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Abstract
1. Climate change, biological invasions, and anthropogenic disturbance pose a threat 

to the biodiversity and function of Arctic freshwater ecosystems. Understanding 
potential changes in fish species distribution and richness is necessary, given the 
great importance of fish to the function of freshwater ecosystems and as a re-
source to humans. However, information gaps limit large- scale studies and our 
ability to determine patterns and trends in space and time. This study takes the 
first step in determining circumpolar patterns of fish species richness and compo-
sition, which provides a baseline to improve both monitoring and conservation of 
Arctic freshwater biodiversity.

2. Information on species presence/absence was gathered from the Circumpolar 
Biodiversity Monitoring Program's Freshwater Database and used to examine 
patterns of freshwater fish γ- , α- , and β- diversity across 234° of longitude in the 
Arctic. The metrics of diversity provided information on species richness and com-
position across hydrobasins, ecoregions, and Arctic zones.

3. Circumpolar patterns of fish species biodiversity varied with latitude, isolation, 
and coarse ecoregion characteristics; patterns were consistent with historic and 
contemporary barriers to colonisation and environmental characteristics. Gamma- 
diversity was lower in the high Arctic compared to lower latitude zones, but α- 
diversity did not decrease with increasing latitude below 71°N, reflecting glacial 
history. Alpha- diversity was reduced to a single species, Arctic charr Salvelinus al-
pinus, in ecoregions above 71°N, where γ- diversity was the lowest. Beta- diversity 
indicated little variation in the composition and richness of species across the High 
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1  | INTRODUC TION

Global environmental change threatens the biodiversity and func-
tion of all ecosystems (Sala et al., 2000), and Arctic ecosystems are 
no exception (Meltofte, 2013). Maintenance of freshwater biodiver-
sity is crucial to the healthy function of Arctic ecosystems and to the 
preservation of ecosystem services provided to humans (Culp et al., 
2012; Socolar, Gilroy, Kunin, & Edwards, 2016; Wrona et al., 2013). 
However, Arctic freshwater ecosystems are vulnerable to multiple 
global and localised stressors, including climate warming, biological 
invasions, and direct anthropogenic disturbance (Rolls et al., 2018; 
Wrona et al., 2013). Scenario analyses of changing biodiversity show 
that Arctic ecosystems are currently overwhelmingly influenced 
by climate change when compared to other factors (e.g. land use, 
biotic exchange, carbon dioxide, and nitrogen deposition), but this 
may change as global economic interests increase in Arctic regions 
(Hovelsrud, Poppel, van Oort, & Reist, 2011; Huntington et al., 2007). 
The effects of each of these stressors alone and in combination, al-
though often difficult to determine (Hayden, Myllykangas, Rolls, & 
Kahilainen, 2017; Schindler & Smol, 2006; Wrona et al., 2006), may 
impact the fishes living in Arctic streams and lakes. Ongoing and fu-
ture changes in climate and land use will probably have profound 
effects on fish biodiversity (Rolls et al., 2018; Wrona et al., 2006).

Understanding potential changes to fish species distribution and 
richness is highly relevant to monitoring and conservation efforts 
because of the importance of fish to humans (Berkes & Jolly, 2002; 
Hu, Laird, & Chan, 2017) and because fish contribute to the struc-
ture and function of Arctic aquatic food webs (Eloranta et al., 2015; 

Reist et al., 2006; Thomas, Harrod, Hayden, Malinen, & Kahilainen, 
2017; Wrona et al., 2006). Large information gaps exist, however, 
in our knowledge of Arctic freshwater fish distribution and ecology, 
and patchy collections of species data limit relevant studies on large- 
scale biodiversity, compromising the ability of managers to assess 
patterns and trends in biodiversity (Christiansen et al., 2013; Comte, 
Buisson, Daufresne, & Grenouillet, 2013; Stendera et al., 2012). 
However, understanding the relationship between locally collected 
data and regional biodiversity patterns is critical for effective and ef-
ficient conservation and monitoring of Arctic freshwater fish (Kraft 
et al., 2011; Leprieur et al., 2011; Socolar et al., 2016).

Fish biodiversity is affected by landscape factors that act at mul-
tiple spatial and temporal scales (Hewitt, 2000; Poff, 1997; Tonn, 
1990). Species distribution, richness, and compositional patterns 
are controlled by both contemporary and historic environmental 
features of climate, geology, and morphometry (Dias et al., 2014; 
Hugueny, Oberdorff, & Tedescco, 2010). Compositional change is 
often strongly influenced by isolating variables (April, Hanner, Dion- 
Côté, & Bernatchez, 2013; Leprieur et al., 2011; Mangerud et al., 
2004) such as glacial retreat and development, which are responsible 
for many of the distribution patterns influencing present- day biodi-
versity. Interestingly, increased dispersal between paleo- connected 
drainage basins during the last glacial maximum has resulted in 
higher present- day compositional similarity for regions that were 
historically linked (Dias et al., 2014). Strong dispersal abilities and 
migratory life histories also promoted rapid recolonisation in de-
glaciated regions in Europe and North America (e.g. Fennoscandia 
and northeast Canada), which support the current broad geographic 
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Arctic; at lower latitudes, ecoregions contained more species, although species 
composition turned over across large spatial extents.

