
Basic and Applied Ecology 57 (2021) 129�145 www.elsevier.com/locate/baae
The importance of blue and green landscape connectivity for
biodiversity in urban ponds

Chaz Hysenia,*, Jani Heinob, Luis Mauricio Binic, Ulf Bjelked, Frank Johanssona

aDepartment of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyv€agen 18D, SE 75236, Uppsala,
Sweden
bFinnish Environment Institute, Freshwater Centre, Paavo Havaksen Tie 3, FI 90570, Oulu, Finland
cDepartamento de Ecologia, Universidade Federal de Goi�as, Goiânia, 74001-970 GO, Brazil
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Abstract

The negative impact of urbanization on biodiversity can be buffered by blue (e.g., rivers, ponds) and green (e.g., parks, for-
ests) spaces. However, to prevent biodiversity loss and reduce the risk of local extinctions, blue and green spaces need to be
connected by corridors, so that organisms may disperse between sites. Landscape connectivity affects local community compo-
sition and metacommunity dynamics by facilitating dispersal. The goal of this study was to test the relative roles of pond envi-
ronmental properties, spatial structure, and functional landscape connectivity on differentiation of invertebrate
metacommunities in urban ponds in the city of Stockholm, Sweden. We characterized functional connectivity as blue connec-
tivity (distance to water bodies), green connectivity (land use), and combined blue-green connectivity. We estimated functional
connectivity by using electrical circuit theory to identify dispersal corridors. Interestingly, while circuit theory is often used in
single-taxon studies, this method has rarely been applied to multiple taxa forming a metacommunity, as we have done in this
study. Indeed, our study contributes toward an increased focus on the role of dispersal at the metacommunity level. We deter-
mined that functional connectivity was the most important factor in explaining community differentiation, with the local envi-
ronment contributing comparatively little, and spatial structure the least. Combined blue-green functional connectivity had a
major influence on structuring urban pond communities, explaining 7.8% of the variance in community composition across
ponds. Furthermore, we found that increased functional connectivity was associated with an increase in the number of species.
In summary, our results suggest that to preserve biodiversity in urban ponds, it is important to enhance functional connectivity,
and that open green spaces could augment blue corridors in maintaining functional connectivity in urban pond metacommun-
ities. To generalize these findings, future urban biodiversity studies should compare how functional connectivity affects meta-
communities across multiple major cities.
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Introduction

Landscape connectivity can be defined as the effect that
the landscape has on “movement along resource patches”
(Taylor, Fahrig, Henein & Merriam, 1999). In fragmented
landscapes, organisms survive in habitat patches that are
linked by dispersal (Leibold et al., 2004). Therefore, the
deterioration of landscape connectivity has negative conse-
quences for biodiversity conservation (Hanski, 2005). Habi-
tat loss and fragmentation are a major threat to biodiversity
(Tilman et al., 2017). Thus, optimizing habitat patch connec-
tivity, or landscape connectivity, is one way to reduce the
negative impact of habitat loss and fragmentation. However,
to estimate landscape connectivity, we need to understand
how landscape features are configured. This leads to two
basic estimates of connectivity: structural and functional.
Structural connectivity is the physical (Euclidean) distance
between patches, irrespective of how organisms move across
the landscape (Dunning, Danielson & Pulliam, 1999;
Tischendorf & Fahrig, 2000). Functional connectivity,
instead, takes movement behavior into account by estimat-
ing the route between patches which are suitable for dis-
persal (Tischendorf & Fahrig, 2000). Studies investigating
landscape connectivity provide useful information for land-
scape managers on how to optimize patch connectivity and
thus decrease the negative effects of habitat loss on biodiver-
sity (e.g., Mitchell, Bennett & Gonzalez, 2013).

One factor that causes habitat loss is urbanization. It has
been estimated that 55% of the world’s population currently
lives in urban areas and, by 2030, this percentage is pre-
dicted to increase to 68% (United Nations, 2018). The nega-
tive impact of urbanization on biodiversity can be buffered
by green spaces, which can harbor high levels of biodiver-
sity (e.g., Pautasso et al., 2011), and may benefit threatened
species (Ives et al., 2016). Additionally, green spaces are
beneficial to human health (Garrett et al., 2019;
Gascon et al., 2016). However, to optimize biodiversity in
urban green spaces, we need information on both local envi-
ronmental variables and landscape connectivity.

In the last few decades, there has been an increased interest
in blue spaces in urban areas (Oertli & Parris, 2019). Blue
spaces include lakes, rivers, ponds, and other water bodies.
Ponds are defined as water bodies with a surface area less
than 5 ha (Oertli et al., 2005). Many artificial water bodies,
including ponds, have been constructed in the last few deca-
des (reviewed in Knapp, Schmauck & Zehnsdorf, 2019). Arti-
ficial ponds have served different purposes, such as water
purification, esthetic value, as well as leisure activities (e.g.,
fishing). Studies have shown that pond biodiversity is deter-
mined by various environmental variables, including artificial
surfaces in a pond’s vicinity, pond area and depth, aquatic
and terrestrial vegetation (Briers, 2014; C�er�eghino, Boix,
Cauchie, Martens & Oertli, 2014; Goertzen & Suhling, 2013;
Hassall, 2014; Heino et al., 2017b; Hill et al., 2018;
Johansson et al., 2019). However, urban ponds remain less
studied than urban streams, urging increased interest in
understanding the effects of urbanization on aquatic biodiver-
sity (G�al, Sziv�ak, Heino & Schmera, 2019).

Apart from local environmental variables, landscape con-
nectivity affects variation in local community composition
and metacommunity dynamics, via the role it plays in facili-
tating dispersal of organisms (Fahrig & Merriam, 1985;
Hanski, 1999). Several proxies for dispersal have been pro-
posed (J. Heino et al., 2017). Among these, Euclidean dis-
tance has been a classic measure of structural connectivity,
which assumes that shorter distances allow for more
exchange of individuals among patches (Fahrig & Mer-
riam, 1985). Such studies have found spatially structured
plant and bird distributions in urban areas
(Schleicher, Biedermann & Kleyer, 2011; Shanahan, Miller,
Possingham & Fuller, 2011). In contrast, Heino et al., 2017b
found that species richness of aquatic invertebrates in city
ponds was spatially independent. However, in heteroge-
neous landscapes, where suitable habitats are embedded in
an unsuitable matrix, the shortest distance between two
patches might not be the main dispersal route
(Ca~nedoArg€uelles et al., 2015; K€arn€a et al., 2015). In this
case, dispersal routes through suitable habitat (i.e., func-
tional connectivity) might better describe community simi-
larities among ponds. Functional connectivity modeling
techniques include least-cost path analysis, circuit theory
and other graph models (reviewed by LaPoint, Balkenhol,
Hale, Sadler & vanderRee, 2015). Though functional con-
nectivity has been used to study connectivity of single spe-
cies in urban areas (Balbi et al., 2018; Horta et al., 2018),
few studies have used information on functional connectiv-
ity among city ponds at the metacommunity level.

