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Abstract 
Space-borne LiDAR systems can potentially assist large-area assessments of forest resources, in par-
ticular when a subset of the acquired LiDAR footprints is combined with field surveys of forest stand 
characteristics at footprint location. When combined, space-borne LiDAR geolocation error and the 
footprint size may however have considerable effects on the estimation accuracy of forest stand varia-
bles, such as aboveground biomass (AGB). The aim of this study was to draw recommendations for 
future space-borne LiDAR systems, which should deliver data for unbiased AGB assessments. The 
recommendations were drawn from AGB estimations based on space-borne LiDAR waveforms simu-
lated over a 1300 ha large study site in southern Sweden. Large-footprint, nadir-looking satellite wave-
forms were simulated by stacking individual small-footprint, airborne LiDAR waveforms observed 
near a predefined sampling pattern. The stacked waveforms, represented by their metrics, were used 
as input for a two-phase systematic sampling in combination with model-assisted estimation or hybrid 
inference for estimating AGB and its variance. The second-phase sample included 264 inventory plots, 
whereas the first-phase sample included 1010 sample locations, where satellite waveforms were sim-
ulated. After simulating satellite waveforms with different footprint sizes and analyzing the AGB var-
iance, the recommendation is to have a footprint size that is similar to the size of the field plots used 
for collecting reference data, i.e. 20 m diameter in our case. For the optimal footprint size, AGB was 
estimated with a precision of 2.9 Mg per hectare (2.9 % of the average). The results also showed that 
variance estimates increased constantly with increasing geolocation error. For a geolocation error of 
14 m, variance estimates increased by 17%, which justifies investing additional efforts in minimizing 
it. 

Keywords: satellite LiDAR; biomass; large-footprint; waveform stacking; forest inventory; model-as-
sisted estimation, hybrid inference 

 

Introduction 
Space-borne LiDAR (Light Detection and Ranging) 
systems dedicated for estimation of vegetation are ex-
pected and needed in the future. Such systems will reg-
ularly provide samples of vegetation height information 
for all parts of the globe, and offer opportunities for es-
timation of aboveground biomass (AGB) and related 
variables over large areas.  

The Geoscience Laser Altimeter System (GLAS) on 
board of the Ice, Cloud, and Land Elevation Satellite 
(ICESat) collected unprecedented global data on three-
dimensional (3D) forest canopy structure during its mis-

sion from 2003 to 2007. It exploited the LiDAR princi-
ple, i.e. transmitting a laser pulse and recording of its 
time-delay, to receive 3D data from the Earth’s surface. 
Although not specifically designed for vegetation map-
ping, ICESat/GLAS measurements have successfully 
been used for national to global assessments of basic 
forest stand characteristics, such as canopy height 
(Lefsky 2010), growing stock volume (Maselli et al. 
2014; Nelson et al. 2009), aboveground biomass (Bou-
dreau et al. 2008; Margolis et al. 2015; Nelson et al. 
2017), and aboveground carbon (Neigh et al. 2013).  

The upcoming missions, ICESat-II and GEDI (the 
Global Ecosystem Dynamics Investigation), will pro-
vide a very dense, near global sampling of canopy 
heights. The ATLAS instrument on board of the ICESat-
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II satellite will record a certain number of elevation 
measurements for each footprint using a single photon 
counting technique. Single pulses of the ATLAS instru-
ment will be split up into six parallel tracks arranged in 
three pairs with a distance between pairs of 3.3 km. 
Within beams, the single footprints will be separated by 
a distance of 0.7 m and will have a diameter of 14 m 
(Abdalati et al. 2010; Gwenzi et al. 2016). The GEDI 
mission will collect large-footprint waveforms along 10 
parallel tracks with a spacing of about 600 m. Within 
tracks, the waveforms will be recorded every 25 m over 
25 m large footprints (NASA 2016). ICEsat data has al-
ready been used for large-area forest resource assess-
ments (Nelson et al. 2017), and more applications are 
expected to come with ICEsat-II and GEDI, and there is 
a large potential to further develop this technology in 
order to create fully operational and redundant systems 
that are tailor-made for national and international forest 
biomass assessments. 

The application of space-borne LIDAR (SL) data for 
forest monitoring typically requires field collected ref-
erence data and suitable modelling strategies for predict-
ing field-observed stand characteristics from SL meas-
urements (Nelson et al. 2017). For developing predic-
tion models, a link between field and SL data is required, 
which can either be done by measuring ground data di-
rectly under SL observations (Montesano et al. 2015; 
Nelson et al. 2009) or by using an additional data source, 
such as airborne laser scanning (ALS) for an indirect 
linkage between field and SL data (Margolis et al. 2015; 
Nelson et al. 2017). From a survey sampling perspec-
tive, the SL measurements form a first sample phase, as 
they do not fully cover the Earth’s surface, which intro-
duces a sampling error attached to estimates derived 
from such data. For the case of directly linking field and 
SL data, field observations are sub-sampled within the 
first sample phase and estimation of target variables and 
their uncertainties can be done using design-based infer-
ence with model-assisted estimation (Gregoire et al. 
2011) or by using a so called hybrid approach (Ståhl et 
al. 2016). If field data is not covered by SL data (the 
indirect case), the uncertainties from two models (e.g. 
field to ALS and ALS to SL) need to be considered dur-
ing estimation. In this case the hybrid three-phase esti-
mators developed by Holm et al. (2017) may be applied. 
More detail on LiDAR sampling for forest applications 
can be also found in Wulder et al. (2012). 

The spatial mismatch between SL data and field plots 
as well as the plot size itself are expected to have con-
siderable effects on model fit and the accuracy of AGB 
estimates. These effects were, for example, studied for 
ALS data by Gobakken and Næsset (2009) and Frazer 
et al. (2011). Gobakken and Næsset (2009) found that 
stem volume estimates were already severely affected 
by geolocation errors of 5 m and that errors were espe-
cially a problem when small field plots were used. Sim-
ilar conclusions were later drawn by Frazer et al. (2011), 
further stating that plot size is a critical design parameter 

in LiDAR studies affecting (1) the precision and accu-
racy of AGB estimates, (2) the precision and accuracy 
of LiDAR metrics, and (3) the negative effect of geolo-
cation error. The recommendation from the study was 
towards the usage of larger plot sizes in comparison to 
what is common in forest inventories of temperate and 
boreal zones (see Tomppo et al. 2010 for common plot 
sizes). The mismatch of the plot size and the size of a 
remote sensing pixel was studied in Rejou-Mechain et 
al. (2014) using 30, globally distributed, large field plots 
(8-15ha).The study, however, assumed remote sensing 
data which have no measurement errors, i.e. measure-
ments retrieved the exact value of AGB density as meas-
ured in the field plots. The analysis showed that a plot 
size smaller than a remote sensing pixel causes consid-
erable calibration errors, which was explained by large 
spatial variability in mean AGB density for plot sizes 
smaller than 0.25 ha. 

