to report,

where to observe them, when, and what amount of time and

effort to devote. These aspects of the data imply that the

vast majority of data can be called ‘opportunistic’. How-

ever, some data from systematic surveys, with varying

degrees of standardisation, are also submitted.

Since the launch of the web-based reporting system in

2000 several substantial changes were made, including

adding platforms for different organism groups, and

merging separate platforms into one single unified platform

(Table 1). Here we make use of Artportalen’s 20-year

history with known changes, many well-recorded species

groups with high temporal density of data, and oppor-

tunistic nature of a majority of observations to investigate

temporal patterns in recording.

The data consist of records of observations of at least

one individual of a single species from a single location by

an observer at some point in time. There may be multiple

records of single and/or multiple species at the same place

and time by the same observer. In some cases there are

repeat records of the same individual(s) of a species from

multiple observers. Using the Swedish LifeWatch Analysis

Portal (Leidenberger et al. 2016), we extracted all records

between 2000 and 2018 of species from five selected

species groups that had a large number of records com-

pared to most other groups: birds (45 million records),

butterflies (0.9 million), beetles (order Coleoptera; 0.5

million), vascular plants (division Tracheophyta; 4 mil-

lion), and fungi (division Basidiomycota; 1.2 million). We

removed observations with insufficient temporal resolution

(recording time exceeding 1 day) and with uncertain spe-

cies identification.

We computed two sets of response variables for each

species at a daily resolution. The first set aims to explore

how the number of records has changed over time and

consists of three response variables: the total number of

records each day, the total number of unique observers

each day, and the number of records per observer each day.

The total number of records serves as a measure of how the

amount of data collected has changed over time. The total

number of observers and the number of records per

observer, provides additional information about how this

change has come about.

The second set of response variables aims to explore

whether there is variation over time in the locations from

which observations come. We used locations of ‘species

lists’, defined as a set of observations of different species

made by the same observer on the same day and at the
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same locality (same geographical coordinates) (Szabo et al.

2010), instead of locations of individual records to avoid

repeating the spatial variable over multiple species records

reported by an observer from a single location. From the

locations of all lists within a day, we computed the mean of

two spatial response variables: latitude and human popula-

tion density. Via latitude, we investigated whether there may

be temporary or permanent shifts in volume of observations

towards more southern or northern locations over time, i.e.

different parts of the country that differ in reporting effort.

Using human population density we investigated how the

proportion of records from highly populated versus more

sparsely populated areas varied over time. We aggregated

human population density at a 10 9 10 km resolution by

summing population sizes from raster data at higher reso-

lution (SCB Statistics Sweden; https://www.scb.se/vara-

tjanster/oppna-data/oppna-geodata/statistik-pa-rutor/). We

subsequently log(x ? 1) transformed human population

density at the location of species lists before computing the

spatial average to not give exessive weight to lists from the

larger cities (large skewness of the distribution of population

sizes at the arithmetic scale; Mair and Ruete 2016). Human

population distribution has not gone through any major

changes during the study period, justifying the use of a

snapshot map of population size.

Weather

We extracted mean daily temperature and total precipita-

tion across 0.25� grid squares covering the whole of

Sweden (Cornes et al. 2018). Temperature has a strong

seasonal and spatial pattern, and to reduce confounding

with a general seasonal pattern in reporting we computed a

detrended temperature variable. Specifically, we fitted a

cyclic smooth seasonal curve to the time series of daily

temperature from each grid square. The daily residuals

from these curves were averaged across all grid squares to

compute a daily temperature deviation index, which was

used in analyses of reporting data. For precipitation, sea-

sonal patterns are weaker, and we therefore used daily

average precipitation across all grid points without

detrending. As these variables are averages across the

country, they will tend to reflect large-scale weather events

rather than local weather.