4. In an analysis of five ecoregions in the circumpolar Arctic, physical isolation, and 
ecoregion area and topography were identified as strong drivers of γ- , α- , and 
β- diversity. Physical isolation reduced the γ-  and α- diversity, and changes in β- 
diversity between adjacent locations were due mainly to losses in species richness, 
rather than due to differences in species composition. Heterogeneity of habitats, 
environmental gradients, and geographic distance probably contributed to pat-
terns of fish dissimilarity within and across ecoregions.

5. This study presents the first analysis of large- scale patterns of freshwater fish 
biodiversity in the circumpolar Arctic. However, information gaps in space, time, 
and among taxonomic groups remain. Future inclusion of extensive archive and 
new data will allow future studies to test for changes and drivers of the observed 
patterns of biodiversity. This is important given the potential impacts of ongo-
ing and accelerating climate change, land use, and biotic exchange on Arctic fish 
biodiversity.
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distribution of cold- water salmonids (April et al., 2013; Christiansen 
et al., 2013; Griffiths, 2006, 2010; Koljonen, Jansson, Paaver, Vasin, 
& Koskiniemi, 1999).

Dispersal processes and opportunities are an important factor 
in the geographic distribution and spatial patterns of γ- diversity (i.e. 
regional species richness), α- diversity (i.e. local species richness), 
and β- diversity (i.e. variation in species composition among loca-
tions) in Arctic freshwater fishes (Dias et al., 2014; Heino, 2011). 
Fish communities should be less similar at greater geographic dis-
tances because of changes in species identity along broad spatial 
gradients (Abell et al., 2008; Anderson et al., 2011; Beisner, Peres- 
Neto, Lindström, Barnett, & Longhi, 2006; Soininen, McDonald, & 
Hillebrand, 2007). When communities are not identical, all similarity 
patterns can be described using two processes— species replace-
ment and loss (Baselga, 2010). These components of β- diversity are 
commonly referred to as species turnover and nestedness (Baselga, 
2010; Koleff, Gaston, & Lennon, 2003). Turnover is the replacement 
of some species by others along a spatial or environmental gradient, 
while nestedness refers to a non- random loss (or disaggregation) of 
species from the richest locality (Baselga, 2010).

Understanding the processes that govern β- diversity is import-
ant for determining the mechanisms responsible for maintaining bio-
diversity (Baselga, 2010; Socolar et al., 2016). However, β- diversity 
patterns are complicated by spatial heterogeneity and spatial extent 
(Heino, 2011; Leprieur et al., 2011); accordingly, if community com-
parisons are made across a wide geographic region (e.g. the circum-
polar Arctic), spatially structured variation in species composition 
should be greater than environmental controls (Heino, 2011; Kraft 
et al., 2011). That is, large- scale effects of continental drift, orogeny, 
and glaciation would have more influence over patterns in β- diversity 
than local- scale factors such as habitat area, resource availability, or 
biotic interactions.

Beta- diversity studies, which rely on numerous local- scale com-
munity investigations (i.e. α- diversity studies), provide a method for 
scaling up local patterns to improve management and conservation of 
regional or continental species biodiversity (i.e. γ- diversity) (Leprieur 
et al., 2011; Socolar et al., 2016). At continental scales, studies of 
Arctic fish species diversity show similar patterns of species rich-
ness radiating outwards from historic glacial refugia, which results 
in a general decline in species richness to the north and west on 
both the North American and European continents (Griffiths, 2006, 
2010). According to the Arctic Biodiversity Assessment, however, 
large- scale studies of fish diversity across latitudinal and longitudinal 
gradients in the Arctic are lacking (Christiansen et al., 2013). The cur-
rent collection of species richness assessments (e.g. Griffiths, 2006, 
2010) and compositional lists (e.g. Christiansen et al., 2013) are valu-
able, but they do not sufficiently address spatial patterns of α-  and 
β- diversity in fishes across the circumpolar Arctic.

This study provides a baseline for future monitoring efforts rec-
ommended by the Arctic Biodiversity Assessment (CAFF, 2013). Our 
aim was to evaluate biodiversity patterns in freshwater fish species 
for the circumpolar Arctic in an effort to determine γ- , α- , and β- 
diversity patterns that will help to guide future monitoring plans. 

First, we focused on broad scales, and evaluated patterns across the 
spatial extent of available data. We hypothesised that there would 
be a decline in fish species richness with increasing latitude, so we 
predicted that both γ-  and α- diversity would decline with latitude, 
and that α- diversity would depend on γ- diversity. We further hy-
pothesised that variation in species composition would decline at 
higher latitudes, where species richness is expected to be lower, and 
that variation in species composition would increase with distance 
between locations. We therefore predicted that β- diversity would 
decline with latitude, and increase with increasing distance between 
locations.