For large-footprint, space-borne systems studies 
about the effects of footprint size and positional accu-
racy are however still few. Pang et al. (2011) studied the 
effects of footprint size and off-nadir pointing on the 
precision of canopy height estimates by means of simu-
lation. They concluded that footprints with a diameter 
between 25 m and 30 m would be ideal to level the ef-
fects of vegetation height and terrain slope on waveform 
length. This footprint size corresponds well with what is 
commonly used for field plot size in forest inventories 
of temperate and boreal climate and also with the foot-
print size that will be used by the future GEDI system. 
Furthermore, this footprint size was also recommended 
for the laser altimeter planned for DESDynI mission 
(Hall et al. 2011). However, the study by Pang et al. 
(2011) does not handle the influence of geolocation er-
ror on estimation of forest variables with large-footprint 
LiDAR sensors. Goncalves et al. (2017) varied the loca-
tions of field plots and used Monte Carlo simulations 
and binomial distribution to estimate the biomass differ-
ence due to the introduced spatial mismatch between 
field plots and GLAS footprints in Amazon forest. Their 
analysis showed that the plot-footprint overlap should 
be larger than 75 % (50 %) for primary (secondary) for-
est to have a geolocation error less than 20 %. However, 
the study by Goncalves et al. (2017) does not handle the 
influence of the footprint size on estimation of forest 
variables. 

Several studies have used simulated SL data to pre-
pare future space missions. The simulations are usually 
based either on (1) a radiative transfer model (Gastellu-
Etchegorry et al. 2015; Montesano et al. 2015; North et 
al. 2010), or (2) on data from airborne sensors (Gwenzi 
et al. 2016). The radiative transfer model approach re-
quires assumptions on physical geometrical properties 
of vegetation, whereas the data approach requires cor-
rections for the sensor characteristics affecting the rec-
orded signal. Blair and Hofton (1999) modelled large-
footprint LiDAR waveform data using a vertical distri-
bution of intercepted surfaces approximated with data 
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from a small-footprint LiDAR system. The returned 
waveform from the large-footprint system was obtained 
using a composition of elementary pulses reflected from 
each element within the large footprint. They modeled 
the elementary reflections with the spatial intensity 
properties of a large-footprint system using a normal 
distribution over finite vertical and horizontal distances 
and convolved the sum of elementary reflections with a 
Gaussian approximation of the impulse response of a 
large-footprint system to obtain “pseudo-waveforms”. 
High correlations were observed when simulated large 
footprints were compared with data from the airborne 
large-footprint system “Laser Vegetation Imaging Sen-
sor” (LVIS). They concluded that the simulated wave-
forms could be useful for pre-launch simulations of up-
coming space-borne LiDAR systems. Duong et al. 
(2009) have shown that ALS can very well explain ICE-
Sat waveforms of 70 m footprint. However, as discrete 
points were used, the blurring effect of waveforms (ca 5 
ns duration) was not found for clearly defined objects 
(e.g. horizontal ground). 

The overall objective of this paper is to study the ef-
fect of footprint size and geolocation error on AGB es-
timates obtained from a first-phase sample of simulated 
SL footprints and a smaller second-phase sample of co-
registered field plots. The method for SL waveform sim-
ulation is based on a spatial integration of the interac-
tions of individual laser pulses and the object, i.e. small-
footprint waveforms, found within a large-footprint, SL 
beam cone. This, so-called waveform stacking, involves 
range corrections for the flight trajectory and oblique 
looking. Thus, the primary difference between airborne 
and space-borne waveforms we consider lies in the foot-
print size, whereas the length and shape of the airborne 
system response (emitted pulse recorded by the detec-
tor) “define” the length of pulses from simulated space-
borne waveforms. To emphasize that the SL waveforms 
are simulated, they will be referred here as simulated 
space-borne LiDAR (SSL) waveforms. 

To study the effect of footprint size and geolocation 
errors on AGB estimates, nadir-looking SSL waveforms 
with different footprint sizes were simulated for a pre-
defined monitoring strategy. The advantage of studying 
a real site is the large amount of ground reference data 
available. From the SSL waveforms, various waveform 
metrics were derived, which provided the input for the 
AGB estimation including uncertainty analyses. Based 
on the outcome of these analyses recommendations 
were drawn for the design of future SL systems rather 
than to simulate a particular sensor. 

The paper is structured in the following way. First, 
we present the study site and data used for the simula-
tion of SL waveforms. Second, we describe the methods 
for SL waveform simulation. Third, metrics for predict-
ing AGB are defined and derived from the SSL wave-
forms. Fourth, the framework for estimating AGB and 
its uncertainty is introduced and results are presented 

and discussed. Finally, conclusions and recommenda-
tions with respect to forestry applications are drawn for 
future SL systems. 

Study Site and Data 

Study Site and Forestry Inventory Data 
The test site Remningstorp is located in the south of 
Sweden (58°30’ N, 13°40’ E). The estate covers about 
1,300 ha of managed forest land. Prevailing tree species 
are Norway spruce (Picea abies), Scots pine (Pinus syl-
vestris) and birch (Betula spp.). The topography is flat 
with a ground elevation between 120 and 145 m above 
sea level. During summer 2014, 264 field plots with a 
radius of 10 m were distributed evenly using a square 
grid with 200 m spacing (Figure 1, the filled circles). On 
these plots, stem diameter at breast height (dbh) and tree 
species were registered for all trees with dbh≥ 40 mm, 
while tree height was measured for a sample of trees. 
The coordinates of the plot centers were measured with 
differential GNSS (Global Navigation Satellite System). 
In addition to the field data, a manual interpretation of 
the land use/land cover of the Remningstorp area was 
available from an experienced photo interpreter. The 
data was used to limit the analysis to productive forest 
lands. 

 
Figure 1: Simulated space-borne LiDAR (SSL) sampling de-
sign and inventory strategy employed in the case study for es-
timating average aboveground biomass in the study area. The 
open circles together with the closed circles are the first-
phase sample of SSL observations, whereas the filled circles 
only are the second-phase field measurements. The red lines 
show the strip trajectories of the small-footprint, full-wave-
form, airborne LiDAR data, used to simulate large-footprint 
SL waveforms. The coordinate reference system is 
SWEREF99 TM. 

Airborne Laser Scanning Data 
Full-cover waveform ALS data were available for the 
entire study area and used for simulating SL waveforms. 
The data were collected with a RIEGL LMS-Q680i 
scanner on 14th of September 2014. In total, there were 
27 ALS strips covering the forest inventory plots. The 
majority (25) of the ALS strips were recorded in an east-
west direction and the remaining two in a north-south 
direction (Figure 1). The east-west strips were separated 
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from one another by approximately 150 m, and the av-
erage flight height above the terrain was 305 m. As this 
scanner has a scan angle range of ±30°, the average 
swath width was 352 m, while the strip overlap was 
about 55 %. 

Single ALS strips were collected with mean point 
densities of last returns ranging between 25 and 28 
points per m2. The footprint diameter at the ground was 
less than 21 cm over the whole area, while the average 
footprint diameter was 15 cm. The scanner was further 
using a wavelength of 1550 nm to transmit laser pulses 
of 5 ns (the full width at the half maximum of the am-
plitude). This corresponds to a range resolution of 0.75 
m (Wagner et al. 2006). The RIEGL LSM-Q680i sensor 
supports multiple time around (MTA) ranging, i.e. it op-
erates with multiple pulses in the air, which then causes 
range ambiguity for the returns (Rieger and Ullrich 
2011). Practically, this means that the scanner does not 
operate with a single pulse repetition rate (PRR), but 
changes the PRR constantly among a preset mean PRR. 
For our data, the mean PRR was set to 360 kHz, while 
the highest and lowest PRR were set to 374 kHz and 348 
kHz, respectively. These PRRs caused the range ambi-
guities of 401 m and 431 m, respectively. The maximum 
range of our ALS data was 433 m. This means that there 
were at maximum two pulses at the same time in the air, 
i.e. two MTA zones for our data set. 