Models

We analysed temporal patterns in the data using gener-

alised additive models (GAMs). We denote the response

variable yt, where t is the number of days since January 1 in

year 2000. The basic structure of the model was:

yt � s tð Þ þ s doyð Þ þ dow þ holiday þ ctemp doyð Þ
� temp þ crain doyð Þ � rain

Here, s(t) is a smooth function representing slow, long-

term, changes in reporting over time; s(doy) is a smooth

function of the day of year (doy), representing seasonal

patterns; dow is a fixed factor with a level for each day of

the week; holiday is a fixed factor with 15 levels (14 public

holidays over all years, plus an extra level for no holiday);

ctemp(doy) and crain(doy) are coefficients for the effects of

temperature deviation and rainfall, which are allowed to

vary over the seasons.

We modelled the long-term trend s(t) using a thin plate

spline with 10 degrees of freedom, and the seasonal smooth

s(doy) using a thin plate spline with 40 degrees of freedom.

Table 1 Major changes to what is today the Swedish Species Observation System, Artportalen, artportalen.se

Year Description of system change

2000 June Launch of the web platform for birds (Aves) ‘Artportalen’

2003 Autumn Launch of the web platform for plants (Tracheophyta)

2003 Autumn Launch of the web platform for butterflies and moths (Lepidoptera)

2003 Winter Launch of the web platform for fungi

2006 Spring New web platform for birds (replacing the former platform)

2006 Autumn New web platform for invertebrates (including insects and spiders; replacing the former platform for butterflies and moths

2007 Spring Launch of the web platform for vertebrates (including all other vertebrates except birds, bats, and fish)

2007 Spring Launch of the web platform for fish

2007 Summer New web platform non-animal groups (plants, fungi, mosses, lichens and algae)

2007 Autumn Launch of the web platform for marine invertebrates

2013 May New web platform Artportalen 2 (merge of several of the former separate platforms: plants, fungi, mosses, lichens, algae,

vertebrates other than birds)

2014 May Inclusion of invertebrates in Artportalen 2

2015 April Inclusion of birds in Artportalen 2
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For the seasonal smooth, we did not use a cyclic spline

(i.e. with matching levels at the start and end of a year),

despite that it may seem an obvious choice, because we

expected higher reporting in the beginning than in the end

of a year with a resulting possible discontinuity in the

response variables with the change from one year to the

next. This is mainly relevant for birds, for which many

observers tally the number of species seen in a calendar

year (Hui 2013), but we kept the same structure for all

species groups. For the coefficient functions ctemp(doy) and

crain(doy) we used cyclic cubic regression splines with 40

degrees of freedom. To investigate seasonal changes in the

effect of weekends we allowed the seasonal pattern s(doy)

to differ between weekends and weekdays.

In a separate model fit, we added an interaction term

between seasonal variation and long-term trends to investigate

whether therewere indications of a difference in the long-term

trends among different parts of the season. For this, we used a

tensor product interaction based on a thin plate spline with 10

degrees of freedom for the long-term component and 6

degrees of freedom for the seasonal component. We held the

degrees of freedom for the seasonal component low in the

interaction to reduce the risk of identifiability issues between

the long-term and seasonal components. In these separate

model fits we also added an interaction term between long-

term trends and weekend effects.

When the response was the number of records or the

number of observers we used a log link and a negative

binomial distribution with a quadratic variance-mean

scaling. To model the average number of records per

observer, we used the number of records subtracted by the

number of observers as the response under a negative

binomial distribution with the (log-transformed) number of

observers as an offset. The number of observers was sub-

tracted in the response variable because the number of

records is always at least as large as the number of

observers. This response will therefore always be positive

and can attain the value zero, as assumed by the negative

binomial model. For the spatial response variables average

latitude and average log human population density we used

a Gaussian response distribution. Since these responses

were computed as averages, their variance will differ

depending on the number of data points underlying the

average. We therefore used the number of species lists as

weights for the spatial response variables.

We tried to account for residual autocorrelation by first

fitting the above model assuming no autocorrelation. From

that fit we computed the empirical lag 1 autocorrelation of

the residuals, which was then set as a fixed value in a final

(second) fit of the model. Data for 2018 were withheld

from model fitting and used to visually assess the

predictive performance of the model. We fitted models

using the functions gam and bam in the R package mgcv

(Wood 2006).

