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Abstract 

Lakes are important for many reasons as they provide valuable ecological and human 

services, such as drinking water and recreational use. Eutrophication, a result of excess 

nutrients (e.g. phosphorus (P)) in lakes, is a threat to these resources, causing impairment 

of water quality. Excess P loading to lakes accumulates in the sediment, consequently 

making sediment a potential source of P via release (internal loading). One way of 

counteracting effects caused by internal loading is to inactivate the pool of potentially 

available P in the sediment. Better information is needed for optimizing most in-lake P 

reduction methods, including aluminum (Al)-treatment. One of these areas is better 

knowledge about the availability of different P fractions, and which fractions to target 

with a specific dose of Al under certain environmental conditions such as bioturbation 

(e.g. sediment mixing by carp). We also need to deepen the knowledge about modern Al-

treatment methods, with respect to both treatment techniques and dosing. Knowledge 

about factors affecting how long the positive effects from an Al-treatment last also needs 

to be improved. This thesis presents results concerning optimization of Al application 

methods, where a novel application method that injects Al into the sediment was 

evaluated and a model for optimal Al dose determination is presented. Factors affecting 

treatment longevity were evaluated, using historical water quality records and knowledge 

about a previously assumed recalcitrant P form being bioavailable due to bioturbation by 

benthic feeding fish like carp and bream. Al-treatment methods, including practical Al 

application methods as well as dosing methods are developing rapidly and being applied 

in the field, and further work is needed to keep up with evaluating the progress of lake 

restoration results using methods like Al-treatment. 

Keywords: phosphorus (P), internal P loading, sediment, legacy P, eutrophication, 

lake restoration, aluminum (Al)-treatment  
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Sammanfattning 

God vattenkvalitet i sjöar skapar förutsättningar för viktiga ekosystemtjänster såsom 

dricksvatten och livsmedelsproduktion. Om sjöar blir övergödda på grund av 

fosforöverskott, leder det till en försämrad vattenkvalitet som t.ex. visar sig i form av 

algblomningar. Ett sätt att återskapa god vattenkvalitet till en övergödd sjö är att 

inaktivera överskottet av tillgänglig fosfor (P) som är lagrat i dess sediment. P som 

ackumulerats i sjöars sediment över flera decennier utgör källan för internbelastning, där 

sedimentfosfor ständigt frigörs och anrikar vattenmassan med näring. För att optimera 

restaureringsmetoder, däribland aluminiumbehandling som används för att inaktivera 

sedimentfosfor, krävs utökade kunskaper om associerad metodik. Det finns 

kunskapsluckor gällande vilka fraktioner av sedimentfosfor som kan frigöras från 

sedimentet och därmed utgöra en källa för internbelastning. Sådan kunskap är viktig 

eftersom vetskapen om den totala mängden fosfor som ska inaktiveras bland annat styr 

den dos av aluminium (Al) som bör tillsättas till en sjö för bästa resultat vid en Al-

behandling. Tillgängligheten av specifika P-fraktioner kan också styras av processer som 

förändrar den kemiska miljön vid sedimentet, såsom sedimentomblandning orsakad av 

bottenlevande fisk. Kunskapsbasen gällande moderna och nyutvecklade praktiska Al-

behandlingsmetoder behöver utökas. Utvärdering av faktorer som påverkar 

varaktigheten av Al-behandling är också viktig att utröna. Resultaten från studierna i 

denna doktorsavhandling presenterar ny kunskap som utökar förståelsen gällande en 

nyutvecklad teknik av Al-behandling där Al harvas ner i sedimentet istället för att, 

konventionellt, tillsättas vattenmassan i löst form och en anpassad Al-doseringsmodell 

har utvecklats och presenteras. Faktorer som påverkar varaktigheten av Al-behandling 

har utvärderats med hjälp av historiska data rörande vattenkvalitet. Vidare presenteras 

resultat som indikerar att en P-fraktion (kalciumbunden P) som tidigare ansetts vara icke-

tillgänglig, kan vara en källa för internbelastning, under sedimentomrörning. 

 

Nyckelord: fosfor, internbelastning, sediment, övergödning, sjörestaurering, 

aluminiumbehandling, aluminiumfällning  

 

Restaurering av näringsrika sjöar 
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Lakes are important for many reasons as they provide vital ecosystem 

services such as drinking water, recreational uses, food supply and more. 

There are over 100000 lakes (> 1 ha) in Sweden (Huser and Fölster 2013, 

Sonesten 2013), but only 4 % of the lakes have been studied adequately 

enough to be able to quantitatively determine trophic state. Unfortunately 

there are severe threats to these resources, one of the main ones being caused 

by excess internal and external loading of nutrients. The excess input of 

nutrients can lead to eutrophication that can alter lake ecosystems and impair 

the natural benefits of lakes. About 2 % of the studied lakes were determined 

to be eutrophic, with total phosphorus (TP) concentrations exceeding 25µg/L 

(Huser and Fölster 2013). The high number of unclassified lakes in Sweden 

is concerning because the number of eutrophied lakes is critical both for local 

management and for meeting the requirements of the EU Water Framework 

Directive (WFD). To be able to manage eutrophication problems in lakes, 

there is a crucial need to understand the drivers behind eutrophication. 

External and internal loading of P often control the trophic state of lakes, but 

climate change (Jeppesen et al. 2011) and other in-lake factors such as 

sediment mixing (Huser et al. 2016a) may also alter nutrient cycling and 

availability and contribute to eutrophication. 

1.1 Phosphorus cycling in lake sediment 

1.1.1 Inorganic P fractions 

The input of P to lakes (external loading) comes mainly from polluted 

industrial and municipal wastewater, as well as farmland fertilizers leaching 

1. Introduction 
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from soils and runoff from urban areas. The management of these sources is 

thus the primary long term goal for overcoming eutrophication (Conley et al. 

2009). 

Some of the P that enters lakes accumulates in the lake sediment. Even if 

external inputs are controlled, this historical (legacy) P in the sediment will 

contribute to elevated nutrient concentrations in the water column well in to 

the future in most lakes via internal loading (Pilgrim et al. 2007, Sas 1990, 

Sondergaard et al. 2008). The in-lake P cycle is mainly driven by the 

mobilization dynamics of sediment P (Pilgrim et al. 2007), along with the 

different in-lake processes that govern the rate at which P is mobilized and 

released into the water column. Oxygen levels in lakes are important because 

the binding of P to elements such as iron (Fe), is sensitive to low oxygen 

conditions (anoxia) that lead to a decrease in the oxidation-reduction (redox) 

potential at the sediment-water interface. Anaerobic conditions can cause 

release of Fe bound P (PFe) from the sediment to the water column via 

reduction of ferric Fe (Fe III) to ferrous Fe (Fe II) (Ramm and Schepps 1997). 

Anoxia occurs when deep lakes stratify and diffusion of oxygen to the 

hypolimnion is limited, but can also occur in shallow lakes during calm 

periods when the water column stabilizes and respiration is high (e.g. night 

time). The process accelerates during warmer periods due to the consumption 

of oxygen as bacteria degrade organic matter in the water and sediment. 

Large amounts of P can be mobilized during these events and further diffuse 

from the sediment to the overlying water body. In-lake P dynamics are, to a 

large extent, governed by the potential for internal loading (Liboriussen et 

al. 2009, Nürnberg 2009).  

However, to view internal loading of P as an exclusive result of anoxia is an 

over simplification. To understand internal P loading in a more complete 

manner, a more refined view is needed. In a review by Hupfer and 

Lewandowski (2008), it was suggested that the oxic state near the sediment 

water interface should be considered as one important driver, among many 

other influencing drivers behind internal P loading. Other influencing factors 

include: the amount and form of P binding metals, pH controlled release of 

P and mineralization of P in organic matter. Huser and Rydin (2005) showed 

the importance of P binding elements, such as aluminum (Al), which 

regulates P release from lake sediments and in a survey of 43 lakes by 

Kopacek et al. (2005) it was also shown that the P sorption capacity of lake 
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sediment is increased by the availability of naturally occurring aluminum 

hydroxide (Al(OH)3). 

P release from sediment is also affected by pH because the solubility of Fe 

and Al increases at both low and high pH, whereas the solubility of calcium 

(Ca) minerals and P bound to them (PCa) decreases at low pH (Gomez et al. 

1999). Elevated PFe and PAl release during high pH conditions has been 

observed in several studies (Boers 1991, Gomez et al. 1999), which is 

generally caused by excessive photosynthetic activity/productivity in 

eutrophic systems (Boers 1991). PCa, which earlier has been viewed as 

recalcitrant (Andreiux 1997), has been shown to be labile (releasable) in 

lakes with fish farms, and release could be explained by low pH due to 

mineralization of large amounts of organic material (fish feed/excretion 

residue (Kassila et al. 2001)). A high rate of mineralization has been shown 

to decrease the sediment pH (Staudinger et al. 1990) via production of 

carbonic acid (CO2/H2CO3), in some cases reaching pH 6 (Kassila et al. 2001) 

where dissolution of PCa has been shown by Gomez et al. (1999) to occur. 

1.1.2 Organic P fraction 

Often in the shadow of inorganic P contribution to internal loading, organic 

matter (OM) input to lake sediment can also contribute to elevated internal 

loading rates through the mineralization/degradation process of OM 

containing P (Paraskova et al. 2013). Mobilization of P from OM, through 

decomposition and mineralization of OM in the sediment (sediment 

diagenesis), varies based on oxygen conditions and has a positive correlation 

to higher temperatures (Gudasz et al. 2015, Sobek et al. 2017). It has been 

shown that aerobic conditions increase the mineralization rate, and thus P 

release from OM can be promoted by high oxygen levels (Moore et al. 1992).  

1.2 Climate change and eutrophication 

Both external and internal nutrient cycling processes in freshwater systems 

can be affected by climate change, e.g. P input to lakes is argued to increase 

by intensified storm events as well as enhanced soil temperature and melting 

of glaciers (Jeppesen et al. 2011). Elevated temperature can enhance the 

transportation rate of OM (including organic bound P (Porg)) from the 

catchment to the lake (Larsen et al. 2011), and can decrease the efficiency of 
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lake sediment P storage capacity via longer growing season and higher 

chance for oxygen depletion. The high OM content together with higher 

temperature in the sediment enhances respiration rates, which increases 

carbon utilization. This may also lead to more frequent anoxia at the 

sediment surface of lakes due to oxygen consumption by microbes (Moss et 

al. 2011), potentially increasing release of sediment P. In summary, climate 

change triggers and intensifies many factors that can lead to increased 

internal P loading and eutrophication of lakes. 

1.3 Benthic fish impact on water quality and sediment P 

Water quality and chemistry can be affected by benthic feeding fish, such as 

the common carp (Cyprinus carpio), through two main pathways. First, 

physical disturbance of the sediment and pore-water can enhance the 

diffusion/transport rate of P to the water body. Second, larger amounts of the 

sediment (i.e. a greater depth) may be affected by aerobic mineralization of 

OM due to increased sediment mixing depth and thus aeration of formerly 

anoxic sediment (Fukuhara and Sakamoto 1987, Huser et al. 2016a). 

The importance of benthic feeding fish effects on water quality and 

mobilization of P from lake sediment has been suggested for decades. 

Knowledge about benthic feeding fish mobilizing P by mixing sediment and 

via excretion, shows the regulating role benthic fish can have on lake nutrient 

cycling and thus lake water quality (Andersson et al. 1988, Morgan and 

Hicks 2012). 

As stated, bioturbation increases the flux, or diffusion, of P between lake 

sediment and the overlying waterbody (Graneli 1978), partly due to 

oxygenation of formerly anoxic, deeper parts of the sediment, which allows 

for aerobic mineralization and thus an elevated release of sediment bound P 

(Fukuhara and Sakamoto 1987). P mobilization is thus related to the extent 

lake sediment is exposed to oxygen. Because bioturbation can increase the 

oxygenation of sediment, it can potentially affect other P fractions as well 

because the chemical milieu is changing. Oxygenation can prevent low redox 

conditions, thereby potentially supressing the release of PFe because this P 

form is generally controlled by redox state (Ramm and Schepps 1997). But 

contrary, bioturbation can enhance the microbial mineralization of OM and 

thus Porg, causing release of P (Huser et al. 2021, Ritvo et al. 2004). 
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Additionally, high mineralization rates have been shown to decrease pH in 

the sediment (Staudinger et al. 1990), to the point where P release from Ca 

has been shown to be significant (pH 6) (Gomez et al. 1999, Kassila et al. 

2001). Furthermore, bioturbation to a deeper sediment depth has been shown 

to be closely connected to the potential for P mobilization, by increasing the 

total potentially available P mass and the potential for internal loading (Huser 

et al. 2016a).  

The specific mixing depth that bioturbation by benthic feeding fish causes is 

thus likely an important factor for the overall mobilization rate of P from lake 

sediments (Adámek and Maršálek 2012). There is a general biomass 

dependence pattern of higher densities of carp promoting greater levels of 

total P (TP) in lake water (Chumchal et al. 2005). Specifically, it has been 

suggested that there is a fish size dependence related to P levels, where the 

size of carp is more important than the actual biomass (e.g. kg/ha). It has 

been argued that larger carp contribute to P mobilization via physical 

bioturbation to a greater extent, whereas smaller carp likely contribute to P 

mobilization mainly by excretion (Driver et al. 2005). Carp can increase the 

mixing depth of lake sediment up to 2.5 times (15 cm), and consequently 

increase the amount of Pmob in the sediment profile potentially available for 

release by up to 92% (Huser et al. 2016a). 

