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Robust Decision Analysis under Severe Uncertainty and
Ambiguous Tradeoffs: An Invasive Species Case Study

Ullrika Sahlin ,1,∗ Matthias C. M. Troffaes ,2 and Lennart Edsman 3

Bayesian decision analysis is a useful method for risk management decisions, but is limited in
its ability to consider severe uncertainty in knowledge, and value ambiguity in management
objectives. We study the use of robust Bayesian decision analysis to handle problems where
one or both of these issues arise. The robust Bayesian approach models severe uncertainty
through bounds on probability distributions, and value ambiguity through bounds on utility
functions. To incorporate data, standard Bayesian updating is applied on the entire set of
distributions. To elicit our expert’s utility representing the value of different management ob-
jectives, we use a modified version of the swing weighting procedure that can cope with severe
value ambiguity. We demonstrate these methods on an environmental management problem
to eradicate an alien invasive marmorkrebs recently discovered in Sweden, which needed a
rapid response despite substantial knowledge gaps if the species was still present (i.e., severe
uncertainty) and the need for difficult tradeoffs and competing interests (i.e., value ambigu-
ity). We identify that the decision alternatives to drain the system and remove individuals in
combination with dredging and sieving with or without a degradable biocide, or increasing
pH, are consistently bad under the entire range of probability and utility bounds. This case
study shows how robust Bayesian decision analysis provides a transparent methodology for
integrating information in risk management problems where little data are available and/or
where the tradeoffs are ambiguous.
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1. INTRODUCTION

1.1. Uncertainty in Environmental Management

Environmental risk managers must often make
decisions under uncertainty, especially under multi-
ple objectives (Institute of Medicine, 2013). To take
this uncertainty into consideration, uncertainty must
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be characterized, assessed, and conveyed (Fischhoff
& Davis, 2014). There are several types and sources
of uncertainty to consider in management of envi-
ronmental systems (Maxim & van der Sluijs, 2011),
including ambiguity in the decisionmaker’s objec-
tives (Ascough, II, Maier, Ravalico, & Strudley, 2008;
Dewulf, Craps, Bouwen, Taillieu, & Pahl-Wostl, 2005;
McCarthy, 2014).

Decision theory offers solutions on how to deal
with uncertainty. However, these solutions must be
transferred to practical applications, and explained
in a way that enables managers to identify which
solution to use for a particular problem. In ad-
dition to uncertainty due to lack of knowledge,
eliciting judgments or preferences is sensitive to
psychological factors resulting in cognitive biases
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(Hemming, Burgman, Hanea, Mcbride, & Wintle,
2017; O’Hagan, Buck, Daneshkhah, & Eiser, 2006).
For example, value ambiguity can be stronger when
uncertainty in outcomes is high. A structured ap-
proach to decision making is required to overcome
cognitive biases in an expert’s judgments and values,
and to make appropriate use of the relevant decision
theory (Gregory et al., 2012; Institute of Medicine,
2013).

Bayesian decision analysis includes both learn-
ing and optimization, and is widely used in environ-
mental management (Carriger, Barron, & Newman,
2016; Carriger & Newman, 2012; McCarthy, 2014).
Bayesian analysis (statistical inference) for learning
has been applied in environmental management to
quantify uncertainty in management outcomes due
to parameter uncertainty (Hartig et al., 2012; Heard
et al., 2013; McGowan, Runge, & Larson, 2011), un-
certainty in underlying mechanisms (Buhle, Feist, &
Hilborn, 2012; van Oijen et al., 2013), and to inte-
grate expert knowledge (Hemming et al., 2017; Mar-
tin et al., 2012; O’Hagan et al., 2006).

In standard Bayesian decision analysis, we start
with a prior distribution over the parameters within
the assessment model, which embodies all expert in-
formation that is not captured in the data. Next, we
need a model to connect the data to the parame-
ters. The standard way of doing so goes via the like-
lihood function, which models how the data are gen-
erated for any known fixed value of the parameters.
Finally, we need a utility function that encapsulates
the decisionmaker’s preferences over the possible
decision outcomes. The prior, likelihood, and utility
function are then combined into a so-called poste-
rior expected utility. The optimal decision is found
by maximizing this quantity over all decision alterna-
tives. In this way, Bayesian decision theory combines
prior knowledge with evidence, allows us to quantify
uncertainty in the impact of decisions, and provides a
method for selecting the optimal decision alternative.

Standard Bayesian analysis is limited to uncer-
tainty quantified by a single probability distribution.
A feature of Bayesian analysis is that when data are
sparse, the analysis hinges on a correct specification
of the prior. However, when experts cannot express
their uncertainty with high confidence, or when they
disagree, specifying a full prior distribution may be
difficult. In such cases, we would like to avoid a situa-
tion where the analysis depends on arbitrary choices
in our prior (Boole, 1854; Keynes, 1921; Sahlin, Pers-
son, & Vareman, 2011; Troffaes, 2007). A second is-

sue is that the decisionmaker’s preferences over out-
comes may only be partially quantified (Aumann,
1962), for instance, due to the decisionmaker’s un-
familiarity with the outcomes, or due to different in-
terest groups having conflicting goals (e.g., different
relative values of management costs vs. negative eco-
logical impacts).

Therefore, some argue for alternative or second-
order expressions of uncertainty to handle situations
where probabilities or utilities are not well known
(Fischhoff & Davis, 2014). For example, Regan et al.
(2005) proposed the use of information gap the-
ory to deal with severe uncertainty in environmen-
tal management decisions, Todd and Burgman (1998)
proposed fuzzy sets to represent severe uncertainty
about conservation status of species, and Lempert
and Collins (2007) addressed uncertainty through
scenarios. However, both assessors and decisionmak-
ers may find it difficult to deal with alternative ways
to express uncertainty, especially if it requires differ-
ent methods for data analysis and modeling.

