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Modern welfare definitions not only require that the Five Freedoms are met, but animals
should also be able to adapt to changes (i. e., resilience) and reach a state that the
animals experience as positive. Measuring resilience is challenging since relatively subtle
changes in animal behavior need to be observed 24/7. Changes in individual activity
showed potential in previous studies to reflect resilience. A computer vision (CV) based
tracking algorithm for pigs could potentially measure individual activity, which will be
more objective and less time consuming than human observations. The aim of this study
was to investigate the potential of state-of-the-art CV algorithms for pig detection and
tracking for individual activity monitoring in pigs. This study used a tracking-by-detection
method, where pigs were first detected using You Only Look Once v3 (YOLOvV3) and
in the next step detections were connected using the Simple Online Real-time Tracking
(SORT) algorithm. Two videos, of 7 h each, recorded in barren and enriched environments
were used to test the tracking. Three detection models were proposed using different
annotation datasets: a young model where annotated pigs were younger than in the
test video, an older model where annotated pigs were older than the test video, and a
combined model where annotations from younger and older pigs were combined. The
combined detection model performed best with a mean average precision (mMAP) of over
99.9% in the enriched environment and 99.7% in the barren environment. Intersection
over Union (IOU) exceeded 85% in both environments, indicating a good accuracy
of the detection algorithm. The tracking algorithm performed better in the enriched
environment compared to the barren environment. When false positive tracks where
removed (i.e., tracks not associated with a pig), individual pigs were tracked on average
for 22.3 min in the barren environment and 57.8 min in the enriched environment. Thus,
based on proposed tracking-by-detection algorithm, pigs can be tracked automatically
in different environments, but manual corrections may be needed to keep track of the
individual throughout the video and estimate activity. The individual activity measured
with proposed algorithm could be used as an estimate to measure resilience.
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INTRODUCTION

Successful adaptation to changes is beside the Five Freedoms
a critical pillar in modern animal welfare definitions (Mellor,
2016). Animals should be able to cope with challenges in their
environment and reach a state that the animals experience as
positive. In other words, to enhance pig welfare, pigs should be
not only free from any kind of discomfort but also be resilient to
perturbations. Resilient pigs are able to cope or rapidly recover
from a perturbation (Colditz and Hine, 2016). Perturbations
in pig production could be management related (e.g., mixing,
transport) or environment related (e.g., disease, climate). Non-
resilient pigs have more difficulty recovering or cannot recover at
all from perturbations and therefore experience impaired welfare.
The lack of ability to cope with perturbations causes a risk for
these non-resilient animals to develop intrinsic problems like tail
biting or weight loss (Rauw et al., 2017; Bracke et al., 2018).

To prevent welfare problems in pigs, a management system
that provides information on resilience will most likely be needed
in the future. With such a management system, the farmer
will know when resilience is impaired and which animals it
concerns. These animals labeled by a management system as non-
resilient could be assisted when required. However, such a system
is difficult to develop since resilience is difficult to measure.
Resilience consists of many parameters that could be monitored.
Currently, mainly physiological parameters are used to measure
resilience in pigs. Blood parameters such as white blood cell
count or hemoglobin levels, but also production parameters
such as body weight are used to measure resilience (Hermesch
and Luxford, 2018; Berghof et al., 2019). However, measuring
these physiological parameters requires invasive handling of the
animal. In addition, these parameters represent a delayed value
due to the nature of the measurements, and therefore they are
less suitable for immediate decision support.

Recent studies investigated activity and group dynamics as
traits to measure resilience. Several studies show a reduction in
activity as a response to sickness (van Dixhoorn et al., 2016;
Trevisan et al., 2017; Nordgreen et al., 2018; van der Zande et al.,
2020). Pigs are lethargic during sickness; they spend more time
lying down and less time standing and feeding. Not only sickness
affects activity, but also climate has an influence on the activity of
pigs, with pigs showing lower activity levels when temperature
increases. Costa et al. (2014) showed that relative humidity
affected pig activity as well and that pigs had a preference to
lay close to the corridor when relative humidity was high. To
conclude, activity could be a suitable indicator of resilience to
perturbations of different nature.