 

1.4 Restoration methods to reduce internal loading 

1.4.1 Reduction fishing, oxygenation and dredging 

There are several restoration methods that have been developed to reduce 

eutrophication. Reduction fishing is one way of manipulating the food web 

by decreasing the density of targeted fish groups in lakes, such as 

planktivorous or benthic fish. The aim can be to increase zooplankton 

populations by reducing planktivorous fish and thus enhance the 

effectiveness of phytoplankton grazing pressure. Another method aims to 

reduce the population of benthic feeding fish in order to decrease sediment 

bioturbation and consequently reduce i.e. turbidity (Meijer et al. 1990) and 

lower the potential for P flux from the sediment (Huser et al. 2016a). In a 

study by Sondergaard et al. (2008), a large set of lakes was monitored during 

different degrees of reduction fishing, and they found that this method is a 
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relatively efficient way of counteracting the effects of bioturbation on 

eutrophication. However, this is not considered as a one-time treatment, but 

rather a tool that has to be regularly used to maintain positive effects, and the 

effect is dependent on a high rate of fish removal (Sondergaard et al. 2008). 

Biomanipulation in this manner is a way of treating the symptoms of excess 

internal P loading and eutrophication.  

To be able to target the source of the problem (i.e. excess nutrients), methods 

for the management of internal P loading have been developed. Oxygenation 

of hypolimnetic water is one way of counteracting anoxic conditions at the 

sediment-water interface and limiting P release caused by anoxia. Studies 

have shown that this method can dampen the accumulation of P in 

hypolimnetic water, but it is rather unclear if the overall water quality can be 

improved using this restoration method alone (Liboriussen et al. 2009). For 

oxygenation to be effective, the binding capacity of the sediment must be 

sufficient, and in some cases it may need to be supplemented by Al- or Fe-

based minerals to be effective (Engstrom 2005). 

Dredging of lake sediment is another method that physically removes P from 

the lake. In dredging, the most important factor to consider is the P content 

in the sediment profile. This information is needed to accurately decide the 

dredging depth so that the removal of the top sediment would not reveal a 

layer with similar, or even higher P levels and thus induce a reverse effect 

(Van der Does et al. 1992). 

1.4.2 Phosphorus binding / inactivation by aluminum 

Al-treatment of a lake binds P in lake water, but the main target is excess P 

in the sediment. When Al is added to lake water, Al+3 can bind directly to 

phosphate before Al(OH)3-floc forms and precipitate. The second form of 

binding occurs via sorption to solid Al(OH)3-floc that forms and settles on 

the sediment surface during water application, or is injected into the sediment 

matrix if that sediment treatment technique is used (Schütz et al. 2017). Here 

a sort of “buffer” of Al(OH)3-floc at the sediment-water interface/sediment 

matrix develops, where the mineral binds P diffusing from deeper sediment 

layers over time. Liquid Al in aqueous conditions forms Al(OH)3-floc 

through a series of hydrolysis reactions, the solid product Al(OH)3-floc has 

the ability to efficiently bind P. The solid form is pH dependent which starts 

to form at pH > 4 and dominates at pH 6-8, whereas at lower pH (< 4) cationic 
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dissolved Al forms dominates and at pH > 8 soluble anionic Al begins to 

increase. Outside the pH range of 6-8, the ability of the Al-complex to bind 

and inactivate P is reduced (Cooke et al. 2005). Sediment can buffer pH 

changes, and pH in sediment (compared to pH in the water column) may be 

1-2 units lower (eutrophic lakes) or higher (acid lakes) than surface water pH 

(Jeffries et al. 1979). 

1.5 The longevity of aluminum treatment 

The longevity of Al-treatment of lakes is an important factor to consider 

when choosing this restoration method. Several studies report a rather quick 

reestablishment of pre-treatment conditions (a few months) while other 

studies report longevities of up to 40 years or more (Egemose et al. 2011, 

Garrison and Knauer 1984, Huser et al. 2011, Huser et al. 2016b, James et 

al. 1991, Welch and Cooke 1999). However it should be noted that longevity 

is mainly related to factors outside the binding of P by Al, and is generally 

controlled by how much external loading has been reduced. This is true for 

most in-lake measures. If external loading is greater than a natural, pre-

impact level, internal loading will eventually return due to new 

sedimentation of P rich sediment on top of the treated layer.  

There are several lake characteristics that can affect the longevity of Al-

treatment of lakes. In an extensive study by Huser et al. (2016b) the longevity 

of Al-treatment of 114 lakes was analysed. Average longevity was reported 

to be 11 years with the range 0-45 years. However, among lakes that 

responded to treatment (defined as a >50% epilimnetic water TP decrease), 

an average longevity of 21 years was reported for deep (dimictic) lakes and 

5.7 years for shallow (polymictic) lakes.  

Lake morphology was one important factor in that study, most likely 

explained by previously stated differences in characteristics between shallow 

(polymictic) and deep (dimictic) lakes. Another factor heavily affecting the 

longevity of Al-treatment was watershed to lake area ratio (WA:LA) which 

is related to the relative importance of internal vs. external loads depending 

on this ratio. Nutrient availability in large lakes with small watersheds is 

more likely controlled by in-lake processes, instead of external loading, and 

vice versa.  
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Al dose was the most significant factor in treatment longevity. This makes 

sense as doses not sufficient to bind excess Pmob, or less efficient binding 

between Al and P (Huser 2012), may lead to a remaining pool of Pmob in the 

sediment that can continue to cause excess internal loading.  

Benthic feeding fish in moderate to high biomass densities were shown to 

have a negative effect of the longevity of Al-treatment (Huser et al. 2016b), 

and the effect of carp on water column P is more pronounced in shallow lakes 

that do not stratify (Bajer and Sorensen 2015). In deep lakes and lakes were 

Al dosing was based on Pmob mass deeper in the sediment (deeper active 

sediment due to sediment mixing), however, the effect of benthic feeding 

fish on longevity was weaker (Huser et al. 2016b).   

1.6 Al-treatment binding efficiency (Al to PAl) 

The binding efficiency between Al and P in sediment likely affects the 

longevity of Al-treatment. The amount of P bound per unit Al after Al-

treatment has varied by an order of magnitude in previous studies, with 

Al:PAl ratios varying from 2:1 to 21:1 (Huser et al. 2011, Huser 2012, Jensen 

et al. 2015, Lewandowski et al. 2003, Reitzel et al. 2005, Rydin et al. 2000, 

Rydin and Welch 1999a, Schütz et al. 2017). The underlying mechanism 

behind different binding efficiencies is in general controlled by the chance 

of Al to encounter P (in sediment or water) before the binding capacity of 

the mineral decreases due to crystallization (deVicente et al. 2008a) or other 

sorbents competing for binding sites. Specifically, the amount of Pmob in the 

sediment relative to Al dose will affect binding efficiency, because the 

chance of a small amount of Al to bind P when P is in excess is higher than 

vice versa (Le Chateliers principle) (James 2011). Therefore, greater, one-

time doses of Al have generally resulted in lower binding efficiency and 

splitting doses has been suggested to improve binding efficiency (Huser 

2012, Kuster et al. 2021).  

Competing elements / compounds for sorption sites on the Al(OH)3-floc may 

also lower binding efficiency. This includes silicates (de Vicente et al. 

2008b), fluoride and sulphate (Roberson and Hem 1967). Also, organic 

matter in general (Bloom 1981, de Vicente et al. 2008b, Lind and Hem 1975), 

and especially labile organic matter (e.g. microbial transformed detritus and 

phytoplankton exudates) can compete for binding sites on the Al(OH)3-floc 
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(Du et al. 2019). It should be noted that most forms of labile organic matter 

have a rapid break down and then release P that can sorb to available binding 

sites on the Al(OH)3-floc (Reitzel et al. 2007).  

Lake morphology has been shown to affect the amount of P bound by Al 

following Al-treatment. Lakes with steep sediment bed slope (where Al is 

added to the water column) generally have lower binding efficiency than 

gradual bed slope lakes. Huser (2012) suggested that this difference could be 

explained by the natural movement of Al(OH)3-floc to accumulation zones 

of a lake (e.g. deep holes) and that the rate of transport depends on the 

steepness of the sediment bed slope. In Lake Harriet (US), this process was 

shown by Al addition to exclusively littoral zones of the lake that resulted in 

Al(OH)3-floc accumulation in the deepest part of the lake within 6 months 

(Huser 2017). Natural sediment movement can translocate the intended dose 

of Al from a target location to another, potentially causing under dosing in 

one location and overdosing in another (Al in excess relative to P will result 

in lower binding efficiency).  

The steepness of the sediment floor can be standardized using the Osgood 

index, which is the mean depth (m) divided by the square root of lake surface 

area (km2) (Osgood 1988), and Cooke et al. (1993) suggested, with all other 

conditions being equal, that lakes with steep bed slopes (Osgood index > 6) 

would have less successful results of Al-treatment compared to gradual bed 

slope lakes (Osgood index < 6). Further, the time between Al(OH)3-floc 

formation and when Al encounters and binds with P in the sediment is of 

essence, because following Al-treatment, the Al(OH)3-floc starts to 

crystallize and binding sites are reduced due to decreased mineral surface 

area (Berkowitz et al. 2006). The longer it takes for Al to encounter P, the 

lower the binding efficiency (deVicente et al. 2008a), as noted above.  

Sediment mixing/bioturbation can potentially increase binding efficiency, 

because it can reduce the time needed for Al to bind P (Huser et al. 2016a). 

However it has been shown that bioturbation by benthic invertebrates has a 

limited effect on binding efficiency of Al and P after Al-treatment (Nogaro 

et al. 2016). Apart from the above proposed controlling factors of longevity, 

it should be stated again that longevity is generally controlled by the extent 

of external loading after treatment, assuming an adequate dose had been 

added to the sediment. If external loading is not controlled, the input of P 
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will eventually overwhelm the effects of Al-treatment even though the 

sediment (legacy) P at the time of treatment has been fully inactivated. 

1.7 Aluminum dosing procedures  

The dosing procedure used, when applying Al for P inactivation, has been 

shown to be of great importance to Al-treatment longevity (Huser et al. 

2016b). Al-treatments and dosing calculations have been conducted for at 

least five decades and throughout this time they have been improved due to 

scientific progress. Al dosing was first based on measures of alkalinity in 

lake water, and the Al dose was set to the amount that could be added without 

reducing pH in the lake water below pH 6. P in sediment or water was not 

considered in any way (Kennedy and Cooke 1982). Dosing according to 

these restrictions has probably led to inaccurate Al doses resulting in 

underdosing (Huser et al. 2016b).  In the 1990´s a new approach to Al-

treatment was developed, using the measure of yearly internal loading rate 

measured in the lake water to adjust the Al dose. The problem with this 

approach is that it only accounted for a specific internal loading rate during 

one year, even though the sediment contains many years’ worth of potential 

internal P loadings (Kennedy et al 1987). That is, not all Pmob is released from 

the sediment in one year. Due to increased analytical possibilities using P 

fractionation methods such as Psenner  et al. (1988), the quantification of 

specific P pools in lake sediment was possible. Several dosing methods have 

been developed based on sediment P available for release, and approximately 

ten years later Rydin and Welch (1999) developed a modified Al-treatment 

dosing procedure based on sediment Pmob (pore-water P (PPw) + (PFe)) mass 

in the top 4 cm of the sediment. In 2014, a dynamic model for Al-dosing was 

developed by Huser and Pilgrim (2014), where the dose of Al can be 

calculated in order to target a specific goal for internal loading reduction. 

This can serve as a useful tool in lake management, because zero internal 

loading might not be “natural” in all cases. 
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The general aims of this thesis were to gain a better understanding of 

sediment processes related to quantifying bioavailable forms of sediment P 

since the knowledge of the amount of bioavailable or potentially releasable 

P in the sediment is a fundamental factor for successful lake restoration. 

Furthermore, another aim was to increase the knowledge concerning P 

inactivation by Al-treatment to allow for optimization of a newly developed 

sediment injection treatment method.  

 

The specific objectives were to: 

 

 Investigate the results of Al-treatment among a set of Swedish lakes 

previously treated with Al and identify controlling factors of 

longevity and effectiveness. 

 

 Improve predictions of P binding efficiency (the amount of P bound 

per unit of Al added) in eutrophic Al-treated lakes using a novel Al 

application method where Al is injected into the sediment matrix 

instead of applied to the water column. 

 

 Investigate the effect of sediment mixing/bioturbation on P fractions 

and the active sediment layer depth. 

 

 

 

 

 

 

2. Aims and objectives 
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3.1 General study procedures 

3.1.1 Paper I: Factors affecting Al-treatment  

The study involving the retrospective analysis of factors influencing success 

of Al-treatment for lake restoration was based on retrieving and analysing 

historical lake water quality data from municipalities and county boards of 

Sweden. Six lakes within a radius of 30 km from Stockholm city were 

included (Figure 1). The dataset included lakes with various ratios of 

watershed area to lake area (WA:LA), different Al application techniques, 

varying Al doses and Al forms applied (AlSO4 (liquid and solid) or PAC) and 

lake bathymetry. The dataset included nutrient related water quality data of 

various quantity and quality including at least yearly august data points of 

surface water total phosphorus (TP), and at most monthly (May to August) 

data points for TP, chlorophyll a (Chl a) and secchi disc depth (SD) including 

vertical water column TP samples at one meter interval (most cases). 

Historical trends of the variables TP, Chl a, SD and internal loading rate (Li) 

were investigated with respect to effect size of changes to nutrient related 

water quality variables and longevity of Al-treatment.  

 

3. Materials and methods 
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Figure 1. Location of the study lakes for Paper I & II. Lake Lötsjön is not included in 

Paper I due to lack of water quality data. 