The ALS data were further processed, return-wise, in 
the sensor’s manufacturer software to derive individual 
returns, and subsequently, a digital terrain model 
(DTM). There were up to 10 discrete returns per trans-
mitted pulse after the processing. The returns were fil-
tered using the algorithm suggested by Axelsson (1999), 
resulting in a 1 m grid DTM of the study area. The DTM 
as well as the georeferenced returns were projected to 
the SWEREF99 TM coordinate system. 

Methodology 
The methodology includes three major steps: waveform 
simulation, calculation of waveform metrics and AGB 
estimation. 

We employed a two-phase sampling strategy for 
AGB estimation, where the first phase includes a sys-
tematic sample of 1010 satellite plots with simulated 
waveform data, while the second-phase sample includes 
a systematic sub-sample of 264 field plots. The initial 
SSL sampling grid contained also plots over arable land 
and other non-forest land-use categories (e.g. lakes); 
such plots were consequently excluded from the analy-
sis. For the field plots, both inventory and simulated 
waveform data were available. The systematic sampling 
was designed in the following way: satellite orbits are 
assumed to run in a north-south direction and have a 
spacing of 100 m. Within orbits, every 100 m an obser-
vation was made, so that each field plot is covered with 
SSL data. Additionally, there are SSL observations in-
between field observations (Figure 1). 

For the second-phase sample (the field plots), a direct 
link between field data and waveform metrics was es-
tablished. Such an inventory strategy has been used in 
connection with ICESat-I data, where waveforms were 
searched in the field for collecting ground reference data 
(Montesano et al. 2015; Nelson et al. 2009). SL is con-
sidered a large-area sampling tool in forest surveys, op-
erating at continental to global scale. In our study, we 
mimic the implementation of one possible inventory 
strategy for a much smaller geographic region due to 
limited availability of data for waveform simulations 
and restrictions concerning computation time. The focus 
is on the influence of varying footprint size and geolo-
cation error of SSL waveforms on final AGB estimates. 

Waveform Simulation  
The simulation of SL waveforms was done by stacking 
individually recorded airborne LiDAR waveforms that 
were located within a larger footprint. The objective was 
to simulate nadir-looking waveforms whose large foot-
prints are centered at the middle points of the SSL sam-
ple plots and the field plots, respectively. In total, 1010 
SL large-footprint waveforms were simulated at the cor-
responding sample locations. 

Several processing steps are required to go from raw 
small-footprint airborne LiDAR waveforms to large-
footprint SSL waveforms. The processing involves as-
signing the MTA zone to recording blocks, waveform 
geo-referencing, selection of waveforms within the sam-
ple plots, range corrections and stacking. This subsec-
tion starts by presenting the structure and properties of 
the raw waveform data, and then, follows the mentioned 
processing steps. The subsection ends by presenting the 
metrics derived from the stacked waveforms, which will 
be used for AGB estimation. 

LiDAR Waveforms and Recording Blocks 
The RIEGL LMS-Q680i LiDAR sensor recorded the 
amplitude of the backscattered energy from a transmit-
ted laser pulse at every nanosecond. This waveform 
sampling frequency corresponds to a range of 15 cm, i.e. 
a double way distance of 30 cm. The amplitudes col-
lected over a short period (usually 80 ns, or 160 ns, cor-
responding to 24 m and 48 m, respectively) forms a sig-
nal, i.e. a waveform, which is then stored by the system 
in recording blocks (Riegl 2013). The recording blocks 
are grouped by corresponding preceding laser pulses 
and are assigned with auxiliary waveform information. 
This means that several recording blocks can be stored 
under a single transmitted pulse. 

The raw LiDAR waveform data were stored strip-
wise, and individual recording blocks, as well as their 
auxiliary information, were accessed by a waveform ex-
traction library (the RiWaveLib) provided by the manu-
facturer. 
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Assigning Recording Blocks to Corresponding Laser 
Pulses 
The used LiDAR sensor utilizes MTA ranging, which 
requires resolving the range ambiguities of the recording 
blocks. Methods for resolving the MTA range ambigui-
ties are suggested for the return-wise data processing by 
Rieger and Ullrich (2011) and Lu et al. (2015). We bor-
rowed the idea of using a DTM for this task, but had to 
extend the method to raw LiDAR waveforms.  

The range ambiguities occurred when new laser 
pulses were transmitted before the sample block of the 
preceding pulse was recorded. This practically means 
that a specific sample block did not necessarily corre-
spond to the preceding laser pulse. In such a case, the 
sample block had to be assigned to another, earlier laser 
pulse. As our LiDAR data had at maximum two pulses 
in the air at the same time (Section 2.2), there were just 
two possibilities: a recording block had to be related ei-
ther to the preceding pulse, or to the one before the pre-
ceding, pulse.  

The range ambiguities of our recording blocks were 
resolved in the following manner. First, the maximum 
amplitude return was extracted from each sample block. 
Then they were assigned with the range relative to their 
preceding laser pulses. Combing these ranges with the 
unit beam vectors, a point cloud in the scanner coordi-
nate system was derived. This point cloud was then 
transformed by direct geo-referencing to a world coor-
dinate system, in our case SWEREF99 TM. Finally, the 
georeferenced heights of the maximum-amplitude re-
turns were compared with the DTM (Section 2.2). 

As expected, the return heights clustered into two 
groups: one close to the terrain, i.e. in MTA zone 2, and 
another one erroneously (> 200 m) away from the terrain 
(closer to the flight trajectory), i.e. in MTA zone 1. 

The maximum amplitude returns close to the terrain 
have the correct range, and thus, their recording blocks 
are related to the preceding pulse. On the other hand, the 
remaining returns apparently have an erroneous range. 
The above procedure was repeated for the ranges de-
rived relative to the one before the preceding pulse. Fi-
nally, the points close to the terrain (in MTA zone 2) 
from both version of ranges were combined into a sin-
gle, georeferenced point cloud with correctly assigned 
ranges. This point cloud was also assigned with sample 
block identifiers as well as the auxiliary data (e.g. am-
plification settings, recording times of the recording 
blocks, and unit laser beam vectors in both sensor and 
world coordinate system, etc.). Such a geo-referenced, 
maximum-amplitude point cloud was derived for each 
strip. 

Selection of Recording Blocks for Waveform Stacking 
To select all recording blocks for a SSL sample location, 
the nearest LiDAR strip was first identified using the 
strips’ trajectories, i.e. finding a strip trajectory, which 
is the closest (in the x-y plane) to the sample location. 
The selection of the recording blocks near to the sample 

location was based on the geo-referenced maximum-
amplitude point cloud (Section 3.1.2). All the recording 
blocks with maximum-amplitude returns that were lo-
cated inside a circular neighborhood centered at the 
sample location were selected. The radius of this circu-
lar neighborhood was treated as a variable in a later 
stage, when different footprint sizes were simulated. 
The selected maximum-amplitude returns contained 
also the recording indices of the corresponding record-
ing blocks and their laser pulses, which was then used 
to access the waveforms. Two different channels were 
used for the recording blocks: (a) the so-called high 
power (low amplification) channel, and (b) low power 
(high amplification) channel. Here, only the recording 
blocks recorded by the high-power channel were con-
sidered for stacking. 