It is extremely time-consuming to measure activity and
location of individuals in multiple pens continuously by human
observations. The use of sensors could facilitate automatic
activity monitoring and minimize the need for human observers.
The activity of an individual could be measured by using
accelerometers, which could be placed in the ear of the pig, just
like an ear tag. Accelerometers measure accelerations along three
axes. With the use of machine learning, accelerations can be
transformed into individual activity levels (van der Zande et al.,
2020). The main advantage of using accelerometers is that the

devices usually have a static ID incorporated in their hardware. In
other words, identities of animals are known all the time unless
they lose the accelerometer. On the other hand, accelerometer
placement could affect readings and therefore introduce extra
noise in raw acceleration data. With placement in the pig’s ear,
ear movements can cause confounding of true levels of physical
activity. Noise in acceleration data could lead to false positive
activity. In addition, the location of the animal is not known when
using accelerometers, which further limits more precise resilience
measurements since proximity and location preference could be
included when the location is known.

As an alternative to sensors placed on animals, computer
vision allows for non-invasive analysis of images or videos
containing relevant individual activity and location data. Several
studies investigated computer vision algorithms to recognize a
pig and track it in a video to estimate activity (Larsen et al,
2021). The main advantage of using computer vision to measure
activity is that activity is calculated from the pig’s location in each
frame, allowing for the calculation of proximity to pen mates
and location preferences. Ott et al. (2014) measured activity
on a pen level by looking at changes in pixel value between
consecutive frames of a video. They compared the automated
measured activity with human observations and found a strong
correlation of 0.92. This indicated that the use of algorithms
for automated activity monitoring could minimize the need
for human observations. The limitation of the approach of Ott
et al. (2014) is that in their method, the activity is expressed
at pen level, where individual information is preferred for a
management system. Pigs observed from videos are difficult
to distinguish individually, so Kashiha et al. (2013) painted
patterns on the back of pigs to recognize individuals. An ellipse
was fitted to the body of each pig, and the manually applied
recognition pattern was used to identify the pig. On average,
85.4% of the pigs were correctly identified by this algorithm.
Inspired by patterns, Yang et al. (2018) painted letters on the
back of the pigs and trained a Faster R-CNN to recognize
the individual pigs and their corresponding letters. Tested on
100 frames, 95% of the individual pigs was identified correctly.
These studies mainly concentrated on detecting the manually
applied markings/patterns for pig identification and while the
approach showed relatively good performance, the manually
applied marking is labor intensive. Markings must be consistent
and at least be refreshed every day to be able to see the
markings properly.

Huang et al. (2018) used an unspecified pig breed with
variation in natural coloration and made use of this natural
variation to identify pigs from a video. A Gabor feature
extractor extracted the different patterns of each individual
and a trained Support Vector Machine located the pigs within
the pen. An average recognition of 91.86% was achieved.
However, most pigs in pig husbandry do not have natural
coloration. Another possibility is to recognize individuals by
their unique ear tag (Psota et al, 2020). Pigs and ear tags
were detected by a fully-convolutional detector and a forward-
backward algorithm assigned ID-numbers, corresponding to the
detected ear tags, to the detected pigs. This method resulted in an
average precision >95%. Methods using manual markings
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are successful but could still be invasive to the animal and
labor intensive.

The studies that do not rely on manual marking of animals,
have difficulties in consistent identification of individuals during
the tracking. Ahrendt et al. (2011) detected pigs using support
maps and tracked them with a 5D-Gaussian model. This
algorithm was able to track three pigs for a maximum of 8 min.
However, this method was also computationally demanding.
Cowton et al. (2019) used a Faster R-CNN to detect pigs at a
90% precision. To connect the detections between frames (DEEP)
Simple Online Realtime Tracking (SORT) was used. The average
duration before losing the identity of the pig was 49.5s and
the maximum duration was 4min. Another method used 3D
RGB videos rather than 2D RGB videos to track pigs (Matthews
et al., 2017). Pigs were detected with the use of depth data
combined with RGB channels, and a Hungarian filter connected
the detected pigs between frames. The average duration of a
pig being tracked was 21.9s. Zhang et al. (2018) developed
a CNN-based detector and a correlation filter-based tracker.
This algorithm was able to identify an average of 66.2 unique
trajectories in a sequence of 1,500 frames containing nine pigs.
Despite the variety of methods, none could track a pig while
maintaining the identity for longer than 1min on average. In
practice, this would result in a human observer correcting IDs
more than 360 times for an hour-long video with six pigs being
monitored. A computer vision algorithm used to measure activity
should be able to maintain identity for a longer period of time to
lower human input.

