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Genetic determinants of endophytism in the
Arabidopsis root mycobiome
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The roots of Arabidopsis thaliana host diverse fungal communities that affect plant health and

disease states. Here, we sequence the genomes of 41 fungal isolates representative of the A.

thaliana root mycobiota for comparative analysis with other 79 plant-associated fungi. Our

analyses indicate that root mycobiota members evolved from ancestors with diverse lifestyles

and retain large repertoires of plant cell wall-degrading enzymes (PCWDEs) and effector-like

small secreted proteins. We identify a set of 84 gene families associated with endophytism,

including genes encoding PCWDEs acting on xylan (family GH10) and cellulose (family

AA9). Transcripts encoding these enzymes are also part of a conserved transcriptional

program activated by phylogenetically-distant mycobiota members upon host contact.

Recolonization experiments with individual fungi indicate that strains with detrimental effects

in mono-association with the host colonize roots more aggressively than those with beneficial

activities, and dominate in natural root samples. Furthermore, we show that the pectin-

degrading enzyme family PL1_7 links aggressiveness of endophytic colonization to plant

health.
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Roots of healthy plants are colonized by a rich and diverse
community of microbes (i.e. bacteria and fungi) that can
modulate plant physiology and development1–5. Root

colonization by arbuscular mycorrhizal, ectomycorrhizal and
ericoid mycorrhizal fungi play fundamental roles in shaping plant
evolution, distribution, and fitness worldwide6–11. In contrast, the
physiological relevance of root mycobiota members that do not
establish symbiotic structures, but have the ability to colonize
roots of asymptomatic plants in nature remains unclear. These
fungal endophytes are predominantly Ascomycetes12,13, which
can either represent stochastic encounters or engage in stable
associations with plant roots14–18. Multiple factors driving the
assembly of endophytic fungal communities have been identified,
including climatic conditions, soil properties, species identities of
the host and surrounding plants and abiotic stresses12–14,16,18–22.
Re-colonization experiments with individual fungal isolates and
germ-free Brassicaceae plants—non-mycorrhizal and previously
reported as hosting root endophytes colonizing a broad range of
hosts23—revealed various effects of mycobiota members on
plant performance, ranging along the parasitism-to-mutualism
continuum2,24–26. Importantly, the outcome of the interaction on
plant health can be modulated by host genetics, host nutritional
status, and local environmental conditions27–30.

While the ectomycorrhizal lifestyle was shown to have arisen
independently multiple times from saprotrophic ancestors—
by convergent transposon-mediated genomic expansions and
simultaneous losses of plant cell wall-degrading enzymes
(PCWDEs)31,32, some phylogenetically distant evolutionary tra-
jectories to root endophytism have been described, from
pathogenic28,33,34 or saprotrophic ancestors35. Although genomic
signatures of endophytism remain to be identified, these studies
pinpointed that no contraction of PCWDE arsenals occurred
during transitions to endophytism25. Genomes of dark-septate
endophytes were shown to be enriched in genes encoding
PCWDEs—but also aquaporins, secreted peptidases, and
lipases—, in comparison to closely related fungi with other
lifestyles36. Importantly, PCWDE-encoding genes were reported
to be over-expressed during root colonization by diverse fungal
endophytes27,28,37, suggesting they might be key determinants of
endophytism. Genetic factors underlying the endophytic lifestyle
could however be multiple, and also niche- and host-dependent.

Here, we aim at better characterizing the evolution and func-
tion of the root mycobiota, by studying a diverse set of 41 cul-
tured fungi that colonize roots of the non-mycorrhizal plant A.
thaliana. Using comparative genomics and transcriptomics in
combination with plant recolonization experiments, we identified
genomic determinants underlying the endophytic lifestyle. Our
results suggest that repertoires of PCWDEs of the A. thaliana root
mycobiota are key determinants of endophytism, shaping fungal
endosphere assemblages and modulating host fitness.

Results
Cultured isolates are representative of wild A. thaliana root
mycobiomes. Fungi isolated from roots of healthy A. thaliana
represent either stochastic encounters or robust endosphere
colonizers. From a previously established fungal culture collection
obtained from surface-sterilized root fragments of A. thaliana and
relative Brassicaceae species2, we identified 41 isolates that could
be distinguished based on their rDNA internal transcribed spacer
1 (ITS1) sequences, representing 3 phyla, 26 genera, and 38 spe-
cies of the fungal root microbiota (Fig. 1a). We first tested whe-
ther these phylogenetically diverse isolates were representative of
naturally occurring root-colonizing fungi. Direct comparison
with rDNA ITS1 sequence tags from a continental-scale survey of
the A. thaliana root mycobiota18 revealed that most of the

matching sequences were abundant (mean relative abundance,
mean RA > 0.1%, 30 out of 41 strains), prevalent (sample cover-
age >50%, 22 out of 41), and enriched (root vs. soil, log2FC,
Mann–Whitney U test, FDR < 0.05, 26 out of 41) in A. thaliana
root endosphere samples at a continental scale (Fig. 1a). Quan-
titatively similar results were obtained using sequence data from
the independent rDNA ITS2 locus (Spearman; Sample coverage:
rho= 0.65, P < 0.01; RA: rho= 0.59, P < 0.01; Fig. 1b). The
cumulative RA of the sequence tags corresponding to these 41
fungi accounted for 35% of the total RA measured in root
endosphere samples across European sites18, despite the under-
representation of abundant Agaricomycetes and Dothideomy-
cetes taxa (Fig. 1c). We next assessed the worldwide distribution
and prevalence of these fungal taxa across 3,582 root samples
from diverse plants retrieved from the GlobalFungi database38.
Continent-wide analysis revealed that the proportion of samples
with positive hits was greater in Europe (sample coverage: up to
30%, median= 4%) than in North America (sample coverage: up
to 10%, median= 0.5%), and largely insignificant in samples
from other continents (Fig. 1a). Interestingly, only a few of these
41 isolates were detected in leaves of A. thaliana at two locations
in Germany (data re-analyzed from ref. 39, n= 51 samples), as
well as in 2 647 leaf samples retrieved from the GlobalFungi
database38 (Supplementary Fig. 1). Results indicate that most of
the cultured A. thaliana root colonizing fungi reproducibly and
predominantly colonize plant roots across geographically distant
sites irrespective of differences in soil conditions and climates.