One way to resolve these issues is to work with
sets of prior distributions and sets of utility functions
with respect to those aspects of the problem that can-
not be fully specified with confidence (Berger, 1984;
Levi, 1974; Insua, Ruggeri, & Martín, 2000; Seiden-
feld, Schervish, & Kadane, 1995; Walley, 1991). This
allows us to work with weaker model assumptions.
For example, robust Bayesian analysis explores the
influence of the prior and the utility, through sen-
sitivity analysis on posterior inference (Insua et al.,
2000). Specifically, robust Bayesian decision analy-
sis performs a standard Bayesian analysis for each
choice of prior and utility function in a given set. The
resulting bounds on the set of posterior expected util-
ity values can be interpreted as a quantification of
the decisionmaker’s indeterminacy toward the man-
agement decisions themselves resulting from lack of
knowledge (Troffaes, 2007; Huntley, Hable, & Trof-
faes, 2014; Walley, 1991).

In this article, we study a way to deal with se-
vere uncertainty both in values and in system knowl-
edge by bounding probability distributions and utility
functions. In this, what we refer to as robust Bayesian
decision analysis, we still express uncertainty using
probability and utility, however we relax some of the
requirements of standard Bayesian decision analysis.
We demonstrate methods to learn from data and de-
rive utilities by revisiting a real and typical environ-
ment management problem facing both severe uncer-
tainty and value ambiguity.
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To incorporate data, standard Bayesian updat-
ing is applied on a set of distributions. We allow for
value ambiguity when eliciting utilities for different
management alternatives, and there is a simultaneous
propagation of imprecision in probability and utility
in the analysis. In this approach, we identify manage-
ment decisions that are consistently bad under the
entire range of probability and utility bounds, and
that we can therefore clearly exclude. We also investi-
gate how the performance of the remaining decisions
varies as a function of our beliefs about the world.
Thereby, we show how the proposed robust version
of Bayesian decision analysis enables a transparent
use of information in environmental problems where
little data are available and/or where the objectives
are ambiguous.

2. BACKGROUND

2.1. An Environmental Risk Management
Problem

In November 2012, specimens of the crayfish
marmorkrebs Procambarus fallax forma virginalis
were found in Sweden (Bohman & Edsman, 2013)
from which 12 were instantly removed. The 2012–
2013 winter was very cold, which may have reduced
the chances of any remaining individuals to survive.
Marmorkrebs is an nonindigenous invasive species
that has recently established in Europe (Chucholl,
Morawetz, & Gross, 2012). It reproduces by cloning
(Jones et al., 2009), and therefore marmorkrebs con-
stitute a high risk of bringing new disease vectors,
and competition with native crayfish, which are al-
ready threatened.

According to the Swedish Species Protection Or-
dinance (2007, p. 845), the species is forbidden to
import, move, and hold in Sweden. However, illegal
activities occur and marmorkrebs could be released
into the wild.

In spring 2013, environmental managers were
concerned that marmorkreb might still be present.
A fast response enhances the chances of successful
eradication, and therefore, despite uncertainty in the
current state, decision making was urgent. A group of
experts were assigned the task to evaluate the prob-
ability of crayfish presence and, together with stake-
holders, perform a decision analysis to identify an ap-
propriate action (Bohman & Edsman, 2013). Some
disagreement sustained on how to balance costs, en-
vironmental impact, and efficiency. Indeed, while a

radical decision has higher chances of eradication, it
typically comes at higher societal and environmen-
tal cost. In addition, there was also uncertainty about
the possibility for marmorkreb to successfully survive
under each of the management options.

Meanwhile, a sampling scheme was set up to
reduce uncertainty by collecting evidence for the
presence of marmorkreb. No marmorkrebs were ob-
served in any of the trials (Bohman & Edsman, 2013).
One conclusion might be that no marmorkreb is
present, and therefore no action is needed. To do
nothing was also the decision taken by managers in
this particular case. A more reflective conclusion ac-
knowledges that even though none were observed,
the species, or pathogens brought in by the species,
could still be there and actions might still be needed,
especially when high values are at stake. Since 2013,
there have been no further individuals observed in
Sweden and no major outbreak of a disease associ-
ated with marmorkreb.

2.2. Decision Problems with Uncertainty, Value
Ambiguity, or Both

Environmental decisionmakers responsible for
solving the marmorkreb problem described above
face uncertainty in their knowledge about the system,
as well as ambiguity in their values. System knowl-
edge is the knowledge about the physical system and
the way in which we can interact with it, that is
available for the environmental manager at the time
for the decision. In this case, the lack of observed
markmorkrebs in the summer following the introduc-
tion does not remove the need to evaluate manage-
ment alternatives. Instead, the decision must be made
under severe (or deep as in Institute of Medicine
(2013)) uncertainty.

Values influence the way a manager perceives
and weights the outcomes of the alternative man-
agement actions. Combining severe uncertainty and
value ambiguity, Sahlin et al. (2011) identified four
types of situations for decision making with respect
to the clarity on uncertainty and values:

• In Type 1 situations, the decisionmaker has ex-
tensive knowledge and information, expressed
in terms of precise probability estimates. She
also has clear and distinct preferences and
values.

• In Type 2 situations, the quality and quantity of
information are poor, and it is difficult to rep-
resent the underlying uncertainty in terms of
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probability. On the other hand, the decision-
maker still has clear and distinct preferences
and values: She knows what she wants and de-
sires.