RESULTS

Raw data for the per day, number of records, observers and

records per observer for all species groups in 2018 are

shown in Fig. 1. Forecasts for those numbers captured the

main seasonal patterns for most groups, but overestimated

the number of records of fungi and butterflies during the

peak period in 2018.

Long-term trends

The number of records and the number of observers

increased approximately three to fourfold (beetles, vascular

plants, fungi) or more (birds, butterflies) over the study

period (Fig. 2). Long-term patterns for the number of

observers were qualitatively similar to the patterns for the

number of records for most species groups (Fig. 2). Despite

this, there were clear differences in patterns for the number

of records per observer—the fraction of the previous two

responses.

The number of birds recorded per observer increased

over the study period (Fig. 2). This increase happened

mainly in the first years after the launch of the online

portal. For the other groups, the number of records per

observer decreased during the later part of the study period.

Thus, the increase in the total number of records for these

groups was due to an increase in number of observers, and

happened despite observers on average submitting fewer

records.

The average latitude of locations of species lists was

largely stable across years for birds (Fig. 3), but lists tended

to come from more densely populated areas during the

latter part of the study period, due mainly to an increase in

the first few years (Fig. 3). There was an increase over time

in the mean latitude of lists for butterflies and vascular

plants, and the number of lists from more densely popu-

lated areas for fungi. Other patterns for latitude and pop-

ulation size were more complex or less evident (Fig. 3)

A substantial change was made to the reporting systems

between 2013 and 2015 when the taxa-specific platforms

were merged, in stages, into a joint system (Table 1).

Following this change the number of observers and records

generally increased, except perhaps for birds, while records

per observer decreased for beetles, vascular plants and

fungi (Fig. 2). For these groups, lists came from on average

more densely populated areas after the merger.

123
� The Author(s) 2021

www.kva.se/en

186 Ambio 2022, 51:183–198



0

10000

20000

30000

01−jan 31−mar 30−jun 30−sep 30−dec

1000

2000

3000

01−jan 31−mar 30−jun 30−sep 30−dec
3

6

9

12

01−jan 31−mar 30−jun 30−sep 30−dec

0

500

1000

1500

2000

2500

01−jan 31−mar 30−jun 30−sep 30−dec

0

100

200

300

400

01−jan 31−mar 30−jun 30−sep 30−dec

0.0

2.5

5.0

7.5

10.0

01−jan 31−mar 30−jun 30−sep 30−dec

0

250

500

750

01−jan 31−mar 30−jun 30−sep 30−dec

0

50

100

150

01−jan 31−mar 30−jun 30−sep 30−dec

0

2

4

6

8

01−jan 31−mar 30−jun 30−sep 30−dec

0

2000

4000

6000

01−jan 31−mar 30−jun 30−sep 30−dec

0

100

200

300

01−jan 31−mar 30−jun 30−sep 30−dec

0

10

20

30

01−jan 31−mar 30−jun 30−sep 30−dec

0

1000

2000

01−jan 31−mar 30−jun 30−sep 30−dec
day of year (2018)

0

50

100

150

01−jan 31−mar 30−jun 30−sep 30−dec
day of year (2018)

0

5

10

15

01−jan 31−mar 30−jun 30−sep 30−dec
day of year (2018)

Fig. 1 Daily number of records (left panels), observers (middle) and records per observer (right panels) for each species group with predicted

mean (orange curve) vs observed (points) number of daily records for 2018 (right column). Predictions for 2018 are based on models fitted to data

from year 2000 to 2017
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Fig. 2 Estimated long-term trends in the daily number of records (left panels), observers (middle) and records per observer (right panels) for

each species group. Trends are evaluated as predicted values for the peak season (estimated from the seasonal smooths of number of records).