Electrical circuit theory can be used to model functional con-
nectivity by identifying habitat pathways or corridors facilitat-
ing the dispersal of organisms (McRae, Dickson, Keitt &
Shah, 2008). Circuit theory treats landscapes as resistance sur-
faces, with individuals (or genes) moving across a landscape as
electrons flow through a circuit (McRae et al., 2008). Areas
with higher resistance to movement are assigned higher resis-
tance values. For instance, roads are typically assigned high
resistance values, as they represent a barrier to movement for
most organisms. A resistance surface is a spatial layer that
assigns a value to each landscape or environmental feature,
with values representing the extent to which that feature
impedes or facilitates connectivity for an organism
(Spear, Balkenhol, Fortin, McRae & Scribner, 2010). To date,
circuit theory has been used in many fields of study, including
conservation science, ecology, epidemiology, and evolutionary
biology (reviewed by Dickson et al., 2019). While there is an
increasing number of efforts to describe functional connectivity
for multiple taxa (Walpole et al. 2012; Koen et al. 2014; Pellet-
ier et al. 2014; Leonard et al. 2016) including entire communi-
ties of animals (Mor�anOrd�o~nez et al., 2015) and plants
(Thiele, Buchholz & Schirmel, 2018), circuit theory has rarely
been applied to multiple taxa comprising a metacommunity.

Many terrestrial and aquatic taxa use riparian zones as dis-
persal routes (J. Heino et al., 2017). However, the
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connectivity provided by these landscape features may be dis-
rupted by urbanization and associated increases in artificial
surfaces. Thus, in this study, we collected data from inverte-
brate metacommunities in urban ponds in Stockholm (Swe-
den), with the goal of assessing the effects of aquatic and
terrestrial connectivity on metacommunity structure and spe-
cies diversity. To do so, we aimed to disentangle the relative
contributions to metacommunity structure (if present) of local
environmental variables, landscape configuration, and con-
nectivity facilitated by blue and green spaces. Furthermore,
we aimed to understand how connectivity influences species
diversity, independent of the effect of local pond environ-
ments. To quantify the role of connectivity, the intervening
landscape was represented both in terms of structural and
functional (blue and green) connectivity, with the latter mod-
eled using the circuit theory approach. Knowledge of the
importance of blue and green functional connectivity for bio-
diversity is important for landscape planners, because it will
help them determine the necessary arrangement of blue and
green spaces to maximize the conservation of urban biodiver-
sity.
Materials and methods

Analytical framework

Our analytical framework included three steps: 1a) calcu-
lating dissimilarity among pond communities to use as the
Fig. 1. Sampling of urban ponds in Stockholm. The red, green, and yello
tively. The inset shows a map of Europe, with the red area representing th
multivariate response, 1b) identifying multivariate predictors
summarizing local pond environments, 1c) identifying struc-
tural connectivity predictors, 1d) optimizing resistance sur-
faces and using them to set up functional connectivity
predictors; 2) calculating the variance in community compo-
sition (i.e., community differentiation) attributable purely to
the local environment versus structural or functional connec-
tivity; 3a) classifying ponds based on local environmental
characteristics and quantifying community composition and
functional connectivity differences among pond classes; and
3b) assessing the relationship between functional connectiv-
ity and species diversity, and how this relationship may vary
across pond classes.

To represent the local environment, we used: i) within-pond
measurements such as water chemistry and macrophyte cover,
and ii) land use variables (e.g., artificial surfaces, forests, etc.)
for a 250-m radius around each pond. The estimates of land-
scape connectivity included: i) structural connectivity, and ii)
blue and green functional connectivity. These estimates were
determined by the spatial arrangement of ponds as well as land-
scape features facilitating between-pond dispersal.
Sampling

We sampled aquatic invertebrates in 80 ponds in Stock-
holm, Sweden. The extent of the study area covered the
entire city. The city itself has ca. 900,000 inhabitants, with
another 600,000 living in the suburbs of the Stockholm
w colors represent artificial surfaces, forests, and grassland, respec-
e study area in the city of Stockholm and its suburbs.
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metropolitan area. We defined ponds as natural or artificial
water bodies with an area between 2 m2 and 5 ha, with a
hydroperiod of at least 4 consecutive months
(Biggs, Williams, Whitfield, Nicolet & Weatherby, 2005).
Our focus was on densely populated areas in the city. There-
fore, ponds were selected based on maps as well as informa-
tion provided by municipalities. All ponds were sampled in
May-June 2019. While sampling was performed at 80 sites
in the Stockholm metropolitan area, we removed sites for
which we did not have a complete set of environmental
measurements. The remaining 72 sites (Fig. 1) were
included in all analyses.

