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Abstract

Summary: The discovery of novel resistance genes (R-genes) is an important component in disease resistance
breeding. Nevertheless, R-gene identification from wild species and close relatives of plants is not only a difficult but
also a cumbersome process. In this study, ResCap, a support vector machine-based high-throughput R-gene predic-
tion and probe generation pipeline has been developed to generate probes from genomic datasets. ResCap contains
two integral modules. The first module identifies the R-genes and R-gene like sequences under four categories con-
taining different domains such as TIR-NBS-LRR (TNL), CC-NBS-LRR (CNL), Receptor-like kinase (RLK) and Receptor-
like proteins (RLPs). The second module generates probes from extracted nucleotide sequences of resistance genes
to conduct sequence capture (SeqCap) experiments. For the validation of ResCap pipeline, ResCap generated probes
were synthesized and a sequence capture experiment was performed to capture expressed resistance genes among
six spring barley genotypes. The developed ResCap pipeline in combination with the performed sequence capture
experiment has shown to increase precision of R-gene identification while simultaneously allowing rapid gene valid-
ation including non-sequenced plants.

Availability and implementation: The ResCap pipeline is available at http://rescap.ltj.slu.se/ResCap/

Contact: sandeep.kushwaha@slu.se or sandeep@niab.org.in

Supplementary information: Supplementary materials are available at Bioinformatics Advances online.

1 Introduction

Plant breeding efforts to develop resistant varieties do still mainly
rely on the introgression of major dominant disease or pest resist-
ance genes (R-genes) from resistant cultivars or from landraces
through repeated backcrossing. R-genes play a key role in the recog-
nition of specific pathogen effector molecules, leading to an induc-
tion of plant defence signalling often associated with local
hypersensitive response at the infection site (McHale et al., 2006).
Based on current knowledge, plant R-genes can be divided into at
least five major classes, such as coiled–coiled nucleotide-binding leu-
cine-rich repeat (CNL), Toll/interleukin-1 receptor-nucleotide-bind-
ing site leucine-rich repeat (TNL), Receptor-like kinase (RLK) and
Receptor-like protein (RLP), and others (Sanseverino et al., 2013).
One strategy to improve the efficiency and durability of resistance is
to stack R-genes and precede the rapidly evolving effector genes in
pathogens. However, finding of R-genes from landraces and close
relatives to crops is a difficult and laborious process. In this context,
the SeqCap technique can make it possible to target regions of inter-
est, while minimizing the fraction of off-targets at a large scale. The

SeqCap technique picks up nucleotide fragments of interest from
genomic and transcriptomic pools through a user-designed set of
probes. Recently, the sequence capture technique has been used suc-
cessfully for R-gene enrichment sequencing (RenSeq) in potato
(Witek et al., 2016), tomato (Andolfo et al., 2014; de Oliveira et al.,
2018) and wheat (Steuernagel et al., 2016; Zhang et al., 2020).

Mostly, sequence and motif similarity, domain matching and do-
main association-based methods are in use for resistance gene identi-
fication such as Disease Resistance Analysis and Gene Orthology
(DRAGO) pipeline (Sanseverino et al., 2013), R-gene analogues
pipeline (RGAugury) (Li et al., 2016) and NLR-parser (Steuernagel
et al., 2015). Prediction of R-proteins on the basis of sequence and
domain similarity with a small set of reference R-genes is challeng-
ing due to the high level of diversity, as R-genes are under high selec-
tion pressure to adapt their immunity to the rapidly evolving
effector genes in the pathogens (Marone et al., 2013). R-gene identi-
fication from a plant species or landraces through traditional meth-
ods would be difficult to perform at large scale. But presently, a
large number of plant genomes and transcriptomes have been
sequenced and assembled. Despite the availability of draft genome
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and genome sequences, R-gene identification and validation are still
difficult due to poor gene annotation model. However, machine
learning techniques-based webservers and tools such as NBSPred
(Kushwaha et al., 2016) and DRPPP (Pal et al., 2016) enabled in sil-
ico exploration of R-genes. However, the prediction results of these
tools were never validated experimentally. Here, as an integrated so-
lution, ResCap an automated pipeline has been developed for R-
gene identification, nucleotide sequence extraction of R-gene from
genome and transcriptome sequences, and probe generation to per-
form experimental validation.