Shaded regions around trends refer to 95% confidence intervals. The shaded grey areas indicate the time period before the online platform was

launched and hence constitute backlogs only. Vertical lines indicate times of major changes in the reporting system (see Table 1)
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Fig. 3 Estimated long-term trends in the average latitude (left panels) and average human population density (computed as the predicted

geometric mean of population density ? 1) at list locations (right panels) for all species groups. Trends are evaluated as predicted values for the

peak season (estimated from the seasonal smooth of number of records). Shaded regions around trends refer to 95% confidence intervals. The

shaded grey areas indicate the time period before the online platform was launched and hence constitute backlogs only. Vertical lines indicate

times of major changes in the reporting system (see Table 1)
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Within-year patterns

Seasonal

Each species group revealed a somewhat different pattern

of seasonality: multimodality in bird reports (records,

observers, records per observer); mostly peaked curves for

reports of other groups, but at different times of the year;

with a plateaued curve for beetle observers; vascular plant

observers showing abrupt transitions between small and

large numbers; and beetle records per observer with mul-

timodality (Fig. 4).

The number of records and the number of observers for

birds showed a complex pattern with a sharp peak imme-

diately after New Year, as well as broader peaks during the

migration periods in notably spring but also autumn. For all

groups the average number of records per observer tended

to peak at approximately the same time of the year as the

total number of records, except for beetles for which there

was no clear peak (Fig. 4).

Most groups showed strong seasonal patterns in the

average location of lists (Fig. 5). Generally, lists on aver-

age came from less densely populated and more northerly

located areas during summer than during winter. Here too,

bird reports had the most complex seasonal pattern (Fig. 5).

Weekends

The number of records and number of observers tended to

be higher on weekends for all species groups (Fig. 4). This

effect was most pronounced for birds, with the number of

records increasing by a factor of 2 or more during some

periods of the year, and for beetles. For birds, the differ-

ence between weekends and weekdays was larger during

all seasons outside the summer holiday period (late June

and July), but we found no clear evidence for seasonally

changing strength of weekend effects for the other species

groups. For birds, also the number of records per observer

was higher on weekends and holidays than during week-

days. Weekend effects on list locations were mainly small,

but bird lists in spring and autumn tended to come from

less populated areas, and lists of fungi from lower latitudes

during weekends (Fig. 5).

Holidays

Holiday effects were mostly positive and strongest for birds

with almost double the expected number of records for

some public holidays in spring (Fig. 6). New Year’s Day

had the strongest holiday effect, and often had the most

bird reports among all days of the year, despite the number

of bird species present in Sweden being considerably lower

in winter. There were potential holiday effects also for

beetles, butterflies and vascular plants, but these signals

were weaker and less certain. There were no clear holiday

effects for fungi, but there are few public holidays in

autumn in Sweden when most fungi are reported. We found

no strong holiday effects on average list locations, although

there was some indication of bird reports coming from less

populated areas on some spring holidays (Fig. S1).

Weather

All groups showed evidence for effects of daily tempera-

ture deviation and amount of rain on the number of records

and observers, and many of those effects varied with sea-

son (Fig. S2). Effects of temperature deviation were mainly

positive, while effects of rain were negative, so that more

records were on average submitted for days with good

weather (warmer than average for the time of the year, low

precipitation) than on days with less good weather. The

strength of the weather effects differed between the species

groups and were found strongest for butterflies.

Generally, weather effects tended to be strongest in

spring and weakest during summer. Overall, patterns were

similar for average number of records per observer, but

weaker and more uncertain, and for butterflies the negative

effect of rain was constant throughout the year (Fig. S2).

Effects of weather on the spatial responses were mostly

uncertain, and effect sizes relatively small (Fig. S3).

Interactions between long-term trends and within-year

patterns

The long-term trends in number of records were approxi-

mately proportional across seasons (Fig. S4). There were

some deviations from this pattern, but these were generally

small, or occurred for parts of the season with few records

(mainly butterflies in winter). We found no strong indica-

tions of weekend effects changing in strength over years

for any of the groups.

DISCUSSION

Our analyses illustrate broad temporal patterns in reporting

observations for five species groups across more than a

decade of database expansion. Below we discuss potential

reasons for, mechanisms behind, and implications of, the

long-term and within-year patterns.