Range Corrections 
During the scanning, the absolute position and orienta-
tion of the scanner constantly changed, which is de-
scribed by the flight trajectory. On the other hand, the 
ranges, i.e. the x-axes of the recording blocks (wave-
forms), are always defined relative to the instantaneous 
scanner location. This means that the recording blocks 
are misaligned when compared according to their origi-
nal ranges. Therefore, range corrections for the scanner 
position and orientation are to be applied before the 
stacking of the recording blocks. The range correction 
for the scanner position, i.e. the range offset, was de-
rived with respect to a reference point 𝑇𝑇0, set to define 
the origin of the corrected ranges. The range correction 
for the scanner orientation was derived with respect to 
the vertical, as the objective was to simulate the nadir-
looking waveforms.  

For a sample block 𝑖𝑖 selected for the stacking at the 
sample location 𝑗𝑗, the corrected range 𝑅𝑅𝑖𝑖′was calculated 
as: 

𝑅𝑅𝑖𝑖′ = 𝑅𝑅𝑖𝑖 cos𝛼𝛼𝑖𝑖 + Δ𝑅𝑅𝑖𝑖  (1) 

where 𝑅𝑅𝑖𝑖 is the original range, 𝛼𝛼𝑖𝑖 is the nadir angle of 
the laser beam vector and ΔR𝑖𝑖 is the range offset. The 
first term 𝑅𝑅𝑖𝑖cos𝛼𝛼𝑖𝑖 is the range correction term for the ori-
entation of the scanner. Figure 2 shows schematically 
the corresponding geometry as well as the range correc-
tions for a particular location and a sample block. The 
point 𝑇𝑇𝑖𝑖 represents an instantaneous position of the scan-
ner, while the vector Τı𝑃𝑃ı������⃗   represents the laser beam vec-
tor. The figure also shows a reference point 𝑇𝑇0 which 
was defined as the mean (of the coordinates) of the tra-
jectory points corresponding to the GPS times of all the 
recording blocks selected for the stacking. The range 
offset ΔR𝑖𝑖 was calculated as the magnitude of the vector 
Τo𝑇𝑇𝚤𝚤�������⃗  projected to the unit nadir vector �𝑛𝑛�⃗ = −𝑘𝑘�⃗ �:Δ𝑅𝑅𝑖𝑖 =
�ΤoΤı ∙����������⃗ 𝑛𝑛�⃗ �. 
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Figure 2: Scanning geometry and the range corrections shown 
schematically for a particular sample location Sj, and the re-
cording block i. The point 𝑇𝑇0 is the reference point introduced 
for the range correction, whereas the point 𝑇𝑇𝑖𝑖 is the position 
of the scanner at the trajectory during the recording of the 
block i. The point 𝑃𝑃𝑖𝑖 shows the geolocation of an instantane-
ous amplitude sample within the recording block i, whereas 
𝑅𝑅𝑖𝑖 is its range. 𝛼𝛼𝑖𝑖 is the nadir angle of the laser beam vector 
for the block i. 

The nadir angle 𝛼𝛼𝑖𝑖 depends on the plot size (the sim-
ulation radius 𝑟𝑟𝑠𝑠𝑖𝑖m) as well as the planar displacement 
between 𝑆𝑆𝑗𝑗 and 𝑇𝑇0 (the nadir angle of the vector Τo𝑆𝑆ȷ�������⃗ . 
For 98 % of the SSL sample locations 𝑆𝑆𝑗𝑗, the nadir angle 
of the vector Τo𝑆𝑆ȷ�������⃗  was below 2°, whereas the maximum 
nadir angle was 14° for all 𝑆𝑆𝑗𝑗. This corresponds to the 
range corrections of 0.1 % and 3 %, respectively. 

Recording Blocks Aggregation (Stacking) 
Instantaneous amplitudes of the selected recording 
blocks were aggregated according to their corrected 
ranges. A 15 cm binning of the nadir axis from the ref-
erence point 𝑇𝑇0 was introduced, and amplitudes with 
ranges falling in particular bins were accumulated. Am-
plitudes smaller than a noise threshold were not consid-
ered. Here, the noise threshold of 15 DN was applied, 
which corresponds to the maximum amplitude among 
the records at the end of unimodal recording blocks. 

For each sample location, an aggregated waveform 
was derived. The aggregated waveforms were normal-
ized by the number of the selected recording blocks at 
the particular sample location. This resulted into a mean, 
nadir-looking, large-footprint waveform per sample lo-
cation. These simulated waveforms were used for the 
further analysis. 

Waveform Metrics and Simulated Waveform 
Sets  

Waveform Metrics 
The most common waveform metrics used in previous 
biomass studies are those considering the vertical distri-
bution of the waveform’s energy (e.g., Duong et al. 
2009; Lefsky et al. 1999; Popescu et al. 2011; Sun et al. 
2008). Typical examples are canopy heights that corre-
spond to certain energy quantiles. Before deriving such 
waveform metrics, the start- and end of individual wave-
forms have to be defined. These two waveform features 
refer to the canopy top and the ground, respectively. For 
the simulated nadir waveforms the range difference be-
tween the canopy top and the ground is the canopy 
height. The waveform start was defined as the range bin 
where the mean waveform amplitude exceeded zero for 
the first time, i.e. the raw amplitude exceeded the noise 
threshold. The waveform end was defined as the range 
bin corresponding to 99% of the waveform area (en-
ergy), integrated from the waveform start, i.e. the can-
opy top. The 99 % quantile was used instead of the hard 
noise threshold because it showed to be less sensitive to 
trailing noise, which appears just after the last terrain 
amplitudes. The energy metrics derived here included 
three canopy heights. First, the total canopy height (ℎ100) 
calculated as the distance between the start and end of 
the waveform. Second, the height of median energy 
(ℎHOME) calculated as the distance from the waveform 
end to the bin where 50 % of the waveform area occurs. 
Third, the canopy height (ℎ95) calculated similarly as the 
HOME, but at 95 % of the waveform energy (integrated 
from the waveform end).  

In addition to the energy metrics, a peak analysis was 
performed to derive peak metrics. The waveform peaks 
were identified using the findpeaks function in the Sig-
nal Processing Tool Box of the Matlab R2016b software 
(MATLAB 2016). The peak metrics derived here in-
cluded three parameters. The first peak parameter is a 
peak-to-peak distance (𝑑𝑑p2p). For bimodal waveforms, 
i.e. waveforms with two peaks, 𝑑𝑑p2p is uniquely defined. 
However, for multimodal waveforms (>more than two 
peaks), 𝑑𝑑𝑝𝑝2𝑝𝑝 was calculated as the distance from the first 
to the last peak. For unimodal peaks, i.e. (a single peak 
detected), 𝑑𝑑p2p was replaced with the full waveform 
width at half of the peak magnitude (FWHM). The re-
maining two peak parameters are: (i) the amplitude of 
the last peak (𝑎𝑎last), and (ii) the full width at half of the 
last-peak magnitude (𝑑𝑑FWHM). 

The values of the six waveform parameters were de-
rived for all SSL plots in the first sample phase, and 
were used for regression analyses for assessing AGB. 