Root mycobiota members evolved from ancestors with diverse
lifestyles. Given the broad taxonomic diversity of A. thaliana root
mycobiota members, endosphere colonization capabilities may
have evolved multiple times independently across distinct fungal
lineages. We sequenced the above-mentioned 41 fungal genomes
using PacBio long-read sequencing and annotated them with the
support of transcriptome data (Methods), resulting in high-
quality genome drafts (number of contigs: 9–919, median= 63;
L50: 0.2–9.1 Mbp, median= 2.3 Mbp; Supplementary Data 1).
Genome size varied between 33.3 and 121Mb (median= 45
Mbp) and was significantly correlated with the number of pre-
dicted genes (number of genes: 10,414–25,647, median= 14,777,
Spearman rho= 0.92, P= 3.82e−17) and the number of trans-
posable elements (Spearman rho= 0.86, P= 4.13e−13) (Supple-
mentary Fig. 2). A comparative genome analysis was conducted
with 79 additional representative plant-associated fungi with
previously well-described lifestyles40, selected in the same or
closely related phylogenetic classes as the strains we sequenced.
Since classifying species into unique lifestyle categories is
restrictive and can introduce bias41, both the isolation of strains
and previous knowledge about their species were considered to
select plant pathogens, soil/wood saprotrophs, ectomycorrhizal
symbionts, ericoid mycorrhizal symbionts, orchid mycorrhizal
symbionts and endophytes28,30,34,36,42–45 (Fig. 2a, Supplementary
Fig. 3 and 4, Supplementary Data 2). Arbuscular mycorrhizal
fungi were excluded from the study, as they are phylogenetically
distant to the strains we isolated. To decipher potential evolu-
tionary trajectories within this large fungal set, we first defined
copy numbers of gene families in the 120 fungal genomes based
on orthology prediction (n= 41,612; OrthoFinder46) and subse-
quently predicted the ancestral genome content using the Wagner
parsimony method (Count47). Next, we trained a Random Forest
classification model linking gene family copy numbers to life-
styles, resulting in a lifestyle prediction accuracy of R2= 0.70
(Methods). Although this classifier cannot confidently assign a
single lifestyle to one genome content, it can be used to estimate
lifestyle probabilities, and can reveal potential evolutionary
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Fig. 1 Prevalence and abundance profiles of 41 root-colonizing fungi across naturally occurring A. thaliana root mycobiomes. a Species names and
phylogenetic relationships among the 41 selected fungi. Estimated prevalence (i.e., root sample coverage, bar-plots), relative abundance (RA, log2
transformed, box-plots), and enrichment signatures (log2FC, circles) were calculated for each fungus based on data from a previously published
continental-scale survey of the A. thaliana root mycobiota18. ITS1 tags from natural site samples were directly mapped against the reference ITS1 sequences
of the selected fungi. Sample coverage in roots was computed based on n= 169 root samples and estimated RA were calculated for root samples having a
positive hit only. On the RA boxplot, boxes are delimited by first and third quartiles and whiskers extend to show the rest of the distribution. Log2Fold-
Change (log2FC) in RA between root (n= 169) and soil samples (n= 223) is shown based on the mean RA measured across samples and significant
differences are indicated by circle sizes (two-sided Mann–Whitney U test, FDR < 0.05, see detailed values in Supplementary Data 1). ITS1 sequence
coverage measured across 3 582 root samples retrieved from the GlobalFungi database38. Note that samples were analyzed separately by continent.
b Correlation between root sample coverage (left panel) measured in ITS1 (n= 169) and ITS2 (n= 158) datasets for each of the 41 fungi (n= 41,
Spearman’s rank correlation). Right panel: same correlation but based on log2 RA values (n= 41, Spearman’s rank correlation). c RA profiles of naturally
occurring fungi (class level) detected in A. thaliana roots across 17 European sites18 (“all ASVs”, left) and the corresponding distribution of the
ITS1 sequences of the 41 selected fungi (“41 fungi”, right). Note that the cumulative RA of the 41 fungi accounts for 35% of all sequencing reads detected in
A. thaliana roots across European sites.
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trajectories when applied to Wagner-predicted ancestral genomic
compositions (see pie charts, Fig. 2a). This probabilistic approach
corroborated that recent ancestors of the beneficial root endo-
phyte Colletotrichum tofieldiae were likely pathogenic28, whereas
those of beneficial Sebacinales—like those of ectomycorrhizal

Agaricomycetes—were predicted to be saprotrophs25,48 (see
arrows numbered 1 and 2 on Fig. 2a). According to the classifier’s
predictions, Agaricomycetes and Mortierellomycetes in A. thali-
ana mycobiota likely derived from soil saprotrophs, while those
belonging to Dothideomycetes and Sordariomycetes were pre-
dicted to have evolved from pathogenic ancestors. The ancestral
lifestyle of Leotiomycete mycobiota members remains uncertain
and could be multiple (Fig. 2a). Although the composition of our
data set might influence these ancestral lifestyle predictions,
our results nonetheless suggest that in planta accommodation
of A. thaliana root mycobiota members occurred multiple
times independently during evolution, as these fungi evolved
from ancestors with diverse lifestyles.

Functional overlap in genomes of root mycobiota members
and endophytes. Isolation of mycobiota members from roots of
healthy plants prompted us to test whether their gene repertoires
more extensively resemble those of mycorrhizal symbionts, known
endophytes, saprotrophs, or pathogens. While the genomes of ecto-
mycorrhizal fungi were shown to be enriched in transposable
elements31,32, the percentage of these elements remained low in
genomes of root mycobiota members (0.69–28.43%, median=
5.44%, Supplementary Fig. 5). We annotated genes known to play a
role in fungus-host interactions (Methods), including those encoding
carbohydrate-active enzymes (CAZymes), proteases, lipases, and
effector-like small secreted proteins (SSPs49), and then assessed dif-
ferences in repertoire diversity across lifestyles (Fig. 2b). Unlike
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Fig. 2 Ancestral relationships and trait convergence across root-
colonizing fungal endophytes. a Lifestyle-annotated whole-genome
phylogeny of the 41 selected mycobiota members (MyM, black) and 79
published fungal genomes (SAP saprotrophs, EF endophytic fungi, PPF plant
pathogenic fungi, ECM ectomycorrhiza, ERM ericoid mycorrhiza, OMF
orchid mycorrhizal fungi). Pie charts on ancestor nodes show lifestyle
probabilities of each ancestor, as identified by a Random Forest model
trained on 79 non-mycobiota genome compositions in gene families
(R2= 0.70). Two arrows highlight ancestral lifestyle predictions which
corroborate previous reports: (1) the pathogenic ancestor of the endophyte
Colletotrichum tofieldiae (2) the saprotrophic ancestor of ectomycorrhizal
fungi and Sebacinales. Branch width is proportional to the gene family
gains-losses difference (Ngains − Nlosses). Line is dotted when this difference
is negative. b Genomic counts (n= 120) of genes involved in fungal-host/
environment associations (CAZymes carbohydrate-active enzymes,
PCWDEs plant cell-wall degrading enzyme, FCWDEs fungal cell-wall
degrading enzyme, SSPs small secreted proteins; PCWDEs and FCWDEs
are CAZyme subsets). Boxes are grouped according to UPGMA
hierarchical clustering on mean counts over the different categories. They
are delimited by first and third quartiles, central bars show median values,
whiskers extend to show the rest of the distribution, but without covering
outlier data points (further than 1.5 interquartile range from the quartiles,
and marked by lozenges). ANOVA-statistical testing
(Counts~PhylogenyPCs+Lifestyle, Methods) identified both phylogeny and
lifestyles as having an effect on genomic contents. The letters highlight the
result of a two-sided post hoc TukeyHSD test that compares count
differences exclusively due to the lifestyle. c Networks showing the results
of a PERMANOVA-based comparison of gene repertoires
(JaccardDistances~Phylogeny+Lifestyle, see Supplementary Data 3 for
detailed R2 and P-values). Networks for each category are labeled with
Lifestyle R2 values. ***P < 0.001 (Supplementary Fig. 6). Lifestyles are
connected if their gene compositions are not significantly different. Node
size is proportional to the area of one lifestyle’s ordination ellipse on a
Jaccard-derived dbRDA plot constrained by lifestyles, and reflects the intra-
lifestyle variability. Edge weights and widths are inversely proportional to
the distance between ordination ellipse centroids.
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ectomycorrhizal fungi31,32, but similarly to endophytes27,28,30,34,36,
the genomes of root mycobiota members retained large repertoires of
genes encoding PCWDEs, SSPs, and proteases (ANOVA-TukeyHSD,
P < 0.05, Fig. 2b). Using permutational multivariate analysis of var-
iance (PERMANOVA) and distance-based redundancy analyses
(dbRDA)—based on Jaccard dissimilarity indices between genomes
calculated on the copy numbers of genes in each family—, we dis-
tinguished lifestyle from phylogenetic signals in gene repertoire
composition (Fig. 2c, Supplementary Fig. 6a). This revealed that
“lifestyle” significantly contributes to the variation in gene repertoire
composition (phylogeny: R2: 0.17–0.46, P < 0.05; lifestyle: R2:
0.07–0.15, P < 0.05, Supplementary Data 3). Interestingly, the factor
“lifestyle” explained the highest percentage of variance for PCWDE
repertoires (phylogeny: R2= 0.26; lifestyle: R2= 0.15, Supplementary
Data 3), suggesting that these CAZymes play an important role in
lifestyle differentiation. Further pairwise comparisons between life-
style groups revealed that gene repertoire composition of root
mycobiota members could not be differentiated from those of
endophytes (post hoc pairwise PERMANOVA, P > 0.05, Fig. 2c).
Therefore, gene repertoires of A. thaliana root-colonizing fungi
resemble those of endophytes more than saprotrophs, pathogens or
mycorrhizal symbionts. Across the tested gene groups, the families
which contribute the most in segregating genomes by lifestyles
(Supplementary Fig. 6b, Methods) include two xylan esterases (CE1,
CE5), two pectate lyases (PL3_2, PL1_4), one pectin methyl-
transferase (CE8), and one serine protease (S08A). Further analysis
focusing on total predicted secretomes (Supplementary Fig. 7, Sup-
plementary Fig. 8a) and CAZyme subfamilies (Supplementary
Fig. 8b) confirmed strong genomic similarities between A. thaliana
root mycobiota members and known endophytic fungi.