Given that species richness and compositional patterns are often 
controlled by contemporary and historic environmental features, we 
hypothesised that α- , β- , and γ- diversity would differ among regions 
with differing characteristics. We also hypothesised that location 
and geography would affect regional and local richness, and that re-
duced regional species richness in isolated and mountainous areas 
would also limit local richness. Relying on ecoregions with robust 
data sets, we predicted that γ-  and α- diversity would be lower or 
species composition would differ for ecoregions of higher elevation 
(i.e. mountain regions) relative to low- elevation regions. We also 
predicted that γ-  and α- diversity would be lower for isolated ecore-
gions (i.e. islands) compared to connected ecoregions (i.e. mainland). 
Finally, we hypothesised that β- diversity would differ regionally and 
that variation would arise from both change in species richness and 
composition.

2  | METHODS

2.1 | Study area

Ecologically, the circumpolar Arctic often refers to all of the land 
north of the treeline (Meltofte, 2013). The region is character-
ised by short, cool summers with periods of 24- hr sunlight that 
vary in duration depending on latitude. Summer marks a short, in-
tense period of productivity in Arctic aquatic ecosystems (Rautio 
et al., 2011). Conversely, winters are long and cold with periods 
of polar darkness, and this seasonal reduction in resources lim-
its species persistence and may ultimately act as a critical deter-
minant of community composition (Hayden, Harrod, Sonninen, & 
Kahilainen, 2015; Shuter, Finstad, Helland, Zweimüller, & Hölker, 
2012). Much of the terrestrial environment is underlain by perma-
frost. Freshwater habitats are varied, ranging from small streams to 
large rivers, and including small thermokarst ponds and large lakes 
(Wrona et al., 2013). For the purpose of this paper, we considered 
the circumpolar Arctic as the area bounded by the subarctic bound-
ary, 60°N latitude, or the Conservation of Arctic Flora and Fauna 
(CAFF) boundary, for the most inclusive data set (Meltofte, 2013). 
Collected fish data spanned 234° longitude, from Alaska across the 
northern Atlantic to western Siberia, and covered 23° of latitude, 
which includes the high Arctic, low Arctic, and subarctic (Meltofte, 
2013; Figure 1a).
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2.2 | Data processing

We extracted fish data from 3,168 stations where the assemblage 
of fish was assessed (Table S1), rather than surveys focused on sin-
gle species or commercial fishing. Fish data originated from national 
monitoring databases, government data reports, academic research 
programmes, and industry monitoring programmes (see data sources 
in the Arctic Biodiversity Data Service; abds.is). Sixty- seven percent 
of stations were lotic (n = 2,111) and 33% lentic (n = 1,057). In some 
instances, multiple stations occurred within a single river or lake 
because multiple studies were conducted in the same waterbody, 
or because multiple stations were included within the sampling de-
sign of the single study (e.g. longitudinal stations along upstream- 
downstream river gradients). Data from broadly selective gear types 
(e.g. electrofisher or fyke net) or multiple gears that sampled dif-
ferent components of the assemblage (e.g. hook and line, minnow 
traps, and gill nets) were used. Because data were collected by dif-
ferent sampling methods across stations, we converted all data to 
presence/absence to avoid false inferences about abundance that 
could reflect methodological bias. We included all stations that sam-
pled fish using multiple- mesh gill nets because they are commonly 
used for monitoring (Appelberg, 2000; CEN, 2015); however, we 

acknowledge that some small- bodied fishes (e.g. Gasterosteidae) 
are not vulnerable to capture by gill nets and that false absences 
may occur for small- bodied fishes at some stations. When sampling 
occurred over multiple years, all recorded presences were consoli-
dated, and species presence/absence was recorded as a binary indi-
cator: present (1) or absent (0). We acknowledge that this approach 
may obscure temporal changes in species diversity for the 32% of 
stations that were sampled more than once (Table S1).

Stations were assigned to hierarchical landscape groupings that 
provided spatial context for analysis. At the largest, circumpolar 
Arctic scale, stations occurred in one of four latitudinal zones— the 
three Arctic zones (Meltofte, 2013) and an additional boreal zone that 
allowed us to retain all stations south of the predefined Arctic zones 
(Figure 1). At a regional scale, stations were classified by ecoregion 
according to the Terrestrial Ecoregions of the World (TEOW; Olson 
et al., 2001) classification, which defines global ecoregions based on 
distinct assemblages and environmental conditions, including cli-
mate. Terrestrial ecoregions in the Arctic are related to climatic con-
ditions and provide the necessary connection between landscape 
features (e.g. geology, temperature, precipitation) and the freshwa-
ter ecosystem. TEOWs are smaller than the flow- based Freshwater 
Ecoregions of the World (Abell et al., 2008), which allow a more 