Long-term trends

The total number of records has increased by several orders

of magnitude over the last two decades, a feature shared

with many other online reporting systems (e.g. eBird,
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iNaturalist, ornitho.de, waarneming.nl; Amano et al. 2016).

Strong increases often followed the launch of the, initially

separate, taxa-specific online reporting systems. As found

for other systems (Pocock et al. 2015; Arts et al. 2020) the

number of records seemed to be influenced by infrastruc-

tural investment and communication around those, which
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were followed by strong increases for particularly plants

and fungi. In order to get many records into the system

from times past, substantial efforts were made to persuade

collectors to digitise their records and report them (H.

Ljungberg, pers. comm). This may have led to a greater

average number of records per observer for species groups

such as beetles and butterflies before Artportalen was

launched for them. The long-term trends were qualitatively

similar for the number of observers for most species

groups. This, together with the general decrease or weaker

increase in number of records per observer, suggests that

the total increase of records is mainly driven by the

increase in number of active observers contributing (see

also Zhang 2020).

We do not expect any major changes in the overall

abundance, availability or locations of organisms at the

level of the species groups across the years covered in this

study. Under this assumption, changes in the number of

records per observer, in the latitudinal centroid, and in the

mean human population density at report locations over

years all suggest that observer/reporting behaviour is also

changing in more subtle ways. We suggest that these

changes may be due to (1) within-observer changes, (2)

changes in the user community, and (3) changes in the

reporting system, all relating to observers’ preferences.

Users are often heterogeneous with variation in observation

and reporting behaviour that may be described by e.g. their

temporal and spatial activity pattern, taxonomic scope and

amount of observations reported (Boakes et al. 2016;

August et al. 2020). Such observer preferences and beha-

viours (engagement profiles) can change over time, through

changes in the user community or within-observer changes

(Rotman et al. 2012).

For birds, the increase in number of records per observer

happened mainly in the first few years after the launch of

the online portal. Making it easy to participate, for an

already active community, likely contributed to within-

observer changes and changes in the observer community

with increased reporting of inventories (Wood et al. 2011).

In contrast, for butterflies and beetles, the number of

records submitted per observer have gradually decreased

since the launch of the reporting systems. Additional

analyses (Appendix S1) suggest that for beetles, part of this

decrease may reflect a change in observer community.

Participants that entered the system early on may have had

a good knowledge of beetle species and therefore been able

to identify and report many species. New users in later

years reported fewer species on average (Fig S5), which

could stem from a lower level of knowledge of this species

group. Decreases in records per observer are found in later

years also for plants and fungi, and largely coincide with

increased reporting from more densely populated areas

(Lopez et al. 2020). These declines cover the period when

the taxa-specific platforms were merged, but appear mainly

linked to declines in reporting by early users (Fig. S5).

Long-term changes in average latitude for species lists may

reflect changes in the user community (e.g. recruitment of

new users in the north) affecting the spatial distribution of

reports. One could imagine that on a longer time scale in

the future, range shifts in species distributions could also

start to drive changes in observer behaviour.

Within-year patterns

Seasonal patterns

For all species groups, the availability of organisms varies

over the season, which was reflected in the seasonal pat-

terns of the total number of records, the number of obser-

vers, and the number of records per observer. These

patterns mainly peaked at the time of year when organism

activity and detectability is highest—with one summer

peak for butterflies, beetles and plants, one autumn peak for

fungi, and spring and autumn peaks for birds. Activity and

detectability may both give rise to similar patterns in the

number of records, number of observers, as well as in

spatial variation and effects of weather. There are also

likely reinforcements in these relationships, e.g. the arrival

of migratory birds (Greenwood 2007) and emergence of

insects and plants in spring (Daru et al. 2018) attract more

observers and lead to increased effort and reporting

(Lawrence 2009). These effects may be exacerbated during

favourable weather conditions that affect activity patterns

of non-sessile organisms (birds, butterflies, beetles) which

impacts detectability, which in turn may increase observer

effort.