Genomic traits of the endophytic lifestyle. To identify unique
genetic determinants characterizing both known endophytes and A.
thaliana root mycobiota members, the 120 genomes were mined for
gene families whose copy numbers allow efficient segregation of these
fungi (n= 50) from those with other lifestyles (n= 70). We trained a
Support Vector Machines classifier with Recursive Feature Elimina-
tion (SVM-RFE) on the gene counts of orthogroups significantly
enriched or depleted between these two groups (ANOVA, FDR<
0.05). A minimal set of 84 gene families that best segregated the two
lifestyle groups was retained in the final SVM-RFE classifier
(R2= 0.80, Fig. 3a and Supplementary Data 4a). These orthogroups
can explain lifestyle differentiation independently from phylogenetic
signal (PhyloGLM50 – 83/84, FDR < 0.05) and were significantly
enriched in enzymes (i.e., GO catalytic activity, GOATOOLS51

FDR= 0.002, Supplementary Data 4b) and in CAZymes (one-sided
Fisher Exact Test, odds ratio= 7.45, P= 0.03). Notably, genes
encoding PCWDEs acting on pectin (CE12, GH145, PL11), cellulose
(AA9), and hemicellulose (i.e., xylan: GH10, GH16, CE1) were
identified, together with others encoding peptidases, transporters and
proteins involved in amino acid metabolism (Fig. 3b and Supple-
mentary Data 4a). These 84 gene families were analyzed for co-
expression in published fungal transcriptomic datasets gathered in
the database STRING52. An MCL-clustered co-expression network
built on families enriched in known endophytes and A. thaliana
mycobiota members revealed six clusters of co-expressed genes
(Fig. 3c), including carbohydrate membrane transporters, and genes
involved in carbohydrate metabolism (e.g., GH10) and amino acid
metabolism. These functions are likely to be essential for endophytic
root colonization.

Root colonization capabilities explain fungal outcome on plant
growth. Root-colonizing fungi can span along the endophytism-
parasitism continuum25,53. Consistently, our previously trained
Random Forest lifestyle classifier (R2= 0.70, Fig. 2a) predicted

our 41 mycobiota members to be either plant pathogens, endo-
phytes or saprotrophs (Fig. 4a). We tested the extent to which the
41 fungi can modulate host physiology by performing binary
interaction experiments with germ-free A. thaliana plants grown
in two nutrient conditions under laboratory conditions (inorganic
orthophosphate, Pi: 100 μM and 625 μM KH2PO4, Fig. 4a). We
identified that seed inoculation with the independent isolates
influenced both germination rate (GR, Supplementary Fig. 9) and
shoot fresh weight (SFW) of four-week-old plants (n= 7127), and
therefore calculated a plant performance index (PPI= SFW * GR,
Methods). Under Pi-sufficient conditions, 39% of the isolates (16/
41) negatively affected host performance compared to germ-free
control plants, whereas 61% (25/41) had no significant effect on
PPI (Kruskal–Wallis–Dunn Test, adj. P < 0.05, Fig. 4a). Fungal-
induced change in PPI was significantly modulated by the
nutritional status of the host, as depletion of bioavailable Pi in the
medium was associated with a reduction in the number of fungi
with pathogenic activities (20%, 8/41) and an increase of those
with beneficial activities (12%, 5/41) (Kruskal–Wallis–Dunn Test,
adj. P < 0.05, Fig. 4a). Notably, PPI measured for low and high Pi
conditions was negatively correlated with strain RA in roots of
European A. thaliana populations (Spearman, High Pi: rho=
−0.33, P= 0.033; Low Pi: rho=−0.49, P= 0.0014, Fig. 4b),
suggesting a potential link between the ability of a fungus to
efficiently colonize roots and the observed negative effect on plant
performance. Consistent with this hypothesis, fungal load mea-
sured by quantitative PCR in roots of four-week-old A. thaliana
colonized by individual fungal isolates (Supplementary Fig. 10ab),
was positively correlated with fungal RA in roots of natural
populations (Spearman, High Pi: rho= 0.57 P= 0.0002; Low Pi:
rho= 0.52, P= 0.0008, Fig. 4c), and was also negatively linked
with PPI outcome (Spearman, High Pi: rho=−0.44, P= 0.005,
Low Pi: rho=−0.30, P= 0.057) (Supplementary Fig. 10cd).
Furthermore, a co-occurrence matrix based on the RA of ASVs
corresponding to these isolates in naturally occurring root
mycobiomes indicated that most taxa with neutral and detri-
mental effects often co-occurred in roots of European A. thaliana
populations18, whereas those with beneficial activities were rarely
detected (Supplementary Fig. 11). Taken together, our results
suggest that robust root colonizers have a high pathogenic
potential, and that their colonization must be tightly controlled
not to affect plant health.

A conserved set of CAZyme-encoding genes is induced in
planta by diverse root mycobiota members. We tested whether
putative genomic determinants of endophytism defined above by a
machine learning approach were part of a core response activated in
planta by root mycobiota members. Six representative fungi from
three different phylogenetic classes were selected for in planta
transcriptomics on low Pi sugar-free medium: Chaetomium sp. 0009
(Cs), Macrophomina phaseolina 0080 (Mp), Paraphoma chry-
santemicola 0034 (Pc), Phaeosphaeria sp. 0046c (Ps), Truncatella
angustata 0073 (Ta), Halenospora varia 0135 (Hv). Confocal
microscopy of roots grown in mono-association with these fungi
highlighted similar colonization of root surfaces and local pene-
trations of hyphae in epidermal cells (Supplementary Fig. 12). After
mapping of RNA-seq reads on genome assemblies (Hisat254) and
differential expression analysis (in planta vs. on medium,
DESeq255), significant log2 fold-change (log2FC) values were
summed by orthogroups, allowing between-strain transcriptome
comparisons (Methods). Transcriptome similarity did not fully
reflect phylogenetic relationships since Cs and Ta (Sordariomycetes)
clustered with Hv (Leotiomycete), whereas Mp, Pc and Ps (Dothi-
deomycetes) showed substantial transcriptome differentiation
(Fig. 5a). Although in planta transcriptional reprogramming was
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largely strain-specific, we identified a core set of 26 gene families
that were consistently over-expressed by these distantly related
fungi in A. thaliana roots (Fig. 5b). We observed a remarkable over-
representation of genes coding for CAZymes acting on different
plant cell wall components (i.e., 19/26, 73%), including cellulose,
xylan and pectin (Fig. 5c). This set was also significantly enriched in

families previously identified as putative determinants of endo-
phytism by our SVM-RFE classifier (Fisher exact test, P < 0.05),
including AA9 (lytic cellulose monooxygenase) and GH10 (xyla-
nase) CAZyme families. Inspection of fungal genes over-expressed
in planta by each strain (Supplementary Data 5), followed by
independent GO enrichment analyses, corroborated that
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carbohydrate metabolic processes and xylanase activities were the
most common fungal responses activated in planta (GOATOOLS,
FDR < 0.05, Fig. 5d). Notably, we also observed important percen-
tages of genes encoding effector-like SSPs induced in planta
(9.8–42.4%, median= 21.6%). Together, these enzymes and SSPs
are likely to constitute an essential toolbox for A. thaliana root
colonization and for fungal acquisition of carbon compounds from
plant material. Analysis of corresponding A. thaliana root tran-
scriptomes revealed that different responses were activated by the
host as a result of its interaction with these six phylogenetically
distant mycobiota members (Supplementary Fig. 13, Supplementary
Data 6). Our data suggest that phylogenetically distant mycobiota
members colonize A. thaliana roots using a conserved set of
PCWDEs and have markedly different impacts on their host.