3.1.2 Paper II: Optimizing Al-application methods 

The paper concerning optimization of Al-treatment efficiency to control 

sediment P release in previously eutrophic lakes was based on sediment from 

seven lakes (Figure 1) located within 30 km radius of Stockholm city. The 

sediment samples were analysed for total Al and PAl originating from Al-

treatment. The ratios of P bound per unit of Al (i.e. binding efficiency or 

Al:PAl) for several locations in each lake were compared to different lake 

characteristics and Al-treatment variations (treatment type and dose) among 

lakes. This was done using stepwise multiple linear regression to find the 

controlling factors of binding efficiency within this data set. 
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3.1.3 Paper III: Sediment mixing depth and P fractions 

The third paper concerns sediment mixing by e.g. carp (Cyprinus carpio). 

Bioturbation effects on P fractions and sediment mixing depth were studied 

at a small pond (0.45 ha) at SLU campus area in Uppsala (coordinates: 

59.814436, 17.666198, Figure 2). The pond is eutrophic (mean growing 

season TP = 69 µg/L, phosphate = 7 µg/L) and has a generally homogenous 

bathymetry with a maximum depth of 2 m and mean depth of 1 m. Growing 

season turbidity averages 31 FNU, Chl a 43 µg/L and total nitrogen (TN) 592 

µg/L.  

The sediment is dense (upper most 10 cm layers mean dry bulk 

density=0.3g/cm3), with slightly softer sediment at the surficial layers 

containing more organic matter, especially at maximum depth areas. After 

the pond was constructed (1970´s), carp were added and have been visually 

observed for 6 consecutive years with (10-15) adult carp (ca 3 kg and 40 cm 

in length) being visible at the surface. Additionally, test fishing for small 

sized fish, using benthic multi mesh gill nets (European standard (SS-EN 

14757:2015) was performed in 2021 and showed the presence of Roach 

(Rutilus rutilus), Common Carp (Cyprinus carpio), Crucian Carp (Carassius 

carassius) and White Bream (Blicca bjoerkna). The mean weights were; 10, 

57, 19 and 26 g, respectively and the mean lengths were 101, 163, 110 and 

104 mm, respectively.  

To assess the effects of carp sediment mixing, 6 exclosures was built and 

installed in the pond in order to exclude the effect of sediment mixing in 

these areas. The exclosures were 2 x 2 m wide and 2.5 m deep and wrapped 

with plastic netting with the mesh size of 2 x 3 cm. The exclosures were 

pushed approximately 30 cm into the sediment to prevent carp from 

burrowing in. Mixing depth was determined by sprinkling clean, transparent 

quartz sand evenly over the sediment surface, and at the end of the 

experiment tracing the quartz sand in the vertical profile of the sediment 

comparing areas inside the exclosures to areas where carp could forage. This 

was done by taking intact sediment cores, slicing them at a 1-cm interval, 

and assessing the distribution of the sand in the samples. Samples were 

collected inside and outside the exclosures to be able to compare differences 

in mixing depth and sediment P fractions in areas with and without carp 

foraging. 
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Figure 2. Conceptual sketch of study site for paper III. 

 

3.2 Sediment sampling  

In the study behind paper II, sediment cores from different locations of seven 

Swedish lakes were taken. The location of the sampled cores was based on 

the bathymetry of the lake to capture several depth zones of the sediment 

representing accumulation and transport bottoms. A Willner gravity corer 

was used to collect intact sediment cores, which were further sliced in to 1-

cm slices from 0-10 cm depth, and 2-cm slices thereafter. In the study behind 

paper III, the same sampling procedure was applied, but one sediment core 

was instead taken inside each exclosure, and a corresponding number of 

cores outside the exclosures. All samples were stored in dark at 4°C for no 

longer than 4 week after sampling. 

3.3 Laboratory analysis 

3.3.1 Phosphorus fractionation 

Quantification of different P fractions in lake sediment was done using 

sequential extraction based on the method developed by Psenner et al. (1988) 

and modified by Hupfer et al. (1995). This is an operationally defined method 

based on using different chemical treatments of the same sediment sample in 
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a specific order, giving the possibility to separate and quantify different 

fractions of P corresponding to “pore-water-P (PPw)”, “iron bound-P (and 

manganese bound-P)” (PFe), “aluminum bound-P” (PAl), “organic P” (Porg) 

and “calcium bond-P” (PCa). Fractions are released after addition of different 

chemicals, and in the case of Porg, digestion under pressure. Both ammonium 

chloride (1 M, 2 h) and double deionized water (2 h, 20°C) have been used 

to release the fraction termed PPw; herein we used double deionized water. 

PFe is released through treatment with buffered sodium dithionite (BD) (0.11 

M, 1 h). Further, PAl is mobilized using NaOH (0.1 M, 16 h). This fraction 

of P is further digested in an autoclave at 120°C for 30 min, the difference 

between PAl and the digested PAl extract corresponds to Porg. PCa is then 

extracted through a treatment with hydrochloric acid (0.5 M, 24 h). For each 

step in the fractionation routine, a liquid sample containing mobilized P 

(PO4
3-) is preserved and further analyzed according to the molybdate blue 

method using a spectrophotometer (Murphy and Riley 1962). Sediment 

water content for each slice/sample was determined after 24 h storage at -

20°C followed by freeze drying at -50°C for 4 days. Sediment density was 

estimated using loss on ignition at 550°C for 2 h (Håkanson and Jansson 

1983). 

3.3.2  Sediment aluminum extraction and analysis 

In paper II, the total amount of Al from Al-treatment was compared with the 

amount of PAl formed in the same sample. Acid ammonium oxalate 

extraction was used to target the more amorphous form of Al to reduce 

masking of crystalline Al forms with origins elsewhere. The extraction was 

performed as described by Jan et al. (2013) and references therein where 16.2 

g ammonium oxalate was mixed with 10.8 g oxalic acid dehydrate in one 

litre of distilled water. Sediment samples were extracted for 2 h in vials 

protected from light. The extracts were analysed for Al using inductively 

coupled plasma atomic emission spectrometry (ICP-AES) on the wavelength 

of 396.15 nm. 

3.3.3 Sediment mixing depth analysis 

A total of 500 kg clean transparent quartz sand (size ~1mm) was sprinkled 

and evenly distributed on the sediment in the pond at the beginning of the 

study (2016-06-04). During fall (2016-10-05), intact sediment cores were 
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collected and sliced, one core per exclosure (n = 6) and six cores outside the 

exclosures. The samples were sieved (mesh size = 0.5 mm) and the number 

of sand grains at every layer in the vertical profile was noted. In order to 

estimate sedimentation rate in the exclosures, 4 sediment traps were strapped 

to the sides of exclosures. The sediment traps were constructed with plastic 

tubes (diameter = 64mm) with closed bottoms. The sedimentation rate was 

determined as the height of collected sediment during the study time frame, 

and was used to estimate the amount of sediment burial on top of original 

sediment surface in the exclosures. 

3.4 Calculations and statistics 

3.4.1 Paper I 

The effect of Al-treatment was based on percent decrease of any measured 

water quality related parameter compared to pre-treatment. Pre- and post-

treatment comparisons were based on 4-year periods to reduce the effect of 

natural, interannual variation. Treatment longevity was determined as the 

year where the annual mean (or data point for the lake with August only 

sampling) of surface water TP measurements (or estimation using linear 

extrapolation when end of longevity was not reached) exceeded one standard 

error of the mean (SEM) below the average of 4 years pre-treatment TP. In 

cases where no deterioration of post treatment water quality was found, the 

longevity prediction equation (LPEq) of Huser et al. (2016) was used.  

Principal component analysis (PCA) was used to explore factors affecting 

Al-treatment longevity. Internal loading rates (Li) were calculated for 

dimictic, stratified lakes that included vertical water column profile 

measurements of TP (Lejondalssjön, Flaten and Trekanten). To calculate Li, 

the height of hypolimnetic water was determined using the temperature 

profile. Below the thermocline (i.e. the hypolimnion) TP concentration was 

multiplied by water volume at each meter depth interval in the lake (surface 

and bottom water for Lejondalssjön pre-treatment period). The seasonal 

increase of hypolimnetic TP mass with surface water TP subtracted 

corresponds to partial net internal loading rate: mg/m2/day (Nürnberg 2009). 
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3.4.2 Paper II  

Several variables for sediment chemistry were derived and calculated from 

P fractionation and Al analysis: Al, PAl, Plab.org (labile organic P) and 

estimation of pre-treatment Pmob. To determine the total mass of Al and PAl 

originating from solely the Al-treatment, background concentrations (layers 

unaffected by Al-treatment) were subtracted from the Al and PAl in the 

sediment profiles. The sum of excess Al (i.e. above background mass) was 

divided by the sum of PAl formed by treatment (i.e. above background) to 

calculate the binding efficiency ratio Al:PAl. Plab.org was estimated in similar 

manner where deeper layers of sediment with stabile background 

concentrations of Porg were considered as recalcitrant forms and therefore 

subtracted from the concentrations in the upper sediment profile, leaving an 

estimate of Plab.org. Pre-treatment Pmob was estimated by summing the 

remaining Pmob in the sediment layers above and within layers affected by 

Al-treatment with the PAl formed from Pmob after treatment. Lake 

morphology (steepness of sediment bed slope) was estimated using Osgood 

index as a slope factor, which was calculated as: Zm/A^-0.5 where “Zm” is 

mean depth and “A” corresponds to lake surface area (km2) (Osgood 1988).  

Stepwise multiple linear regressions was conducted using JMP software 

(SAS institute inc. version 11.0.0) to find predictor variables explaining 

binding efficiency (Al:PAl). Variables (Paper II: Tables 1-3) were included 

at a significance level of < 0.05. In order to preserve matrix stability, 

variables with high bivariate correlations (> 0.8) were excluded from the 

analysis. To explore the effect of treatment method (water vs. sediment 

treatment) in lakes with steep or gradual bed slope, we performed a one-way 

ANOVA test following Tukey´s post hoc test. 

3.4.3 Paper III 

When comparing sediment mixing depth inside and outside exclosures, (i.e. 

sediment mixing by carp or not) we used a breaking point defined as: 

maximum mixing depth is represented by the number of layers (1 layer=1cm) 

where >95% of the tracer sand grains were found in the average vertical 

sediment core profile. Because major sedimentation on the surface of 

sediment in the exclosures was expected, sediment traps were used to 

calculate the additional layers of sediment deposited on top of original 

sediment surface in the exclosures. Wilcoxon´s rank sum test was used for 

comparison of changes in P mass in the different P fractions due to sediment 
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mixing or lack of sediment mixing. Two different comparisons were 

conducted. One was the comparison of the cumulative mass of different P 

fractions in the upper most 10 cm of sediment in exclosures versus areas with 

carp present. The second was a comparison of Pmob in the active sediment 

layer i.e. layers where sediment was mixed in exclosures and outside. 
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4.1 Optimizing lake restoration 

There are a number of important steps to consider in order to successfully 

and sustainably reduce P and achieve good water quality in eutrophic lakes. 

All lake restoration projects should start with understanding the lake´s P 

cycling dynamics, including internal and external loading. For this, accurate 

lake water quality monitoring is crucial, as shown in Paper I where the data 

needed to determine success of Al-treatment is 100% controlled by water 

monitoring work performed before and after treatment. When understanding 

where water quality issues begin, it is then possible to address sources and 

determine the optimal restoration tool or tools. If internal loading is a 

substantial nutrient source, tools such as Al-treatment can be used, but first 

the amount of and method of Al application have to be properly determined 

as longevity and effectiveness relies highly on these factors. (Paper I & II). 

4.1.1 Optimizing Al dose to inactivate P 

The work in this thesis showed that, in accordance to previous work (Huser 

et al. 2016b), Al dose is important for both effectiveness of treatment and 

longevity together with binding efficiency of Al and P in sediment following 

Al-treatment. Longevity of Al-treatment among the studied lakes varied 

between 7 and > 47 years, which is in line with previous studies where 

longevity of positive effects lasted from a few months up to 40 years or more 

(Egemose et al. 2011, Garrison and Knauer 1984, Huser et al. 2011, Huser 

et al. 2016b, James et al. 1991, Welch and Cooke 1999) (Figures 1, 3, 5, 7, 8 

and 9 in Paper I). Using PCA to explore structure and correlations between 

longevity and in-lake factors together with Al dose revealed structures in the 

4. Results and Discussion 
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data set that are in line with current understanding. As reported by Huser et 

al. (2016b), longevity showed positive correlations to Al dose and lake type 

(Osgood index indicating dimictic versus polymictic) and a negative 

correlation to WA:LA, meaning that the larger watershed relative to lake 

area, the more important external sources will be on water quality, and vice 

versa. Binding ratio (Al:PAl) had a negative correlation to longevity, i.e. as 

Al:PAl decreases (binding efficiency increases) the longevity increases 

(Figure 3). This effect has not been shown previously. It should be noted that 

PCA does not serve as a tool for prediction, rather it is method of describing 

structures in a certain data set. Therefore, it is not possible to apply these 

Figure 3. Biplot from principal component analysis on variables from 

Table 1 (Paper I), explaining 79% of the total variation in treatment 

longevity. 
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findings to other lakes, but it is an important tool showing which factors are 

important or related.  

It may seem obvious that binding efficiency is an important factor for 

treatment longevity, even though this is the first work to show that. The ratio 

of Al:PAl has been shown to vary by an order of magnitude between different 

Al-treatments (Huser et al. 2011, Huser 2012, Jensen et al. 2015, 

Lewandowski et al. 2003, Reitzel et al. 2005, Rydin et al. 2000, Rydin and 

Welch 1999, Schütz et al. 2017). There are several factors that can affect 

Figure 4. Cores from two lakes where sediment treatment was used are shown. Lötsjön 

(Sediment treatment, Alum (s)) and Malmsjön (Sediment treatment, PAC (l)). Due to 

the differences in treatment age, the depth range of Lötsjön (right-hand axis) was 

adjusted to match the treatment date of Malmsjön (30 years difference in treatment age). 