All the previous studies based on different convolutional
network (CNN) architectures showed a robust
performance when it comes to single pig detection. However,
continuous detection across several frames and under varying
conditions remains challenging. You Only Look Once v3
(YOLOV3) is a CNN with outstanding performance (Benjdira
et al., 2019). SORT could be used for tracking across several
frames. SORT is an online tracker which only process frames
from the past (and not from the future). The main advantage
of an online tracking algorithm is improved speed, but this
algorithm is fully dependent of the quality of the detections. The
fast and accurate detections of YOLOv3 and the connection of
the detections across frames by SORT might allow for longer
tracking of individual pigs. Therefore, the aim of this study was
to investigate the potential of state-of-the-art CV algorithms
using YOLOv3 and SORT for pig detection and tracking for
individual activity monitoring in pigs.

neural

MATERIALS AND METHODS

Ethical Statement

The protocol of the experiment was approved by the Dutch
Central Authority for Scientific Procedures on Animals
(AVD1040020186245) and was conducted in accordance with
the Dutch law on animal experimentation, which complies with
the European Directive 2010/63/EU on the protection of animals
used for scientific purposes.

Animals and Housing

A total of 144 crossbred pigs was used in this study. The pigs
originated from the same farm but were born and raised in two
different environments: a barren and an enriched environment.
Piglets from the barren environment were born in farrowing
crates, and the sow was constrained until weaning at 4 weeks
of age. Upon weaning, eight pigs per litter were selected based
on body weight and penned per litter in pens with partly slatted
floors until 9 weeks of age. A chain and a jute bag were provided
as enrichment. Feed and water were provided ad-libitum. The
second environment was an enriched environment, where piglets
were born from sows in farrowing crates. After 3 days post-
farrowing, the crate was removed, and the sow was able to leave
the farrowing pen into a communal area consisting of a lying
area, feeding area, and a dunging area together with four other
sows. Seven days post-farrowing, the piglets were also allowed to
leave the farrowing pen into the communal area and were able
to interact with the four other sows and their litters. The piglets
were weaned at 9 weeks of age in this system.

All pigs entered the research facility in Wageningen at 9
weeks of age. The pigs originating from the barren environment
remained in a barren environment. Each barren pen (0.93
m?/pig) had a partly slatted floor and a chain and a ball were
provided as enrichment. The pigs originating from the enriched
environment were housed in enriched pens (1.86 m?/pig) which
had sawdust and straw as bedding material. A jute bag and a
rope were alternated every week. Once a week, fresh peat was
provided, as were cardboard egg boxes, hay or alfalfa according
to an alternating schedule. Additionally, six toys were alternated
every 2 days. Each pen, independent of environment, consisted
of six pigs, balanced by gender, and feed and water were available
ad-libitum. Lights were on between 7:00 and 19:00 h and a night
light was turned on between 19:00 and 7:00 h. The experiment
was terminated at 21 weeks of age.

Data

An RGB camera was mounted above each pen and recorded
24h per day during the experiment. The videos were 352 by
288 pixels and recorded in 25 fps. Due to the smaller width of
the barren pens, neighboring pens were visible on the videos of
the barren pens. To avoid that the pigs from neighboring pens
were detected and allow an equal comparison between the barren
and enriched environment, the neighboring pens were blocked
prior to the analysis (Figure 1A). Frames were annotated using
Labellmg (Tzutalin, 2015). The contours of the pig were labeled
by a bounding box, where each side of the bounding box touches
the pig (Figure 1). One annotation class (pig) was used, and only
pigs in the pen of interest were annotated.

Three different detection models were evaluated to assure
the best detection results possible under varying circumstances:
using frames where young pigs were annotated (young model),
using frames where old pigs were annotated (old model), and
a combination. The young model contained annotations of
randomly selected frames from pigs around 10 weeks of age.
The training dataset consisted of 2,000 annotated frames, where
90% of the frames was used for training, and 10% was used
for validation. The old model was trained on 2,000 annotated
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environment.