Waveform sets 
The impacts of footprint size and geolocation error were 
analyzed independently and with different waveform 
sets. To analyze the impact of footprint size on biomass 
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estimates and their corresponding variance estimates, 
eight waveform sets were generated using different 
search radius values (Section 3.1.3). Each set contained 
1010 SSL waveforms. The radius values ranged from 
2.5 m to 20 m, with increments of 2.5 m, mimicing dif-
ferent footprint sizes. These eight waveform sets, repre-
sented by their waveform metrics, were used as input for 
the biomass model to derive the footprint size that min-
imizes the biomass variance estimates. 

To analyze the impact of geolocation error on vari-
ance estimates, a single waveform set was generated us-
ing the footprint size that minimized the biomass vari-
ance estimates. This set contained 1010 SSL waveforms 
as before, and additionally 24 SSL waveforms around 
each sample location to simulate geolocation errors. 
This resulted in 25250 SSL waveforms in total. The lo-
cations of the 24 additional SSL waveforms were dis-
tributed systematically, using a 5 x 5 nodes grid, around 
each sample location. The node spacing was set to 5 m, 
while the grid sides were parallel to the x- and y-axis of 
the world coordinate system. This provided geolocation 
errors of up to ±10 m along the x- and y-axis, and up to 
±14.1 m along the main diagonal. Figure 3 shows sev-
eral SSL sample locations and the corresponding grids 
of 24 additional locations used for analyzing the impact 
of the geolocation error. 

 
Figure 3: A zoomed-in view into the SSL sample locations 
and the inventory plots. The smaller grey dots around the SSL 
sample locations are the additional sample locations intro-
duced to assess the impact of geolocation error. The dots 
form local grids with a grid spacing of 5 m. Note that the SSL 
sample locations also includes the Inventory plot locations. 

Case study: Application of space-borne LiDAR 
data in forest surveys 
The 33 waveform sets (8 for the footprint simulation and 
25 for the geolocation error simulation) were combined 
with the systematic sample of 𝑛𝑛𝐼𝐼𝐼𝐼=264 field plots to es-
timate the biomass of our study area. We employed a 
two-phase design, where the first phase is a systematic 
sample of 𝑛𝑛𝐼𝐼=1010 single-waveform satellite plots. The 
second-phase sample includes the 264 field plots, for 
which a direct link between field data and waveform 

metrics was established. For the second-phase sample 
(field plots), we have a full set of information; i.e. AGB 
was predicted from field measurements using the mod-
els from Marklund (1988) and SSL metrics were avail-
able from the waveform simulation. For the remaining 
first-phase sample plots we have only SSL metrics 
available and AGB was predicted using a model that 
was developed from the ground reference data. 

The model had the following form: 
𝑦𝑦𝑖𝑖=𝛽𝛽0+𝛽𝛽1𝑑𝑑p2p+𝛽𝛽2ℎHOME+𝛽𝛽3ℎ95+𝜖𝜖𝑖𝑖, and parameter values 
were estimated using the generalized least squares tech-
nique (McCulloch et al. 2008) as implemented in the 
nlme R- package (Pinheiro et al. 2016). To avoid back-
transformation bias and to tackle heteroscedasticity, re-
sidual variance was modeled as a function of the ℎHOME 
predictor variable. The chosen model was selected from 
all possible linear models, not considering interaction 
terms, that could be built with our six waveform metrics 
(in total 63 possible combinations). The models were fit 
to the waveform set that had no geolocation error and a 
footprint size that corresponded to the size of the field 
plots (10 m radius). As selection criteria, Bayes infor-
mation criterion and residual standard error were used. 

The selected model was then fit to all 32 waveform 
sets individually, and model fits were evaluated using 
model efficiency (𝑀𝑀E) and root mean square error 
(𝑅𝑅𝑀𝑀𝑆𝑆E), where 

𝑀𝑀𝑀𝑀 = 1 − SSres
SSmean

  (2) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = √ 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛11−𝑛𝑛𝑣𝑣𝑣𝑣𝑟𝑟

   (2) 

with 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛𝐼𝐼𝐼𝐼
𝑖𝑖=1  and 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ (𝑦𝑦𝑖𝑖 −

𝑛𝑛𝐼𝐼𝐼𝐼
𝑖𝑖=1

𝑦𝑦�𝑖𝑖)2 denoting the number of model parameters. To fur-
ther check if models were correctly specified, graphs of 
observed AGB plotted against model predictions were 
constructed in two ways: (1) original pairs of observa-
tions and predictions and (2) group means of observed 
and predicted values. For the latter pairs of observations 
and predictions (𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�) were ordered with respect to 𝑦𝑦𝚤𝚤�  
and then grouped into categories of ten observations. 
For each category, averages of observed and predicted 
AGB were calculated and plotted against each other. For 
correctly specified models, points should follow the 1:1 
line with intercept 0 and slope 1, e.g. McRoberts et al. 
(2013). Graphs for the footprint waveform sets are pro-
vided in Appendix A, and for the geolocation waveform 
sets, graphs are provided in Appendix B. 

For estimating average biomass density 𝑦𝑦� of the 
study area and its variance, two inferential frameworks 
were applied: (1) model-assisted estimation under de-
sign-based inference and (2) hybrid inference combin-
ing the inferential frameworks model-based and design-
based (Ståhl et al. 2016). The two-phase sampling 
model-assisted estimator for 𝑦𝑦� is (Mandallaz 2008, p80) 

𝑦𝑦��𝑚𝑚𝑚𝑚 = 1
𝑛𝑛𝑙𝑙
∑ 𝑦𝑦�𝑘𝑘𝑘𝑘∈𝑆𝑆𝑙𝑙 + 1

𝑛𝑛𝑙𝑙𝑙𝑙
∑ �̂�𝑒𝑘𝑘𝑘𝑘∈𝑆𝑆𝑙𝑙𝑙𝑙  (4) 
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where 𝑦𝑦�𝑘𝑘 is AGB in Mg per hectare of population 
element 𝑘𝑘 predicted from the regression model, and �̂�𝑒𝑘𝑘 
is the model residual �̂�𝑒𝑘𝑘 = 𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘. A variance estima-
tor for 𝑦𝑦��𝑚𝑚𝑚𝑚 is (Mandallaz 2008, p81) 

𝑉𝑉(�𝑦𝑦��𝑚𝑚𝑚𝑚) = �1− 𝑛𝑛𝑙𝑙𝑙𝑙
𝑛𝑛𝑙𝑙
�
∑ ��̂�𝑟𝑘𝑘−

∑ 𝑟𝑟�𝑘𝑘𝑘𝑘∈𝑆𝑆𝑙𝑙𝑙𝑙
𝑛𝑛𝑙𝑙𝑙𝑙

�𝑘𝑘∈𝑆𝑆𝑙𝑙𝑙𝑙

�𝑛𝑛𝑙𝑙𝑙𝑙(𝑛𝑛𝑙𝑙𝑙𝑙−1)�
+

∑ (𝑦𝑦�𝑘𝑘−
∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝑆𝑆𝑙𝑙𝑙𝑙

𝑛𝑛𝑙𝑙𝑙𝑙
)𝑘𝑘∈𝑆𝑆𝑙𝑙𝑙𝑙

(𝑛𝑛𝑙𝑙(𝑛𝑛𝑙𝑙𝑙𝑙−1))

 (5) 

Under hybrid inference, 𝑦𝑦� is estimated using the fol-
lowing estimator (Ståhl et al. 2016): 

𝑦𝑦��ℎ𝑦𝑦 = 1
𝑛𝑛𝑙𝑙
∑ 𝑦𝑦�𝑘𝑘𝑖𝑖∈𝑆𝑆𝑙𝑙   (6) 

Under sampling designs that use equal inclusion 
probabilities, as in our case, and for models for which 
∑ �̂�𝑒𝑘𝑘 is zero, the two estimators from Eq. (4) and Eq. (6) 
will yield identical results (e.g., Magnussen 2015). 