Bagarsjön (Water treatment, PAC (l)), where Al was added to the water is shown for 

comparison. 
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binding efficiency, such as Al dose and lake morphology, which Huser 

(2012) described and further developed an Al dosing method based on these 

factors. Steeply sloping sediment bed slopes resulted in excess accumulation 

of Al in the deeper parts of the lake, and thus the steeper the slope, the lower 

the binding efficiency. That study was done on lakes where Al was added to 

the water column, where the Al(OH)3-floc normally accumulates in surficial 

sediment layers, and in steep bed slope lakes tends to then be transported to 

accumulate in deep areas.  However, a newly developed Al application 

method was used for the majority of the lakes studied in this thesis (Paper II) 

which targets the Al dose directly into the sediment matrix by injecting the 

Al product (Schütz et al. 2017). For comparison purposes, profiles for Al in 

lake sediment treated using water and sediment treatment are shown in 

Figure 4. Our study showed the opposite response compared to previous 

Figure 5. Boxplot showing Al:Al-P or Al:PAl ratios for individual sediment 

cores grouped by Al-treatment method (sediment vs. water) and lake 

morphology (Osgood index <6 or >6). Solid lines and circles within the 

boxplots represents median and mean values, respectively. 
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work with respect to lake morphology. Steeper sediment bed slopes (Osgood 

index > 6) increased binding efficiency (Figure 5) to an average of Al:PAl (or 

Al:Al-P) = 8.2 ± 2.6, whereas gradual bed slope lakes (Osgood index < 6) 

averaged 13.9±1.4.  

This is likely explained by the chance for Al to encounter P before 

crystallization of the complex reduces P binding sites. As sediment naturally 

moves down slope towards the deeper parts of lakes, Al injected into the 

sediment matrix at depth (instead of added to the water and precipitated) 

constantly relocates within the sediment as it moves naturally, increasing the 

chance for P binding by Al. Using stepwise multiple linear regression 

(MLR), a model was developed to refine Al dosing regarding the injection 

application method of Al where the detected Al dose and the available Pmob 

in the sediment together with lake morphology (Osgood index) explained 

87% of the variation for binding efficiency (Figure 6).  

 

Figure 6. Al dose allowed to achieve Al:PAl = 10 using sediment Al application in three 

hypothetical lakes with Osgood index at 3, 6 and 9 and a range of sediment Pmob mass. 

Dotted line indicates doses for varying Osgood index with Pmob fixed at 10g/m2. Model 

equation: Al dose= 1.1 × Al:PAl + 8.2 × Pmob + 6.6 × Osgood index. 
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4.1.2 Which P fractions are mobile? 

In order to determine an optimal dose of Al needed to inactivate the targeted 

amount of P in eutrophic lake sediment for lake restoration, extended 

knowledge concerning the potential availability of P fractions is needed. 

Historically, Pmob has been accounted for and in some cases Porg or Plab.org to 

constitute the potentially “mobile” fraction of sediment P with respect to P 

inactivation. However, in this thesis (Paper III) we can show that under some 

circumstances, another P fraction (PCa) may be potentially available for 

release. P fractions in sediment that may become available for release are 

controlled by the chemical milieu where oxygen state can regulate release of 

PFe and mineralization of organic matter can release Porg and Plab.org. Low and 

high pH can cause dissolution of PAl and PFe and low pH can cause 

dissolution of PCa, causing release of sediment P.  

Bioturbation or sediment mixing caused by benthic feeding fish seems to 

alter the sediment environment. In paper III we investigated benthic fish 

bioturbation effects on P fractions and could show that the PCa fraction, 

formerly thought to be recalcitrant in field conditions (Andreiux 1997), can 

be important for internal loading in some cases. When sediment mixing by 

carp was stopped during the exclosure experiment, the only fraction 

significantly affected by the absence of bioturbation was PCa, which 

increased by 19% (Figure 7). The magnitude of P loss is similar to that found 

in a study by Kassila et al. (2001) where 22% PCa loss from sediment was 

recorded due to pH decrease caused by accelerated mineralization of organic 

matter in a fish farm environment. As a result of organic matter 

mineralization, pH can decrease via production of CO2/H2CO3 (Carbonic 

acid) (Staudinger et al. 1990). It has been shown that already at pH 6, 

dissolution of PCa is substantial (Kassila et al. 2001).  

However, other P fractions did not significantly change due to exclusion of 

carp bioturbation, which was unexpected and can probably be explained by 

the time frame of the study (4 months). In a rather similar field study 

published by Huser et al. (2021), Pmob and Porg increased by 45 to 120% and 



43 

38% in surficial sediment respectively, but this was shown 9 years after 

complete removal of carp.  

4.1.3 The depth of active sediment due to sediment mixing 

In the study behind paper III in this thesis, a new method of sediment mixing 

determination was applied. Similar to fluorescent sand tracer used in a study 

Figure 7. Cumulative amount of sediment phosphorus fractions inside and 

outside fish exclosures in the upper most 10 cm of sediment profiles with carp 

present and absent. P-values from Wilcoxon’s rank sum test are showed in 

brackets. 
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by Ritvo et al. (2004), transparent quartz sand grains were used to create a 

footprint of benthic feeding fish bioturbation during the growing season 

when they are most active. The intact sediment cores taken inside and outside 

the fish exclosures revealed that > 95% of the tracer sand grains were, on 

average, found in the top 3 cm of sediment depth where fish were excluded, 

and in the top 10 cm where carp and other fish were present (Figure 8). The 

sedimentation rate was 4.4 ± 1 cm during the experiment time frame, which 

is rather high but logical due to the constant mixing of sediment in the pond. 

Compared to the few studies conducted (to date) concerning sediment 

mixing depth, our results are intermediate or between those found recently. 

Ritvo et al. (2004) showed a mixing depth of 3 cm in high density sediment 

(bulk density = 0.71 g dry sediment/cm3) with a high biomass of small sized 

carp (mean weight 650 ± 50 g, biomass density = 7584 kg/ha) in small ponds, 

whereas (Huser et al. 2016a) found a mixing depth of up to 15 cm with large 

bodied carp but lower overall biomass density (mean weight = 3.4 kg, 180 

kg/ha) in low density sediment (dry bulk density = 0.16 g/m3). In the 

Figure 8. Mean distribution of transparent quartz sand grains (Tracer) found in 

vertical sediment profiles within fish exclosures (A, Carp absent) and in the pond 

(B, Carp present). Sediment depth = 0cm represents the original sediment surface 

level. A sedimentation rate of 4.4±1 cm was determined for the exclosures. 
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sediment sampled as part of the study presented in paper III, the dry bulk 

density was 0.30 g/cm3, which is intermediate compared to the other studies. 

Even though only three studies are available for comparison, a comparison 

of mixing depth versus sediment density is clear, whereas biomass (kg/ha) 

did not follow any pattern (Figure 9). As stated above, there is very little 

information on sediment mixing depth and the potential effects of carp 

biomass, fish size or sediment density. Therefore, further research in this 

subject is clearly needed to be able to understand benthic feeding fish effects 

on sediment mixing depth, in addition to sediment P release. 

However, it seems highly likely that benthic feeding fish cause increased 

sediment mixing depth and consequently a larger potential mass of sediment 

and P that is exposed and connected to the water column. Huser et al. (2016a) 

showed that nearly twofold (up to 92%) more Pmob was potentially available 

Figure 9. Graphic visualization of mean mixing depth and mean dry bulk sediment 

density (g/cm3) from three available studies regarding sediment mixing depth caused by 

benthic fish. 
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for internal loading from sediment in a field study of carp in the US. Herein 

we showed that in our study system, the potentially available Pmob pool 

increased by almost threefold due to increased sediment mixing depth 

(Figure 10). Whether the increased potential for internal P loading, caused 

by increased mass of sediment P exposed or connected to the water column, 

has any actual effect on in-lake P cycling has not yet been quantified, 

however likely it seems. Therefore, more research is needed in this area as 

well. Knowledge about the forms and mass of P in sediment, sediment 

density, and the effects of bioturbation/sediment mixing on these and how 

they affect a water body is crucial, both for understanding in-lake P dynamics 

as well as assessing the appropriate restoration tools needed for successful 

lake restoration. 

Figure 10. Mobile phosphorus in each layer of sediment inside and outside fish 

exclosures. Dashed lines indicate mixing depth (active sediment depth). 
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The work in this thesis, together with our current understanding about lake 

restoration using Al, strengthens the knowledge base regarding controlling 

factors with respect to longevity and efficiency of treatment. Al dose has 

earlier been suggested to control the success of Al-treatment, and we 

confirmed this by showing how Al dose is a crucial factor to consider when 

restoring lakes using Al-treatment in Swedish lakes. The magnitude of P 

decrease in surface water immediately after treatment, and the longevity of 

positive treatment effects over time increased with the amount of Al added 

to a certain lake. However, variability of effectiveness and longevity, even 

when higher doses have been used, can occur due to other in-lake factors 

controlling Al-treatment success, such as variation in fish species community 

and binding efficiency. We showed that benthic feeding fish, such as carp, 

increase the amount of P potentially available for release from sediment to 

water by increasing the active sediment layer by up to threefold. In such 

cases, an Al dose might need to be adjusted due to a larger pool of available 

P. Additionally, we showed that PCa, previously thought to be recalcitrant, 

can be affected by bioturbation (sediment mixing), causing release of P from 

Ca potentially resulting in P released to lake water. Further research in the 

area of bioavailability of recalcitrant P forms (i.e. PCa) is highlighted since 

the immobility, in certain conditions, of such P forms is now questioned. 

Apart from Al dose being an important factor controlling treatment 

effectiveness and longevity, we showed that the method of Al application 

used might also control the efficiency of binding between Al and P. Among 

the lakes studied in Paper II, we found that binding efficiency has a strong 

effect on treatment longevity. For lakes with steeply sloping sediment beds, 

where Al(OH)3-floc transport to deeper areas is suspected, we found that by 

injecting Al into the sediment matrix, instead of applying it to the water that 

5. Conclusions and outlook 
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has been done historically, that the binding efficiency increased, making this 

novel application method more efficient in certain lakes. Variation in binding 

efficiency was also explained by the amount of Pmob available in the sediment 

relative to the amount of added Al, where sediment containing larger 

amounts of Pmob with the same Al dose were found to have greater binding 

efficiency (e.g. Le Chateliers principle).  

To increase the chance for successful and sustainable lake restoration, it is 

essential to understand which forms of P are available under varying 

conditions. How to quantify the total pool of potentially releasable/available 

sediment P is key. This can include forms of P that have earlier been regarded 

as recalcitrant as we showed in Paper III. Further, the Al dose needs to be 

large enough to inactivate this pool of P, but not in excess, which can lead to 

low binding efficiency. With the use of our model, it is now possible to 

design a maximum Al dose that can be added to achieve a certain binding 

efficiency. This may result in multiple, smaller Al-treatments, instead of the 

entire dose being added at once, which is an ongoing practice. Even the 

choice of application method should be considered carefully. Depending on 

lake characteristics, the operational technique for Al application should be 

selected in order to maximize binding efficiency (Paper II), which together 

with other factors is tightly connected to efficiency and longevity of Al-

treatment (Paper I). The overall results from this study advance our 

knowledge on sediment P forms and Al-treatment application methods which 

should increase the chances for sustainable lake restoration in the future.  
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The natural environment provides ecosystem services for us that are 

important to protect. Especially water, the foundation of life. We need to 

have access to drinking water, some of us find pleasure in having a swim in 

a clean lake and many people eat fish as part of their diet. In some lakes such 

services have been impaired due to decades of phosphorus input, leading to 

eutrophication. Even if the external inputs of phosphorus are controlled by 

factors like better wastewater treatment and restored wetlands, most lakes do 

not recover naturally. This is because decades of excess phosphorus inputs 

to lakes have accumulated in the lake´s sediment. Over the season, this P is 

released from the sediment to the water column, creating a vast supply of 

fuel (phosphorus), which causes algal blooms that in turn degrade water 

quality. Dead bottoms with no oxygen and fish kills are some symptoms of 

this process. However, there are methods that can be used to restore lake 

water quality in such situations. One method is to inactivate phosphorus in 

the sediment with minerals in order to cancel the fuel driving eutrophication. 