Polysaccharide lyase family PL1_7 as a key component linking
colonization aggressiveness to plant health. We reported above
a potential link between aggressiveness in root colonization and
detrimental effect of fungi on PPI. To identify underlying geno-
mic signatures explaining this link, we employed three different
methods. First, inspection of diverse gene categories across gen-
omes of beneficial, neutral, and detrimental fungi revealed sig-
nificant enrichments in CAZymes (especially polysaccharide/
pectate lyases, PLs) and proteases in the genomes of detrimental
fungi (Low Pi conditions, Kruskal–Wallis P < 0.05, and Dunn
tests, Supplementary Fig. 14a, b). In these categories, three pectate
lyases (PL1_4, PL1_7, PL3_2) and three peptidases (S08A, A01A,
S10) contributed the most in segregating genomes by effect on
plants (see the count in gene copy in Supplementary Fig. 14c).
Second, multiple testing of association between secreted CAZyme
counts (n= 199 families in total) and fungal effect on PPI iden-
tified the PL1_7 family as the only family significantly linked to
detrimental effects (ANOVA, Bonferroni; Low Pi: P= 0.026;
High Pi: not significant; Fig. 6a). Finally, an SVM-RFE classifier
was trained on the gene counts of all orthogroups that were
significantly enriched or depleted in genomes of detrimental vs.
non-detrimental fungi (ANOVA, FDR < 0.05). While this method
failed at building a classifier to predict detrimental effects at high
Pi (no families significantly enriched/depleted), it successfully
predicted detrimental effects at low Pi with very high accuracy
(R2= 0.88). A minimal set of 11 orthogroups discriminating
detrimental from non-detrimental fungi was identified (Fig. 6b,
Supplementary Data 7), and includes gene families encoding
membrane transporters, zinc-finger domain-containing proteins,
a salicylate monooxygenase and a PL1 orthogroup containing the
aforementioned PL1_7 CAZyme subfamily and related PL1_9
and PL1_10 subfamilies. Further phylogenetic instability analysis
based on duplication and mutation rates (MIPhy56) identified
PL1_9 and PL1_10 as slow-evolving clades in the gene family tree
(instability= 30.94 and 18.86 respectively, Fig. 6c), contrasting
with most PL1_7 genes that were located in two rapidly evolving
clades (index= 85.30 and 66.12). Of note, genomic counts of
PL1_7, but not PL1_9/10, remained significantly associated to

detrimental host phenotypes after correction for the phylogenetic
signal in our dataset (PhyloGLM50, FDR= 0.03). PL1_7 was also
part of the core transcriptional response activated in planta by six
non-detrimental fungi (Fig. 5c) and was enriched in mycobiota
members and endophytes in comparison to saprotrophs and
mycorrhizal fungi (Supplementary Fig. 14d). Therefore, degra-
dation of pectin by root mycobiota members is likely crucial for
penetration of—and accommodation in—pectin-rich A. thaliana
cell walls. However, the remarkable expansion of this gene family
in detrimental compared to non-detrimental fungi predicts a
possible negative link between colonization aggressiveness and
plant performance. To test this hypothesis, we took advantage of
the Trichoderma reesei QM9414 strain (WT, PL1_7 free back-
ground) and its corresponding heterologous mutant lines over-
expressing pel12, a gene from Clonostachys rosea encoding a
PL1_7 pectate lyase with direct enzymatic involvement in utili-
zation of pectin57. By performing plant recolonization experi-
ments at low Pi with these lines, we observed that T. reesei
pel12OE lines negatively affected PPI with respect to their par-
ental strain (ANOVA and TukeyHSD test, P < 0.05 for two out of
three independent overexpressing lines, Fig. 6d), and this phe-
notype was associated with a significant increase in fungal load in
plant roots (Kruskal–Wallis and Dunn test, P < 0.05, Fig. 6e).
Taken together, our data indicate that pectin-degrading enzymes
belonging to the PL1_7 family are key fungal determinants
linking colonization aggressiveness to plant health.

Discussion
We report here that genomes of fungi isolated from roots of
healthy A. thaliana harbor a remarkable diversity of genes
encoding secreted proteins and CAZymes. Consistent with the
fact that these fungi were (1) isolated from surface-sterilized root
fragments2, (2) enriched in plant roots vs. surrounding soil
samples at a continental scale18 (Fig. 1), and (3) able to recolonize
roots of germ-free plants (Supplementary Figs. 10 and 12), both
the diversity and the composition of their gene repertoires
resemble those of previously described endophytes28,30,42 (Fig. 2).
Unlike the remarkable loss in PCWDE-encoding genes in the
genomes of most ectomycorrhizal fungi31,32, endophytism in root
mycobiota members is therefore not associated with genome
reduction in saprotrophic traits, as previously suggested27. Using
a machine learning approach, together with in planta tran-
scriptomic experiments, we identified genes encoding CAZyme
families AA9 (copper-dependent lytic polysaccharide mono-
oxygenases, acting on cellulose chains) and GH10 (xylanase) as
potential determinants of endophytism (Figs. 3 and 5). Interest-
ingly, these same families were strongly expanded in genomes of
beneficial root mutualists belonging to Serendipitaceae27,35

compared to mycorrhizal mutualists31 and might therefore
represent key genetic components explaining adaptation to—and
accommodation in—A. thaliana roots. It is important to note that
although the 41 isolates are representative of naturally occurring
A. thaliana root mycobiomes, a large fraction of fungi could not

Fig. 3 Minimal set of 84 gene families discriminating mycobiota members and endophytes from other lifestyles. a Scatterplot showing the mean per-
genome copy number of each orthogroup in mycobiota members and endophytes, in comparison to other lifestyles. Light gray: all 41,612 orthogroups. The
84 discriminant orthogroups identified by SVM-RFE (R2= 0.8) are highlighted in a gradient of red or blue colors reflecting, respectively, enrichment or
depletion in A. thaliana mycobiota members and endophytes (MyM+ EF) compared to the other fungal lifestyles. b Functional descriptions of the 84
discriminant orthogroups. This gene set is enriched in CAZymes (Fisher, P < 0.05, labeled C) and also contains peptidases (labeled P), transporters
(labeled T) and proteins involved in amino-acid metabolism (labeled A). The outer circle shows orthogroup enrichment/depletion as described in panel a
(see Supplementary Data 4a for associated ANOVA P-values). The inner circle depicts the SVM coefficients, reflecting the contribution of each orthogroup
to lifestyle differentiation. In the center, links between orthogroups indicate coexpression of associated COG families in fungi (STRING database52).
c Coexpression network of gene families across published fungal transcriptomic datasets, built on discriminant orthogroups enriched in endophytes and
mycobiota members and clustered with the MCL method.
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be included in this comparative analysis, including isolates that
cannot be cultured. Therefore, it remains to test whether the
genomic signatures observed here for this restricted, yet diverse
set of cultured fungi, are retained across a broader range of tax-
onomically diverse root endophytes.