The ponds were surveyed for aquatic life stages of the
orders Odonata, Trichoptera (larvae), Coleoptera and Hemi-
ptera (larvae and adults), as well as adult-stage freshwater
snails (class Gastropoda). These invertebrates represent sev-
eral assemblages (i.e., taxonomically related groups of spe-
cies) as well as functional feeding groups, and may thus
represent the overall biodiversity of aquatic fauna in the
sampled pond habitats (but see Westgate, Tulloch, Barton,
Pierson & Lindenmayer, 2017). The invertebrates were sam-
pled using a bottom scoop net with a diameter of 20 cm and
a mesh size of 1.5 mm. Six samples were taken in each pond
at a depth of 20�30 cm. We did eight 1 m sweeps along the
bottom alternating direction each time. These six samples
covered all types of representative microhabitats along the
shoreline (e.g., soft versus hard bottom, with and without
vegetation). Samples were preserved in 70% ethanol and
taken to the laboratory for taxonomic identification. Individ-
uals that could not be identified at the species level were still
included in the final analysis at the genus or family level.
Step 1a � dissimilarity among pond communities

The total number of taxa identified across all sampling
sites was 152. After removing taxa that were only detected
at a single site, we obtained a dataset with 96 taxa. The
abundance matrix was Wisconsin double standardized (Bray
& Curtis, 1957). A comparison of analysis results showed
no substantial differences between the 152-taxon and 96-
taxon datasets, and we therefore report the results of the 96-
taxon dataset. The response variable was a matrix of pair-
wise Bray-Curtis dissimilarities (Bray & Curtis, 1957)
between sampling sites. While the arcsine square root trans-
formation has been applied in the past to improve the non-
linearity of the Bray-Curtis dissimilarity matrix
(Loucks, 1962), we used min-max normalization, as this
method achieved better improvement.
Step 1b � local environment

The following within-pond measurements were taken for
each pond: area (m2), maximum depth (m), pH, total phospho-
rus (TP; mg/L), total nitrogen (TN; mg/L), total organic carbon
(TOC; mg/L), and macrophyte cover. These variables have
been shown to affect biodiversity in many ponds (e.g.,
Hassall, Hollinshead & Hull, 2011) and were therefore selected
here. We used QGIS (QGIS Development Team, 2021) to esti-
mate pond area in an automated way from terrain maps avail-
able through Lantm€ateriet (The Swedish mapping, cadastral
and land registration authority). Water depth was measured
with a ruler in the deepest part of the pond. Water chemistry
variables were sampled in May-June 2019 and analyzed in the
laboratory at Uppsala University using standard methods. Mac-
rophyte cover was estimated visually in August 2019 and
scored on a scale of 0 to 10 (equivalent to 0�100%). Macro-
phyte cover was categorized into floating and emergent vegeta-
tion, as well as bushes and bare ground (i.e., surfaces with no
vegetation) along the shore.

We used land use variables as an additional characteriza-
tion of the local environment. The following land use varia-
bles were calculated for a 250-m radius around each pond:
percentage of water, wetlands, “grassland” (i.e., grass, herbs,
and bushy sclerophyllous vegetation), “forests” (i.e., decid-
uous and coniferous tree cover), “cultivated areas” (i.e.,
areas with arable land), “natural surfaces” (i.e., natural bare
areas, including rocks, boulders, stones, and bare soils), and
“artificial surfaces” (i.e., buildings, roads, sidewalks, park-
ing lots, and other impervious surfaces). The land cover data
were retrieved from http://s2glc.cbk.waw.pl/. The data were
produced by applying automatic classification methodology
to Sentinel-2 remote-sensed satellite images collected during
the year 2017. The classification methodology was devel-
oped in the framework of the Sentinel-2 Global Land Cover
(S2GLC) project (Malinowski et al., 2020). The S2GLC
2017 dataset was available at 10-meter resolution.

Within-pond measurements and land use variables
together represented the “local environment” of each pond.
To deal with multicollinearity (i.e., correlation among varia-
bles), we used principal component analysis (PCA) to trans-
form the original variables into orthogonal (non-correlated)
principal components. Additionally, as the original data
were on different scales, we performed z-score standardiza-
tion (m = 0, s = 1) prior to PCA.
Step 1c � structural connectivity

To characterize structural connectivity (herein also referred
to as spatial structure, or geography), we investigated whether
neighboring local communities are more similar than more
distant ones. We examined the spatial structure of local com-
munities by applying Principal Coordinates analysis of
Neighbor Matrices (PCNM) to Euclidean geographic distan-
ces. To obtain PCNM axes summarizing spatial structure, we
used the pcnm function in the package ‘vegan’
(Oksanen et al., 2012) written for the R programming envi-
ronment (R Core Team, 2021). We used a backward selection
procedure to select a subset of PCNM axes (see the “Commu-
nity differentiation” section for further details).



C. Hyseni et al. / Basic and Applied Ecology 57 (2021) 129�145 133
Step 1d � functional connectivity

To characterize functional connectivity, we first identified
landscape features relevant to dispersal of organisms among
urban ponds. Blue connectivity was estimated based on dis-
tance of urban ponds from other water bodies, while green
connectivity was characterized as the amount of forests,
grassland, and cultivated areas interspersed in an urban
matrix. We then parameterized these features to represent
strength of resistance to dispersal. Since parameterization of
resistance surfaces is a key step, and to avoid the subjective
nature of manually assigning resistance values to landscape
features (reviewed by Zeller, McGarigal & Whiteley, 2012),
we opted for an automated solution. We used the R package
‘ResistanceGA’ (Peterman, 2018), which takes advantage of
the genetic algorithm approach to optimization, as imple-
mented in the ‘GA’ package (Scrucca, 2013, 2017).

An ideal solution to resistance surface optimization is to
simultaneously optimize multiple resistance surfaces and cre-
ate a composite resistance surface. We parameterized both
blue and green resistance surfaces, as well as a composite
blue-green resistance surface. For blue resistance to move-
ment, we used distance from water bodies computed using
the ‘raster’ package (van Etten, 2013) in R. To calculate these
distances, we first constructed a map of water bodies in the
study area by combining lake and river subsets of terrain
maps available through Lantm€ateriet. The green resistance
surface was estimated using the S2GLC land cover map,
which included all land cover classes. To calculate current
density maps and “resistance distance” matrices from these
resistance surfaces, we used the Circuitscape algorithm imple-
mented in the Julia programming language
(Anantharaman, Hall, Shah & Edelman, 2019). R scripts used
to parameterize resistance surfaces and Julia commands to
obtain current density maps and resistance distances are avail-
able online at https://github.com/chazhyseni/pond_conn.

To represent functional connectivity in continuous space
(i.e., dispersal corridors through which metacommunities
are connected), we mapped electrical current densities,
which reflect the number of times current flows through
each point on the map. To model the effect of functional
connectivity on community differentiation, we used resis-
tance distances, which capture pairwise distances between
ponds, thus reflecting resistance to movement across the
intervening landscape. We performed a principal coordi-
nates analysis (PCoA) to transform the resistance distance
matrices to continuous orthogonal vectors, which were then
used as predictors of community differentiation.
Step 2 � community differentiation

We used a multivariate approach to model the effect on
community differentiation of between-pond differences in
local environment and landscape connectivity. We per-
formed distance-based redundancy analysis (db-RDA;
Legendre & Andersson, 1999) using the capscale function
of the ‘vegan’ package. Then, to estimate the contributions
of these predictors to community differentiation, we used
the varpart function in ‘vegan’. We used the F-statistic with
9999 permutations for significance testing.