FIGURE 1 | Example frames with annotated bounding boxes (red boxes) in the barren (A) environment with blocked neighboring pens and the enriched (B)

randomly selected frames of pigs from 17 to 21 weeks of
age, where 90% was used for training, and 10% was used for
validation. The combined model consisted of young and old
animals’ annotations, with 4,000 annotated frames split into 90%
training data and 10% validation data.

To review a possible difference in the performance of tracking
between environments, one video of ~7h (n frames = 622,570)
of each environment without any human activity except for
the activity of the caretaker was used for tracking. The pigs
were 16 weeks of age in this video, which is an age that was
not used for training of the detection models. Every 1780th
frame was annotated to obtain 350 equally distributed frames per
environment and to evaluate the three different detection models
(young, old and combined). All the frames were then used to test
the success of the multiple-object tracking.

Detection Method

To assure high computational speed and robust multiple object
detection, the You Only Look Once version 3 (YOLOv3)
algorithm was used to detect pigs in their home pens (Redmon
and Farhadi, 2018). YOLOV3 is an accurate object detection
network that features multi-scale detection, a more robust feature
extraction backbone compared to other convolutional neural
networks (CNN)-based detectors and an improved loss function
calculation. The YOLOV3 framework consists of two main multi-
scale modules: the Feature Extractor and the Object Detector
(Figure 2). The input for YOLOV3 are frames/images of interest.
First, an input frame/image passes through the Darknet-53,
which is a deep convolutional neural network consisting of 53
layers and used for initial feature extraction. The output of the
feature extraction step consists of three different feature maps,
where the original input image is down sampled by 32, 16, and
8 times from its original size, respectively. These feature maps
are then passed through another 53 fully convolutional layers of
the Object Detector module of the YOLOv3 network to produce
actual detection kernels. The final YOLOvV3 architecture is a
106 layer deep neural network, which produces detections at
three different scales (using previously produced feature maps of
different sizes) to allow accurate detection of objects with varying
size. The tree detection kernels produced at layers 82, 94, and 106

are then combined in a vector with the coordinates of all three
detections and corresponding probabilities of the final combined
bounding box being a pig.

YOLOV3 is not perfect and will detect bounding boxes without
a pig in them (ie., false positives). False positives (FP) will
create extra IDs that are difficult to filter after tracking; thus FP
were removed after detection. Frames with FP were identified
when more than six pigs were detected, since there were six
pigs housed per pen. When this occurred, the six bounding
boxes with the highest probability of being a pig were kept,
and the extra bounding boxes were removed. This resulted in
a deletion of 6,563 detections in the barren environment (out
of 3,741,073 detections) and 3,080 detections in the enriched
environment (out of 3,733,521 detections). After the first removal
of detections, all bounding boxes with a probability of detecting
a pig lower than 0.5 were removed to ensure that all random
detections were deleted. This resulted in a deletion of another
4,992 detections in the barren environment and 2,680 detections
in the enriched environment.

Tracking Method

Simple Online and Real-Time (SORT) was used to track pigs in
their home pen (Bewley et al., 2016). The detections produced by
YOLOV3 network were used as the input for the SORT tracking
algorithm. The performance of SORT is highly dependent on the
quality of the initial detection model since SORT has no such
functionality itself. The SORT algorithm utilizes the combination
of common techniques such as the Hungarian algorithm and
Kalman filter for object tracking. The Kalman filter is used to
predict future positions of the detected bounding boxes. These
predictions serve as a basis for continuous object tracking. This
filter uses a two-step approach. In the first prediction step, the
Kalman filter estimates the future bounding box along with the
possible uncertainties. As soon as the bounding box is known,
the estimates are updated in the second step and uncertainties
are reduced to enhance the future predictions. The Hungarian
algorithm predicts whether an object detected in the current
frame is the same as the one detected in the previous adjacent
frame. This is used for object re-identification and maintenance
of the assigned IDs. The robust re-identification is crucial for
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FIGURE 2 | Graphical overview of You Only Look Once v3 (YOLOV3).
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continuous and efficient multiple object tracking. The Hungarian
algorithm uses different measures to evaluate the consistency of
the object detection/identification (e.g., Intersection over Union
and/or shape score). The Intersection over Union (IoU) score
indicates the overlap between bounding boxes produced by the
object detector in one frame and another frame. If the bounding
box of the current frame overlaps the bounding box of the
previous frame, it will probably be the same object. The shape
score is based on the change in shape or size. If there is little
change in shape or size, the score increases, guaranteeing re-
identification. The Hungarian algorithm and the Kalman filter
operate together in SORT implementation. For example, if object
A was detected in frame t, and object B is detected in frame t+1,
and objects A and B are defined as the same object based on the
scores from the Hungarian algorithm, then objects A and B are
confirmed being the same object. The Kalman filter could use
the location of object B in frame t+1 as a new measurement for
object A in frame t to minimize uncertainty and improve the
overall score.