Although the 41 A. thaliana root mycobiota members were
isolated from roots of healthy-looking plants, experiments in

mono-associations with the host revealed a diversity of effects on
plant performance, ranging from highly pathogenic to highly
beneficial phenotypes (Fig. 4). These results are consistent with
the previous reports2,24,26,58 and suggest that the pathogenic
potential of detrimental fungal endophytes identified based on
mono-association experiments with the host, is largely kept at bay
in a community context by the combined action of microbiota-

Fig. 4 Linking fungal outcome on host performance with root colonization patterns. a Performance indices (shoot fresh weights of 4-week-old plants
normalized by germination rate) of A. thaliana plants recolonized with each of the 41 fungal strains on media containing low and high concentrations of
orthophosphate (Pi). At least three independent biological replicates resulting in 2–4 values each were performed for each fungus (n= 6–18). Boxes are
delimited by first and third quartiles, central bars show median values, whiskers extend to show the rest of the distribution, but without covering outlier
data points (further than 1.5 interquartile range from the quartiles, and marked by lozenges). Differential fungal effects on plant performance were tested
on both media with Kruskal–Wallis (at high and low Pi: P < 2.2e−16) and beneficial and pathogenic strains were identified by a two-sided Dunn test against
mock-treated plants (first row in boxplots). Vertical dash lines indicate the mean performance of mock-treated plants. Left to the boxplots is displayed
the strain phylogeny, together with lifestyle probabilities predicted by the Random Forest classifier trained for ancestral lifestyle prediction in Fig. 2a.
b Spearman’s rank correlation of relative fungal abundances in root samples from natural populations (log2 RA, see Fig. 1a,18) with fungal effects on plant
performance at low Pi (left) and high Pi (right) (Hedges standard effect sizes standardizing all phenotypes to the ones of mock-treated plants). c Spearman
rank correlation of relative fungal abundances in root samples from natural populations (log2 RA, see Fig. 1a,18) with fungal colonization indices measured
by quantitative PCR in our plant recolonization experiments at low Pi (left) and high Pi (right).
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induced host defenses and microbe-microbe competition at the
soil-root interface2,59–62. However, we observed that robust and
abundant fungal colonizers of A. thaliana roots defined from a
continental-scale survey of the root microbiota11 were dominated
by detrimental fungi defined based on mono-association experi-
ments with the host (Fig. 4). Based on quantitative PCR data, we
also observed that fungi with beneficial activities on plant health
were colonizing roots less aggressively than those with detri-
mental activities—as previously reported26, suggesting a potential
link between fungal colonization capabilities, abundance in nat-
ural plant populations, and plant health. A potential limitation of
our qPCR-based amplification approach with the general ITS1F-
ITS2 primers is linked to the fact that there is copy number
variation in rDNA ITS across fungal genomes and that primer
bias might distort relative fungal load measurements, thereby
making direct comparisons between fungal isolates difficult63.
Irrespective of this limitation, our results support the idea that
maintenance of fungal load in plant roots is critical for plant
health, and that controlled fungal accommodation in plant tissues
is key for the maintenance of homeostatic plant-fungal relation-
ships. This conclusion is indirectly supported by the fact that an
intact innate immune system is needed for the beneficial activities
of fungal root endophytes27,29,62. Our results, therefore, suggest

that the most beneficial root mycobiota members are not neces-
sarily the most abundant in roots of natural plant populations. In
contrast, understanding how potential pathogens can dominate
the endospheric microbiome of healthy plants is key for pre-
dicting disease emergence in natural plant populations64,65.

To identify genetic determinants explaining the link between
colonization aggressiveness and detrimental effect on plant per-
formance, we used different association methods that all con-
verged into the identification of the CAZyme subfamily PL1_7 as
one of the potential underlying determinants of this trait. Proteins
from the PL1_7 family were previously characterized in different
Aspergillus species as metabolizing pectate by eliminative cleavage
of (1 -> 4)-α-D-galacturonan66,67 (EC 4.2.2.2). Furthermore,
primary cell walls of A. thaliana are enriched with pectin com-
pared to those of monocotyledonous plants, which contain more
hemicellulose and phenolics68,69. Therefore, repertoire diversity
in pectin-degradation capabilities is likely key for penetration and
accommodation in pectin-rich A. thaliana cell walls. This is
corroborated by the observation that non-detrimental fungal
endophytes were also shown to consistently induce expression of
this gene family in planta during colonization of A. thaliana roots
(Fig. 5). However, re-inspection of previously published tran-
scriptomic data indicated that genes encoding PL1_7 were

Fig. 5 Comparative transcriptomics identified a core set of PCWDE-encoding genes induced in A. thaliana roots by diverse mycobiota members.
a PCoA plot of Bray-Curtis distances calculated on gene family read counts from fungal transcriptome data on medium and in planta. Cs= Chaetomium
sp. 0009, Mp=Macrophomina phaseolina 0080, Pc= Paraphoma chrysantemicola 0034, Ps= Phaeosphaeria sp. 0046c, Ta= Truncatella angustata 0073,
Hv= Halenospora varia 0135. b Venn diagram showing the number of fungal gene families over-expressed in planta. It highlights 26 families commonly
over-expressed by all six fungi (n/d: non-displayed interactions). c Commonly over-expressed gene families in planta (n= 26), which include 19 plant cell-
wall degrading CAZymes (octagons) linked to their substrates, as described in literature32,84. The two CAZyme families highlighted in bold were identified
as potential determinants of endophytism (SVM-RFE, see Fig. 3a). The seven remaining (non-CAZyme) families are shown below the network. d Individual
GO enrichment analyses performed on the genes over-expressed in planta vs. on medium by each fungal strain (GOATOOLS51, FDR < 0.05).
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induced more extensively in planta by the fungal root pathogen
Colletotrichum incanum compared to that of its closely relative
beneficial root endophyte Colletotrichum tofieldiae28. Therefore,
differences in expression and diversification of this gene family
are potential contributors to the differentiation between detri-
mental and non-detrimental fungi in the A. thaliana root
mycobiome, especially since A. thaliana cell-wall composition is a
determinant factor for disease resistance70,71. Notably, expansion

of the PL1_7 gene family was observed in plant pathogens but
also in the biocontrol fungus C. rosea (Sordariomycetes, Hypo-
creales), a fungal species with mycoparasitic and plant endophytic
capacity72,73 that is phylogenetically closely related to multiple
isolates selected in this study. Genetic manipulation of the C.
rosea pel12 gene revealed a direct involvement of the protein in
pectin degradation, but not in C. rosea biocontrol towards the
phytopathogen Botrytis cinerea57. Here, we showed that

Fig. 6 Genomic content in polysaccharide lyase PL1_7 links colonization aggressiveness to plant health. a Spearman’s rank correlation between the
number of genes encoding secreted PL1_7 in fungal genomes and the plant performance index at low Pi in recolonization experiments. b Minimal set of 11
gene families discriminating detrimental from non-detrimental fungi at low Pi (SVM-RFE R2= 0.88). The first heatmap on the left shows the SVM
coefficients, reflecting the contribution of each orthogroup to the separation of the two groups, whereas the heatmap on the right shows the enrichment of
these gene families in fungi identified as detrimental in recolonization experiments at low Pi. Gene family sizes and representation in the different lifestyles
are shown on the barplots in the context of the whole fungal dataset (n= 120). NA: no functional annotation. c Protein family tree of the polysaccharide
lyase orthogroup identified as essential for segregating detrimental from non-detrimental fungi in our SVM-RFE classification model. The tree was
reconciled with fungal phylogeny and clustered into minimum instability groups by MIPhy56. Each group is labeled with its CAZyme annotation. The outer
circle (black barplot) depicts the relative instabilities of these groups, suggesting two rapidly evolving PL1_7 groups in Sordariomycetes and
Agaricomycetes. d Plant performance indices resulting from plant recolonization experiments at low Pi (three independent biological replicates), conducted
with Trichoderma reesei QM9414 (WT) and three independent heterologous mutant lines (D1, R1, B1) overexpressing pel12 from Clonostachys rosea (PL1_7
family,57). Asterisks indicate significant difference to T. reesei WT, according to ANOVA (P= 1.45e−12) and a two-sided TukeyHSD test (WT vs. D1:
adjusted P= 0.28; WT vs. B1: adjusted P= 3.75e−2; WT vs. R1: adjusted P= 1.19e−2). e Fungal colonization measured by qPCR in colonized roots at
low Pi, conducted with T. reesei WT and three pel12 overexpression mutant lines. Asterisks indicate significant difference to T. reesei WT, according
to Kruskal–Wallis (P= 6.25e−4) and a two-sided Dunn test (WT vs. D1: adjusted P= 2.4e−3; WT vs. B1: adjusted P= 1.6e−3; WT vs. R1: adjusted
P= 1.5e−2). For both d and e, three independent biological replicates were performed resulting in n= 15 data points per condition. Boxes are delimited by
first and third quartiles, central bars show median values, whiskers extend to show the rest of the distribution, but without covering outlier data points
(further than 1.5 interquartile range from the quartiles, and marked by lozenges). Asterisks highlight the results of post hoc tests: **adjusted P < 0.01,
*adjusted P < 0.05.
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heterologous overexpression of C. rosea pel12 in T. reesei does not
only increase its root colonization capabilities, but also modulates
fungal impact on plant performance. We, therefore, conclude that
a direct link exists between expression/diversification of PL1_7-
encoding genes in fungal genomes, root colonization aggressive-
ness, and altered plant performance. Our results suggest that the
evolution of fungal CAZyme repertoires modulates root myco-
biota assemblages and host health in nature.