The predictors we used were ordination scores: PCA axes
summarizing the local environment of each pond, PCNM
axes for structural connectivity, and PCoA axes for blue,
green, and composite blue-green functional connectivity. To
avoid overfitting, we selected a subset of ordination scores.
We modeled community differentiation separately for each
set of predictors (environmental, spatial, blue connectivity,
green connectivity, and blue-green connectivity). For each
of these sets, we used a backward selection process, involv-
ing iterative removal of non-significant ordination scores
(a = 0.05) until all the remaining ordination scores were sig-
nificant (R scripts available at https://github.com/chazhy-
seni/pond_conn). For each set of predictors, significance
was determined using ANOVA, after adjusting for the main
effects of the other predictors. Provided any PCNM axes
contributed significantly to community differentiation, we
performed db-RDA conditioned on geography (i.e., signifi-
cant PCNM axes), with local environment (PCA axes) and
connectivity (PCoA axes) as predictors.
Step 3a � pond classification

To determine how communities respond to interactions
between functional connectivity and the local environment,
we first used environmental variables to determine whether
ponds included in this study could be clustered into different
classes, and then we examined differences in connectivity
within each pond class (if more than one). To classify ponds
based on the local environment, we used the Louvain
method (Blondel, Guillaume, Lambiotte & Lefebvre, 2008),
as implemented in the Orange machine learning and data
mining suite of Python scripts and visual programming
(Dem�sar et al., 2013). The Louvain clustering algorithm was
applied to the first 10 axes derived from the PCA of local
environmental data (see above), which accounted for 87.5%
of the total variation in the original data. We used 10 k-near-
est neighbors (kNN). Next, we identified clusters by apply-
ing the Louvain algorithm to the kNN solution with the
resolution parameter set to 3.

To visualize connectivity among ponds, we used the
inverse of resistance distances to represent connectivity. To
create a force-directed layout from these connectivity values,
we applied the Fruchterman-Reingold algorithm (Fruchter-
man & Reingold, 1991), as implemented in the ‘qgraph’
package (Epskamp, Cramer, Waldorp, Schmittmann &
Borsboom, 2012). The thickness of the edges in the resulting
graph is proportional to the degree of connectivity. Ponds
with lower connectivity values are located peripherally in
the network. We used 500 iterations, after which the maxi-
mum displacement of each node becomes smaller, and a
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layout is achieved in which the distance between nodes
reflects the absolute edge weight between nodes.

We then examined differences in connectivity among
pond classes. We used the dist_groups function of the ‘used-
ist’ package (Bittinger, 2020) in R to group connectivity val-
ues by pond and calculated the mean of connectivity of each
pond with the other 71 ponds. To test for mean connectivity
differences among pond classes (as defined by the local
environment), we performed an ANOVA with a post-hoc
comparison of group means using Tukey’s test. We also per-
formed two-tailed pairwise t-tests, with p-values adjusted for
multiple comparisons using the Benjamini and Hoch-
berg (1995) method.

To characterize community composition patterns, for each
class of ponds we calculated metrics (R scripts available at
https://github.com/chazhyseni/pond_conn) measuring spe-
cies richness (a and g), diversity (H’: Shannon &
Weaver, 1963; and J’: Pielou, 1966), and differentiation (b,
dispersion, and FST). While g denotes the total number of
species in a pond class, we used the mean number of species
across ponds in each class to represent a. We also used the
mean for H’ and J’. We calculated the b metric as (g/a) � 1.
In addition to the b metric, we also measured differentiation
by using multivariate dispersion (Anderson, Ellingsen &
McArdle, 2006). Using the betadisper function of the
‘vegan’ package, we calculated dispersion in multivariate
space as the mean of the difference of each pond from the
centroid of its corresponding pond class. The FST metric—
typically a measure of population differentiation due to
genetic structure—was calculated based on Gilbert and Lev-
ine (2017). Here, the FST metric is a measure of the variance
of relative species abundances among ponds within a class,
expressed as a proportion of the total within-class variance.
Classes that include ponds with more divergent relative
abundances will have higher FST values.
Step 3b � association between connectivity and
diversity

To understand how biodiversity in urban ponds responds to
interactions between functional connectivity and the local envi-
ronment, we investigated how the relationship between con-
nectivity and species diversity varies by pond environment.
For each pond class, we regressed both species richness (num-
ber of species in each pond) and evenness (Pielou’s J’, calcu-
lated for each pond) on blue-green connectivity. As a measure
of connectivity, we used the mean of connectivity of each
pond with all the other ponds (irrespective of pond class).

To visualize associations of any taxa with communities
differentiated by connectivity and environment, we first ran
db-RDA models constrained by combined sets of significant
connectivity and environmental variables (see the “Commu-
nity differentiation” section). Next, to visualize associations
of taxa with specific communities differentiated by
connectivity, we performed db-RDA constrained by connec-
tivity after conditioning on environment. Because signifi-
cance of the sets of connectivity and environmental
variables was determined in separate analyses, we per-
formed backward selection again to determine if any of the
combined variables where non-significant and needed to be
removed. In both sets of db-RDA ordinations, we also exam-
ined whether any taxa were more likely to be found in a par-
ticular pond class. Finally, we used the hotelling.test
function of the ‘Hotelling’ package (Curran, 2018) to per-
form pairwise comparisons of differences in multivariate
means among pond classes.
Results

The local environment

Estimated pond size ranged from 20 m2 to 6.7 ha. Only
one pond was 6.7 ha, while the remaining ponds were
smaller than 1.7 ha, with the median being 1000 m2. Since
the environmental data were normalized and PCA scores
were used instead of the original variables, the outlier pond
(6.7 ha) did not affect results and was therefore retained for
downstream analyses. The median pH was 7.3. The median
for TOC was 15.3 mg/L, while the median for TN and TP
was 1.0 mg/L and 40.5 mg/L, respectively. The environment
surrounding the ponds (250-m radius) was characterized by
forests (median = 38.0%), grassland (median = 21.7%), and
artificial surfaces (median = 12.2%).