F I G U R E  1   Distribution of lentic and lotic stations included in the analysis of Arctic freshwater fish biodiversity (a) and the γ- diversity 
of ecoregions, as quantified by estimates of species richness from reference texts (Mecklenburg et al., 2002; Muus & Dahlström, 1993; 
Ponomarev, 2017; Scott & Crossman, 1973) and expert knowledge (b). The black line indicates the Conservation of Arctic Flora and Fauna 
(CAFF) boundary of the Arctic. Ecoregions are BU, Beringia Upland Tundra; BL, Beringia Lowland Tundra; IY, Interior Yukon– Alaska Alpine 
Tundra; IA, Interior Alaska– Yukon Lowland Tundra; AF, Arctic Foothills Tundra; AC, Arctic Coastal Tundra; BB, Brooks– British Range 
Tundra; NT, Northwest Territories Taiga; OM, Ogilvie– Mackenzie Alpine Tundra; LA, Low Arctic Tundra; MS, Muskwa– Slave Lake Forests; 
MA, Middle Arctic Tundra; HA, High Arctic Tundra; NC, Northern Canadian Shield Taiga; KH, Kalaallit Nunaat High Arctic Tundra; KL, 
Kalaallit Nunaat Low Arctic Tundra; I, Iceland Birch Forests and Alpine Tundra; FI, Faroe Islands Boreal Grasslands; AD, Arctic Desert; SM, 
Scandinavian Montane Birch Forest; SR, Scandinavian and Russian Taiga; KP, Kola Peninsula Tundra; RT, Northwest Russian– Novaya Zemlya 
Tundra; UM, Ural Montane Forests and Tundra; and YG, Yamal– Gydan Tundra



180  |     LASKE Et AL.

detailed view of how geography may influence diversity. For exam-
ple, five TEOW, including the Arctic Desert [Svalbard], Kola Peninsula 
Tundra, Scandinavian and Russian Taiga, Scandinavian Montane 
Birch Forest, and Northwest Russian– Novaya Zemlya Tundra, exist 
within the Barents Sea Drainages Freshwater Ecoregion, yet each of 
these TEOW has unique landscapes factors that influence freshwa-
ter biota (e.g. climate, geology, elevation; Poff, 1997; Tonn, 1990). 
At a local scale, stations were grouped into hydrobasins, which are 
global catchments that are derived using a standard approach at dif-
ferent spatial scales (Lehner & Grill, 2013). Hydrobasin scales range 
from level 01, which is at the continent scale, to level 12 at the small-
est sub- basin scale. Stations were classified for small- scale spatial 
analysis based on the intersection of level 07 hydrobasins (mid- scale 
sub- basins) and Arctic TEOW (level 07 hydrobasin × TEOW inter-
section, hereafter, hydrobasins), to ensure grouping based on both 
drainage basin and climatic conditions (Figure S1). All station classi-
fications (zone, ecoregion, and hydrobasin) were assigned using geo-
graphic information systems (ArcGIS version 10.3, Esri, Redlands, 
CA, U.S.A.).

2.3 | Circumpolar diversity

Over the spatial extent of the gathered data, we assessed the total 
number and identities of fish species from literature and expert 
knowledge (Christiansen et al., 2013; Mecklenburg, Mecklenburg, 
& Thorsteinson, 2002; Muus & Dahlström, 1993; Ponomarev, 2017; 
Scott & Crossman, 1973). We determined the number and identities 
of species in the Arctic (high and low zones), the subarctic, and in the 
ecoregions with sampled stations. We acknowledge that intraspe-
cific diversity is common in Arctic regions (e.g. Siwertsson et al., 
2010; Woods et al., 2012); however, it was not considered in this 
analysis. Species found in each of the individual ecoregions repre-
sent the regional species pool or γ- diversity of that ecoregion.

Alpha- diversity was calculated by averaging species richness 
of each station within the hydrobasin boundary (𝛼basin= �̄�station; 
Whittaker, 1972). With the hydrobasin as our unit of interest, we 
included both lentic and lotic communities in our estimates of α- 
diversity. We found that this was appropriate— to include fishes 
from both ecosystem types in a single diversity analyses— given the 
large spatial scale of the study, and the added benefit of preserving 
sample sizes within ecoregions. Mean α- diversity of ecoregions was 
determined, and we assessed relationships between α- diversity and 
hydrobasin area, between α- diversity and latitude (hydrobasin cen-
troid), and between α- diversity and ecoregion γ- diversity using least- 
squares linear regression. Model parameters were log- transformed 
when necessary to meet assumptions of the analyses.