Methods
Selection of 41 representative fungal strains. The 41 A. thaliana root mycobiota
members were previously isolated from surface-sterilized root segments of A.
thaliana and the closely related Brassicaceae species Arabis alpina and Cardamine
hirsuta, as previously described2. Notably, this culture collection derived from fungi
isolated from the roots of plants grown in the Cologne Agricultural Soil under
greenhouse conditions, or from natural A. thaliana populations from two sites in
Germany (Pulheim and Geyen) and one site in France (Saint-Dié des Vosges)2

(Supplementary Data 1).

ITS sequence comparison with naturally occurring root mycobiome. Com-
parison of fungal ITS1 and ITS2 sequences with corresponding sequence tags from
a European-scale survey of the A. thaliana mycobiota (17 European sites18) was
carried out. For all 41 Fungi, sequences of the internal transcribed spacer 1 and 2
(ITS1/ITS2) were retrieved from genomes (https://github.com/fantin-mesny/
Extract-ITS-sequences-from-a-fungal-genome) or, in the cases where no sequences
could be found, via Sanger sequencing (4 of 41). All ITS sequence variants were
directly aligned to the demultiplexed and quality filtered reads from previously
published datasets18 using USEARCH74 v10.0.240 at a 97% similarity cut-off. A
count table across all samples was constructed using the results from this mapping
and an additional row representing all the reads that did not match any of the
reference sequences was added. This additional row was based on the count data
from the amplicon sequence variant (ASV) analysis from the original study,
whereas the read counts from the new mapping were subtracted sample wise. To
have coverage-independent information on the RA of each fungus, we calculated
RA only for the root samples where the respective fungi were found (RA > 0.01%).
The sample coverage was calculated across all root samples (>1000 reads, n= 169).
Enrichment in roots was calculated for all root and soil samples (>1000 reads,
n= 169 / n= 223) using the Mann–Whitney U test (FDR < 0.05). In the same way
the RA and coverage across leaf samples from two A. thaliana populations39 was
calculated (two locations in Germany, samples n= 51). For this specific analysis of
leaf samples, only ITS2 sequences were used and no fold change was calculated. In
order to estimate the presence of the 41 fungi across worldwide collected samples,
we used the GlobalFungi database38 (https://globalfungi.com/, version August
2020). The most prevalent ITS1 sequences from each genome were used to conduct
a BLAST search on the website. Sample metadata for the best matching repre-
sentative species hypothesis sequences were then used to determine the global
sample coverage. Appearance across samples from type root/shoot was counted for
each fungus and compared to the total number of root/shoot samples for each
continent.

Whole-genome sequencing and annotation. Forty-one fungal isolates from a
previously assembled culture collection2 were revived from 30% glycerol stocks
stored at −80 °C. Genomic DNA extractions were carried out from mycelium
samples grown on Potato extract Glucose Agar (PGA) medium, with a previously
described modified cetyltrimethylammonium bromide protocol31. Genomic DNA
was sequenced using PacBio systems. Genomic DNA was sheared to 3 kb, >10 kb,
or 30 kb using Covaris LE220 or g-Tubes or Megaruptor3 (Diagenode). The
sheared DNA was treated with exonuclease to remove single-stranded ends and
DNA damage repair mix followed by end repair and ligation of blunt adapters
using SMRTbell Template Prep Kit 1.0 (Pacific Biosciences). The library was
purified with AMPure PB beads and size selected with BluePippin (Sage Science) at
>10 kb cutoff size. Sequencing was done on PacBio RSII or SEQUEL machines. For
RSII sequencing, PacBio Sequencing primer was annealed to the SMRTbell tem-
plate library and sequencing polymerase was bound to them. The prepared
SMRTbell template libraries were sequenced on a Pacific Biosciences RSII or Sequel
sequencers using Version C4 or Version 2.1 chemistry and 1 × 240 or
1 × 600 sequencing movie run times, respectively. The genome assembly was
generated using Falcon75 v0.7.3 with mitochondria-filtered reads. The resulting
assembly was improved with finisherSC, and polished with either Quiver or Arrow.
Transcriptomes were sequenced using Illumina Truseq Stranded RNA protocols
with polyA selection (http://support.illumina.com/sequencing/sequencing_kits/
truseq_stranded_mrna_ht_sample_prep_kit.html) on HiSeq2500 using HiSeq
TruSeq SBS sequencing kits v4 or NovaSeq6000 using NovaSeq XP v1 reagent kits,
S4 flow cell, following a 2 × 150 indexed run recipe. After sequencing, the raw fastq
file reads were filtered and trimmed for quality (Q6), artifacts, spike-in, and PhiX
reads and assembled into consensus sequences using Trinity76 v2.1.1.

The genomes were annotated using the JGI Annotation pipeline77. Species
assignment was conducted by extracting ITS1 and ITS2 sequences from genome

assemblies, performing a similarity search against the UNITE database78 (https://
unite.ut.ee, version February 2021) and a phylogenetic comparison to fungal
genomes on MycoCosm77 (https://mycocosm.jgi.doe.gov).

Comparative genomics dataset. In addition to our 41 fungal isolates from A.
thaliana roots, we used 79 previously published fungal genomes in a comparative
genomics analysis (Supplementary Data 2). While 77 genomes and annotations
were downloaded from MycoCosm, the genome assemblies of fungal strains
Harpophora oryzae R5-6-134 and Helotiales sp. F22930 were downloaded from
NCBI (GenBank assembly accessions GCA_000733355.1 and GCA_002554605.1
respectively) and annotated with FGENESH79 v8.8.0. Lifestyles were associated to
each single strain by referring to the original publications describing their isolation,
and consulting the FunGuild40 database with the species and genus names asso-
ciated to each strain. Orthology prediction was performed on this dataset of 120
genomes by running OrthoFinder46 v2.2.7 with default parameters. From this
prediction, we used the generated orthogroups data, the species tree, and gene trees.
OrthoFinder was also run on our 41 newly sequenced fungi to obtain a second
species tree, for this subset.

Predicting ancestral lifestyles. To identify gene family gains and losses events,
GLOOME80 gainLoss.VR01.266 was run using the species tree and presence/absence
of each orthogroup in the 120 genomes. To obtain reconstruction of ancestral
genomes using the Wagner parsimony approach, Count47 v10.04 was run using
these same inputs. To associate a lifestyle to each reconstructed ancestral genome, a
Random Forest classifier was trained on the copy numbers of each orthogroup in
the comparative genomics dataset excluding A. thaliana mycobiota members, and
the fungal lifestyles associated to these 79 genomes. This was performed using the
RandomForestClassifier() function of the Python library sklearn81 v0.20.3. The
accuracy of the model was estimated by a leave-one-out cross-validation approach,
computed using the function cross_val_score(cv=KFold(n_splits=120)) in sklearn.
Finally, the probabilities of ancestors to belong in each lifestyle category were
retrieved using function predict_proba().