The first two PCA axes explained 32% of the variance in the
original environmental variables (see Table 1). These two were
the only PCs with significant contribution to community dis-
similarity (see below). PC1 was most strongly correlated with
pond nutrients (TOC, TN, and TP), showing negative correla-
tion ranging from �0.43 (TP) to �0.49 (TN). PC2 was most
strongly correlated with amount of forested area (r = 0.46).
Additionally, it was negatively correlated with cultivated areas
(r =�0.37) and artificial surfaces (r =�0.36).
Connectivity

The geographic distance between ponds ranged from
161 m to 42 km (mean of 16 km). Following resistance sur-
face parameterization, blue resistance to movement (unit-
less) ranged from 1 to 1205, green resistance from 1 to
66,899, and the composite blue-green resistance from 1 to
463. Low resistance to movement was observed in or near
water bodies in the blue resistance surface, while in the
green resistance surface low resistance to movement was
recorded for areas where vegetation was present, and high
resistance in areas with artificial surfaces (Fig. 2). In the
blue-green composite, locations near water, that were not
dominated by artificial surfaces, generally had lower resis-
tance values.



Table 1. Principal component analysis of local environmental variables. The table shows correlation of the original variables (rows) with principal components (PC). Only absolute values
greater than 0.25 are shown. The bottom row shows the cumulative variance (in percent) that PCs explain in the original variables. Floating and emergent vegetation is abbreviated as “float.
veg.” and “emerg. veg.,” natural and artificial surfaces as “nat. surf.” and “artif. surf.,” and cultivated areas as “cultiv. area.” TOC, TN, and TP are used for total organic carbon, total nitro-
gen, and total phosphorus.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17

Pond Area 0.28 0.38 0.28 0.27 0.45 0.29 0.43
Pond Depth 0.27 0.28 0.35 0.26 �0.58 �0.42
pH 0.49 �0.26 �0.37 0.33 �0.40 �0.33
Float. Veg. �0.27 �0.54 �0.43 0.42 �0.34
Emerg. Veg. �0.26 �0.25 0.35 �0.36 0.27 0.29 �0.59
Bushes �0.40 �0.30 0.27 0.26 �0.57 0.32
Bare Ground �0.30 0.27 0.39 0.44 �0.42 0.30 �0.34
TOC �0.47 0.28 �0.72
TN �0.49 �0.25 0.54 0.55
TP �0.43 0.30 �0.69
Artif. Surf. �0.36 �0.38 0.50 �0.27 0.55
Cultiv. Area �0.37 0.30 0.66 0.39
Forest 0.46 �0.27 0.26 0.27 0.63
Grassland �0.27 0.36 0.38 �0.32 �0.28 0.28 0.48
Wetland 0.27 �0.33 �0.73 0.33
Nat. Surf. 0.78 0.47
Water 0.51 0.35 �0.38 �0.43
Cumulative
Variance (%): 17.4 32.3 42.4 51.8 60.1 67.7 73.9 79.3 83.8 87.6 91.2 94.0 96.5 98.1 99.2 100.0 100.0
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Fig. 2. Parameterization of landscape resistance surfaces. The original resistance values have been put on the same scale as a visual aid, with
0 representing low resistance, and 1 high resistance. The blue resistance surface shows low resistance to movement in or near water bodies.
The green resistance surface depicts high resistance in areas with artificial surfaces, and low resistance where vegetation is present. The third
panel represents a composite blue-and-green resistance surface.
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Density maps, obtained from blue, green, and blue-green
resistance surfaces, showed that the central and western parts
of the study area had fewer dispersal corridors (Fig. 3 and
Appendix A: Fig. A1). The number of blue dispersal corri-
dors was higher in the north and southeast, but low centrally
and to the southwest (Appendix A: Fig. A1). Green corridors
were generally more numerous in the east than the west,
with fewer centrally as well. Similarly, blue-green corridors
were less abundant to the west and centrally (Fig. 3 and
Appendix A: Fig. A1).
Community differentiation

After the backward selection process of removal of non-
significant PCNM axes, one PCNM axis was retained. Two
local PCA axes (PC1 and PC2; Table 1) contributed signifi-
cantly to community differentiation. Two blue and four
green PCoA axes were significant, with the composite blue-
green connectivity comprising seven significant PCoA axes.

Using db-RDA variance partitioning, we determined that
functional connectivity explained a larger proportion of the
variance in community composition than either spatial struc-
ture or the local environment. Spatial structure alone contrib-
uted 1.4% to the variance, while the local environment
contributed 1.3%. In separate analyses, we determined that
blue, green, and the composite blue-green connectivity
accounted for 2.8%, 2.8%, and 7.8% of community differen-
tiation, independently of spatial structure and the local envi-
ronment. The shared fraction of connectivity and local
environment explained an additional 0.2% (blue), 1.4%
(green), and 1.6% (blue-green) of community



Fig. 3. Blue-green functional connectivity among ponds. Blue-green functional connectivity is represented by electrical current densities
obtained using Circuitscape. These densities reflect the number of times current flows through each point on the map, thus representing dis-
persal pathways through which urban pond communities are connected. Current density (i.e., connectivity) is shown on a scale of 0 (white) to
1 (blue), with medium values represented in green. Additionally, mean connectivity (inverse of resistance distance) for each pond is superim-
posed on the map. These values represent the mean of connectivity of each pond with the other 71 ponds. Dots are color-coded by pond class,
and the size is proportional to the value of mean connectivity.
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differentiation. The shared fractions of spatial structure and
the other predictors were nearly zero.
Pond classes and the association between diversity
and connectivity

Louvain clustering identified three pond clusters (i.e.,
classes). Cluster 1 ponds were characterized by a high per-
centage of grassland in the surrounding area, with the
median being 41.5%. Cluster 2 ponds were characterized by
artificial surfaces (median: 39.3%), while cluster 3 ponds
had more forests (median: 65.6%; Table 2). The grassland-
dominated ponds had higher TN (median: 1.3 mg/L) and TP
(median: 72 mg/L). The artificial-surface-dominated ponds
were generally smaller (median pond area: 503 m2; Table 2),
while the forest-dominated ponds were larger (median pond
area: 2008 m2; Table 2).