Evaluation

Detection results were evaluated by using mean average precision
(mAP), intersection over union (IOU), number of false positives
(FP) and number of false negatives (FN). mAP is the mean
area under the precision-recall curve for all object classes. IOU
represents the overlap between two bounding boxes. FP are
detections of a pig which is not a pig, where FN are missing
detections of a pig.

The tracking algorithm generates more tracks (i.e., part of the
video with an assigned ID) than individuals, so each track was
manually traced back to the individual that was tracked. Not
all tracks could be traced back to a pig, and these tracks are
referred to as FP tracks (Figure 3A). Occasionally, individuals
take over the track of another pig. This is referred to as ID
switches (Figures 3B,C).

RESULTS

Detection
Figure4 shows the mean average precision (mAP) and
intersection over union (IOQU) for all three detection models.

In both environments, the mAP was over 99%. The combined
detection model reached a mAP of 99.95% in the enriched
environment. In both environments, IOU was the lowest
with the young detection model. Adding older animals (i.e.,
combined detection model) improved the IOU in the enriched
environment. The old detection model had the highest IOU in
the barren environment.

Figure 5 shows the number of FP and FN for all detector
models in both environments. The detector trained on young
animals found 128 FP in the barren environment where it
only found two FP in the enriched environment. FP in the
barren environment dropped drastically when older animals
were used in or added to the detection model. FN (undetected
pigs) decreased in both environments when older animals
were used compared to only using younger animals. For both
environments, FN dropped even further when young and old
animals were combined in the detection model. The combined
detection model was used in tracking since it performed best in
both environments.

Tracking

In the barren environment, more tracks were identified
compared to the enriched environment (Table1). In both
environments, approximately one third of the tracks were a
FP track. In other words, one-third of the IDs found could
not be assigned to a pig. More IDs were switched in the
barren environment compared to the enriched environment. FP
tracks had a short duration in both environments. On average,
the length of FP tracks was 9.9s in the barren environment
and 2.2s in the enriched environment. When these short FP
tracks were excluded, on average individual pigs were tracked
for 22.3min in the barren environment and 57.8 min in the
enriched environment.

There was variation between individuals in the performance of
the tracking algorithm (Tables 2, 3). In the barren environment
the highest number of tracks traced back to one individual was
57, whereas in the enriched environment this was only 23 tracks.
The lowest individual average track length was therefore 18 min,
where the highest was 138.3 min in the enriched environment.
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FIGURE 3 | Examples of FP tracks and ID switches: (A) An example of a false positive (FP) track, where two pigs are visible, but three bounding boxes are identified.
The bounding box most right (nr. 74) is labeled as a FP track since it could not be assigned to a pig; (B) The moment just before the ID switch of pig nr. 59; (C) Just
after the ID switch, where bounding box nr. 59 has moved up to another pig compared to (B). The original pig nr. 59 received a new ID.

Accuracy detection models

detection model.

100
95 —
90 —
OYoung
85 — mOld
m Combined
80 —
75 :
mAP 10U mAP 10U
Barren Enriched

FIGURE 4 | Mean Average Precision (mAP) and Intersection Over Union (IOU) for the barren and enriched environment using the “young,” “old,” and “combined”

The average individual track length in the barren environment
varied between 7.1 and 41.5 min.