• In Type 3 situations, the quality and quantity
of information is good enough to assess precise
probabilities. However, the decisionmaker lacks
harmonious, clear, and distinct preferences and
values.

• In Type 4 situations, both information and pref-
erences are unreliable or ambiguous.

Type 1 situations can be seen as the standard,
where the usual principles for inference and reason-
ing work well. As long as you feel you have sup-
port to characterize uncertainty by subjective prob-
ability, you are in Type 1 or Type 3. If not, you are
in Type 2 or Type 4. Type 4 situations are not that
uncommon. They arise, for instance, when the ac-
tions needed to prevent harm create a conflict within
us, since we have to make difficult tradeoffs, and
we may be unsure if there is a potential harm in
the first place. In invasive species management, this
could be rapid action to contain a potentially harm-
ful species by killing all possible hosts within a dis-
tance from the sight of observation. Such rapid action
creates a conflict between the ambition to protect,
e.g., trees (which can act as hosts to the alien species)
and to eradicate the alien species (Porth, Dandy, &
Marzano, 2015). We as humans are not very good in
making such tradeoffs, especially when we are uncer-
tain as well.

2.3. Extending Bayesian Decision Analysis

Bayesian decision analysis is able to solve Type
1 problems, while Type 2, 3, and 4 problems require
other ways to represent the impact of knowledge-
based uncertainty and/or value ambiguity on the de-
cision objectives and rules on how to choose be-
tween management alternatives under uncertainty or
value ambiguity. Robust Bayesian decision analysis
is, as described in this article, one way to simultane-
ously deal with uncertainty and value ambiguity. In
addition, this approach enables a smooth transition
of the specification of the decision analysis over all
four types.

In the next section, we treat the marmorkreb
management problem as a Type 4 problem (however
the reasoning is the same under Types 2 and 3) and
assess the probability of presence taking into account
available evidence (i.e., by going from a prior to a

posterior probability of presence). Uncertainty com-
ing from limited knowledge about the system and
ambiguous values is characterized by lower and up-
per bounds on the probability that the crayfish is
present after management, and by lower and upper
bounds on the expected utility.

3. METHODS

3.1. Management Alternatives

The management problem is to seek the best
management decision for eradicating any alien cray-
fish possibly still in the water. To do so, the decision-
maker needs to assess the probability of eradication
across different decisions, as well as the associated
costs and environmental impacts. In this particular
case, the following management decisions were iden-
tified (Bohman & Edsman, 2013):

I Do nothing and inform the public about the
problem with nonindigenous species and the
need to prevent introductions.

II Mechanical removal of individual specimens
found by fishing.

III Drain the system on water and removal of in-
dividuals by hand.

IV Drain the system of water, dredge and sieve
the masses to identify and remove individuals.

V Use a degradable biocide in combination with
drainage to increase the biocide concentration.

VI Increase pH in combination with drainage and
removal by hand.

The decision problem is specified through a
model that links the variables of the system state and
the decisionmaker’s values to parameters and data
(Fig. 1). The variables and dependencies of this prob-
abilistic network (or, more precisely, influence dia-
gram, since it also includes decision and utility nodes)
are further explained in the next two sections.

3.2. Model of the System

The state variable H describes whether the cray-
fish is present in the system (H = 1) or not (H = 0).
As we are uncertain about the value of H after the
winter, we introduce a parameter θ , which embodies
the probability that H = 1, i.e., that the alien crayfish
is still present during spring 2013. Following the stan-
dard Bayesian approach, to allow us to learn about
θ from data, we need to express our initial belief on
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Fig 1. The graphical model for the crayfish management problem
is a probabilistic network of nodes constituting of system states
(H presence before management, H ′ presence after management),
evidence (data) (E), parameters (θ , β), hyperparameters (s, t, α),
decision (D), attributes (biotic impact [A1], longevity of impacts
[A2], feasibility [A3], and cost [A4]), and utility (U).

this probability by a prior distribution on θ . In this
case, we assume that θ follows a Beta(st, s(t − 1))
distribution, where s and t are hyperparameters sat-
isfying s > 0 and 0 < t < 1. We use Walley’s param-
eterization (Walley, 1991, section 7.7.3) to allow for
a straightforward interpretation of the parameters: t
is the prior expectation of θ , and s controls the vari-
ance of the prior (larger s corresponding to smaller
variance).

We learn about θ through the empirical evidence
E, where E = 1 if the crayfish has been observed in
the trial fishing during the summer, and E = 0 oth-
erwise. If no alien crayfish is present, obviously none
will be observed. However, even if alien crayfish is
present, we are only able to detect it with proba-
bility α. It is crucial to consider such observation
errors when learning from data. In this case, the de-
tection probability reflects that the system is only par-
tially observable.

The presence of the crayfish after the manage-
ment has taken place is expressed in the model by H ′.
Efficacy, measured as the probability of successful
eradication (H ′ = 0), is captured by the parameter β.
Since different management methods have different
chances of success, β depends on the management
decision D. When decisions impact probabilities, we

Table I. Lower and Upper Bounds on the Probability of
Successful Eradication β(d) := P(H ′ = 0|d) for Different

Decisions d

Decision d

Probability I II III IV V VI

β(d) 0 0.05 0.3 0.4 1.0 0.7
β(d) 0 0.25 0.5 0.7 1.0 0.8

say that we have act-state dependence. This will be im-
portant later when we perform sensitivity analysis.

Bringing everything together into a probabilistic
causal network (Fig. 1), the future state of the sys-
tem is linked to the decision node and the evidence is
linked to the current state of the system. The laws of
probability and Bayesian updating allow us to revise
the probability of future state H ′ given evidence E
and decision D. This is Bayesian learning, prediction,
and reasoning.