Beta- diversity (i.e. the variation in species composition among/
between sites) and its turnover and nestedness components were 
determined across latitudinal zones and ecoregions using dis-
similarity matrices (betapart, R package version 1.5.0; Baselga, 
Orme, Villeger, De Bortoli, & Leprieur, 2018). Total β- diversity, 
calculated as βsor, the Sørensen dissimilarity index (Baselga, 2010), 

encompasses both spatial turnover and differences in species rich-
ness (Koleff et al., 2003). It can be broken into component parts of 
turnover (βsim), and nestedness (βnes), given the additive relationship: 
βsor = βsim + βnes, where βsim is the Simpson dissimilarity index and 
βnes is the nestedness- resultant dissimilarity (Baselga, 2010; Lennon, 
Koleff, Greenwood, & Gaston, 2001). A value of one for total β- 
diversity indicates there that are no species in common between a 
pair of sites, whereas a value of zero indicates that all of the species 
are shared between sites.

In each ecoregion and latitudinal zone (boreal, subarctic, low 
Arctic, and high Arctic), we calculated β- diversity using multiple- site 
dissimilarities. Multiple- site dissimilarity calculations (βSOR, βSIM, and 
βNES) allowed us to quantify the heterogeneity of species compo-
sition across all stations within a hydrobasin, because β- diversity 
depends on species co- occurrence patterns across all sampled lo-
cations (Baselga, 2013). Using hydrobasin estimates of βSOR, βSIM, 
and βNES, we were able to estimate the mean values and standard 
deviation of β- diversity components across hydrobasins within an 
ecoregion and zone. Because we wished to include as many hyd-
robasins as possible in the analysis, β- diversity differences among 
ecoregions and between zones could not be directly compared 
due to differences in sample sizes (i.e. unequal number of stations), 
which influences richness data (Gotelli & Colwell, 2001). Therefore, 
we limit discussion of multiple- site dissimilarity to whether turnover 
or nestedness contributed equally to total β- diversity; differences 
between βSIM and βNES were determined using two- tailed, paired 
Student's t- tests (R package version 3.4.1).

In each ecoregion and latitudinal zone, we calculated β- diversity 
using pairwise dissimilarities of hydrobasins. Pairwise dissimilari-
ties allowed us to examine spatial patterns in diversity and correla-
tions between geographic distance and total β- diversity, turnover, 
and nestedness. Pairwise dissimilarities (βsor, βsim, and βnes) were 
calculated from species presence/absence matrices, with species 
arranged in columns and sites (i.e. hydrobasin identifiers) in rows. 
Beta- diversity dissimilarity matrices were modelled as a function of 
pairwise spatial distances between hydrobasins using Mantel tests 
(vegan, R package version 2.4- 6; Oksanen et al., 2018), after deriv-
ing pairwise distances between hydrobasin centroids (geosphere, R 
package version 1.5- 7; Hijmans, 2017).

2.4 | Regional diversity comparisons

In Alaska, Iceland, and Fennoscandia (i.e. Finland, Norway, and 
Sweden), data collected from the CBMP- freshwater database were 
sufficiently robust to permit a direct comparative analysis of γ- , α- , 
and β- diversity among individual ecoregions. We used data from five 
ecoregions: Arctic Coastal Tundra, Brooks– British Range Tundra, 
Iceland Boreal Birch Forest and Alpine Tundra, Scandinavian and 
Russian Taiga (Fennoscandia only; stations west of 30.8°E longitude), 
and Scandinavian Montane Birch Forest and Grasslands. Gamma- 
diversity (i.e. the regional species pool) was determined using the 
data available in the database, rather than extracting information 
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from the literature. This provided an accurate assessment of species 
encountered in the hydrobasins where sampling took place, rather 
than inferring from published range distribution maps.

Estimates of γ- diversity were standardised for comparison 
among ecoregions by using sample- based rarefaction to determine 
the number of species (Srare) at the lowest common sample size 
within the subset of ecoregions. Data at the sample level (within sta-
tions) were used for this analysis to increase the number of samples 
used in this analysis and improve accuracy of diversity estimates. 
Individual sampling events at each station were used in randomis-
ation tests that compared sample- based rarefaction curves (rareN-
Mtests, R package version 1.1; Cayuela & Gotelli, 2014). Comparisons 
of γ- diversity across adjacent ecoregions (e.g. in Alaska) were based 
on the ecological null hypothesis from Cayuela, Gotelli, and Colwell 
(2015) that two or more samples were drawn randomly from the 
same species pool; any differences in species composition or rich-
ness would be minimal and the result of random chance or rare 
species. Comparisons of γ- diversity across continents (e.g. Arctic 
Coastal Tundra in Alaska to Scandinavian and Russian Taiga in 
Fennoscandia) were made based on the biogeographical null hypoth-
esis from Cayuela et al. (2015) that two or more samples were drawn 
from assemblages that share species richness profiles (i.e. species 
accumulation curves are the same); species richness would be similar 
even if species composition differs.