Genomic feature analyses. Statistics of genome assemblies (i.e., N50, number of
genes and scaffolds and genome size) were obtained from JGI MycoCosm77, and
assembly-stats (https://github.com/sanger-pathogens/assembly-stats). Genome
completeness with single copy orthologues was calculated using BUSCO v3.0.2
with default parameters82. The coverage of transposable elements in genomes was
calculated and visualized using a custom pipeline Transposon Identification
Nominative Genome Overview (TINGO83). The secretome was predicted as
described previously49. We calculated, visualized, and compared the count and
ratio of total (present in the genomes) and predicted secreted CAZymes84,
proteases85, lipases86, and small secreted proteins49 (SSPs) (<300 amino acid) as a
subcategory. We calculated the total count of the followings using total and pre-
dicted secreted plant cell-wall degrading enzymes (PCWDEs) and fungal cell-wall
degrading enzymes (FCWDEs). Output files generated above were combined and
visualized with a custom pipeline, Proteomic Information Navigated Genomic
Outlook (PRINGO32). To compare the genomic compositions of the different
lifestyle categories while taking into account phylogenetic signal, we first generated
a matrix of pairwise phylogenetic distances between genomes (i.e. sum of branch
lengths) using the function tree.distance() from package biopython Phylo87, then
computed a principal component analysis using the PCA(n_components=4)
function of sklearn81 v0.20.3. Components PC1, PC2, PC3 and PC4 (Supple-
mentary Fig. 3) were then used to compare the per-genome numbers of CAZymes,
proteases, lipases, SSPs, PCWDEs, and FCWDEs in the different lifestyles with an
ANOVA test and a TukeyHSD post hoc test. R function aov() was used with the
following formula specifying the model:

GeneCount � PC1þ PC2þ PC3þ PC4þ Lifestyle

þPC1 : Lifestyleþ PC2 : Lifestyleþ PC3 : Lifestyleþ PC4 : Lifestyle

Differences in subfamily composition of the groups of genes of interest were then
carried out using a PERMANOVA-based approach (https://github.com/fantin-
mesny/Effect-Of-Biological-Categories-On-Genomes-Composition). This
approach relies on Jaccard distances calculation (best suited for discrete variables
such as copy numbers) then a PERMANOVA testing with function adonis2() from
R package Vegan v2.5-7 (https://github.com/jarioksa/vegan), with the model spe-
cified by the following formula:

JaccardDistanceMatrix � PC1þ PC2þ PC3þ PC4þ Lifestyle

þPC1 : Lifestyleþ PC2 : Lifestyleþ PC3 : Lifestyleþ PC4 : Lifestyle

Post hoc testing with function pairwise.perm.manova() from package RVAide-
Memoire v0.9-77 (https://cran.r-project.org/web/packages/RVAideMemoire) was
then performed to compare pairs of lifestyles.

For each Jaccard matrix, we used the function dbRDA() from the R package
Vegan, to calculate two distance-based redundancy analyses (dbRDA), respectively
constrained by phylogenetic variables (formula Jaccard~Condition(Lifestyle)+PCs)
and by lifestyle groups (formula Jaccard~Condition(PCs)+Lifestyle).
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We determined genes discriminating groups based on the principal coordinates
of a regularized discriminant analysis calculated from the count of genes coding for
CAZymes, proteases, lipases, and SSPs, with R function rda(). We then used Vegan
function scores() on the three first principal coordinates, and kept for each
coordinate the top five high-loading gene discriminating groups.

Determinants of endophytism. To identify a small set of orthogroups that best
segregate endophytes and mycobiota members from fungi with other lifestyles, we
standardized the orthogroup gene counts with function StandardScaler() from
sklearn81 v0.20.3. Then, orthogroups that are enriched or depleted in the fungi of
interest were selected with function SelectFdr(f_classif, alpha=0.05) from sklearn.
On this subset of orthogroups, we trained a Support Vector Machine classifier with
Recursive Feature Elimination (SVM-RFE). This was performed with functions
from sklearn SVC(kernel= ‘linear’) and RFECV(step=10, cv=KFold(n_s-
plits=120, min_features_to_select=10)), which implement a leave-one-out cross-
validation allowing the estimation of the classifier accuracy at each step of the
recursive orthogroup elimination. PhyloGLM models50 were built with R package
phylolm v.2.6.2 on the two groups of interest and orthogroup gene counts, with
parameters btol= 45 and log.alpha.bound= 7, and the logistic_MPLE method.
Further analysis of the gene families segregating fungi of interest from others
(n= 84) was carried out by identifying a representative sequence of each
orthogroup in our SVM-RFE model, and studying both its annotation and coex-
pression data in databases. To identify representative sequences, all protein
sequences composing an orthogroup were aligned with FAMSA88 v1.6.1. Using
HMMER89 v3.2.1, we then built a Hidden Markov Model (HMM) from this
alignment with function hmmbuild, then ran function hmmsearch looking for the
best hit matching this HMM within the proteins composing our orthogroup. We
then considered this best hit as a representative sequence of the orthogroup and
analyzed its annotation. GO enrichment analysis was performed by running
GOATOOLS51 v1.0.3 using the GO annotations associated to the representative
sequences. To obtain coexpression data linking the orthogroups retained in our
SVM-RFE model, we searched the String-db52 website (https://string-db.org, ver-
sion August 2020) for COG protein families matching our set of representative
protein sequences in fungi. Each protein was associated to one COG (Supple-
mentary Data 4a), and coexpression data were downloaded. A coexpression net-
work was then built on the families enriched in endophytes and mycobiota
members (n= 73) and clustered with algorithm MCL (granularity= 5) using
Cytoscape90 v3.7.2 and clusterMaker291 v1.3.1.

Plant recolonization experiments assessing the effect of each fungal strain on
plant growth. A. thaliana seeds were sterilized 15 min in 70% ethanol, then 5 min
in 8% sodium hypochlorite. After six washes in sterile double-distilled water and
one wash in 10 mM MgCl2, they were stratified 5–7 days at 4 °C in the dark. Seed
inoculation with fungal strains was carried out by crushing 50 mg of mycelium
grown for 10 days on Potato extract Glucose Agar medium (PGA) in 1 ml of
10 mM MgCl2 with two metal beads in a tissue lyser, then adding 10 µM of this
inoculum in 250 µl of seed solution for 5 min. Seeds were then washed twice with
MgCl2 before seven were deposited on each medium-filled square Petri plate.
Mock-inoculated seeds were also prepared by simple washes in MgCl2. The two
media used in this study—625 and 100 µM Pi—were previously described92. They
were prepared by mixing 750 µM MgSO4, 625 µM/100 µM KH2PO4, 10,300 µM
NH4NO3, 9400 µM KNO3, 1500 µM CaCl2, 0.055 µM CoCl2, 0.053 µM CuCl2,
50 µM H3BO3, 2.5 µM KI, 50 µM MnCl2, 0.52 µM Na2MoO4, 15 µM ZnCl2, 75 µM
Na-Fe-EDTA, and 1000 µM MES pH5.5, 0 µM/525 µM KCl, then adding DifcoTM

Agar (ref. 214530, 1% final concentration), and finally adapting the pH to 5.5 prior
to autoclaving. Plants were grown for 28 days at 21 °C, for 10 h with light (intensity
4) at 19 °C and 14 h in the dark in growth chambers. While roots were harvested
and flash-frozen, SFW was measured for each plant. To distinguish seeds that did
not germinate from plants that could not develop because of a fungal effect, we
introduced a per-plate PPI corresponding to the average SFW of grown plants
multiplied by the proportion of grown plants. In further correlation analyses, we
used plant-performance indexes normalized to mock controls (standard effect
sizes) using the Hedges’ g method93.