In this problem, the experts (the assessors) were
quite uncertain about the probability θ of the cray-
fish being present, about the chance α to see it in the
trial fishing, and about the efficacy (the probability
β(d)) of eradication. To consider these uncertainties,
we could choose to put a subjective probability dis-
tribution over these parameters. When to use prob-
ability or not is a matter of choice. In this case, our
uncertainty about these parameters is severe and we
do not know which probability distribution to use. In-
stead, we choose to reflect this uncertainty using ro-
bust Bayesian analysis. Since we can learn about θ via
E, we choose to model θ via a set of Beta distribu-
tions, with prior mean t ∈ [0.1, 0.9]. We cannot learn
about α and β(d), so to keep the analysis simple, we
simply model these with intervals, covering the full
range of values that we might reasonably expect. The
experts stated that α ∈ [0.1, 0.5] is a plausible range
for detection probabilities in trial fishing of crayfish.

Experts were asked to elicit β(d), the efficacy
parameter in our model, representing the probabil-
ity that the management alternative d is successful
in eradication. The resulting bounds on the efficacy
β(d) of successful eradication under the different
management decisions d are given in Table I. A bio-
cide in combination with drainage (V) was judged
to always result in successful eradication. Increase
pH in combination with drainage and removal by
hand (VI) was judged as the second most efficient
intervention. The options to drain the system of wa-
ter, dredge and sieve the masses, and remove in-
dividuals (IV) were judged to potentially be more



An Invasive Species Case Study 2145

Table II. Scores (Likert Scale 1 to 4) for Each Attribute and
Each Management Decision in Case of a Successful Eradication

of the Crayfish

Worst Best Decision d

Attribute (Score 1) (Score 4) I II III IV V VI

Biotic impact High Low 4 4 3 3 2 2
Longevity of impacts Long Short 4 4 3 3 2 1
Feasibility Difficult Easy 4 4 3 2 1 2
Cost High Low 4 4 3 1 2 3

successful than the option to drain the system on wa-
ter and removal of individuals (III), but the experts
were uncertain and could not clearly say which one
was better than the other. Mechanical removal of in-
dividuals had the lowest probability of success.

3.3. Derivation of Utility

To elicit our expert’s utility representing the
value of different management objectives, we use a
modified version of the swing weighting procedure
that can cope with severe value ambiguity. A simpli-
fied version of the marmorkrebs problem was already
treated in Troffaes and Sahlin (2017), which focused
on the theoretical results behind the swing weight-
ing method that we will also use here. In this article,
we treat the modeling of the likelihood in far more
detail, we elicit utility from an expert, and we also fo-
cus on the simultaneous propagation of imprecision
in probability and utility in a much more realistic set-
ting. It is also possible to use judgements from several
experts, but that is beyond the scope of this study.

The impact of the overall outcome for the man-
agement problem is described by various attributes
identified as relevant by a group of experts and stake-
holders. These were biotic effects and longevity of
impacts, feasibility and cost of the method. These at-
tributes, denoted by A1, …, A4, are influenced both
by the decision (D) and by whether crayfish is still
present or not (H ′) (Fig. 1). The decision is evaluated
through a joint utility function U on these attributes.

Each management decision was scored accord-
ing to the attributes (Table II) using a Likert scale
ranging from 1 to 4 constructed for each of these
attributes, where 1 corresponds to the worst out-
come and 4 corresponds to the best outcome (de-
tailed descriptions of all attribute levels are in
Appendix A). The expert assessed attribute scores in
case of successful eradication for each management
decision (Table II). The expert, with more than 30

years of experience in crayfish management, based
these scores on a literature review on techniques to
eradicate freshwater crayfish (Bohman & Edsman,
2013). Here, the expert provided a point score for
every management alternative. We note that, in our
analysis, it would also have been possible to assess
these scores using a range. In case of failure to erad-
icate the invasive species (H ′ = 1), the scores for bi-
otic impact and longevity of impacts drop to their
worst values (i.e., a score of 1).

In order to combine the scoring on all attributes
into a utility, we first interpret the scores in Table II as
marginal utilities (i.e., Ui(ai) = ai) and make a struc-
tural assumption that the joint utility function is a
weighted sum of the individual marginal utilities. So,
for given scores (below referred to as a joint reward)
r := (a1, . . . , an), we assume that:

U (r) :=
n∑

i=1

kiUi(ai). (1)

Although this additive form restricts quite sub-
stantially the type of preferences that can be ex-
pressed, the attraction of the linearity assumption is
that it reduces the elicitation of the joint utility to
just the elicitation of the weights k1, …, kn. Relax-
ing this additive form is theoretically possible but
unfortunately it makes the multiattribute elicitation
problem far more complicated, with many more pa-
rameters to be identified, and with the joint util-
ity function becoming a nonlinear function of the
marginal utility functions, even under full mutual
utility independence (Keeney & Raiffa, 1993, The-
orem 6.1). For simplicity, here, we will therefore
assume an additive form. Also, since the resulting
utility functions are unique up to a positive linear
transformation, we may impose all weights to sum to
one. As a consequence, we only need to elicit n − 1
of the weights. There are many ways to elicit weights,
and we choose an indirect method since experts can
find it difficult to interpret the weights directly.