For the variance of 𝑦𝑦��ℎ𝑦𝑦 we have a design-based com-
ponent from the sample nature of satellite observations 
and a model-based component, since AGB for phase-
one units without field data was predicted using a 
model. Although, systematic sampling is the widely ac-
cepted standard in surveys of natural resources, it has 
the drawback that no unbiased variance estimator exist 
due the fact that many second-order inclusion probabil-
ities are zero. The most common strategy is to treat sam-
pling units as they were selected randomly and to apply 
the according variance estimator for simple random 
sampling. This approach will yield conservative esti-
mates that overestimate the variance of the total estima-
tor (e.g., Ene et al. 2013); the degree of overestimation 
is unknown. In our case this is not relevant, since the 
design-based variance component is fixed (the sampling 
design does not change) and our focus is on the model-
based variance component, which is influenced by foot-
print size and geolocation error. A variance estimator is 

𝑉𝑉� �𝑦𝑦��ℎ𝑦𝑦� = 𝑉𝑉�𝑑𝑑𝑑𝑑 + 𝑉𝑉�𝑚𝑚𝑑𝑑  (7) 

where 𝑉𝑉�𝑑𝑑𝑑𝑑 = 1
𝑛𝑛𝑙𝑙
∑ �𝑦𝑦�𝑘𝑘−𝑦𝑦���

2

𝑛𝑛𝑙𝑙−1𝑆𝑆𝑙𝑙  is the simple random sam-

pling without replacement estimator for the design-
based component of total variance, and 𝑉𝑉�𝑚𝑚𝑑𝑑 = 1

𝑛𝑛𝑙𝑙
𝜎𝜎�𝑟𝑟2 +

𝒗𝒗´𝑿𝑿𝑐𝑐𝑐𝑐𝑐𝑐� �𝜷𝜷��𝑿𝑿´𝒗𝒗 is the respective model-based compo-
nent (Magnussen et al. 2016, Eq. 6), where. Here, 𝑿𝑿 is 
the design matrix of the model with dimensions 
𝑛𝑛𝐼𝐼×𝑝𝑝+1, where 𝑝𝑝 is the number of predictors, is a 𝑛𝑛𝐼𝐼×1 
matrix of entries with the value 1/𝑛𝑛𝐼𝐼, and 𝜎𝜎�𝑟𝑟2 is the esti-
mated residual variance calculated as 𝜎𝜎�𝑟𝑟2 = ∑ 𝑤𝑤𝑖𝑖2𝑒𝑒𝑖𝑖2/𝑆𝑆𝑙𝑙𝑙𝑙
(𝑛𝑛𝑙𝑙𝑙𝑙 − 𝑛𝑛𝑣𝑣𝑚𝑚𝑟𝑟). The weights 𝑤𝑤𝑖𝑖 are used in the general-
ized least squares regression to account for heterosce-
dasticity and are derived from the residual variance 
model. Note that for large-area (national to global) 
surveys, 𝜎𝜎�𝑟𝑟2 is small compared to the second term in 
𝑉𝑉�𝑚𝑚𝑑𝑑 and can be ignored (Ståhl et al. 2016). For a more 
intuitive interpretation of results, variance estimates 
are transformed to standard error estimates by taking 
the square root 𝑆𝑆𝑀𝑀� = √𝑉𝑉�(𝑦𝑦��). 

Results and Discussion 

Simulated Waveforms and Selection of 
Waveform Metrics 
Figure 4 shows nadir-looking waveforms stacked using 
the radius of 10 m centered at four different field plot 
locations. Additionally, the figure shows corresponding 
georeferenced ALS returns, plotted in the x-z plane. The 
coordinates are given relative to the field plot center. 
The 𝑧𝑧𝑆𝑆𝑗𝑗 coordinate of a field plot center 𝑆𝑆𝑗𝑗 was derived 
from the LiDAR DTM. The waveform’s range is plotted 
vertically, while the mean amplitude of the stacked 
waveform is plotted horizontally. As the waveforms 
have nadir-looking geometry, the range is also ex-
pressed as the relative height (shown on the left vertical 
axis) used to plot the returns. The relative height for a 
nadir range 𝑅𝑅𝑖𝑖′ was calculated as: 𝑧𝑧𝑇𝑇0−𝑅𝑅𝑖𝑖′−𝑧𝑧𝑆𝑆𝑗𝑗 (see Figure 
2). Note the different limits of the vertical axis for the 
four subfigures. 

 
Figure 4: Examples of SSL waveforms stacked using the ra-
dius of 10 m for four different field plots. The start and end of 
the waveforms are shown by upper and lower, solid horizon-
tal lines, respectively. The dashed horizontal lines show 
ℎ𝐻𝐻OME and ℎ95 levels. The detected peaks are marked by the 
black squares, whereas 𝑑𝑑𝐹𝐹W𝐻𝐻M of the last peak is shown by the 
vertical line. Note that the limits of the waveform amplitude 
axis are different for each subfigure, but the axis is always 
split in the increments of 20 DN to make relative comparison 
easier. 

As shown by Figure 4, the stacked waveforms reflect 
different vegetation structure well. Figure 4a shows a 
typical two-layer plot with high vegetation and the cor-
responding bi-modal waveform. This plot is also 
slightly sloped, which resulted in a broader ground part 
of the waveform. It can also be seen that the peak detec-
tion algorithm is robust, as the sub-dominant ground 
peak was omitted. Figure 4b shows a plot with high veg-
etation and understory that resulted in a multimodal 
waveform with three peaks identified. For this wave-
form, the ground part is much narrower as the terrain is 
flat within the plot. Finally, Figure 4c shows a plot with 
dense low vegetation, which resulted in a unimodal 
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waveform where the ground and vegetation part are 
mixed. 

Figure 4 also shows that the waveform metrics are 
robust for each of the three waveform types. The 99 % 
energy quantile used to define the waveform end suc-
cessfully filtered out the trailing noise of the waveform 
in Figure 4d. For the rest of the examples, the 99 % 
quantile was found just slightly inside the ground part, 
but is still enough robust to define the end of the wave-
form well. The ℎ100, ℎ95 and ℎHOME metrics reflect the 
canopy height well, and, as shown later in Figure 5, have 
very high correlation (> 0.7) with the field AGB. Only 
in Figure 4d, ℎHOME is very close to the ground, errone-
ously suggesting low AGB within the plot. This plot was 
select as the one that is far away from the main trend in 
the scatter plot of ℎHOME and AGB values (Figure 5). For 
comparison, the plot in Figure 4a (also a bimodal wave-
form), is placed close to the main trend and has similar 
field AGB. The reason for small ℎHOME in Figure 4d is a 
large amplitude of the ground peak, which makes the 
median energy less sensitive to the vegetation height 
and more close to the ground. Nevertheless, Figure 5 
shows that erroneous ℎHOME values appeared just for a 
few plots, while the majority of the plots showed a high 
correlation (0.84) with field-observed AGB. 