How details of observers’ behaviours may impact sea-

sonal patterns we illustrate with three examples. Bird

reports showed some detailed seasonal patterns with a

substantial additional peak during the first few days of the

New Year. Many bird watchers, in Sweden and elsewhere,

keep annual species lists and compete for observing as

many species as possible starting each year on 1 January

(Hui 2013). The spike after New Year suggests that com-

petition can contribute to the motivation to report more of

the species that have been observed (more complete

reporting, including common species that may go unre-

ported during other field excursions). The details of

observers’ behaviours may therefore impact seasonal pat-

terns, and these may differ greatly among taxa. For beetles,

the number of records submitted per observer was fairly

constant over the season. One potential reason for this is

that observations of beetles in winter is often done by

sifting soil for hibernating adults, which can lead to long

species lists (H. Ljungberg, pers. comm). And increased

reporting from birders gathering at popular migratory
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hotspots along the coast of southern Sweden likely explain

the decrease in latitude of bird lists during the autumn

migration period.

Weekends/holidays

In contrast to seasonal patterns, effects of weekends and

holidays are expected to be nearly exclusively due to

observer behaviour. Similar to other studies ( _Zmihorski

et al. 2012; Otegui et al. 2013; Zhang 2020) the total

number of records and observers were higher during

weekends for most groups, with the strongest effects for

birds (Courter et al. 2013). Birds are also the only group for

which there was a clear holiday effect (see also Surmacki

2005). More observations made during weekends and

holidays is expected when many amateur naturalists of

working age are contributors of data. In agreement with

this, bird reports also tended to come from less densely

populated areas in weekends, presumably due to more time

available for travelling to targeted birding locations.

The difference in strength of the weekend effect

between organism groups may be partly due to sample size

as the number of daily records was C 10 times larger for

birds than for the other groups. But the difference may also

be due to intrinsic differences in observer behaviour or the

observer community. For example, if a larger proportion of

reports come from retirees, activity is likely more evenly

spread independently of weekday. Similarly, a large por-

tion of records from professional surveys carried out

mainly during the working week could reduce or mask

weekend effects of amateur observers.

Interactions between seasonal and annual patterns

Overall there were no strong indications for clear changes

in seasonal or weekend patterns over years. Despite the

variation in reporting patterns over years discussed above,

there therefore seems to be some degree of stability in

reporting patterns across large increases in total reporting

and changes to the underlying reporting system.

Implications for inference

Multiple factors contribute to the motivation for reporting

species observations to public online databases (Hobbs and

White 2012; Maund et al. 2020). Motivation in turn affects

observer behaviour, in terms of the willingness to report

observations and in the effort spent on observing species.

When opportunistic data are used with the aim of studying

temporal patterns in taxa, shifts in observer motivation over

time can be problematic for inferences because changes in

observer behaviour may be mistaken for, or confused with,

changes in taxa. Temporal changes in detectability, e.g. due

to changes in species activity, changes in survey methods,

or observer experience, are well-known issues when esti-

mating temporal changes from data collected under tar-

geted and designed surveys (Barker and Sauer 1992).

Similar issues occur in opportunistic data, but changes in

motivation add another layer of complexity that exacer-

bates the problem of drawing valid inference from data.

Some of the key temporal patterns in reporting sug-

gested by our analyses were: (I) large increases in reports

and observers across all species groups; (II) long-term

changes in records per observer and in the spatial locations

of reports, differing among the groups, and likely arising

from changes in reporting behaviour and changes in user

communities following developments in the reporting

platforms; (III) seasonal patterns in records per observer

and spatial locations of reports, likely partly resulting from

cultural behaviour among observers within the different

taxonomic groups.