3.4. Modeling Ambiguity in Attribute Weights

In order to deal with possible unclear objectives
(Types 3 and 4 situations), we will use a method for
indirect elicitation described in Troffaes and Sahlin
(2017), which models ambiguity in attribute weights.
The method allows an almost arbitrary set of re-
wards to be compared to match the expert’s expe-
rience, which also allows for ambiguity in the way
the different attributes are weighed. For a detailed
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mathematical description of the method, we refer
to Appendix B. The elicitation method is consistent
under fairly relaxed conditions, which are satisfied
in the setting that we shall study here (Troffaes &
Sahlin, 2017, section 6). It also includes the well-
known swing weighting method (von Winterfeldt &
Edwards, 1986) as a special case.

A downside of swing weighting is that it con-
siders rewards that are unnatural for our specific
problem, because they consider extreme combina-
tions of attributes, with all but one in their worst
state. Therefore, experts may find it difficult to ex-
press their preferences over these rewards. From an
impact assessment perspective, it would instead be
more natural to compare rewards made up by only
small changes from a reference state. These are thus
easier to compare (regardless of any imprecision in
preferences). The method we use is a generalization
of swing weighting, which deals with these problems.

To simplify the elicitation, we developed a graph-
ical user interface (R code in the supplementary ma-
terial) using shiny R (Chang, Cheng, Allaire, Xie, &
McPherson, 2018) where the expert goes through the
steps annotated below. We ran the elicitation proce-
dure with the same expert twice, and what is reported
below is the second iteration. The first iteration had
slightly different choices for levels, but the overall
conclusions remained the same.

1. The expert is informed of all attributes, along
with a detailed description of all attribute lev-
els (see Appendix A). The expert had some in-
put in setting realistic outcomes for these levels.
Throughout the interface, short textual descrip-
tions are used for the levels, rather than num-
bers, to ensure clarity throughout.

2. The expert is informed that they will be asked
to compare these attributes at two levels. As a
first step, the expert is asked to identify which
pairs of levels they find most comfortable with
comparing. Note that, at this stage, we excluded
the “no impact” outcomes (level 4) for biotic
impact and longevity to ensure meaningful joint
outcomes are compared for the next steps.
For example, the expert chose levels {1, 2} for
biotic impact, {2, 3} for longevity, {1, 3} for feas-
ibility, and {1, 3} for cost where the highest lev-
els comprise the reference state. From these
levels, we construct the following joint re-
wards (directly expressed in terms of marginal
utilities):

Rewards

u0 := (1, 3, 3, 3)
u1 := (2, 2, 3, 3)
u2 := (2, 3, 1, 3)
u3 := (2, 3, 3, 1)
u4 := (2, 3, 3, 3)

Here, u4 is the reference state, u0 modifies u4 in
the first attribute, …, and u3 modifies u4 in the
fourth attribute.

1. The expert is asked which of the above joint re-
wards is the worst outcome. In our case, the ex-
pert chose u2, so r2 � r j � r4 for all j ∈ {0, 1, 3}
(the symbol � means “is less or equally pre-
ferred to”).

2. Next, we introduce uncertainty in the rewards
using lotteries. Given two rewards a and b, and
a number α ∈ [0, 1], the expression

αa ⊕ (1 − α)b (2)

denotes an uncertain reward where a is ob-
tained with probability α and b is obtained with
probability 1 − α. Comparing a lottery with a
known reward is a common way to indirectly
elicit someone’s probability of a random event,
or someone’s utility of a reward.

3. Uncertainty in weights is obtained by asking the
expert to compare and set values on α in a range
of rewards (as prescribed in Appendix B). Our
expert arrived at:

0.60r2 ⊕ 0.40r4 �r0 � 0.35r2 ⊕ 0.65r4 (3)

0.50r2 ⊕ 0.50r4 �r1 � 0.40r2 ⊕ 0.60r4 (4)

0.10r2 ⊕ 0.90r4 �r3 � 0.04r2 ⊕ 0.96r4 (5)

For instance, Equation (3) means that the ex-
pert prefers the certain outcome r0 over the un-
certain outcome where r2 happens with 60%
chance and r4 with 40% chance. However, when
the chance for r2 is reduced to 35% and the
chance for r4 is increased to 65%, the ex-
pert prefers the uncertain outcome instead. The
other preferences have a similar interpretation.

These assessments then lead to a set of linear in-
equalities that determine a convex set of attribute
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weights. In this decision analysis, it is enough to con-
sider extreme points of this set (see Appendix B)
to derive bounds on expected utility. The extreme
points here were calculated using the double descrip-
tion method (Fukuda & Prodon, 1996) through the
rcdd package in R (R Core Team, 2018) (R code in
the supplementary material).

3.5. Select Decision

The last step in the decision analysis, after spec-
ifying the parameters of a model to express our be-
liefs and values of alternative outcomes, is to choose
the best management alternative. Because the de-
cision affects the probability of successful manage-
ment (i.e., we have act-state dependence), we have
to treat the problem using interval dominance (Trof-
faes, 2007). If probabilities and utilities are precise
(Type 1 situations), then this is equivalent to the
conventional approach of maximizing expected util-
ity. In interval dominance, we consider the posterior
expected utility interval of every option. The set of
decisions whose intervals are undominated are then
considered as optimal. If there is only one such man-
agement alternative, then obviously that is the deci-
sion we ought to pick.

With interval dominance, it is always the case
that the best worst case option dominates all nonop-
timal options. To help visualize this, we depicted the
best worst case utility as a vertical dashed line on all
plots: Every option whose interval intersects with this
line is optimal.

If there are multiple undominated management
alternatives, then this means that we have insufficient
information to say which is the best. If so, we can de-
select poor alternatives and arrive at a set of possible
alternatives to select from. One might then try to re-
fine the set by collecting more information and rerun
the analysis, pick the alternative with the best worst
outcome, or decide which alternative to pick based
on other concerns. It is also possible to refine the in-
terval analysis and eliminate further options by per-
forming a sensitivity analysis over parameters that
are not affected by the decision. We defer a discus-
sion of this to Section 4.