Aluminum treatment has been used for decades for this purpose, and has 

sometimes shown great effect. This thesis explores and develops knowledge 

in how to use this restoration tool in the most efficient manner. Both 

expanding knowledge in practical Al application procedures, but also 

expanding the knowledge about what types of phosphorus can be released 

from the sediment and cause problems. Further it contributes to the 

knowledge about factors influencing how long an aluminum treatment will 

last. By adding the aluminum mineral directly into the sediment matrix, 

instead of adding it to the water (the traditional method), treatment efficiency 

can be increased in certain lake types. Taking into account factors affecting 

longevity and efficiency of treatment, such as aluminum dose, the amount of 

mobile sediment phosphorus, presence of bottom feeding fish, and lake type 

Popular science summary 
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it is possible to optimize the effect of this restoration tool. The knowledge 

gained in the studies included in this thesis will lead to more effective and 

sustainable lake restoration in the future. 
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Sjöar tillhandahåller en mängd ekosystemtjänster som är viktiga för oss 

människor. Från sjöar med klart och rent vatten får vi ekosystemtjänster 

såsom möjligheten att hämta dricksvatten och rekreation i form av att kunna 

ta en simtur eller att äta en egenfångad fisk till middag. I en del sjöar har 

dessa ekosystemtjänster försämrats på grund av kontinuerlig tillförsel av 

fosfor (P) under flera decennier. Fosfor utgör bränsle för växtplankton bland 

annat, vilket ger upphov till övergödda sjöar med bland annat algblomningar 

som följd.  I de sjöar där fosfor ansamlats i bottensedimentet under decennier 

hjälper det oftast inte att tillförseln av fosfor åtgärdas, genom exempelvis 

förbättrade avlopp, på grund av den fosfor som under lång tid ansamlats i 

sjöns bottensediment. I dessa fall kan man oftast räkna med att sjöarna inte 

tillfrisknar naturligt inom en rimlig tidsram eftersom den fosfor som 

ansamlats i sedimentet frigörs från bottensedimentet till sjöns vattenmassa. I 

sådana situationer finns det restaureringsmetoder som kan användas för att 

förbättra vattenkvaliteten. Denna avhandling utvecklar kunskapen om hur 

verktyg för sjörestaurering kan användas på bästa sätt. Ett sätt att inaktivera 

det överskott av fosfor som finns i sedimentet är att tillföra aluminum (Al) 

som binder fosfor och gör det otillgängligt för exempelvis växtplankton. Så 

kallad Al-behandling har använts i över 50 år och har visat sig vara effektivt. 

Kunskapsbasen om hur man effektiviserar Al-behandlingen med avseende 

på den praktiska appliceringsmetoden utökas. Även vetskapen om vilka 

former av fosfor som bör inaktiveras förbättras. En kunskapsutökning 

angående faktorer som påverkar varaktigheten och effektiviteten av Al-

behandlingen presenteras i denna avhandling. Genom att använda en 

appliceringsmetod där Al harvas ner direkt i bottensedimentet, istället för att 

Al tillförs till vattenmassan, kan vi öka effektiviteten av 

aluminiumbehandlingen i sjöar med brant sluttande sedimentbottnar. Denna 

Populärvetenskaplig sammanfattning 
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avhandling visar även att det är viktigt att rätt mängd Al används till en viss 

mängd P och att vissa former av fosfor som tidigare ansetts som immobila, 

under vissa förutsättningar kan bli mobila och borde inkluderas i de 

beräkningar av mängden fosfor som en viss aluminiumdos ska inaktivera. 

Effektiviteten kan även ökas genom att anpassa aluminiumdosen med 

avseende på tillgängligt mobilt fosfor i sedimentet. 
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a b s t r a c t 

For more than 50 years, aluminum (Al)-salts have been used with varying degrees of success to inactivate

excess mobile phosphorus (P) in lake sediments and restore lake water quality. Here, we analyzed the

factors influencing effectiveness and longevity of Al-treatments performed in six Swedish lakes over the

past 25 years. Trends in post-treatment measurements of total phosphorus (TP), Chlorophyll a (Chl_a),

Secchi disk depth (SD) and internal P loading rates (Li) were analyzed and compared to pre-treatment

conditions. All measured water quality parameters improved significantly during at least the first 4 years

post-treatment and determination of direct effects of Al-treatment on sediment P release (Li) was possible

for three lakes. Improvements in TP (-29 to -80%), Chl_a (-50 to -78%), SD (7 to 121%) and Li (-68 to -94%)

were observed. Treatment longevity, determined via decreases in surface water TP after treatment, varied

from 7 to > 47 years. Lake type, Al dose, and relative watershed area were related to longevity. In addition,

greater binding efficiency between Al and P was positively related to treatment longevity, which has not

previously been shown. Our findings also demonstrate that adequate, long-term monitoring programs,

including proper determination of external loads, are crucial to document the effect of Al-treatment on

sediment P release and lake water quality.

© 2021 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

1. Introduction

Excess internal loading of phosphorus (P) in lakes, a result of 

historical sediment P accumulation from external sources, is of- 

ten the most important driver of in-lake P cycling and thus eu- 

trophication (e.g. Pilgrim et al., 2007 , Sondergaard et al., 2003 ). 

External P sources, e.g., leaching from agricultural soils and mu- 

nicipal/industrial wastewater are the primary source of excess nu- 

trients in lakes ( Conley et al., 2009 ). Even when external nutri- 

ent sources are controlled, recovery can be delayed by decades 

or longer due to the release of legacy (or mobile) P from lake 

sediments ( Sas 1990 ). For more than 50 years, aluminum (Al)- 

salts have been used to permanently inactivate excess mobile P in 

lake sediments and restore lake water quality ( Huser et al., 2016b ; 

Welch and Cooke 1999 ). The longevity of Al-treatment, however, 

has been highly variable, with beneficial effects lasting from just 

a few months to more than 40 years ( Egemose et al., 2011 ; 

Garrison and Knauer 1984 ; Huser et al., 2011 ; Huser et al., 2016b ; 

James et al., 1991 ). Reported binding effectiveness (measured as 

∗ Corresponding author.

E-mail address: oskar.agstam@slu.se (O. Agstam-Norlin).

Al:Al-P or Al:P Al ratios) has varied by an order of magnitude, i.e., 

between 2.1 and 21.1 ( Agstam-Norlin et al., 2020 ; Huser et al., 

2011 ; Huser 2012 ; Jensen et al., 2015 ; Lewandowski et al., 2003 ; 

Reitzel et al., 2005 ; Rydin et al., 20 0 0 ; Rydin and Welch 1999 ; 

Schütz et al., 2017 ). 

Treatment longevity and effectiveness are influenced by mul- 

tiple factors including external loading, lake morphology, mixing 

regime, bioturbation, Al dose, and application method. When ex- 

ternal P loading remains elevated after Al-treatment, ongoing P in- 

puts can overwhelm Al binding capacity, resulting in new mobile 

sediment P accumulation over the treated layer and elevated inter- 

nal P loading ( Huser et al., 2016c ). The ratio of lake to watershed 

areas (WA:LA) is an important predictor of treatment longevity, 

as nutrient levels in lakes with large watersheds relative to lake 

area are more controlled by external sources than lakes with rel- 

atively small watersheds ( Huser et al., 2016b ; Sas 1990 ). The rate 

of water renewal (i.e. residence time) can strongly affect treatment 

longevity, as a long residence time can result in P being retained 

in the lake and sediment instead of moving to downstream water 

bodies ( Sas 1990 ). 

Morphology can decrease overall binding efficiency in lakes 

with steep bed slopes through translocation and focusing of the 

added Al-mineral (Al(OH) 3 ) in deep areas. This is because freshly 

https://doi.org/10.1016/j.watres.2021.117267

0043-1354/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
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formed, amorphous Al-minerals have a similar density to the sur- 

rounding, organic-rich sediment and a large fraction can rapidly 

(within 6 months) move down-slope to deeper areas ( Huser 2017 ). 

This can result in excess accumulation of Al ( Egemose et al., 2012 ; 

Huser 2012 ), and in the absence of available P, the Al-mineral 

starts to crystalize resulting in a lower surface area and a loss 

of P binding sites ( Berkowitz et al., 2006 ; deVicente et al., 2008 ; 

Huser 2012 ; Huser 2017 ). 

The Al dose used is another critical factor influencing longevity 

and effectiveness. In the past, Al doses were often inadequate to 

bind all potentially releasable sediment P. This was usually a re- 

sult of old dosing calculation methods where dose was based on 

lake water alkalinity or hypolimnetic P instead of targeting the to- 

tal pool of available mobile P in lake sediment ( Cooke et al., 2005 ). 

Greater Al doses tend to bind more P in the sediment, which can 

increase longevity ( Huser et al., 2016b ; Sas 1990 ). However, adding 

too much Al, or using excessive amounts of Al in one application, 

will generally decrease binding efficiency due to crystallization of 

the Al-mineral before P binding occurs ( deVicente et al., 2008 ), 

with potentially negative effects on longevity ( Agstam-Norlin et al., 

2020 ; Huser 2012 ). 

Mixing regime is also important. Shallow, polymictic lakes tend 

to have shorter treatment longevity ( Huser et al., 2016b ; Welch and 

Cooke 1999 ), but the underlying mechanisms behind this are not 

entirely understood. Shallow lakes generally have lower water vol- 

ume per area of sediment, and thus alkalinity needed to sup- 

port higher doses is often lower and as a consequence, lower Al- 

doses have generally been added which per se decreases longevity 

( Huser et al., 2016b ). Dense populations of macrophytes often 

found in shallow polymictic lakes may increase internal loading 

by translocation of sediment P to the water column (through 

plant decomposition) or by stabilizing the water column and lim- 

iting oxygenation, thus increasing the potential for internal loading 

( Welch and Kelly 1990 ). In addition, benthic feeding fish often have 

much greater negative impacts on nutrients and water quality in 

small shallow lakes relative to deeper, stratified systems ( Bajer and 

Sorensen 2014 ). 

Bioturbation caused by benthic feeding fish, e.g., carp ( Cyprinus 

carpio) can deepen the active sediment layer and mass of P avail- 

able for release to the water column ( Huser et al., 2016a ), espe- 

cially in shallow polymictic lakes ( Parkos et al., 2003 ; Weber and 

Brown 2009 ). On the other hand, enhanced sediment mixing by 

benthic feeding fish may result in higher Al:P Al binding efficiency 

by increasing the chance of Al to encounter P before crystallization 

of the mineral occurs ( Huser et al., 2016a ). 

Different Al-application procedures have been used historically, 

with the most commonly used method being application of Al in 

solution to the water column and allowing the newly formed min- 

eral to settle to the sediment surface ( Welch and Cooke 1999 ). 

However, there is a newly developed technique where Al is in- 

jected into surficial sediment (10–15 cm deep, ( Schütz et al., 

2017 )). The injection method minimizes Al transport and focus- 

ing because the Al-floc is trapped in the vertical sediment pro- 

file, which can lead to improved binding efficiency ( Agstam- 

Norlin et al., 2020 ). Solid forms of Al (pellets) have also been used 

historically ( Cooke et al., 2005 ), but a shift to liquid application 

occurred after the 1970s. However, binding effectiveness using pel- 

lets may be greater relative to liquid application in some cases 

( Agstam-Norlin et al., 2020 ). Treatment using Al pellets has been 

tested recently in countries lacking equipment needed for liquid 

application ( Kuster et al., 2020 ). 

Here, we determined the longevity of Al treatment and as- 

sessed the factors influencing effectiveness and longevity of Al- 

treatment using available monitoring data for six Swedish lakes 

of varying size, morphology, Al dose applied, and application tech- 

nique ( Table 1 ). Nutrient-related water quality variables including 

historical trends for surface water chemistry/quality were analyzed. 

Internal P release rates were calculated pre- and post-treatment 

when adequate data were available. 

2. Methods 

2.1. Study sites 

Additional information about all study sites, including locations, 

is presented in Agstam-Norlin et al. (2020) . 

2.1.1. Dimictic lakes 

Six lakes situated within a 30 km radius of Stockholm city were 

included in the study. Flaten is a 63 ha lake with a 403 ha catch- 

ment mostly covered by forest and recreational areas (70%). Al- 

application was performed in 20 0 0 with combined sediment in- 

jection and hypolimnetic water application using a total of 24 tons 

of Al (as pre-hydrolyzed aluminum chloride (PAC, PAX XL100). Ar- 

eas of the lake where water column depth was between 6 and 9 m 

were treated with 30 g/m 

2 Al injected into the sediment and ad- 

ditionally 10 g/m 

2 dispersed in the water near the sediment water 

interface. Deeper areas (9–10 m) were dosed with 40 g/m 

2 via sed- 

iment injection and 14 g/m 

2 to the water. At the deepest point of 

the lake (10–14 m) 53 g/m 

2 was injected and 17 g/m 

2 added to the 

water ( Table 1 ). Partial water application was conducted to precip- 

itate P already released from sediment. 

Trekanten is 13.5 ha lake with a catchment of 60 ha dominated 

by urban park areas. Al-treatment was performed in 2011 using 

Table 1 

Background information including morphology, sediment characteristics and aluminum treatment details. Al-treatment method includes sediment treatment (S) and water 

treatment (W). Sediment data reworked from Agstam-Norlin et al. (2020) , with permission. 

Lake Lejondalssjön Flaten Trekanten Långsjön Bagarsjön Malmsjön 

Max depth (m) 14.0 13.1 6.6 3.3 5.6 6.8 

Mean depth (m) 7.5 8.7 3.6 2.2 2.3 4.7 

Lake area (ha) 272 63 14 29 6 89 

Osgood index 4.6 11.0 9.5 3.7 8.8 5.0 

Watershed (ha) 1660 403 60 243 135 1175 

Watershed:Lake area (WA:LA) 6.1 6.4 4.3 8.4 22.5 13.2 

Volume (Mm 

3 ) 20.5 4.6 0.6 0.6 0.2 4.2 

Residence time (years) 7.0 4.0 3.0 0.8 0.8 1.3 

Mean Al dose (g/m 

2 ) 25 61 60 75 50 60 

Treatment year(s) 1991–1993 2000 2011 2006 1997 2007 

Al-treatment method W S S S W S 

Treatment chemical PAX XL60 PAX XL 100 PAX XL 100 PAX XL100 PAX XL 60 PAX XL 100 

Mean Al:P Al 11.4 9.0 10.7 12.9 16.0 14.6 

Mean Mob-P (g/m 

2 ) 7.3 4.9 8.6 2.8 5.3 3.5 

Al dose:Mob-P 3.4 12.4 7.0 21.4 9.4 16.9 

2 
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sediment injection of PAC (PAX XL 100). 60 g Al/m 

2 was applied to 

all lake areas where water depth was > 4 m, with a total Al dose 

of 5 tons ( Table 1 ). 