Figures 6, 7 display all tracks per individual including FP
tracks. In both environments there was a period between ~11:24
and 13:48 where all IDs were maintained. In this period, the pigs
were mostly lying down. Especially before and after this period
of resting most new IDs were assigned to individuals. In these
periods the pigs were actively moving around and interacting
with pen mates.

DISCUSSION

The aim of this study was to investigate the potential of
state-of-the-art CV algorithms using YOLOv3 and SORT for
pig detection and tracking for individual activity monitoring
in pigs. This study showed the potential of state-of-the-art
CV algorithms for individual object detection and tracking.
Results showed that individual pigs could be tracked up to

5.3h in an enriched environment with maintained identity.
On average, identity was maintained up to 24.8 min without
manual corrections. In tracking-by-detection methods, as used
in this study, tracking results are dependent on the performance
of the detection method. No literature was found showing an
algorithm maintaining identity for longer than 1 minute on
average without manually applied marking. The highest average
tracking time reported until now was 49.5s (Cowton et al,
2019). This study outperformed existing literature in maintaining
identity in tracking pigs with an average tracking duration of
57.8 min. However, this study used a long video sequence of
7h, while pigs are known to be active during certain periods
of time. This might result in a distorted comparison between
studies. However, when the average length of tracks is calculated
based on trajectories during active time, the average length of
the enriched housed pigs is still between 6.4 and 17.2 min. The
average track length of barren housed pigs was lower (3.3—
24.6 min), but still higher than found in the literature. The main
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FIGURE 5 | The number of false positives (FP; i.e., tracks not associated with a pig) and false negatives (FN; i.e., undetected pig) for the barren and enriched

FP FN
Enriched

TABLE 1 | Summary of tracking results in barren and enriched environment.

TABLE 3 | Tracking summary per individual in enriched environment.

Barren Enriched
Number Ids 225 100
False positive track 76 31
Switched Ids 20 4
% tracked of the video 99.3 99.9
Average track without FP? (min) 22.3 57.8
Average track with FP? (min) 1.3 24.8
Longest track (min) 222.9 315.7
aFR false positive.
TABLE 2 | Tracking summary per individual in barren environment.
Barren

Individual # tracks Switches Total tracked Percentage Average

frames tracked length (min)
A 20 2 610,719 98.09% 20.4
B 57 4 609,563 97.91% 71
C 10 4 622,566 100.00% 41.5
D 21 4 622,028 99.91% 19.7
E 14 4 622,508 99.99% 29.6
F 27 2 620,416 99.65% 15.3

difference between this study and others is the use of YOLOV3 as
a detector.

The proposed tracking algorithm was trained and tested on
annotated frames from different ages. Yang et al. (2018) tested
their algorithm on different batches within the same pig farm

Enriched
Individual # tracks Switches Total tracked Percentage Average
frames tracked length (min)
A 0 622,281 99.96% 59.3
B 0 622,559 100.00% 138.3
C 23 1 620,568 99.68% 18.0
D 20 2 620,948 99.74% 20.7
E 10 0 622,463 99.99% 415
F 6 1 622,387 99.97% 69.2

and results were “quite good.” They state: “the size of pigs does
not matter much.” This study, however, proves otherwise. There
is a difference in performance between different ages within
the same environment (i.e., different size of pigs). Psota et al.
(2020) also had a training set that consisted of different pen
compositions, angles and ages. They reported that a dataset
containing frames from finisher pigs performed better than a
dataset containing frames from nursery pigs. This is in line with
results presented in the current study, where IOU of the old
detection model was higher than the IOU of the young detection
model. Another phenomenon was shown in current results: in
the enriched environment, the IOU of the combined detection
model exceeded the IOU of the young and the old detection
model, while in the barren environment the old detection model
performed best. This interaction between environment and age
could be explained by unoccupied surface in the pen. Enriched
housed pigs had twice as much space available than barren
housed pigs. In addition, pigs grow rapidly and especially in
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the barren environment, pigs are more occluded when growing
older. Visually, the frames of the old detection model are more
similar to the test frames than the frames of the young detection
model (Figure 8). Thus, the old detection model fits the test
frames the best in the barren environment, and therefore has
the best performance. When annotations of younger animals are
added, some noise is added in the detections, creating a more
robust detection model (higher mAP) with a lower IOU.