We estimate the posteriors for each decision al-
ternative d, each extreme value of t, α, and β(d),
and each extreme attribute weight vector k from
Table B1. The utility was then evaluated through

Fig 2. Intervals for posterior probability of crayfish being
present after management P(H ′ = 1|d) (left) and expected utility
E(U (d)) (right) for different decision alternatives d: (I) do noth-
ing, (II) mechanical removal by fishing, (III) drainage and removal
by hand, (IV) drainage, dredging, and sieving before removal by
hand, (V) use a degradable biocide in combination with drainage,
and (VI) increase pH in combination with drainage and removal
by hand, given the prior probability 0.1 ≤ t ≤ 0.9, prior equiva-
lent sample size s = 2, and detection probability 0.1 ≤ α ≤ 0.5. The
highest worst expected utility is indicated by a vertical dashed line.
In this case, decision alternatives V and VI are dominated.

U (d, k) : = H ′
5∑

i=1

kiUi(ai(H ′ = 1, d))

+ (1 − H ′)
5∑

i=1

kiUi(ai(H ′ = 0, d)),(6)

where the marginal utilities were taken from Table II,
and the posterior distribution for H ′ was sampled
using the graphical model depicted in Fig. 1 using
Markov chain Monte Carlo (MCMC) sampling in the
R package rjags calling JAGS (Plummer, 2003) (R
code in the supplementary material). Because infer-
ences for lower s values lead to tighter inferences,
fixing s to any specific value automatically covers all
lower values for s as well (Walley, 1996). Therefore,
we need not consider intervals for s, and only need
to consider a reasonable upper bound. In our anal-
ysis, the parameter s was set to 2. This choice en-
sures that all typical choices of precise Bayesian prior
distributions for Bernoulli sampling are covered
(Walley, 1996).

4. RESULTS

Interval dominance evaluated from the full ro-
bust Bayesian analysis reveal that the options “Use
a degradable biocide in combination with drainage”
(V) and “Increase pH in combination with drainage
and removal by hand” (VI) are dominated by the
other management alternatives (Fig. 2). The intervals
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on the probability of presence after management are
in this analysis a consequence from considering un-
certainty in terms of sets of probability distributions
for the parameter θ (arising from combinations of
values for prior probability t ∈ [0.1, 0.9] and detec-
tion probability α ∈ [0.1, 0.5]) and intervals on the
parameter β(d) (the efficiency of each management
alternative d (Table I)). The expected utility intervals
are a consequence from this uncertainty about the
probability of presence after management and sets
of values for the utilities. The expected utility inter-
vals on the four nondominated decision alternatives
in Fig. 2 are wide and partially overlapping. There-
fore, they are all reasonable, but highly uncertain.

A refined analysis evaluating interval dominance
for different beliefs in the system state and observa-
tion error may reveal if there are any further dom-
inated alternatives. Uncertainty about the efficiency
of management and value ambiguity is not refined in
this step, because they are specified in a way such that
there is no straightforward way on how to refine them
any further. We therefore study if different choices of
the hyperparameters t and α from the range reflect-
ing our beliefs result in additional conclusions about
dominance (Fig. 3).

No individuals were observed in trial fishing, and
therefore the probability of the crayfish being present
is bounded from above by the prior probability of
crayfish presence (t), as long as the the detection
probability is large enough. As seen from the left-
hand side of Fig. 3, the prior (solid vertical line) is
almost always at least as high as the interval for the
posterior probability of presence after management,
with the exception of when t = 0.1 and α = 0.1.

A higher prior belief of crayfish presence logi-
cally results in a high posterior probability, and in
lower values for the expected utility. Also, the differ-
ences in expected utilities between decision alterna-
tives becomes smaller, since the utility from the loss
when the species is present gets a higher weight com-
pared to the specific utility under each decision al-
ternative. In contrast, a higher detection probability
results in lower risk and narrower bounds for the pos-
terior. This is expected since we put more trust on
data compared to the prior belief, and since we do
not observe any specimens, the posterior probability
becomes relatively lower than before.

For each extreme point of the hyperparame-
ters, we find by the refined analysis, that the op-
tion “Drainage and removal by hand” (IV) is dom-
inated as well (in addition to V and VI) (Fig. 3).
All three options “inform only” (I), “mechanical

Fig 3. Intervals for posterior probability of crayfish being
present after management P(H ′ = 1|d) (left) and expected utility
E(U (d)) (right) for different decision alternatives d, for each of
the extreme points for prior expected probability (solid line) and
detection probability: (a) t = 0.1, α = 0.5; (b) t = 0.1, α = 0.1; (c)
t = 0.9, α = 0.5; (d) t = 0.9, α = 0.1, and prior equivalent sample
size s = 2. The highest worst expected utility is indicated by a ver-
tical dashed line. In this case, decision alternatives IV, V, and VI
are dominated.

removal” (II), and “drain the system on water and
removal of individuals by hand” (III), are reason-
able. We also see that option II is the best worst case
decision since it has the highest value on the worst
possible expected utility (Fig. 3). The management
alternative II also dominates all nonoptimal options
(since its lower bound on the expected utility exceeds
the upper bounds on the expected utilities of IV, V,
and VI).