Fungal colonization of roots assay. Frozen root samples (one per plate) were
crushed and total DNA was extracted from them using a QIAGEN Plant DNEasy
Kit. Fungal colonization of these root samples was then measured by quantitative
PCR. For each sample, two reactions were conducted with primers ITS1F (5′-
CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2 (5′-GCTGCGTTCTTCATC-
GATGC-3′) which target the fungal ITS1 sequence, and two with primers UBQ10F
(5′-TGTTTCCGTTCCTGTTATCT-3′) and UBQ10R (5′-ATGTTCAAGC-
CATCCTTAGA-3′) that target the Ubiquitin10 A. thaliana gene. Each reaction was
performed by mixing 5 µl of iQ™ SYBR® Green Supermix with 2 µl of 10 µM
forward primer, 2 µl of 10 µM reverse primer and 1 µl of water containing 1 ng
template DNA. A BioRad CFX Connect Real-Time system was used with the
following programme: 3 min of denaturation at 95 °C, followed by 39 cycles of
15 sec at 95 °C, 30 s at 60 °C and 30 s at 72 °C. We then calculated a single colo-
nization index for each sample using the following formula: Index= 2−Cq(ITS1)/

Cq(UBQ10).

Confocal microscopy of root colonization by fungi. Roots of plants grown for
28 days in mono-association with fungi were harvested and conserved in 70%
ethanol. They were then rinsed in ddH2O, and stained with propidium iodide (PI)
and wheat germ agglutinin conjugated to fluorophore Biotium CF®488 (WGA-
CF488). This was carried out by dipping the root samples for 15 min in a solution
of 20 µg/ml PI and 10 µg/ml WGA-CF488 buffered at pH 7.4 in phosphate-
buffered saline (PBS). Samples were then washed in PBS and imaged with a Zeiss
LSM700 microscope and the associated software ZEN v2.3 SP1.

Plant-fungi interaction transcriptomics. Dual RNAseq of six different plant-fungi
interactions was carried out by performing three independent plant recolonization
experiments on our low Pi medium, as described above. Total roots per plates were
harvested after 28 days in culture, flash frozen, and crushed in a tissue lyser, and
then total RNA was extracted with a QIAGEN RNeasy Plant Mini kit. As a control
condition, sterile Nucleopore Track-Etched polyester membranes were deposited on
low Pi medium, then 10 µl drops of fungal inoculum (50mg/ml of mycelium in
10 mM MgCl2) were placed on each one. The membranes were collected and
processed as the root samples of our test condition. PolyA-enrichment was carried
out on the RNA extracts, then an RNAseq library was prepared with the NEBNext
Ultra™ II Directional RNA Library Prep Kit for Illumina (New England Biolabs).
Sequencing was then performed in single read mode on a HiSeq 3000 system.
RNAseq reads were trimmed using Trimmomatic94 v0.38 and parameters
TRAILING:20 AVGQUAL:20 HEADCROP:10 MINLEN:100. We then used
HiSat254 v2.2.0 to map the trimmed reads onto reference genomes. Six independent
HiSat2 indexes were prepared, each based on the TAIR10 A. thaliana genome and
one of the six fungal genome assemblies of interest. We then performed six map-
pings, and counted the mapped reads using featureCounts95 v2.0.0. RPKM (Reads
Per Kilobase Million) values were computed from the featureCounts output. Dif-
ferential gene expression analyses were then carried out on these counts using
DESeq255 v1.24.0. log2FC values were corrected by shrinkage with the algorithm
apeglm96 v1.6.0. To compare the transcriptomes of the six different fungi, significant
log2FC values were summed per orthogroup. For each orthogroup, we used
annotation of the most representative sequence, as previously described. GO
enrichment analyses were carried out with GOATOOLS51 v1.0.3, using the
MycoCosm77 GO annotation for fungi, and the TAIR annotation for A. thaliana.

Determinants of detrimental effects on plants and analysis of pectate lyases.
Determinants of detrimental effects at low Pi were identified with the same method
as previously described for determinants of endophytism/mycobiota: standard
scaling of the orthogroup gene counts, then training of an SVM classifier with RFE
and leave-one-out cross validation. Instability analysis was carried out by sub-
mitting the species tree generated by OrthoFinder46 to MIPhy56 (http://
miphy.wasmuthlab.org, version October 2020), together with the gene tree of our
orthogroup of interest, with default parameters. PhyloGLM50 models were built
with R library phylolm v.2.6.2 on the two groups detrimental/non-detrimental and
CAZyme gene counts, using our 41-genome species tree with default parameters
and the logistic_MPLE method. T. reesei strain QM9414 and three heterologous
overexpression lines of pel12 generated previously57, were revived on PGA medium
and then inoculated into seeds for plant recolonization experiments on low Pi
medium as previously described.

Statistics. Except for statistical methods described in the previous paragraphs,
statistical testing was performed in R v3.5.1. Function aov() was used for ANOVA
tests. Two-sided TukeyHSD post hoc testing was performed using function
TukeyHSD(), which compares values associated to the different categories of one
factor, respective of the variance that was attributed to this factor by the previous
ANOVA test. When data were abnormally distributed, the non-parametric
Kruskal–Wallis test was used by running function kruskal.test(), and the two-sided
Dunn post hoc test was performed with function DunnTest() from package
DescTools v0.99.28 (https://github.com/AndriSignorell/DescTools/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genomic data generated in this study have been deposited in the GenBank database
under the following BioProject accession codes: PRJNA371205 (assembly
JAHBNJ000000000), PRJNA347188 (assembly JAHBNI000000000), PRJNA441695
(assembly JAHBNH000000000), PRJNA370201 (assembly JAGJXA000000000),
PRJNA571620 (assembly JAGIZQ000000000), PRJNA370120 (assembly
JAHBOE000000000), PRJNA347200 (assembly JAHBOF000000000), PRJNA371203
(assembly JAGPYM000000000), PRJNA370196 (assembly JAGMUU000000000),
PRJNA500112 (assembly JAGMUV000000000), PRJNA370194 (assembly
JAGMWT000000000), PRJNA455444 (assembly JAHBOG000000000), PRJNA370199
(assembly JAHBOO000000000), PRJNA347190 (assembly JAHEWL000000000),
PRJNA455442 (assembly JAHEVI000000000), PRJNA347185 (assembly
JAGMUX000000000), PRJNA370198 (assembly JAGTJS000000000), PRJNA347189
(assembly JAGPXF000000000), PRJNA455443 (assembly JAGMVH000000000),
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PRJNA500113 (assembly JAGMVI000000000), PRJNA347186 (assembly
JAGPNQ000000000), PRJNA347191 (assembly JAHLEZ000000000), PRJNA370195
(assembly JAGTJR000000000), PRJNA370119 (assembly JAGTJQ000000000),
PRJNA347187 (assembly JAGSXK000000000), PRJNA500111 (assembly
JAHEWK000000000), PRJNA347192 (assembly JAGTJP000000000), PRJNA347193
(assembly JAGMWG000000000), PRJNA538399 (assembly JAGMVJ000000000),
PRJNA459235 (assembly JAGTJN000000000), PRJNA347194 (assembly
JAGMVK000000000), PRJNA371204 (assembly JAGPXD000000000), PRJNA570880
(assembly JAGSXJ000000000), PRJNA347196 (assembly JAGTJM000000000),
PRJNA347195 (assembly JAGTJL000000000), PRJNA371202 (assembly
JAGTJO000000000), PRJNA370118 (assembly JAGPNK000000000), PRJNA370200
(assembly JAGPNJ000000000), PRJNA347197 (assembly JAGPXC000000000),
PRJNA519173 (assembly JAHEWJ000000000), and PRJNA370197 (assembly
JAHEWH000000000). The transcriptomic data generated in this study have been
deposited in the Gene Expression Omnibus database under accession code GSE169629.
The processed transcriptomic data are also available in this GEO entry. We referred to
three online databases for analysis: UNITE (https://unite.ut.ee, version February 2021),
GlobalFungi (https://globalfungi.com, version August 2020) and String-db (https://
globalfungi.com/, version August 2020). The plant phenotypic data and fungal
colonization values are provided in the Source Data file. Source data are provided with
this paper.

Code availability
All the scripts used for data processing and analysis were written in Python v3.7.3 and R
v3.5.1 (except for transcriptomic analyses in which R v3.6.1 was used). Scripts are
available at GitHub (https://github.com/fantin-mesny/Scripts-from-Mesny-et-al.-
2021)97.
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