We calculated α- diversity (species richness at the hydrobasin 
scale) and β- diversity in all hydrobasins with 10 or more stations. 
Using sample- based rarefaction (rareNMtests, r package version 1.1; 
Cayuela & Gotelli, 2014), we determined α- diversity (αrare) as the 
number of species encountered at 10 stations in each hydrobasin. 
The mean αrare was calculated and compared across ecoregions using 
an analysis of variance (ANOVA) with a post hoc pairwise t- test com-
parison using a false discovery rate (FDR) correction. We determined 
ecoregion total β- diversity and its component parts of turnover and 
nestedness using multiple- site dissimilarity calculations (βSOR, βSIM, 
and βNES) by randomly resampling (n = 100) the data from a subset 
of 10 stations in each hydrobasin (betapart, R package version 1.5.0; 
Baselga et al., 2018; Baselga & Orme, 2012). Randomly resampling 
10 stations (standardising the number of sites) allowed us to make 
comparisons of β- diversity across ecoregions. Hydrobasin means of 
βSOR, βSIM, and βNES were determined for each ecoregion and com-
pared among ecoregions using analysis of variance (ANOVA) with 
a post hoc pairwise t- test comparison using a FDR correction. We 
also determined which component of β- diversity was underlying the 
patterns found in each ecoregion by using a paired, one- tailed t- test 
for each ecoregion to compare average values of βSIM and βNES.

3  | RESULTS

3.1 | Circumpolar diversity

Station distribution was not uniform across the sampled area 
(Figure 1a), with large differences in the number of stations sampled 

among the 25 ecoregions (median = 8 stations, range = 2– 1,385 
stations; Table S1); the majority of stations included in the data-
base were found in Alaska, Iceland, and Fennoscandia (included in 
regional diversity analysis, below). Based on data collection, litera-
ture, and expert knowledge, we found that γ- diversity varied from 
one to 47 species, with lower richness in high latitude ecoregions 
(e.g. High Arctic Tundra and Kalaallit Nunaat High Arctic Tundra) 
and on islands of the north Atlantic Ocean (e.g. Arctic Desert and 
Iceland Boreal Birch Forests and Alpine Tundra; Figure 1b). In 
total, we identified 100 fish species that represented 16 families 
in the study region; the composition of species turned over across 
the longitudinal gradient (Figure 2; Table S2); with 29 species oc-
curring only in North America and 50 species occurring only in 
Fennoscandia and Russia. Seventeen species (families: Anguillidae, 
Esocidae, Gadidae, Gasterosteidae, Osmeridae, and Salmonidae) 
occur across continents; four salmonid species were introduced 
from North America to Iceland, Fennoscandia, or Russia (Table S2). 
In Greenland, Iceland, and on other islands of the North Atlantic, 
only 10 species occur, and six of these species occur in other re-
gions. The majority of species (n = 77) occur as far north as the high 
and low Arctic zones, while 23 (11 Cyprinidae) occur only in subarc-
tic or boreal zones below the low Arctic boundary. Of the 100 fish 
species known to the study area, only 56 appeared in the CBMP 
database and were included in the biodiversity analyses presented 
in this paper (Table S2).

Using only presence/absence records from the database, we de-
termined whether α- diversity was related to area, latitude, and γ- 
diversity. Log- transformed α- diversity was unrelated to hydrobasin 
area (slope = −1.00 × 10−5 ± 5.09 × 10−6, intercept = 0.89 ± 0.05, 
r2 = 0.01, df = 287, p = 0.05), and it did not steadily decline with lat-
itude (Figure 3a). There was, however, an abrupt loss in α- diversity 
at latitudes above 70.7°N, where records indicated that Arctic 
charr Salvelinus alpinus was the only species present. Below 70.7°N, 
the log- transformed α- diversity increased slightly with latitude 
(slope = 0.06 ± 0.01, intercept = −3.08 ± 0.99, r2 = 0.05, df = 285, 
p < 0.001), which translated to an average α- diversity increase of 
1.3 species over 10° of latitude (from 60° to 70°N). Log- transformed 
α- diversity increased with γ- diversity (slope = 0.03 ± 2.57 × 10−3, 
intercept = 0.15 ± 0.06, r2 = 0.37, df = 296, p < 0.001; Figure 3b). 
Therefore, in high latitude ecoregions with low γ- diversity (e.g. Arctic 
Desert, High Arctic Tundra, and Kalaallit Nunaat High Arctic Tundra; 
Figure 1b), α- diversity was also low (Table 1). Little variation in α- 
diversity occurred among low γ- diversity ecoregions (γ ≤ 5), where 
α- diversity increased 0.13 species given a four species increase in 
γ- diversity. However, in ecoregions with higher γ- diversity (γ ≥ 43), 
α- diversity increased 0.38 species given a four species increase in 
γ- diversity.