5. DISCUSSION

We demonstrated the use of robust Bayesian
decision analysis to solve a risk management prob-
lem under severe uncertainty and value ambiguity.
Bayesian decision theory is applicable in situations
when epistemic uncertainty is judged to be reliably
characterized by subjective probability, and prefer-
ences and values are clear and distinct (a Type 1 prob-
lem according to Sahlin et al. (2011)). Decision prob-
lems may face uncertainty in knowledge bases (Type
2), ambiguity in values (Type 3), or both (Type 4).
Type 3 problems can occur when there is ambiguity
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in values from multiple actors and different frames
(Dewulf et al., 2005). Here, we describe the decision
to eradicate an invasive alien species to be taken un-
der severe uncertainty and value ambiguity (Type 4).

To handle the limited possibility to verify the
presence of the alien species, the small chances in
detecting the species if present, and difficulties in
predicting the probability of successful eradication
under different management options, we opted to
model certain quantities through sets of probability
distributions. There will always remain some degree
of subjectivity in setting probability bounds. How-
ever, this is no different from standard probability
elicitation (Hemming et al., 2017; O’Hagan et al.,
2006). Similarly, to handle the severe ambiguity in
how decisionmakers weigh the different attributes
in the outcome (e.g., cost, feasibility, biotic impact),
we used an extension of the standard swing weight-
ing method to model these ambiguities through sets
of utility functions. We then propagated these en-
tire sets through a robust Bayesian analysis, and
then compared the posterior expected utility inter-
vals to identify the best possible decisions using in-
terval dominance.

Here, robust Bayesian decision analysis is pre-
sented as a modification of Bayesian decision analy-
sis, where the ability to incorporate prior beliefs and
evidence is ensured, but uncertainty is treated in a
more conservative way and ambiguity in values is
acknowledged. This decision theory includes learn-
ing under severe uncertainty to identify management
decisions that are consistently bad under a plausible
range of probability and utility bounds, and that de-
cisionmakers can therefore clearly exclude. Since up-
dating and decision analysis are done in a single pro-
cess, it is easy to evaluate sensitivity toward the initial
choice of our beliefs about the world.

For the marmorkreb problem, we found that
three out of six management alternatives were non-
dominated. This conclusion was found after a re-
fined analysis, where interval dominance was evalu-
ated within choices of hyperparameters (similar to
paired testing). The analysis gives support to the deci-
sion that actually was taken, i.e., to do nothing, but it
also shows that mechanical removal by fishing would
have been a better choice.

The problem to choose if, and how to eradicate
the alien invasive crayfish is a simple one (from a
structural point of view). Note that there are sev-
eral examples of somewhat similar Bayesian decision
analyses to support management of invasive species
(Clarke & Jones, 2015; Regan, Chadès, & Possing-

ham, 2011; Rout, Kirkwood, Sutherland, Murphy,
& McCarthy, 2014; Russell, Binnie, Oh, Anderson,
& Samaniego-Herrera, 2017; Sakamoto, Kumagai, &
Goka, 2017). These works address the question as to
how long we need to monitor after an eradication at-
tempt to be certain the species is gone. In contrast, in
this article, the management decision is if eradication
should be done, and if so, which way to do it.

The calculations for the analysis in this article can
be done within seconds (the R code is available as
supplementary material). For larger problems, with
more complex structures, the computational chal-
lenge of Bayesian updating and optimization un-
der sets of distributions quickly becomes resource
demanding. Future applications of robust Bayesian
analysis on risk management require efficient algo-
rithms for learning, e.g., relying on MCMC sampling
for any type of model or approximations for specific
types of models (Rue et al., 2017). Today, those al-
gorithms exist for standard Bayesian analysis (e.g.,
Plummer, 2003).

Value ambiguity may be a larger concern than
uncertainty in risk management problems. Eliciting
the set of prior distributions and set of utility func-
tions poses a practical challenge. Although the ex-
tended swing weighting method was chosen for its
strong consistency properties, it is not clear whether
such elicitation would work in a practical setting.
In our elicitation procedure, we asked the minimal
number of questions to elicit weights, similar to the
standard swing weighting method. In order to check
the internal consistency, one could elicit further pref-
erences and verify that these are compatible. If in-
consistencies appear, our suggestion is to communi-
cate these inconsistencies back to the experts, and
ask them to reconsider their preferences to achieve
consistency.

In the shiny R app, the expert is given some in-
formation about what constitutes a lottery, and how
to compare lotteries, involving some hypothetical re-
wards. We found that this substantially helped the
expert to conduct the next step, although it still re-
mained a conceptual challenge for someone not ex-
perienced in utility elicitation. Therefore, we recom-
mend the procedure to be run with a facilitator who
has good conceptual understanding of the procedure.

We note that robust Bayesian decision analysis is
not limited to how utility was derived in this exam-
ple. Moving away from an additive utility function is
possible at the expense of a more complicated elic-
itation problem, where the joint utility function be-
comes a nonlinear function of the marginal utility
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functions (Keeney & Raiffa, 1993). We chose an ad-
ditive utility function to keep the analysis straight-
forward and to allow for linear optimization, which
makes it easy to perform the bounding computation-
ally, even though this choice obviously restricts the
type of preferences that can be expressed. Addition-
ally, we note that the analysis could be expanded to
also account for uncertainty in the assessed conse-
quences beyond just eradication and detection. Even
though in this case study the expert did not reveal
any uncertainty in his assessment, one might well
imagine a scenario where under some of the deci-
sion alternatives, there is uncertainty in the biotic
impact, longevity, feasibility, or cost. One could ac-
count for this through probability, or through prob-
ability bounding if this uncertainty is severe, mak-
ing for a more advanced model and more complex
analysis.