Lejondalsjön has a surface area of 272 ha with a catchment of 

1660 ha that is dominated by forest (58%), agriculture (crop- and 

pasture fields, 16%), and urban areas (2%). Al-treatment was per- 

formed during three consecutive years where a total of 28.6 tons 

of Al (as PAC, PAX XL 60) was applied to the hypolimnetic lake 

water. In 1991, a relatively low Al dose (10 g/m 

2 , total of 5 tons) 

was applied to the northern half of the lake where water depth 

was > 10 m. In 1992, three small test areas of the northern part 

of the lake (total 12 ha) were treated with a total Al dose of 0.6 

tons but with different areal doses (25, 50 and 75 g/m 

2 ). The final 

PAC application in 1993 treated areas with water column depths 

exceeding 10 m (25 g/m 

2 , Table 1 ). 

Bagarsjön is an urban, 6 ha lake with a catchment area of 

135 ha that includes mainly residential (80%) and small park/forest 

areas. Al (as PAC, PAX XL 60) was applied in the hypolimnetic wa- 

ter at a total of 2 tons at a rate of 50 g/m 

2 to areas with water 

depths greater than 2 m ( Table 1 ). 

2.1.2. Polymictic lakes 

Långsjön is a 29 ha urban lake. The 243 ha catchment is mainly 

residential with some recreational areas. Al (PAC, PAX XL100) was 

applied by direct sediment injection with different doses for dif- 

ferent depth zones of the lake. A dose of 25 g/m 

2 was applied at 

water column depths between 1.5 and 2 m, 50 g/m 

2 at water col- 

umn depths between 2 and 2.5 m, and 75 g/m 

2 from a water depth 

of 2.5 m to the maximum depth (3.3 m, Table 1 ). 

Malmsjön is an 89 ha lake in an 1175 ha catchment dominated 

by forest (57%), farmland (23%), and urban areas (11%). In total, 53 

ton of Al (PAC, PAX XL100) was applied using sediment Al injec- 

tion. The area specific Al dose was 60 g/m 

2 at all lake locations 

with a water column depth exceeding 1 m ( Table 1 ). 

2.2. Data handling 

Average, annual growing season (May-Aug) TP, Chlorophyll a 

(Chl_a), and Secchi disk depth (SD) were used to describe differ- 

ences in surface water quality between pre- and post-treatment 

periods. In stratified lakes, the increase in hypolimnetic TP dur- 

ing the growing season and corresponding hypolimnetic water 

volumes were used to calculate internal P loading rates (Li, 

mg/m 

2 /day) ( Nürnberg 2009 ). A 4-year pre-treatment period of an- 

nual means for SD, Chl_a, surface TP, and Li were compared with 

following post treatment 4-year periods to compare whether the 

parameters had changed due to Al-treatment. Four-year periods 

were used in order to limit the effect of natural interannual varia- 

tion. 

Longevity was estimated using three different methods. For 

lakes where longevity had been reached (i.e. no improvement 

was detected compared to pre-treatment after a period of time), 

longevity was defined as the year when annual mean (or single 

August data point, when seasonal data was lacking) TP concentra- 

tion exceeded one standard error of mean (SEM) below mean pre- 

treatment TP (4-year period). For lakes where water quality im- 

provements were still ongoing throughout the monitoring period 

(e.g., Malmsjön, Långsjön and Bagarsjön), but TP showed a linear 

increase post Al-treatment, we estimated longevity using linear re- 

gression and extrapolation. Longevity was estimated as the time 

point where the linear regression exceeded one SEM below pre 

Al-treatment mean TP (4-year period). Finally, the longevity pre- 

dicting equation (LPEq) of Huser et al. (2016b) was used to es- 

timate treatment longevity in cases where there was no deteri- 

oration of post-treatment water quality through the end of the 

dataset ( Eq. (1) ). Three variables described 82% of the variation 

in Al-treatment longevity in Eq. (1) , including Al dose, watershed 

area to lake area ratio (WA:LA) and Osgood index ( Osgood 1988 ). 

It should be noted that this method for calculating longevity is 

almost certainly an underestimate as the regression developed 

weighted lakes highest where no external nutrient reduction oc- 

cured. In addition, longevity predicted using LPEq has an arbitrary 

endpoint (i.e., longevity is considered to end when surface TP is 

50% of the pre-treatment value), and thus is not a true representa- 

tion of longevity of positive treatment effects. 

log ( Longe v ity ) = −0 . 5 + 1 . 3 × log ( Al dose ) − 0 . 79 

× log ( WA : LA ) + 0 . 37 × log ( Osgood index ) (1) 

Graphical exploration for effect size was used to evaluate ef- 

fect and longevity of Al-treatment and Principal component analy- 

sis (PCA) was used to evaluate driving factors for longevity. All sta- 

tistical analyses was performed in JMP (SAS institute Inc., version 

11.0.0). 

3. Results 

Nutrient-related water quality variables improved after Al- 

treatment in all lakes ( Table 2 ). Flaten, Långsjön, Lejondalssjön, 

Bagarsjön and Malmsjön had changes in all measured water qual- 

ity variables during the first 4 years after Al-treatment, whereas 

Table 2 

Mean, standard error and percent change for each post 4 year period compared to pre aluminum treatment conditions. Pre denotes parameter mean values of a 4-year 

period prior to treatment. Following columns shows similar information for 4-year periods post Al-treatment (e.g. 1–4 y). Column “�” denotes the percent change in each 

parameter. TP and Chl a in μg/L, SD in meters and Li in mg/m 

2 /day. N denotes mean annual observations (Li: mean number of TP observations below hypolimnion). 

Lake Parameter Pre 1–4 y � 5–8 y � 9–12 y � 13–16 y � 17–20 y � N 

Bagarsjön SD 2.2 ± 0.4 3.5 ± 0.4 59% 3.1 ± 0.3 41% 2.5 ± 0.3 14% 2.7 ± 0.2 23% 3.0 ± 0.2 36% 1 

TP 60.3 ± 9.1 24.8 ± 4.4 −59% 37.3 ± 1.4 −38% 43.0 ± 2.5 −29% 23.8 ± 2.5 61% 20.8 ± 2.4 −66% 1 

Flaten SD 2.9 ± 0.4 6.4 ± 0.4 121% 6.3 ± 0.5 117% 4.8 ± 0.5 66% 5.5 ± 0.4 90% ND ND 4 

Chl a 12.7 ± 2.8 2.8 ± 0.3 −78% 3.2 ± 0.6 −75% 5.4 ± 1.0 −57% 4.7 ± 1.0 63% ND ND 4 

TP 33.3 ± 5.6 9.2 ± 0.4 −72% 8.9 ± 0.6 −73% 9.5 ± 0.6 −71% 11.0 ± 1.6 67% ND ND 4 

Li 3.4 ± 0.4 0.2 ± 0.1 −94% 0.2 ± 0.1 −94% 0.3 ± 0.1 −91% 0.3 ± 0.1 91% ND ND 19 

Lejondalssjön SD 2.9 ± 0.3 4.4 ± 0.2 52% 4.3 ± 0.2 48% 4.1 ± 0.2 41% ND ND ND ND 4 

TP 35.3 ± 2.6 25.0 ± 1.4 −29% 27.2 ± 2.7 −23% 24.0 ± 1.4 −32% ND ND ND ND 4 

Li 5.0 ± 0.5 1.6 ± 0.4 −68% 2.9 ± 1.0 −42% 3.7 ± 0.2 −26% ND ND ND ND 11 

Långsjön SD 0.9 ± 0.1 1.5 ± 0.1 67% 1.6 ± 0.1 78% 1.7 ± 0.1 89% ND ND ND ND 7 

Chl a 53.6 ± 7.5 22.7 ± 2.4 −58% 17.0 ± 4.9 −68% 16.4 ± 2.6 −69% ND ND ND ND 4 

TP 97.5 ± 5.7 33.3 ± 1.6 −66% 38.2 ± 3.1 −61% 46.5 ± 2.6 −52% ND ND ND ND 4 

Malmsjön TP 96.5 ± 25.6 19.3 ± 3.3 −80% 28.8 ± 4.5 −70% 43.8 ± 8.7 −55% ND ND ND ND 1 

Trekanten SD 3.0 ± 0.2 2.8 ± 0.2 −7% 3.6 ± 0.2 20% ND ND ND ND ND ND 4 

Chl a 14.4 ± 2.6 7.2 ± 0.8 −50% 5.9 ± 0.8 −59% ND ND ND ND ND ND 5 

TP 53.1 ± 7.0 24.3 ± 2.5 −54% 23.4 ± 1.4 −56% ND ND ND ND ND ND 5 

Li 3.3 ± 0.9 0.2 ± 0. −94% 0.1 ± 0.1 −97% ND ND ND ND ND ND 12 
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Fig. 1. Annual growing season surface water TP and SD mean and SEM (May-Aug) in Lejondalssjön. Longevity was estimated as the year when one SEM below mean pre- 

treatment (4-year period) was exceeded by annual post-treatment mean TP. Stars with corresponding color to time series at each Y-axis indicate one SEM below (or above 

for SD) mean for years before Al-treatment. Observations: SD = 70, TP = 74. 

Fig. 2. Water column depth profiles showing concentrations of TP at different depth intervals in Lejondalssjön. 1988–1990 represents pre Al-treatment and following con- 

secutive 4-year period represents post-treatment observations of TP. Pre-treatment data was collected as mixed water samples collected between 0 and 4 m, and 8–12 m. 

Post-treatment observations was collected at stated depths according to the graph. Observations: 1988–1990 = 62, 1994–1997 = 90, 1998–20 01 = 95, 20 02–20 05 = 96. 

Trekanten showed no initial increases in SD, but TP declined sub- 

stantially ( Table 2 ). Flaten, Långsjön, Malmsjön and Trekanten had 

changes in all measured water quality variables at the end of each 

available data series (16, 12, 12 and 12 years post treatment, re- 

spectively). Lejondalssjön had improved TP until 7 years post treat- 

ment and showed deeper SD throughout the monitoring period 

( Table 2 ). 

3.1. Dimictic lakes 

3.1.1. Lejondalssjön 

TP decreased by 29% from 35.3 to 25.0 μg/L (mean values) 

during the first 4 year post-treatment. During the second post- 

treatment 4-year period the annual TP mean exceeded the pre- 

treatment breaking point (one SEM below annual TP mean) and 

longevity of the TP decline was 7 years ( Table 2 , Fig. 1 ). Li de- 

creased as well, from a mean of 5.0 to 1.6 mg/m 

2 /day (68%) over 

the first 4-year period post Al-treatment, but during subsequent 

4-year periods the Li rate started to return to pre-treatment condi- 

tions (2.9 mg/m 

2 /day) ( Table 2 , Fig. 2 ). A SD increase of > 40% was 

sustained throughout the available data series, from an average of 

2.9 m before treatment to an average of 4.1 m at the end of the 

data series (12 years post treatment). 

3.1.2. Flaten 

Surface TP averaged 33.5 μg/L before treatment and decreased 

to 9.2, 8.9, 9.5 and 11.0 μg/L during subsequent consecutive 4- 

year periods (4, 8, 12 and 16 years post-treatment), meaning the 

longevity of treatment with respect to surface water TP exceeded 

the end of this study. There was a decrease Chl_a, with con- 
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Fig. 3. Annual growing season surface water TP, Chl a and SD mean and SEM (May-Aug) in Flaten. Longevity was estimated using LPEq. Stars with corresponding color to 

time series at each Y-axis indicate one SEM below (or above for SD) mean for years before Al-treatment. Observations in total time series: Chl a = 85, SD = 88, TP = 77. 

Fig. 4. Water column depth profiles showing concentrations of TP at different depth intervals in Flaten. 1997–20 0 0 represents pre Al-treatment and following consecutive 

4-year periods represents post-treatment observations of TP. Observations: 1997–20 0 0 = 150, 20 01–20 04 = 125, 20 05–20 08 = 129, 20 09–2012 = 129, 2013–2016 = 120. 

centrations declining from a pre-treatment mean of 12.7 μg/L to 

2.8, 3.2, 5.4, and 4.7 μg/L respectively for 4, 8, 12 and 16 years 

post-treatment. SD significantly improved as well, increasing from 

a pre-treatment mean of 2.9 m to 6.3, 6.4 4.8, and 5.5 m dur- 

ing 4, 8, 12 and 16 years post-treatment. Due to continued im- 

provement of all nutrient related water quality variables ( Fig. 3 ) 

throughout the duration of monitoring, treatment longevity could 

not be calculated but was instead estimated using LPEq to 37 years 

( Huser et al., 2016b ). Li decreased (90%) for all available post- 

treatment data, with a pre-treatment mean of 3.4 mg/m 

2 /day and 

post-treatment averages were all below 0.3 mg/m 

2 /day ( Table 2 , 

Fig. 3 and 4 ). 

3.1.3. Trekanten 

Pre-treatment TP averaged 53.1 μg/L and decreased to a mean 

of 24.3 μg/L during the first 4-years post treatment period and de- 

creased further to 23.4 μg/L through the end of the data set (5–

8 years post treatment) ( Table 2 , Fig. 5 ). Chl_a decreased from a 

14.4 μg/L pre-treatment mean to 7.2 μg/L and 5.9 μg/L, 4 and 8 

years post treatment, respectively. SD, however, did not improve 

until the three last years of the study record ( Table 2 and Fig. 5 ). 