Multiple- site dissimilarity calculations provided insight into 
the underlying β- diversity patterns for ecoregions and latitudi-
nal zones. Turnover of species was identified as the underlying 
β- diversity process in five ecoregions (Figure 4a; Table S3): Arctic 
Coastal Tundra (t(14) = 2.39, p = 0.031), Arctic Foothills Tundra 
(t(9) = 3.85, p = 0.004), Brooks– British Range Tundra (t(6) = 5.499, 
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p = 0.002), Scandinavian and Russian Taiga (t(54) = 5.63, p < 0.001), 
and Scandinavian Montane Birch Forest and Grasslands (t(31) = 2.7, 
p = 0.010). The nestedness component of β- diversity was prevalent 
only in the Iceland Boreal Birch Forests and Alpine Tundra ecoregion 
(t(24) = −2.79, p = 0.010). In two ecoregions, the Arctic Desert (n = 2) 
and the High Arctic Tundra (n = 4), β- diversity was determined to be 
zero (Figure 4a). In 16 ecoregions, we could not determine differ-
ences between the β- diversity component dissimilarities (βSIM ≈ βNES; 
Figure 4a; Table S3), and in three ecoregions there were insufficient 
data to determine the components of β- diversity. Turnover and nest-
edness component values were not different from one another in 
either the subarctic (t(70) = −0.67, p = 0.50) or high Arctic zones 
(t(16) = 1.82, p = 0.09), although there was relatively high dispersion 
and skew in the βSIM estimate for the high Arctic zone (Figure 4b). 
Turnover was the dominant β- diversity component when compared 

to nestedness in the boreal (t(51) = 5.97, p < 0.001) and low Arctic 
zones (t(57) = 5.02, p < 0.001; Figure 3b).

Weak spatial patterns of β- diversity were evident in three of 25 
ecoregions (Table 2): Iceland Boreal Birch Forests and Alpine Tundra, 
Interior Alaska– Yukon Lowland Taiga, and Scandinavian and Russian 
Taiga. In the Iceland Boreal Birch Forests and Alpine Tundra, the 
nestedness component of β- diversity contributed to differences 
across space, given that values of βnes were positively correlated 
with geographic distance. Conversely, the turnover component of 
β- diversity, βsim, was positively correlated with geographic distance 
between pairs of hydrobasins in the Interior Alaska– Yukon Lowland 
Taiga and the Scandinavian and Russian Taiga. Beta- diversity and its 
component parts of nestedness and turnover were not correlated 
with geographic distance in 12 of the 25 ecoregions, and in the re-
maining 10 ecoregions, correlations could not be determined due 

F I G U R E  2   Longitudinal distribution pattern of fish species from Alaska to western Russia. Species occurrences for each ecoregion (x- axis) 
were determined using reference texts (Mecklenburg et al., 2002; Muus & Dahlström, 1993; Ponomarev, 2017; Scott & Crossman, 1973) and 
expert knowledge. Each value on the y- axis represents a single species, coloured by taxonomic family. Species identification numbers are 
referenced in Table S2. Introduced species are represented by triangles. Ecoregions are arranged longitudinally; ecoregions in Alaska, U.S.A.: 
BU, Beringia Upland Tundra; BL, Beringia Lowland Tundra; IY, Interior Yukon– Alaska Alpine Tundra; IA, Interior Alaska– Yukon Lowland 
Tundra; AF, Arctic Foothills Tundra; AC, Arctic Coastal Tundra; and BB, Brooks– British Range Tundra. In Canada: NT, Northwest Territories 
Taiga; OM, Ogilvie– Mackenzie Alpine Tundra; LA, Low Arctic Tundra; MS, Muskwa– Slave Lake Forests; MA, Middle Arctic Tundra; HA, High 
Arctic Tundra; and NC, Northern Canadian Shield Taiga. In the Atlantic: KH, Kalaallit Nunaat High Arctic Tundra and KL, Kalaallit Nunaat Low 
Arctic Tundra; I, Iceland Birch Forests and Alpine Tundra; FI, Faroe Islands Boreal Grasslands. In Svalbard and other northern islands: AD, 
Arctic Desert. In Fennoscandia and Russia; SM, Scandinavian Montane Birch Forest; SR, Scandinavian and Russian Taiga; KP, Kola Peninsula 
Tundra; RT, Northwest Russian– Novaya Zemlya Tundra; UM, Ural Montane Forests and Tundra; and YG, Yamal– Gydan Tundra
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to limited data or lack of variance in richness between hydrobasins 
(Table 2).

Spatial patterns of β- diversity varied by latitudinal zone (Table 2). 
In the boreal and subarctic, where the maximum distance between 
hydrobasins was greatest, total β- diversity was weakly positively 
correlated with distance between hydrobasins. In these two zones, 
the dissimilarity between hydrobasin species assemblages across 
the spatial extent of the study arose primarily from the turnover 
component of β- diversity, which was also positively correlated with 
spatial distance. The nestedness component of β- diversity was not 
significantly correlated with spatial distance, though correlation 
coefficients were similar in magnitude to those found for total di-
versity. In the low Arctic and high Arctic, no correlation was found 
between hydrobasin assemblage dissimilarity and spatial distance 
for total β- diversity, the turnover component of β- diversity, or the 
nestedness component of β- diversity.