Any serious attempt to deal with uncertainty and
value ambiguity ought to find transparent ways to
adapt to the type of decision problem at hand (Types
1 to 4). We suggest that relaxing the assumptions
behind standard Bayesian decision theory into ro-
bust Bayesian decision theory is one way to do this,
and goes from one rigorous principle of learning and
quantifying epistemic uncertainty into another (In-
sua et al., 2000; Walley, 1991).
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APPENDIX A: ATTRIBUTE TABLES

Tables A1, A2, A3, and A4 list and describe the
scales for all attributes.

APPENDIX B: UTILITY ELICITATION:
MATHEMATICAL DETAILS

In the setting of Troffaes and Sahlin (2017), R :=
A1 × · · · × An is a finite set of rewards, each reward
r = (a1, . . . , an) comprising of n attributes. A lottery
� on R is a probability mass function over R, and is
interpreted as a random reward with precisely known
probabilities. The set of all lotteries over R is denoted
by L(R). A utility function on R is any function U :
R → R, where we lift U to L(R) in the usual way:

U (�) :=
∑

r∈R
�(r)U (r). (B1)

We wish to model our preferences between lotteries
over our multiattribute rewards. We will assume that
our preferences form a preorder 	 on L(R), and can
be represented through a set U of utility functions U :
L(R) → R:

�1 	 �2 ⇐⇒ ∀U ∈ U : U (�1) ≥ U (�2) (B2)

for all �1 and �2 ∈ L(R). For theoretical foundations
behind such representation, we refer to Nau (2006).
Elicitation is then concerned with finding a proce-
dure for identifying U .

The elicitation method goes as follows (Troffaes
& Sahlin, 2017):

1. Consider any joint rewards r0, …, rn such that
for all j ∈ {1, . . . , n − 1} we have that

r0 � r j � rn. (B3)

2. For all j ∈ {1, . . . , n − 1}, find the largest α j and
smallest α j such that

(1 − α j )r0 ⊕ α jrn � r j � (1 − α j )r0 ⊕ α jrn,

(B4)

where ⊕ denotes the combination of rewards
into lotteries, so (1 − α)r1 ⊕ αr2 is the lottery �

with �(r1) = 1 − α, �(r2) = α, and �(r) = 0 for
all other rewards.

3. Let uj denote the vector of marginal utili-
ties for r j, i.e., if r j = (a1, . . . , an), then uj =
(U1(a1), . . . ,Un(an)). Let k denote the vector
(k1, . . . , kn). With this notation, impose

https://github.com/mcmtroffaes/r-crayfish-risk-analysis/
https://github.com/mcmtroffaes/r-crayfish-risk-analysis/
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Table A1. Likert Scales for the Biotic Impact Attribute

Level Short Description Description

4 No impact No negative impacts
3 Minor impact on some Some species are negatively affected, but this does not have any impact

on the viability of their populations and the invasive alien species is
not present in the system

2 Major impact on some Some of the species in the system are negatively affected or that the
majority of species are affected but not with any impact on the

viability of their populations, and the invasive alien species is not
present in the system

1 Major impact on most Majority of the species in the system are negatively affected or the
invasive alien species is present in the system

Table A2. Likert Scales for the Longevity Attribute

Level Short Description Description

4 No impact No negative impacts
3 Month Duration of negative biotic impacts up to a month
2 One year Duration of negative biotic impacts up to one year
1 > One year Duration of negative biotic impacts for more than one years

Table A3. Likert Scales for the Feasibility Attribute

Level Short Description Description

4 No obstacles No major obstacles in carrying out the method
3 Minor obstacles Some obstacles to carry out the method, but these are possible to overcome in the current legislation and policy
2 Some controversy Method is controversial and it requires a lot of preparatory work to be possible to carry out
1 Large controversy Large controversy about the method and it may be in conflict with current legislation or policy

Table A4. Likert Scales for the Cost Attribute

Level Short Description Description

4 < 50k Between 0 and 50,000 SEK
3 50–250k Between 50,000 and 250,000 SEK
2 250–500k Between 250,000 and 500,000 SEK
1 > 500k More than 500,000 SEK

∀ j ∈ {1, . . . , n − 1} : (uj − (1 − α j )u0 − α jun) ·
k ≥ 0 (B5a)

∀ j ∈ {1, . . . , n − 1} : (uj − (1 − α j )u0 − α jun) ·
k ≤ 0 (B5b)

1 · k = 1. (B5c)

Table B1. Extreme Points of the Convex Set of Attribute Weights
(k1, k2, k3, k4) Representing Our Incomplete Preferences

Attribute Weight 1 2 3 4 5 6 7 8

Biotic impact k1 0.37 0.36 0.39 0.39 0.26 0.25 0.28 0.27
Longevity of impacts k2 0.31 0.30 0.26 0.26 0.36 0.36 0.31 0.31
Feasibility k3 0.31 0.30 0.33 0.32 0.36 0.36 0.39 0.38
Cost k4 0.01 0.03 0.01 0.03 0.01 0.04 0.02 0.04

The last constraint is simply another way of writ-
ing

∑n
i=1 ki = 1, and fixes the multiplicative scaling

of the joint utility function. These constraints define
a convex set of weight vectors, which represent the
preferences of the expert.

These assessments then lead to a set of linear in-
equalities that determine a convex set of attribute
weights. In this decision analysis, it is enough to con-
sider extreme points of this set (see Table B1) to de-
rive bounds on expected utility. The extreme points
were here calculated using the double description
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method (Fukuda & Prodon, 1996) through the rcdd
package in R (R Core Team, 2018). In our example,
the number of extreme points is fairly limited. For
larger problems however, it might be required to use
optimization algorithms that can work with the con-
straints directly. Note that the number of extreme
points will depend in a nontrivial manner on the
elicited constraints represented by Equation (B5),
and in particular on the number of attributes n, and
on the precise values of α j and α j.
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