Li decreased by over 90% throughout the available data series, ini- 

tially at 3.3 mg/m 

2 /day before treatment and decreasing to 0.2 and 

0.1 mg/m 

2 /day at 4 and 8 years post Al-treatment, respectively 

( Fig. 6 , Table 2 ). Longevity was estimated to 47 years, using LPEq. 
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Fig. 5. Annual growing season surface water TP, SD and Chl a mean and SEM (May-Aug) in Trekanten. Longevity was estimated using LPEq. Stars with corresponding color 

to time series at each Y-axis indicate one SEM below (or above for SD) mean for years before Al-treatment. Observations in total time series: Chl a = 54, SD = 53, TP = 55. 

Fig. 6. Water column depth profiles showing concentrations of TP at different depth intervals in Trekanten. 1997–20 0 0 represents pre Al-treatment and following consecutive 

4-year period represents post-treatment observations of TP. Observations: 2007–2010 = 96, 2011–2014 = 96, 2015–2018 = 96. 

3.1.4. Bagarsjön 

During the first two 4-year post-treatment periods (e.g. eight 

years), TP was substantially lower compared to pre-treatment, de- 

creasing from a mean of 60.3 μg/L to 24.8 and increasing to 

37.3 μg/L respectively. During the following 4-year period (9–12 

years post treatment) an increasing trend of TP was observed 

(mean = 43.0 μg/L) ( Table 2 , Fig. 6 ). However, due to other man- 

agement effort s such as freshwater dilution and hypolimnetic aer- 

ation during the 16, and 20 years post treatment periods, TP de- 

creased again and was lower than pre-treatment conditions. SD did 

increased with 59% and 41% at the first and second 4-year period 

post Al-treatment, respectively. At years 9–12 post-treatment SD 

had decreased to 14% improvement. ( Table 2 , Fig. 7 ). Li was not 

analyzed due to lack of available data. Treatment longevity was de- 

termined to 14 years ( Fig. 7 ). 

3.2. Polymictic lakes 

3.2.1. Långsjön 

All variables (TP, SD, and Chl_a) improved by over 50% 

through the end of the study data series (12 years post Al- 

treatment). SD increased from a mean of 0.9 m to 1.7 m dur- 

ing the final post-treatment period. Chl_a decreased from a pre- 

treatment mean of 53.6 μg/L to 16.4 μg/L and TP decreased 

from a mean 97.5 μg/L to 46.5 μg/L 4, 8, and 12 years post- 

treatment. ( Table 2 , Fig. 8 ). Longevity using the post-treatment, 
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Fig. 7. Annual August surface water TP observation in Bagarsjön. Longevity was estimated as the time point where the linear regression exceeded one SEM below pre Al- 

treatment mean TP (4-year period). Star at each Y-axis indicate one SEM below (above for SD) mean pre-treatment TP and SD (4-years period). Observations in total time 

series: SD = 22, TP = 25. The decrease in TP after 2008 was likely due to installed hypolimnetic oxygenating system and not Al treatment. 

Fig. 8. Annual growing season surface water TP, SD and Chl a mean and SEM (May-Aug) in Långsjön. Longevity was estimated as the time point where the linear regression 

exceeded one SEM below pre Al-treatment mean TP (4-year period). Stars with corresponding color to time series at each Y-axis indicate one SEM below (or above for SD) 

mean for years before Al-treatment. Observations in total time series: Chl a = 57, SD = 56, TP = 114. 

linear increase in surface water TP was estimated to be 21 years 

( Fig. 8 ). 

3.2.2. Malmsjön 

Surface water TP concentrations decreased by over 50% in the 

three post Al-treatment periods (4, 8 and 12 years post treatment, 

the entire dataset). Pre-treatment TP averaged 96.5 μg/L and was 

43.8 μg/L at 12 years post treatment. ( Table 2 , Fig. 9 ). Longevity, 

using the linear increase in surface TP after treatment, was esti- 

mated to be 20 years. No other water quality data were available 

for Malmsjön. 

3.3. Factors influencing longevity of Al-treatment 

Principal Components Analysis (PCA) including factors in 

Table 1 was used to determine factors driving longevity and ex- 

plained 79% of the variation in the data set with two compo- 

nents. Longevity was positively correlated to Osgood index sug- 

gesting that deeper lakes (dimictic) have higher longevity than 

small polymictic lakes. The analysis also showed that larger Al- 

doses were correlated with greater longevity. Al:P Al was nega- 

tively correlated to longevity, meaning that poor binding efficiency 

(i.e. high Al:P Al ) results in lower longevity. Finally, WA:LA also 
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Fig. 9. Annual August surface water TP observation in Malmsjön. Longevity was estimated as the time point where the linear regression exceeded one SEM below pre 

Al-treatment mean TP (4-year period). Star at Y-axis indicate one SEM below mean pre-treatment TP (4-years period). Observations in total time series: TP = 25. 

Fig. 10. Biplot from principal component analysis on variables from Table 1 , ex- 

plaining 79% of the total variation. 

had a negative correlation to longevity, suggesting that lakes with 

greater watershed area relative to lake area have shorter longevi- 

ties ( Fig. 10 ). 

4. Discussion 

4.1. Water quality response to Al-treatment 

4.1.1. Dimictic lakes 

Three dimictic lakes (Lejondalssjön, Trekanten and Flaten) were 

historically monitored at a level required determining the effect 

of Al-treatment on surface water quality. The data series from 

these lakes included monthly (May-September) measurements of 

Chl_a, SD and TP for both surface water and depth intervals cov- 

ering the vertical water profile (except for Lejondalssjön, which 

lacked pre-treatment Chl_a data). This provided the possibility to 

include within-year (May to August) variation when studying his- 

torical trends in surface water quality. Vertical profiles with sam- 

ples taken from different water depths enabled calculation of his- 

torical internal loading rates, which are generally a better indicator 

of the effects of Al-treatment. However, this direct quantification of 

internal loading is only applicable to dimictic lakes, where the lake 

remains stratified and hypolimnion remains stable throughout the 

growing season. 

4.1.1.1. Lejondalssjön. Internal loading rates decreased 68% during 

the first 4-year period post Al-treatment. During the following 

4-year post-treatment periods, however, internal loading gradu- 

ally returned to levels not different to pre-treatment conditions 

( Table 2 , Fig. 1 & 2 ). This is likely due to a combination of fac- 

tors. The high amount of legacy (mobile) sediment P remaining af- 

ter Al-treatment ( Agstam-Norlin et al., 2020 ) ( Table 1 ) likely over- 

whelmed the Al-treatment, as was the case for numerous his- 

torical treatments where Al doses were added that were inade- 

quate to bind the entire excess mobile P pool ( Huser et al., 2016b ; 

Welch and Cooke 1999 ). Even though Li improved substantially af- 

ter treatment (at least initially), surface water TP only decreased 

by 29% during the first 4-year period. This can likely be explained 

by ongoing, excess external P inputs. 

Limited treatment longevity has been seen elsewhere when 

external loading was not reduced adequately or inadequate Al 

doses were used ( Egemose et al., 2011 ; Garrison and Knauer 

1984 ; Huser et al., 2011 ; Huser et al., 2016b ; James et al., 1991 ; 

Mehner et al., 2008 ). Thus the limited treatment longevity in 

Lejondalssjön is likely explained by a combination of continued ex- 

cess external loading and the low Al dose (25 g/m 

2 ) added. Dose 

calculation methods based on other variables besides sediment P 

were common before 20 0 0. For Lejondalssjön, Al dose was calcu- 

lated based on the internal P loading rate ( Kennedy et al., 1987 ). 

One problem with this approach is that it only accounts for sed- 

iment P release during one year, even though the sediment often 
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contains enough mobile P to support many years of internal load- 

ing. Without looking at sediment P content, it is impossible to de- 

termine how much mobile P exists in the sediment, and thus un- 

derdosing of Al is a likely result ( Kuster et al., 2020 ). 

4.1.1.2. Flaten. When this lake was treated in 20 0 0, the under- 

standing of Al dosing had improved substantially and was based on 

the available pool of mobile P (labile organic P, P bound to Fe, and 

loosely sorbed/porewater P) in the lake sediment ( Rydin 20 0 0 ). 

The mean dose of Al across the lake was 61 g/m 

2 ( Schütz et al., 

2017 ), however dose was adjusted higher or lower depending on 

the amount of mobile sediment P in different locations. The ap- 

plication technique employed was also different compared to most 

Al-treatments. A combination of sediment injection and hypolim- 

netic water application was used, where approximately a fourth of 

the Al dose was applied to the water and the rest injected into the 

sediment. Surface water TP concentrations decreased by over 60% 

due to Al-treatment and this decrease was sustained through the 

end of the data series ( Table 2 , Fig. 3 & 4). Chl_a had a similar 

response and remain reduced throughout the study period. SD in- 

creased more than two fold, which also was sustained through the 

end of the data series. 

4.1.1.3. Trekanten. The most recent treatment presented in this 

study was performed in 2011 in Trekanten, where a similar dose 

to that used in Flaten was applied (60 g/m 

2 ). However, the ap- 

plication technique differed slightly and only sediment injection 

was used (i.e., no water application). As with Flaten, the Al dose 

was determined from the amount of mobile P in the sediment. 

The water quality data covered only two 4-year periods post treat- 

ment (i.e. 8 years) and showed a twofold decrease of TP and Chl_a 

throughout the measurement period ( Table 2 , Fig. 5 ). Because in- 

ternal loading rates decreased by nearly 100%, but the lake water 

still has a TP concentration of nearly 25 μg/L, it seems likely that 

external sources of P are still elevated. This may, to some extent, 

be due to sewage water pipes that had been incorrectly connected 

to storm water runoff pipes between 2006 and 2013, unfortunately 

contributing excess external P load during these years. The excess 

external loading does not seem to have had an effect on internal 

loading ( Fig. 6 ), but if not controlled, it is likely internal loading 

will return ( Huser et al., 2011 ). 

While SD did not initially improve post treatment, there was 

an increasing trend from 7% during the first 4-year period to 20% 

increase at the end of the data set (5–8 years). Similar, delayed ef- 

fects have been seen after Al-treatment in a number of US lakes 

( Huser et al., 2011 ). The lack of immediate response in SD does 

not seem to be controlled by algal presence, because Chl_a de- 

creased by 50%. This suggests a number of alternatives, e.g., sed- 

iment resuspension due to winds or benthic feeding fish causing 

sediment mixing (bioturbation), turbid storm water inflows, or in- 

creasing water color (total/dissolved organic carbon) that has been 

shown to be occurring in boreal regions across Sweden and else- 

where ( de Wit et al. 2016 ; Huser et al., 2012 ; Monteith et al., 

2007 ). Unfortunately, the lack of data did not allow us to explore 

any of these possible effects. 

4.1.1.4. Bagarsjön. Whereas the previously described dimictic lakes 

were monitored in enough detail to calculate historical trends for 

Li, data for Bagarsjön only included surface water TP and SD at one 

occasion per year (August). Thus, it was not possible to calculate Li 

and within year variation (seasonal mean) could not be included in 

the analysis. However, the effect of Al-treatment on surface water 

TP was clear for the initial 4-year period ( Fig. 7 ). Surface water TP 

began to increase after treatment but decreased again during the 

last two 4-year periods post treatment (from 2009). This decrease 

is likely a result of another separate management action starting 

in 2009, when an aeration pump was installed in order to keep 

hypolimnetic water oxygenated. There was no clear change in SD 

after 6 years post Al-treatment (including after aeration started). 

4.1.2. Polymictic lakes 

Because polymictic lakes are generally shallow and well or par- 

tially mixed, the lack of a well-defined hypolimnion makes it is dif- 

ficult to calculate internal loading rates. Dynamic modeling would 

be needed in such cases but monitoring of inflows and outflows 

was not conducted or data available were too sparse to use dy- 

namic or even simple mass balance models. Surface water quality 

trends, however, could be analyzed and used to estimate treatment 

effect, as has been done in previous studies ( Huser et al., 2016b ; 

Welch and Cooke 1999 ). 

4.1.2.1. Långsjön. Historical water chemical data for TP, SD and 

Chl_a, together with water profile measurements of TP were avail- 

able. Because the lake is polymictic, often no accumulation of TP 

occurs in the bottom water, which limits the possibility to esti- 

mate Li. However, there was a positive effect for all measured pa- 

rameters for all 12 years of post-treatment data, with all variables 

improving by > 50% ( Table 2 , Fig. 8 ). It should be noted that other 

management actions including freshwater dilution were performed 

simultaneously to Al-treatment. These actions will, of course, im- 

prove water quality due to dilution of nutrients in the lake. Ex- 

ternal loading remains elevated, however ( Table 2 ), and will likely 

overwhelm the effects of Al-treatment in the future (see Longevity 

section below). 

4.1.2.2. Malmsjön. Available water chemical data included surface 

water TP concentrations from single samples taken in August each 

year. The lack of water column profile measurements of TP pre- 

cluded calculation of internal loading, making quantification of the 

direct effect of Al-treatment impossible. Despite the limited data 

available, the effect of Al-treatment on surface water TP was clear 

for the complete data record. Surface water TP started to increase 

after treatment ( Table 2 , Fig. 9 ), and TP was estimated to return to 

pre-treatment levels after 20 years. 

4.2. Al-treatment longevity in polymictic and dimictic lakes 

If external P sources are reduced sufficiently and Al is added 

at a dose necessary to inactivate the entire legacy sediment P 

pool, treatment longevity would theoretically be infinite. Once P is 

bound to Al, it is considered permanently inactivated ( Welch and 

Cooke 1999 ) and the sediment layer with elevated aluminum 

bound P will, over time, be buried by new sediment. For most 

lakes discussed herein, however, external loading remains elevated, 

in some cases substantially (i.e., Malmsjön and Långsjön ( Table 2 )). 