Green connectivity was not significantly different among
the three pond classes. In contrast, blue connectivity was
significantly lower among ponds within cluster 2
(dominated by artificial surfaces), compared to the grass-
land and forest clusters (Appendix A: Fig. A2). This pat-
tern was visualized using a force-directed graph, where
isolated ponds with lower connectivity values (cluster 2)
were located peripherally in the network (Appendix A: Fig.
A2). Blue-green connectivity was significantly higher in
cluster 3 (dominated by forests), compared to the other two
clusters (Appendix A: Fig. A2). This was also captured by
a force-directed graph, where ponds in cluster 3 were
located centrally with thicker edges (representing higher
connectivity values).

Artificial-surface-dominated ponds, which had the lowest
blue connectivity, also had the lowest species richness
(a = 9.913 and g = 67) as well as the highest differentiation
among communities (b = 5.759, dispersion = 0.555, and
FST = 0.256; Table 3). These ponds also had the lowest
diversity (Shannon-Weaver’s H’ = 1.780) and evenness
(Pielou’s J’ = 0.859). The grassland-dominated ponds had
the highest richness (a = 14.103 and g = 84) and lowest dif-
ferentiation (b = 4.956, dispersion = 0.525, and
FST = 0.184), but intermediate diversity (H’ = 2.250) and
evenness (J’ = 0.890). Forest-dominated ponds had



Table 2. Clustering of ponds based on local environmental variables. The median and interquartile range (25%�75%) are shown for each
environmental variable in each of the three clusters that sampling sites have been classified into using Louvain clustering (see Step 3a). Clus-
ter 1 is characterized by a high percentage of grassland (median = 41.5%), cluster 2 by artificial surfaces (39.3%), and cluster 3 by forests
(65.6%). The same abbreviations for local environmental variables are used as in Table 1. Units are given in parentheses.

Cluster 1: Grassland Cluster 2: Artif. Surf. Cluster 3: Forest

Median 25%�75% Median 25%�75% Median 25%�75%

Within Pond Pond Area (m2) 1105.0 [738.5�1973.5] 503.0 [206�1089.5] 2008.0 [640.5�4019]
Pond Depth (m) 0.6 [0.4�0.8] 0.7 [0.4�0.9] 1.1 [0.6�1.5]
pH (0-14) 7.4 [7.1�7.6] 7.3 [7�7.5] 7.2 [6.9�8]
Float. Veg. (0-10) 2.0 [0�3] 2.8 [0�4.5] 2.0 [0.3�4.5]
Emerg. Veg. (0-10) 3.2 [2�5.5] 3.0 [1.5�4.5] 2.0 [1�3]
Bushes (0-10) 2.0 [1�3] 3.0 [1�4] 2.5 [1�4]
Bare Ground (0-10) 0.0 [0�1.3] 0.0 [0�5.5] 0.0 [0�0.8]
TOC (mg/L) 15.6 [12.2�20.7] 16.1 [10.2�18.6] 16.9 [13.1�20.7]
TN (mg/L) 1.3 [0.9�1.7] 0.9 [0.7�1.4] 1.0 [0.9�1.4]
TP (mg/L) 72.0 [30�148] 57.0 [21.9�148] 39.0 [25.8�76.5]

250-m Radius Artif. Surf. (%) 10.4 [5.8�16] 39.3 [24�52.4] 4.6 [1.4�8.4]
Cultiv. Area (%) 9.8 [7�16.1] 11.4 [6.5�14.9] 3.5 [1.9�7.2]
Forest (%) 28.2 [18.8�43.1] 26.1 [17.7�40.5] 65.6 [59�75.9]
Grassland (%) 41.5 [29.2�50.1] 13.7 [10.2�23.1] 13.0 [7.2�16.6]
Wetland (%) 1.5 [1�3.4] 1.1 [0.6�1.8] 3.3 [1.2�7.5]
Nat. Surf. (%) 0.3 [0�0.8] 1.3 [0.8�2] 0.2 [0.1�0.6]
Water (%) 0.0 [0�0.7] 0.0 [0�0] 0.0 [0�0.6]

Table 3. Metacommunity metrics by pond class. The table shows
species richness (a and g), diversity (Shannon-Weaver’s
diversity = H’; and Pielou’s evenness = J’), and differentiation met-
rics (b, dispersion, and FST) for metacommunities in each of the
three pond classes: grassland-dominated, artificial-surface-domi-
nated (artif. surf.), and forest-dominated.

Grassland Artif. Surf. Forest

Richness: g 84 67 80
a 14.103 9.913 13.000

Diversity: H’ 2.250 1.780 2.302
J’ 0.890 0.859 0.939

Differentiation: b 4.956 5.759 5.154
dispersion 0.525 0.555 0.547
FST 0.184 0.256 0.205
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intermediate richness and differentiation values (Table 3),
but also the highest diversity (H’ = 2.302) and evenness
(J’ = 0.939).

There was no significant relationship of either richness or
evenness with blue-green connectivity in the forest class of
ponds. Blue-green connectivity was also not significantly
correlated with species evenness in either the artificial-sur-
face or the grassland class of ponds (Fig. 4). However, the
positive correlation between blue-green connectivity and
species richness was significant both in artificial-surface-
dominated ponds (Fig. 4; F1,19 = 6.01, R2 = 0.24, p = 0.02)
and in grassland ponds (Fig. 4; F1,26 = 5.00, R2 = 0.16,
p = 0.03).

We detected a strong correlation (r = �0.66) of the cad-
disfly genus Limnephilus with axis 1 of the ordination of a
db-RDA model conditioned on geography (one PCNM axis)
and constrained by blue-green connectivity and environment
(Fig. 5). This axis separated the three pond classes, as was
evident from the negative-to-positive position of the cent-
roids along the axis (Fig. 5), ordered from the artificial-sur-
face to the forest class, with the grassland class being
intermediate. The forest versus artificial-surface class of
ponds was the only comparison that resulted in significantly
different multivariate means (p = 0.03). Limnephilus was
found more frequently in pond communities dominated by
artificial surfaces and grassland. This was also the case for
hemipterans, such as the water boatmen (Corixidae). Con-
versely, the dragonfly Cordulia aenea was more associated
with ponds surrounded by forested habitat (positively corre-
lated with axis 1; r = 0.26), while predaceous diving beetles
in the Dytiscidae family, such as Hygrotus inaequalis, were
associated with ponds in the grassland class.