Besides the difference in age, there was also a difference in
the environment in the current study. The tracking algorithm
performed better in the enriched environment rather than in
the barren environment. The only difference between the two
environments was the use of bedding material and enrichments
and the space allowance per pig. The bedding material was not
observed to be detected as a pig, so the space allowance is
responsible for the difference in performance. The most difficult
situations to detect pigs individually is when pigs are touching

each other. When in close proximity, IDs can be lost or switched,
which could happen more often when there is less space available
per pig.

The appearance of pigs (i.e., spots or color marking) appeared
to be irrelevant in the performance of the tracking algorithm.
Some pigs were colored for identification in the experiment with
a saddle-like marking that was prominently visible to the human
observer. The tracking algorithm was not affected by the coloring.
A pig with a pink marker had the most tracks in the barren
environment (Table 2; individual C) but was among the pigs
with the fewest tracks in the enriched environment (Table 3;
individual F). Creating more tracks per individual appears to
be more strongly related to unfortunate placement of the pig
within the pen rather than disturbance by background colors
or shadows.

ID switches are a difficult problem in tracking. Not only do
you lose the identity, but identities are switched without any
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FIGURE 8 | Example frames of young detection model (A), test video (B), and
old detection model (C).

visibility in tracking data except when IDs are checked manually.
Psota et al. (2020) also reported ID switches. An example showed
that despite all animals were detected, only seven out of 13 had
the correct ID. We expected that two tracks would exchange
their IDs, however, that only happened twice out of 24 switches
identified. The other 22 switches showed one individual receiving
a new ID number, and the other individual took over the other
animal’s original ID. These one-sided switches are not well-
described in the literature (Li et al., 2009). An advantage of this
type of switches is that it is easier to trace back in tracking data
since a new ID is created in the process and usually this new ID
only has a limited track length. However, it still remains an issue
in tracking data. Removing these false positives based on short
track length seems a viable way to correct for ID switches.

The algorithm used in this study showed is a first step
to measure resilience in future applications. Individual activity
or variation in individual activity under stress is a potential
indicator of resilience (Cornou and Lundbye-Christensen, 2010;
van Dixhoorn et al., 2016; Nordgreen et al., 2018; van der Zande
et al,, 2020). The algorithm presented estimated bounding boxes
and connected them between frames with assigned IDs. When
the trajectory is lost, a human observer needs to assign the
trajectory to the right ID. Using this algorithm for six pigs,

the human observer needs to correct on average the IDs 10
times per hour for enriched housed pigs, and 22 times per
hour for barren housed pigs. For a commercial management
system, this would still be too labor-intensive, but for research-
purposes this is possible. To improve performance further,
multiple sensors should be integrated to achieve high accuracy
with less labor (Wurtz et al, 2019). To recognize damaging
behavior using proposed algorithm is challenging due to the
low occurrence of such behavior. Posture estimation could be
integrated in proposed algorithm since these behaviors occur
regularly. However, for research purposes, this algorithm allows
tracking activity of a larger number of individual animals in
a non-invasive manner. From location data of every frame,
distance moved could be calculated.

CONCLUSIONS

The aim of this study was to investigate the potential of state-
of-the-art CV algorithms using YOLOv3 and SORT for pig
detection and tracking for individual activity monitoring in pigs.
Results showed that individual pigs could be tracked up to
5.3h in an enriched environment with maintained identity. On
average, identity was maintained up to 24.8 min without manual
corrections. Using annotations of a combination of younger and
older animals had the best performance to detect pigs in both the
barren and the enriched environment. The tracking algorithm
performed better on pigs housed in an enriched environment
compared to pigs in a barren environment, probably due to
the lower stocking density. The tracking algorithm presented
in this study outperformed other studies published to date.
The better performance might be due to the different detection
method used, variation in environment, time of day or the size
of the training data used. Thus, based on tracking-by-detection
algorithm using YOLOv3 and SORT, pigs can be tracked in
different environments. The tracks could in future applications
be used as an estimate to measure resilience of individual pigs,
by recording activity, proximity to other individuals and use of
space under varying conditions.
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