In these cases, estimates of longevity are mainly a factor of how 

much external loading has been reduced, with Al dosing and treat- 

ment methods that affect how much Al was added relative to 

legacy sediment P ( Kuster et al., 2020 ) and binding efficiency be- 

tween Al and P ( Agstam-Norlin et al., 2020 ; Huser 2012 ) having a 

smaller effect. 

4.2.1. Dimictic lakes 

Nutrient cycling in Flaten is mainly controlled by in-lake pro- 

cesses rather than external sources due to the low WA:LA ratio 

(6.4) and low intensity of land use in the watershed. Further, the 

Al dose was relatively high (mean 61 g/m 

2 ) and mostly applied di- 

rectly into the sediment rather than to the water column, which 

likely increased binding efficiency (mean 9.0, Table 1 ) ( Agstam- 

Norlin et al., 2020 ). Given that no increase has been detected for Li 

or surface water TP after Al-treatment, longevity in this case may 

be infinite. The LPEq-estimated treatment longevity in Flaten was 
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37 years (i.e. surface water TP increases to 50% of pre-treatment), 

which is above the mean treatment longevity (21 years) for dim- 

ictic lakes ( Huser et al., 2016b ). However, treatment longevity will 

likely be substantially longer than predicted using LPEq given no 

significant increase in Li or surface water TP has been detected to 

date. 

The treatment of Trekanten was in many ways similar to the 

situation in Flaten, with an even lower WA:LA (4.3), similar sedi- 

ment binding efficiency (mean Al:P Al = 10.7) ( Agstam-Norlin et al., 

2020 ), and a relatively high Al dose (mean = 60 g/m 

2 ) injected 

exclusively into the sediment. Because water quality was still im- 

proved with no decline throughout the measurement period, a 

determination of total longevity was not possible. With an LPEq- 

estimated treatment longevity of 47 years, it is possible that total 

longevity (e.g., the time it takes for surface water TP to reach pre- 

treatment levels) may be a century or longer. 

The treatment of Bagarsjön differed from the previous two 

cases (Al was applied exclusively to the water column), resulting in 

a lower binding efficiency (mean Al:P Al = 16.0, ( Agstam-Norlin et al., 

2020 )). Additionally, nutrient cycling and availability is likely con- 

trolled mostly by external sources because the lake has a rel- 

atively small area compared to the watershed (WA:LA = 22.5). 

These two factors likely decreased longevity (14 years), which is 

lower than what would be predicted for an average dimictic lake 

( Huser et al., 2016b ). Similarly, Lejondalssjön also had a shorter 

than expected longevity (7 years), which can be explained by other 

factors, namely a low dose (25 g Al/m 

2 , calculated using outdated 

methods) applied to the water column together with moderately 

high binding efficiency (mean Al:P Al = 11.4). 

4.2.2. Polymictic lakes 

The longevity of the Långsjön treatment was estimated to be 20 

years using linear increase and extrapolation ( Fig. 8 ) of TP. This is 

above the previously reported Al-treatment longevity of polymictic 

lakes (mean 5.7 years) according to Huser et al. (2016b) . The much 

longer predicted longevity can partly be explained by the relatively 

low WA:LA (8.4), meaning that in lake processes are likely more 

important than external sources for nutrient cycling. Långsjön was 

treated with a relatively high Al dose (mean = 60 g/m 

2 ) directly 

applied to the sediment, which led to a moderately high binding 

efficiency (mean Al:P Al = 12.9). Further, another restoration effort 

was simultaneously performed using freshwater dilution (30 l/s, 

since 2002), likely increasing longevity. 

Treatment longevity for Malmsjön, which was estimated at 20 

years using the linear increase in surface water TP after treat- 

ment ( Fig. 9 ), was well over the typical range for polymictic lakes 

( Huser et al., 2016b ). Similar to Långsjön, direct sediment Al ap- 

plication was done with a relatively high dose (60 g/m 

2 ). Binding 

efficiency (mean Al:P Al = 14.6) and the WA:LA (13.2) were moder- 

ate in comparison to the other study lakes. The generally shorter 

longevity in shallow, polymictic lakes is not solely due to lake 

characteristics, but because historically these types of lakes usually 

received lower Al doses, which per se results in short longevity. 

Because Långsjön and Malmsjön received relatively high Al doses 

(calculated using the mobile sediment P pool) applied directly into 

the sediment (increasing binding efficiency), longevity exceeded 

expectations compared to earlier treatments ( Agstam-Norlin et al., 

2020 ; Huser et al., 2016b ). 

4.2.2. Factors influencing Al-treatment longevity 

In this study we showed that observed factors generally con- 

trolling longevity for the most part follow current understanding 

in the literature. Al-dose, WA:LA, and Osgood index (i.e. polymic- 

tic versus dimictic lakes) drove longevity for the study lake, sim- 

ilar to previous conclusions from Huser et al., al.(2016b ) where 

114 lakes were analyzed for factors controlling longevity, and 82% 

of the variation in longevity was explained by WA:LA, Al-dose 

and Osgood index. This is also supported by PCA analysis of the 

study lakes ( Fig. 10 ), where a higher Osgood index (i.e. a greater 

chance for stratification) was positively related to longevity and 

WA:LA ratios were negatively correlated. Al-dose had a weak pos- 

itive correlation to longevity, possibly explained by the similarity 

of dose across the study lakes ( Table 1 ). A new factor, Al:P Al ra- 

tios, was also shown to control longevity, with greater ratios (i.e. 

lower binding efficiency) being negatively correlated to longevity 

of treatment. This is plausible, as a lower binding efficiency means 

that less sediment P will be bound per unit Al added. 

4.3. Recommendations for assessing Li with water quality monitoring 

The duration and intensity of lake water quality monitoring be- 

fore and after Al-treatment constrains the evaluation of effective- 

ness and longevity. In many situations it may not be sufficient to 

only measure changes in surface water nutrient related parameters 

such as SD, Chl_a, and TP in the lake. This is because other restora- 

tion efforts may be used simultaneously and/or external loading 

may remain high, potentially masking the effect of Al (or other 

treatments) designed to reduce internal phosphorus loading. Three 

dimictic lakes in this study were monitored in a sufficient manner 

to determine changes to Li associated with Al-treatment (Lejon- 

dalssjön, Flaten and Trekanten). Monthly water profile measure- 

ments of TP, with multiple samples collected through the verti- 

cal water profile and temperature every meter, made it possible 

to calculate the volume of the hypolimnion and the mass of TP in 

hypolimnetic water and follow the increase throughout the grow- 

ing season when lake was stratified ( Nürnberg 2009 ). Higher res- 

olution monitoring is likely needed in polymictic systems, as in 

Huser et al. (2011) where biweekly observations were used to as- 

sess Li. This is due to the fact that internal loading events are 

likely shorter (i.e. periodic stratification and/or high pH events). 

The polymictic Långsjön was monitored monthly with vertical wa- 

ter chemical profiles and temperature at least every meter, how- 

ever assessing Li using the same methods as for dimictic lakes 

was not possible due to the lack of stabile stratification during the 

growing season. Thus, in polymictic/shallow lakes, monitoring of 

flow and nutrient concentrations is needed in the inlets as well 

so that external and internal loading can be differentiated. Further, 

to assess Li accurately, it will generally be necessary to use dy- 

namic modeling approaches, including spatially representative in- 

formation on sediment P forms and potential flux, with data series 

covering pre and post periods of Al-treatment. 

5. Conclusions 

An Al dose adequate to bind legacy sediment P and appropriate 

treatment methods, depending on lake morphological characteris- 

tics, are crucial for sustainable restoration of surface water qual- 

ity using Al-treatment. Al dose needs to be large enough to in- 

activate the entire pool of excess mobile P in the lake sediment, 

which drives the long term potential for internal loading. Exter- 

nal load reduction is also important, as continued excess P loading 

will eventually overwhelm any measure designed to reduce sed- 

iment P release, as we showed in this study. Based on available 

data, the positive effects from Al-treatment in two lakes (Flaten 

and Trekanten) are likely to last a century or longer. On the other 

hand, lakes with high levels of excess external loading had (or will 

have) shorter treatment longevity ranging from 7 to 21 years. In 

addition, elevated external loading will limit the positive effects of 

reduced internal loading. In Lejondalssjön, internal loading was re- 

duced substantially after Al-treatment (before the treatment was 

overwhelmed by new P), but surface water TP decreased by a 

much smaller amount due to continued elevated external loading. 
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Assuming adequate reduction of external loads, Al dose be- 

comes the most important factor for restoration success. Newer 

methods, based on sediment P, have been developed and have 

led to substantially greater treatment longevities primarily due to 

greater Al doses being added. However, care should be taken with 

Al doses added during one treatment as high, single treatment 

doses decrease the overall efficiency of Al-treatment, as was seen 

in Malmsjön, and can limit the amount of sediment P that is inac- 

tivated per unit Al added. Doses should be split into smaller sub- 

treatments to improve binding efficiency and increase the amount 

of P inactivated per unit Al added. 

Finally, Al-treatment success was based (in most cases) on sur- 

face water quality improvement in this study, however the main 

goal of Al-treatment is to reduce P release from sediment. We at- 

tempted to evaluate reduction in internal loading for all lakes, but 

too often adequate data to do this were lacking. In cases where 

variables such as TP, Chl_a, and SD have unexpected responses, it 

is important to be able to evaluate whether these responses are 

due to internal, external or both types of loading. Proper monitor- 

ing, both before and after treatment, is a necessary requirement to 

be able to evaluate and optimize methods to reduce P loading and 

eutrophication in surface waters in the future. 
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Table S1. Summary of fit for Oneway ANOVA. Lakes grouped 

by Osgood index > or < than 6, and water or sediment treatment. 

RSquare 0.751245 

RSquare Adj 0.709786 

Root Mean Square Error 1.831745 

Mean of Response 11.5286 

Observations (or Sum Wgts) 22 

 

Table S2. Analysis of variance. Lakes grouped by Osgood 

index > or < than 6, and water or sediment treatment. 

Source DF 
Sum of 

Squares 

Mean 

Square 
F Ratio 

Prob > 

F 

Osgood 

index 
3 174.05657 58.0189 15.1941 <.0001 

Error 18 68.73329 3.8185   

C. Total 21 242.78986       

 

 

 

 

Table S3. Statistical summary for Oneway ANOVA. “Steep” denotes 

Osgood index>6. “flat” denotes Osgood index <6. “wat” denotes water 

treatment. “sed” denotes sediment treatment. 

Level #Obs. Mean 
Std 

dev. 
Std Error 

Lower 

95% 

Upper 

95% 

flat sed 7 13.9433 1.40842 0.7386 12.392 15.495 

flat 

wat 
4 11.0768 1.12254 0.9771 9.024 13.13 

steep 

sed 
8 8.2048 2.55678 0.6909 6.753 9.656 

steep 

wat 
3 15.3602 1.90935 1.1282 12.99 17.73 



 

Table S4. Ordered differences report for Tukey´s (HSD) post hoc test. 

“Steep” denotes Osgood index>6. “flat” denotes Osgood index <6. 

“wat” denotes water treatment. “sed” denotes sediment treatment. 

Level   Level Difference 
Std Err 

Dif 

Lower 

CL 

Upper 

CL 
p-Value 

steep 

wat 

steep 

sed 
7.155402 1.322934 3.41641 10.8944 0.0002* 

flat 

sed 

steep 

sed 
5.738505 1.011344 2.88015 8.59686 0.0001* 

steep 

wat 
flat wat 4.283345 1.49247 0.06519 8.5015 0.0458* 

flat 

wat 

steep 

sed 
2.872057 1.196638 

-

0.50999 
6.2541 0.1129 

flat 

sed 
flat wat 2.866448 1.224798 

-

0.59519 
6.32808 0.1258 

steep 

wat 
flat sed 1.416898 1.348459 

-

2.39424 
5.22803 0.7226 

 

 

 

 

 

 

 

Table S5. Summary of fit, MLR for all lakes. 

RSquare 0.751245 

RSquare Adj 0.709786 

Root Mean Square Error 1.831745 

Mean of Response 11.5286 

Observations (or Sum Wgts) 22 

 

Table S6. Analysis of variance, MLR for all lakes. 

Source DF 
Sum of 

Squares 

Mean 

Square 
F Ratio Prob > F 

Model 3 182.39462 60.7982 18.1201  

Error 18 60.39524 3.3553   

C. 

Total 
21 242.78986     <.0001 

 



 

 

Table S7. Parameter estimates, MLR for all lakes. 

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 15.706075 1.205103 13.03 <.0001 

Osgood 

index 
-0.550029 0.180386 -3.05 0.0069 

Pmob -0.787753 0.109304 -7.21 <.0001 

Detected 

Al dose 
0.1014427 0.018188 5.58 <.0001 

 

Table S8. Summary of fit, MLR for sediment treated lakes. 

RSquare 0.89621 

RSquare Adj 0.867903 

Root Mean Square Error 1.305401 

Mean of Response 10.88275 

Observations (or Sum Wgts) 15 

 

Table S9. Analysis of variance, MLR for sediment treated lakes. 

Source DF 
Sum of 

Squares 

Mean 

Square 
F Ratio 

Prob > 

F 

Model 3 161.85731 53.9524 31.6609  

Error 11 18.74478 1.7041  
 

C. Total 14 180.60209     <.0001 

 

 

 

 

Table S10. Parameter estimates, MLR for sediment treated lakes. 

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 15.93434 1.013538 15.72 <.0001 

Osgood index -0.65854 0.141006 -4.67 0.0007 

Pmob -0.824116 0.095057 -8.67 <.0001 

Detected Al dose 0.1074707 0.018275 5.88 0.0001 
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