A parallel increase in observers and records, with no or

little change in observer behaviour, will often be easy to

correct for in analyses of temporal change. For example,

Isaac et al. (2014) evaluated different methods for esti-

mating long-term trends in distribution under simple sim-

ulation scenarios and found that all methods that addressed

observer changes performed reasonably well when the

number of observers increased over time. Long-term

changes in effort pose more severe challenges. In the

simulations of Isaac et al. (2014), some methods, particu-

larly occupancy models, also performed well when cor-

recting for changes in effort via lengths of species lists

(Szabo et al. 2010). In practice, some studies have found

trends in distribution derived using these corrections to not

satisfactorily agree with estimates from designed stud-

ies (Kamp et al. 2016), while others have found better

agreement (van Strien et al. 2013). These methods there-

fore seem to be partly able to correct for variation in effort

for inference about changes in distribution, but it is less

clear in which situations inferences are ‘good enough’ or

how spatio-temporal variation in effort affects estimates of

other types of change (e.g. range shifts, trends in abun-

dance, or trends in phenology).

Our seasonal curves in records per observers were dis-

torted relative to expected phenology curves, and differ-

ently so among the species groups. We suggest that these

distorted seasonal patterns could be more difficult to cor-

rect for using species lists length. Effectively, list length

corrections rely on the assumption that recording effort

would be same if list lengths were the same. In seasonal

environments, this will not hold true over the course of a

year, and so alternative, or refined, corrections may be

required. A better understanding of how motivation and

behaviour of observers changes over the season could
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potentially generate new ways of adjusting for changes in

effort.

CONCLUSIONS

To improve biological inference about temporal change

from opportunistic data, we argue that several steps will be

necessary. First, we need to better understand temporal

change in observer behaviour and motivation. Our study

provides an initial attempt at this, but future studies could

dig deeper into the mechanisms behind changes in effort

over time and compare them among platforms. Second,

improved understanding of change in effort can be incor-

porated in detailed scenario simulations (Isaac et al. 2014)

to guide improvements in analytical methods as well as

platform infrastructure in order to increase information

content in the data. Third, promising analytical methods

should be evaluated against independent data from

designed monitoring studies. These steps will likely need to

be performed for each taxonomic group, but together may

improve trust in conclusions reached from analyses of

opportunistic data (Bayraktarov et al. 2019).
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Leidenberger, S., M. Käck, B. Karlsson, and O. Kindvall. 2016. The

Analysis Portal and the Swedish LifeWatch e-infrastructure for

biodiversity research. Biodiversity Data Journal. https://doi.org/
10.3897/bdj.4.e7644.

Lopez, B., E. Minor, and A. Crooks. 2020. Insights into human-

wildlife interactions in cities from bird sightings recorded online.

Landscape and Urban Planning 196: 103742. https://doi.org/10.

1016/j.landurbplan.2019.103742.

Maes, D., N.J.B. Isaac, C.A. Harrower, B. Collen, A.J. van Strien, and

D.B. Roy. 2015. The use of opportunistic data for IUCN Red List

assessments. Biological Journal of the Linnean Society 115:

690–706. https://doi.org/10.1111/bij.12530.

Mair, L., and A. Ruete. 2016. Explaining spatial variation in the

recording effort of citizen science data across multiple taxa.

PLoS ONE 11: https://doi.org/10.1371/journal.pone.0147796.

Maund, P.R., K.N. Irvine, B. Lawson, J. Steadman, K. Risely, A.A.

Cunningham, and Z.G. Davies. 2020. What motivates the

masses: Understanding why people contribute to conservation

citizen science projects. Biological Conservation 246: 108587.

https://doi.org/10.1016/j.biocon.2020.108587.

Otegui, J., A.H. Ariño, M.A. Encinas, and F. Pando. 2013. Assessing

the primary data hosted by the Spanish node of the Global

Biodiversity Information Facility (GBIF). PLoS ONE 8: e55144.

https://doi.org/10.1371/journal.pone.0055144.

Pocock, M.J.O., H.E. Roy, C.D. Preston, and D.B. Roy. 2015. The

Biological Records Centre: A pioneer of citizen science.

Biological Journal of the Linnean Society 115: 475–493.

https://doi.org/10.1111/bij.12548.

Prieto-Torres, D.A., A. Lira-Noriega, and A.G. Navarro-Sigüenza.
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