2 Methods

R-gene and non-R-gene sequences were retrieved from public data-
bases such as NCBI, Uniprot and PRGdb. Redundancy removal
among extracted sequences was performed through clustering. A
domain-based approach was used to generate the final datasets
referred to as the positive and negative dataset. R-gene classes were
identified among extracted sequences on basis of the occurrence of
well-known R-gene domains such as NB-ARC, TIR, CC, kinase,

LRR, Serine/threonine-LRR and Kinase-LRR. Sequences containing
these domains are referred to as the positive dataset, whereas the
negative dataset included all kind of sequences except R-gene and R-
gene like sequences. Sequence compositional frequencies (amino
acid frequency, dipeptide frequency, tripeptide frequency, multiplet
frequency, charge and hydrophobicity composition) were calculated
(Supplementary File Section S2), and all the calculated properties
were gathered as a numerical feature vector for each sequence of the
positive and negative dataset (Chaudhuri et al., 2011; Ramana and
Gupta, 2010). The SVMlight package modules (SVM_learn and
SVM_classify) (Joachims, 1999) were used to generate SVM classi-
fier for R-gene prediction. Best binary classifiers for each family
were identified through 5-fold cross-validation technique
(Supplementary File Section S3). Augustus gene prediction software
was used in the pipeline for the annotation of plant genome (Stanke
and Morgenstern, 2005). TransDecoder (Grabherr et al., 2011) was
used to generate protein sequences from transcripts. The flowchart
of the pipeline is given in Figure 1. For the validation of ResCap
pipeline, coding sequences of plants of poaceae family from the
Gramene database (Gupta et al., 2016) were extracted and proc-
essed through the ResCap pipeline and generated probes were

Fig. 1. ResCap data processing workflow for R-gene identification and probe generation
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synthesized using SeqCap EZ HyperCap, Nimblegen, Roche, USA.
Six spring barley genotypes (142-31, 142-93, 252-33, 252-61, Barke
and Lina) were selected for the experimental validation (Åhman and
Bengtsson, 2019).

All the genotypes were grown under highly controlled experi-
mental conditions (Supplementary Section S5) and homogenized
leaf samples were used for RNA extraction. Library preparation,
sequence capture experiment and sequencing were performed at
Centre for Genomic Research, University of Liverpool, UK, and
bioinformatics analysis was performed at Swedish University of
Agricultural Sciences, Sweden. Generated sequence data are avail-
able at NCBI SRA public repository (PRJNA740109).

3 Implementation

Dell PowerEdge T440 Server E5-2430 with 16 core processors of
2.1 GHz, running on Ubuntu 20.04 LTS was used to host ResCap
pipeline, and freely accessible as a web interface which was devel-
oped in PHP version 8.0. ResCap pipeline provides email confirm-
ation for each submission and email notification upon job
completion.

4 Results and discussion

A total of 1694 (CNL: 447; TNL: 515; RLK: 355; RLP: 377)
sequences were involved in the training of four classes of R-gene
family. Composition-based amino acid frequencies were used for
numerical encoding of training sequences (Supplementary Section
S2). In order to find best classifier for each R-gene class, 1176 binary
models were created through sequential input of different kernel
function and kernel associated parameters for model generation.
Polynomial kernel associated d and C parameters were increased
stepwise through a combination of 1, 2, 3, 4 . . . to . . . 9 for the d,
and 10�7, 10�6 . . . to . . . 1013 for C whereas radial basis function
kernel parameter gamma (g) was incremented stepwise 10�15 . . . to
. . . 103, and parameter C from 10�5 . . . to . . . 1015 (Kushwaha et al.,
2016). The mean Matthews correlation coefficient and prediction
accuracy of the best-performed model, kernel type and kernel
associated values are provided in Supplementary File (Table S3).
ResCap prediction accuracy was compared with NLR-parser
(Supplementary Tables S3–S6) and ResCap has detected higher
number of sequences with R-protein domains than NLR-parser.
Sequence capture experiment was performed to validate ResCap
generated probes. Sequence capture data of six genotypes (142-31,
142-93, 252-33, 252-61, Barke and Lina) were evaluated, and bio-
informatics analysis of sequence captured data is given in
Supplementary File (Tables S8 and S9). On average, approximately
5 million high-quality paired-end reads were captured for each
genotype by using designed probes. Both the pairs were merged
and used for BLASTn similarity search against nucleotide sequen-
ces used for probe design. Among all captured reads, 27%, 71%,
4% and 0% reads were belonging to the CNL, RLK, RLP and
TNL class, respectively. R-gene classes were analysed against the
barley genome to identify common and uniquely expressed R-
genes among barley genotypes (Supplementary File Figure S2).
ResCap pipeline will be highly useful to develop a holistic under-
standing of disease susceptibility and resistance in crop varieties
against pests and pathogens.
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