PC2 was strongly correlated (r = 0.56) with axis 1. This
reflects the fact that community differentiation in the forest
class is influenced by forested habitat around ponds (see
Table 1; PC2 is positively correlated with amount of for-
ested habitat). Backward selection of explanatory variables
resulted in PC2 being retained, while PC1 became non-sig-
nificant when combined with the seven PCoA axes, all of
which were still significant and thus retained. Using db-
RDA models conditioned on geography (Appendix A: Fig.
A3), as well as models conditioned on both geography and
local environment (Appendix A: Fig. A4), we detected asso-
ciations of taxa with local communities influenced by blue
and green connectivity separately, as well as the combined
blue-green effect. For instance, a species of water beetle,



Fig. 4. Connectivity among ponds and the relationship with species richness/evenness. The top left graph shows regressions of species rich-
ness on blue-green connectivity (i.e., the mean of connectivity for each pond with all other ponds). The top right graph shows regressions of
species evenness on blue-green connectivity. F, R2, and p-values are shown for models run separately for each class of pond (red = ponds sur-
rounded by a large proportion of artificial surfaces; green = forested areas; and yellow = grassland). The two graphs in the bottom show spa-
tial distribution of species richness (left) and evenness (right). Ponds are color-coded based on classification. The size of each circle is
proportional to species richness and evenness values.
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Clemnius decoratus, was more likely to be found in pond
communities belonging to the grassland and forest class of
ponds, which was largely due to green connectivity alone
(Appendix A: Fig. A3 and Fig. A4).
Discussion

Metacommunity structure is jointly shaped by local envi-
ronmental variables, landscape configuration, and connec-
tivity among communities (Aggemyr, Auffret, J€aderga

�
rd &

Cousins, 2018; Brown & Swan, 2010; Chisholm, Lindo &
Gonzalez, 2011; Heino et al., 2021; Ryberg & Fitzger-
ald, 2016). Here, we found that blue-green connectivity was
the principal predictor of invertebrate community structure
in urban ponds. In contrast, local environmental variables,
including land use in the immediate vicinity of ponds, had
lower explanatory power for the observed variance in com-
munity composition.

Our study is one of the first to show this quantitatively in
urban areas, and thus represents an important step toward a
better understanding of how landscape connectivity influen-
ces biodiversity relative to other factors. This is also an issue
highlighted by Fletcher, Burrell, Reichert, Vasudev and
Austin (2016). The importance of blue connectivity, con-
firmed by our study, mirrors results found in other studies of
urban aquatic communities. For instance,
Gledhill, James and Davies (2008) found that species rich-
ness was higher in clusters of connected ponds. However,
while connectivity was an important factor in our study,
explaining 7.8% of the variance in community composition,
other factors, such as the degree of pond intermittency (e.g.,
some ponds are temporary, while others are permanent), and
presence of aquatic vertebrate predators could be two of sev-
eral other factors contributing to the remaining unexplained



Fig. 5. Distance-based Redundancy Analysis (db-RDA) constrained by local environment and connectivity. The results shown here represent
community variation explained by local environment and connectivity, after the effect of spatial structure (Geo) has been removed. Signifi-
cant PCoA axes are shown for blue-green connectivity (BG) and the local environment (Env2 = PC2 from Table 1). The small squares repre-
sent individual ponds, color-coded by pond class (yellow = grassland-dominated ponds; red = artificial-surface-dominated; green = forest-
dominated). Pond class centroids are depicted as large squares with thick outlines. All ponds belonging to the same class are shown within
each of the three convex hulls. Red arrows show strength of correlation of connectivity/environment with db-RDA axes 1 and 2, while blue
arrows represent taxa. Percentage of variation captured by each of these two axes is shown in the axis labels. Illustrations are included for the
taxa most correlated with the two axes. The position of these taxa near particular communities is indicative of their presence in those commu-
nities and thus association with a particular pond class (e.g., the caddisfly genus Limnephilus is found more frequently in artificial-surface-
and grassland-dominated ponds).
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proportion of the variance. Furthermore, permanent ponds
are typically larger and deeper, and may thus show less sto-
chasticity and have higher habitat heterogeneity than tempo-
rary ponds. This may also affect biodiversity in ponds
(Hill, Heino, White, Ryves & Wood, 2019).

Classification of ponds into three types—those with sur-
rounding areas dominated by artificial surfaces, grassland,
or forests—provided additional insight into the structuring
of aquatic invertebrate communities in urban ponds in our
study area. Species richness was highest in the grassland-
dominated ponds, since both local and regional (i.e., meta-
community) measures of diversity were high. Additionally,
differentiation among local communities was highest for
artificial-surface-dominated ponds, and lowest for grass-
land-dominated ponds. This may be a result of high blue
connectivity in grassland-dominated ponds, where aquatic
corridors—especially those in the northeastern parts of the
study area—may facilitate dispersal of aquatic invertebrates.
Variability in blue-green connectivity was high in both the
artificial-surface and grassland class of ponds. Furthermore,
an increase in blue-green connectivity among these ponds
was associated with increased species richness. High species
richness could result from occasional dispersal of transient
taxa. This would, however, increase differentiation within
communities and decrease evenness, as is the case with arti-
ficial-surface-dominated ponds. The high evenness and low
differentiation, observed together with high species richness,
in many of the grassland-dominated ponds, are indicative of
frequent long-distance dispersal events facilitated by a great
degree of connectivity maintained over time. Similarly, for-
est-dominated ponds harbored communities with some of
the highest evenness and lowest differentiation values.
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Notably, species richness did not show any relationship with
blue-green connectivity in this class of ponds. Also, these
forest-dominated ponds generally had high levels of blue-
green connectivity. It is possible that a network of well-con-
nected forest ponds maintains stable communities with high
species richness and evenness, thus dampening the relation-
ship between connectivity and richness.