 
Figure 5: Scatterplot matrix of waveform metrics and field-
observed AGB.  

Figure 5 shows a scatter plot matrix for AGB and all 
waveform metrics. The metrics were derived from the 
10 m radius waveforms for all of the 264 field plots. In 
the scatter plot matrix, Pearson’s correlation coefficient 
of variable pairs is reported below the main diagonal, 
while on the main diagonal, the distributions of variable 
values are provided in the form of histograms. Table 1 
summarizes the statistics of the three predictors used for 
AGB prediction by sample phase. There is a small dif-
ference in the mean values between only-field and only-

satellite waveform metrics, where the metrics from the 
field-sample were slightly smaller. 

Table 1: Summary statistics of predictor variables used in the 
biomass estimation model, separated by sampling phases: cv 
–coefficient of variation, skew – skewness, kurt – kurtosis. 
The footprint radius for feature extraction was 10 m. 

 n  Mi
n 

Ma
x 

Mea
n 

cv ske
w 

kur
t 

Fiel
d 

264 dp2p 0.9 25.
5 

11.1 0.6
2 

− 
0.1
1 

− 
1.2
3 

  hHO

ME 
1.2 23.

7 
8.1 0.7

1 
0.4
4 

− 
0.9
2 

  h95 2.1 29.
1 

16.1 0.4
7 

− 
0.5
3 

− 
0.8
5 

Sat
el-
lite 

746 dp2p 0.9 30.
0 

11.5 0.6
2 

− 
0.0
3 

− 
1.1
3 

  hHO

ME 
0.9 24.

3 
8.3 0.7

2 
0.4
3 

− 
1.0
6 

  h95 1.8 33.
0 

17.3 0.4
3 

− 
0.5
4 

− 
0.5
8 

All 101
0 

dp2p 0.9 30.
0 

11.4 0.6
2 

− 
0.0
5 

− 
1.1
4 

  hHO

ME 
0.9 24.

3 
8.3 0.7

1 
0.4
3 

− 
1.0
2 

  h95 1.8 33.
0 

17.0 0.4
4 

− 
0.5
5 

− 
0.6
3 

Case Study 
By fitting the AGB prediction model to each of the 
waveform sets and consecutively applying the estima-
tors, we obtained estimates of AGB density and corre-
sponding standard errors. Results are summarized in Ta-
ble 2 and Table 3. As the difference of AGB estimates 
from Eq. (4) and Eq. (6) was close to zero (1. 4 ×10−14 
on average), results are summarized under one column 
with generic notation 𝑦𝑦��. From Table 2 it is obvious that 
the best model fits and lowest standard errors were 
achieved for footprint sizes that are close to the actual 
field plot size (i.e. from 7.5 m to 12.5 m). Regarding ge-
olocation error (Table 3), standard error estimates gen-
erally increase with increasing distance of displacement, 
although substantial variation was observed among 
waveform sets of common distance but different direc-
tion of displacement (Figure 6). The lowest standard er-
ror was consequently observed when there was a perfect 
match between SSL and field data. 
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Table 2: Model fit statistics, AGB density estimates and esti-
mated standard errors in dependence of footprint size: 𝑀𝑀E –
model efficiency, 𝑅𝑅𝑀𝑀𝑆𝑆E – root mean square error, 𝑦𝑦�� – esti-
mated biomass density, 𝑆𝑆𝑀𝑀�(𝑦𝑦��𝑚𝑚𝑎𝑎) – model-assisted standard 
error estimate, 𝑆𝑆𝑀𝑀� (𝑦𝑦��ℎ𝑦𝑦) – hybrid-inference standard error 
estimate. 

Foot-
print 
ra-
dius[m
] 

ME RMS
E 
[Mg 
ha−1] 

𝑦𝑦�� 
[Mg 
ha−1] 

𝑆𝑆𝑀𝑀� (𝑦𝑦��𝑚𝑚𝑚𝑚) 
[Mg 
ha−1] 

𝑆𝑆𝑀𝑀� (𝑦𝑦��ℎ𝑦𝑦) 
[Mg 
ha−1] 

2.5 0.6
2 

45.9 101.
1 

3.4 4.1 

5.0 0.7
1 

39.6 101.
4 

3.2 3.3 

7.5 0.7
8 

35.1 101.
9 

3.0 2.9 

10.0 0.8
0 

33.4 101.
3 

2.9 2.8 

12.5 0.7
8 

34.6 100.
8 

2.9 2.9 

15.0 0.7
6 

36.7 100.
6 

3.0 2.9 

17.5 0.7
3 

38.3 100.
7 

3.1 3.1 

20.0 0.7
1 

39.8 100.
6 

3.2 3.1 

Table 3: Model fit statistics, AGB density estimates and esti-
mated standard errors in dependence of horizontal displace-
ment distance (the footprint radius was fixed to 10 m). Results 
for different directions of the same displacement are aver-
aged. Abbreviations are as follows: 𝑀𝑀E – model efficiency, 
𝑅𝑅𝑀𝑀𝑆𝑆E – root mean square error, 𝑦𝑦��– estimated biomass den-
sity, 𝑆𝑆𝑀𝑀�(𝑦𝑦��𝑚𝑚𝑎𝑎) – model-assisted standard error estimate, 
𝑆𝑆𝑀𝑀�(𝑦𝑦��ℎ𝑦𝑦) – hybrid-inference standard error estimate. 

Dis-
place
ment
[m] 

Nu
mb
er 
of 
ob-
ser-
va-
tion
s 

M
E 

RMSE
[Mg 
ha−1] 

𝑦𝑦�� 
[M
g 
ha−

1] 

𝑆𝑆𝑀𝑀� (𝑦𝑦��𝑚𝑚𝑚𝑚  
[Mg 
ha−1] 

𝑆𝑆𝑀𝑀� (𝑦𝑦��ℎ𝑦𝑦  
[Mg 
ha−1] 

0.0 1 0.
80 

33.4 101
.3 

2.9 2.8 

5.0 4 0.
75 

36.9 101
.0 

3.1 3.3 

7.1 4 0.
73 

38.8 100
.0 

3.1 3.5 

10.0 4 0.
67 

42.6 100
.3 

3.3 3.8 

11.2 8 0.
65 

43.6 100
.0 

3.3 4.0 

14.1 4 0.
60 

47.2 100
.5 

3.5 4.4 

 

 
Fig. 6. Estimated standard errors of AGB estimates in de-
pendence of horizontal displacement distance between field 
and satellite observations (the footprint radius was fixed to 10 
m). The left panel gives estimates following the model-as-
sisted estimator and the right panel following hybrid-infer-
ence. Differences among observations of the same displace-
ment are due to different directions of displacement. 

In both cases, geolocation error and footprint size, 
variation in standard error estimates are largely ex-
plained by changes in model-fit statistics (𝑀𝑀E and 
𝑅𝑅𝑀𝑀𝑆𝑆E) as expected from the estimators. Point 𝑦𝑦�� esti-
mates from either model-assisted estimation or hybrid 
inference are almost identical as the applied sampling 
design used equal inclusion probabilities for selecting 
SL and field data (Magnussen 2015). Interval 𝑆𝑆𝑀𝑀�  esti-
mates, however, showed some differences between the 
two inferential frameworks. It appears that, in particular, 
the hybrid approach for variance estimation is more af-
fected by decreasing model quality due to mismatches 
in either footprint size or geolocation (Figure 6 for geo-
location error). In case of varying footprint size, differ-
ences in standard error estimates are only clearly visible 
for the smallest footprint size of 2.5 m (Table 2). The 
other footprint sizes used seemed to be close enough to 
the actual field plot size, so that the decrease in model 
quality was not strong enough to lead to a notable dif-
ference between the two inferential frameworks. 