Our results suggest that to preserve and improve biodiver-
sity in urban ponds, it is important to enhance functional
connectivity in artificial-surface-dominated areas. Addition-
ally, the high connectivity observed among some of the
grassland-dominated ponds suggests that open green spaces
could augment the potential of riparian corridors to maintain
functional connectivity in urban pond metacommunities.
Streams and their riparian zones serve as dispersal routes
and corridors for many terrestrial and aquatic taxa
(J. Heino et al., 2017). For instance, albeit undisturbed corri-
dors are preferred, several mammal species have been
shown to use even anthropogenically disturbed riparian cor-
ridors in agricultural landscapes (Hilty & Meren-
lender, 2004). By providing dispersal corridors, riparian
zones are also extremely important in mitigating effects of
climate change (Beier, 2012; Fremier et al., 2015;
Seavy et al., 2009). Here, we show that blue connectivity is
maintained among many urban ponds. However, an exten-
sive cover of artificial surfaces disrupts blue connectivity,
and we suggest that these areas should be targeted for ripar-
ian corridor restoration and management.

Urban ponds support highly heterogeneous communities,
which is likely a consequence of the range of environmental
conditions present across urban landscapes. Focusing on the
local environment of ponds, we found that the PCs that con-
tributed significantly to variation in community structure
were most correlated with pond size (i.e., area and depth),
nutrients (TOC, TN, TP) in ponds, shoreline vegetation, as
well as presence of grassland and forests in a 250-m radius
around ponds. These PCs reflected the pond classification
results, with grassland-dominated ponds having higher lev-
els of nutrients and emergent vegetation, and forest-domi-
nated ponds being larger and having more vegetation along
shores (i.e., less bare ground). Similar results were reported
in previous studies on pond biodiversity in Stockholm,
which found that pond size and vegetation contributed sig-
nificantly to biodiversity in these ecosystems (Heino et al.,
2017b; Johansson et al., 2019). We note that the study by
Heino et al., 2017b also found that nutrients had a large
effect on biodiversity patterns. Interestingly, biodiversity of
aquatic invertebrates does not necessarily correlate posi-
tively with pond size (Hassall et al., 2011; Oertli et al.,
2002; but see Biggs et al., 2005).

Despite the ubiquity of urban areas, we know little about
what urban features promote dispersal of organisms. In a
review of studies of ecological connectivity in urban areas,
LaPoint et al. (2015) found that connectivity was rarely
explicitly measured, and the level of urban development of
study sites was infrequently characterized. Furthermore,
they found that most of these studies focused on large mam-
mals, but rarely on invertebrates and other animals, or
plants. Nevertheless, previous studies have suggested that
dispersal in urban areas is affected by population size (Pen-
teado, 2020), availability of habitats (Hostetler & Hol-
ling, 2000), human disturbance (Dickman &
Doncaster, 1989), and human infrastructure (Zipperer, 2015).
In addition, for the majority of the taxa found in this study
we lack information on habitat preference in urban areas.
For example, the caddisfly genus Limnephilus was found
frequently in pond communities dominated by artificial sur-
faces and grassland. However, species in this genus have
varying habitat preferences (M€uller-Peddinghaus & Her-
ing, 2013), and a comparison of these preferences is beyond
the scope of this study. In contrast, the water beetle Clem-
nius decoratus was more likely to be found in the grassland
and forest class of ponds, which is consistent with previous
studies suggesting that the species prefers small water bodies
overgrown with emergent plants (Cuppen, 1983). Hence,
more studies on connectivity in urban areas, such as the one
presented here, are needed for a better understanding of how
dispersal and habitat choice of aquatic invertebrate taxa
determine biodiversity patterns in urban ponds. Further-
more, connectivity among habitat patches should be consid-
ered not only as part of direct efforts to conserve
biodiversity, but also in the management of invasive species
with the goal of reducing their negative impact on native
biodiversity (Glen, Pech & Byrom, 2013).

An interesting question is whether the pattern found here
is unique to the city of Stockholm, or universal for cities in
general. Indeed, Stockholm is one of the greener cities in
Europe, with artificial surfaces covering 14% of the metro-
politan area (cf. Berlin 39%, London 48%, Paris 66%; Kour-
dounouli & J€onsson, 2020). Ample green spaces in
Stockholm probably help maintain connectivity among
ponds. Even ponds surrounded by a larger proportion of arti-
ficial surfaces have relatively high green connectivity. How-
ever, blue connectivity is much lower for these ponds.
Indeed, we found that levels of blue-green connectivity were
lower in the western parts of the Stockholm metropolitan
area, where the surroundings of many ponds have a high
density of artificial surfaces. Restoration, management, and
construction of additional dispersal corridors would proba-
bly benefit the biodiversity in these areas of the city. Corri-
dors are fundamental to strengthening the effectiveness and
resilience of landscape ecological networks (e.g.,
Dondina, Saura, Bani & MateoS�anchez, 2018), and the level
of connectivity we identified here is a reason for optimism
for sustainable urban environments. In agreement with the
importance of connectivity highlighted by our study, a
meta-analysis found that patch area and corridors had the
strongest positive effects on urban biodiversity
(Beninde, Veith & Hochkirch, 2015).

In summary, many cities around the world are expanding,
and urbanization is expected to drastically increase in the
future. At the same time, the integration of green and blue
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spaces is widely promoted in urban development, potentially
offering numerous benefits for biodiversity. This may be
particularly relevant for blue spaces such as urban ponds,
which often support threatened species (Oertli & Par-
ris, 2019). Encouragingly, even artificial ponds can posi-
tively affect biodiversity of aquatic insects, such as odonates
(Simaika, Samways & Frenzel, 2016). Importantly, there is
growing awareness of the contribution of ponds to aquatic
biodiversity (e.g., Biggs, vonFumetti & KellyQuinn, 2017;
Stewart et al., 2017), and since connectivity is an important
feature that allows maintaining biodiversity at many spatial
scales and organizational levels, from alleles to communities
(Fletcher et al., 2016), it needs to be considered in urban
areas if we are to diminish and mitigate the negative effects
of urbanization on biodiversity. Finally, our study highlights
the utility of using landscape resistance surfaces to model
functional connectivity at the level of entire communities
and metacommunities. Electrical circuit theory has been
used extensively to model resistance of landscape features
to dispersal at the level of populations or species. This
approach has been applied less frequently to multiple taxa,
however. To the best of our knowledge, this study is the first
to do so for urban pond metacommunities, paving the way
for further investigations on how to conserve and manage
urban biodiversity.
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