The hybrid standard error estimates varied, further, 
also consistently more among the different directions of 
displacement when the distance was kept constant (Fig-
ure 6). The cause for this behavior can be found in the 
fundamentally different inferential frameworks. While 
with design-based inference (here with model-assisted 
estimation), the population is considered to be fixed and 
randomization enters through the random selection of 
samples following a predefined probability sampling 
design, model-based inference assumes that the popula-
tion is a realization of a random process and that the 
sample is fixed instead (Magnussen 2015; Ståhl et al. 
2016). Uncertainty under the model-based paradigm 
arises from estimating model parameters and from lack-
of -fit residuals, while with model-assisted estimation, 
uncertainty comes from the variation between popula-
tion parameter estimates from different samples (Mag-
nussen 2015). For the latter case, the quality of the 
model does typically not affect the approximately unbi-
asedness of the estimators (Magnussen 2015). In the 
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model-based case, however, inference relies on cor-
rectly specified models. Regarding the hybrid estimator 
in our study, we observed that estimates of the design-
based component (Eq. 7) were relatively stable across 
the different conditions tested here, while the model-
based component reacted heavily on changes on the es-
timated uncertainty of model parameter estimates 
caused by geolocation error and discrepancies in foot-
print size. Such a difference between variance estimates 
from either design-based with model-assisted estima-
tion and model-based inference was also observed by 
Saarela et al. (2016b) when studying the effect of geo-
location errors in a Monte-Carlo simulation study. The 
differences vanished, however, with increasing sample 
size. As a note of caution, we would like to mention that 
our results and conclusions are based on one single sam-
ple out of the many possible samples that could be 
drawn from our population. More detailed conclusions 
about the behavior of the hybrid variance estimator 
when model quality decreases due to mismatches be-
tween datasets, would require a Monte-Carlo simulation 
study. Such simulation studies typically require that tar-
get and auxiliary variables are available for all popula-
tion elements. With respect to simulating satellite wave-
forms, the computational burden was, however, too 
heavy for the current study. 

For point estimates, we further observed some varia-
tion among values from the different waveform sets. For 
example, the lowest AGB density observed in Table 2 is 
100.6 Mg per hectare, while the largest value observed 
is 101.9 Mg per hectare. This variation can be entirely 
attributed to differences in the simulated waveforms 
from including different ALS data in the simulations by 
changing footprint size. This directly affects parameter 
estimates and thus point and interval estimates of AGB 
density. In combination with zero model residual sums 
and equal inclusion probabilities, the model-assisted 
correction factor in Eq. (4), as already mentioned, has 
no effect. Note, however, that the individual point esti-
mates lie well within each other’s confidence intervals. 
The same applies to the results in Table 3. 

For sake of comparison, the field-based estimate of 
AGB was 97.1 Mg per hectare with an estimated stand-
ard error of 4.6 Mg per hectare. Thus, by including SSL 
data to facilitate AGB estimation in the manner shown 
here, the relative standard error of estimation was re-
duced by approx. 37 % in the best case. The rather small 
difference of the field-based point estimate in compari-
son to the SSL supported estimates can be explained by 
the summary provided in Table 1. The slightly larger 
model predictor variables on SSL-only plots resulted in, 
on average, larger model predictions. Otherwise, the sta-
tistics in Table 1 show that the forest conditions in the 
two sets are comparable. 

Conclusions 
In this study we analyzed the effect of simulated LiDAR 
footprint size and geolocation error on AGB estimates. 
The AGB estimates were obtained from a first phase 
sample of simulated SL footprints and a smaller second 
phase sample of co-registered field plots. The large-
footprint, nadir-looking SL waveforms were simulated 
by spatial integration of the small-footprint ALS wave-
forms found within the SSL beam cone. The shape of 
the simulated waveforms reflected well different forest 
structure, whereas the height metrics derived from the 
SSL waveforms showed high correlation (> 0.7) with 
the AGB of the field plots. 

Simulating space-borne LiDAR waveforms with dif-
ferent footprint size, we showed that the size of field 
plots should match the footprint size of the satellite ob-
servations. The other way around, we could also say that 
future space-borne LiDAR missions should be planned 
in a way that footprint sizes match field plot sizes com-
monly used in forest inventories. The larger the mis-
match, the more the modeling efforts are affected in 
both directions (under or oversized footprints or field 
plots, respectively). 

We saw a clear effect of geolocation error in the 
sense that standard errors increased with increasing hor-
izontal displacement. The largest standard error estimate 
was 17 % larger than the smallest standard error esti-
mate if model-assisted estimation was used. For model-
based inference, the estimated difference was 36%. It is, 
thus, important that future LiDAR satellites designed for 
operational forest monitoring will provide accurate co-
ordinates, preferably sub meter, for the position of the 
laser footprints. Since the field data generally will be 
obtained after the LiDAR data, it is the coordinate for 
the actual footprint, and not the possibility to beforehand 
hit a specific target that is of importance. The results in 
this article is however dependent on the properties of the 
test site (temperate forest in southern Sweden). In ho-
mogenous forest areas such an effect can somewhat be 
dampened by autocorrelation, meaning that nearby 
points tend to be similar in the stand characteristics. In 
fragmented areas (forest, non-forest), however, or inten-
sively managed forest areas (clear cut systems, even-
aged plantation forest), correlation lengths can be short 
and areas in the immediate neighborhood of the field 
sample location can have completely different proper-
ties. 

Acknowledgments 
The research leading to these results has received fund-
ing from the European Community's Seventh Frame-
work Program ([FP7/2007-2013]) under the Ad-
vanced_SAR project (grant agreement no 606971). We 
thank Björn Nilsson for conducting the manual photo 
interpretation of the Remningstorp estate that was 
needed for limiting the analysis to productive forest 



12 
 

lands. We also thank Andreas Roncat for valuable dis-
cussions and clarifications of raw waveform data struc-
ture and the waveform extraction library. 

Appendix A 

 
Figure A 1:Model validation – footprint size.Graphs of pre-
dicted vs. observed AGB, here for the footprint size wave-
form sets. The radius of the footprint is given above the sin-
gle scatter plots in m. The radius of the field plots was 10 m. 

 

Figure A2: Model validation – footprint size. Group means of 
predicted vs. observed AGB, here for the footprint size wave-
form sets. The radius of the footprint is given above the sin-
gle scatter plots in m. The radius of the field plots was 10 m.  

Appendix B 

 
Figure B1: Model validation – Geolocation error. Graphs of 
predicted vs. observed AGB, here for the geolocation error 
waveform sets. Above the single scatter plots the displace-
ment distance in m and the direction of displacement in de-
grees are given. The footprint radius was fixed to 10 m, and 
the field plot radius was 10 m. 

 
Figure B2: Model validation – Geolocation error. Group 
means of predicted vs. observed AGB, here for the geoloca-
tion error waveform sets. Above the single scatter plots the 
displacement distance in m and the direction of displacement 



13 
 

in degrees are given. The footprint radius was fixed to 10 m, 
and the field plot radius was 10 m. 
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