3.2 | Regional diversity comparisons

Rarefied (n samples = 921) fish species richness, as an estimate of 
γ- diversity at the ecoregion scale, was highest, with a richness of 
nearly 20 species in the Scandinavian and Russian Taiga and Arctic 
Coastal Tundra (Table 3; Figure 5a). Fish species richness in the 
Scandinavian Montane Birch Forest and Grasslands and Brooks– 
British Range Tundra were 18% and 54% lower, respectively, than 
their neighbouring, lower elevation ecoregions. The rarefied rich-
ness in the Iceland Boreal Birch Forests and Alpine Tundra was lower 
than in all of the other ecoregions on mainland continents, with a 
richness of three species.

Comparisons between the Arctic Coastal Tundra and the Brooks– 
British Range Tundra in Alaska, and between the Scandinavian and 
Russian Taiga and the Scandinavian Montane Birch Forest and 
Grasslands using the ecological null hypothesis put forward by 

Cayuela et al. (2015)— that two or more samples were drawn ran-
domly from the same species pool— was tested using rarefaction 
curves. Rarefaction curves between the Arctic Coastal Tundra and 
the Brooks– British Range Tundra differed (niter = 750, Zobs = 9,419, 
p = 0.001), suggesting that there were differences in either species 
composition or richness. Rarefaction curves from the Scandinavian 
and Russian Taiga and the Scandinavian Montane Birch Forest and 
Grasslands were similar (niter = 750, Zobs = 3,447, p = 0.569), suggest-
ing differences in species richness or composition between stations 
in the two ecoregions were no greater than what would be antici-
pated from random sampling of the same species pool.

When comparing rarefaction curves across distant ecoregions, 
we failed to reject the biogeographical null hypothesis put forward 
by Cayuela et al. (2015)— that two or more samples were drawn from 
assemblages that share species richness profiles— in one of seven 
pairs. There was no significant difference between the rarefaction 
curves in the Scandinavian and Russian Taiga and the Arctic Coastal 
Tundra (niter = 200, Zobs = 254, p = 0.560). The rarefaction curves 
for the Iceland Boreal Birch Forests and Alpine Tundra, which had 
the smallest species pool and only three represented species, dif-
fered from those for other ecoregions (i.e. higher values of Zobs). The 
curves for the Iceland Boreal Birch Forests and Alpine Tundra and 
for the Scandinavian Montane Birch Forests and Grasslands could 
not be assessed given the low species richness in both of those 
ecoregions.

Mean α- diversity was highest in the Scandinavian and Russian 
Taiga at approximately eight species, with similar mean α- diversity 
in the Arctic Coastal Tundra, and Brooks– British Range Tundra 
(Table 3; Figure 6a). Mean α- diversity in the Scandinavian Montane 
Birch Forest and Grasslands was reduced by two species com-
pared to the adjacent Scandinavian and Russian Taiga ecoregion 
(Figure 5b). Overall, α- diversity was reduced in the high- elevation 
ecoregions (Brooks– British Range Tundra and Scandinavian Montane 
Birch Forest and Grasslands) when compared to that of adjacent 

F I G U R E  3   Response of hydrobasin α- 
diversity to latitude (a) and γ- diversity (b). 
Each point on the plots represents a single 
hydrobasin. The log- linear relationship 
between α- diversity and latitude (±1 SE) is 
shown for latitudes below 70.7°N
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low- elevation ecoregions (Figure 5b). Among the five ecoregions, 
mean hydrobasin α- diversity was lowest in the Iceland Boreal Birch 
Forests and Alpine Tundra, with only three species.

Using multiple- site dissimilarity calculations we found 
that β- diversity was greatest in the Arctic Coastal Tundra, the 
Brooks– British Range Tundra, and the Fennoscandian area of 
the Scandinavian and Russian Taiga (Table 3). Beta- diversity was 
lower in the Scandinavian Montane Birch Forest and Grasslands 
and lowest in the Iceland Boreal Birch Forests and Alpine Tundra 
(Figure 6b). Average βSOR differed significantly between all ecore-
gions (ANOVA F(4,5,995) = 303, p < 0.001, all pairwise tests p < 
0.003; Table 3). Comparisons of the turnover and nestedness com-
ponents revealed higher values of βSIM compared to βNES in the 
Arctic Coastal Tundra (t(799) = 35.37, p < 0.001), Brooks– British 
Range Tundra (t(399) = 18.39, p < 0.001), Scandinavian and Russian 
Taiga (t(2,799) = 37.27, p < 0.001), and the Scandinavian Montane 
Birch Forest and Grasslands (t(1,499) = 24.41, p < 0.001; Figure 5c). 

Beta- diversity in the Iceland Boreal Birch Forests and Alpine Tundra 
exhibited the opposite pattern, where dissimilarity from nestedness 
was greater than the dissimilarity from turnover (t(499) = −20.59, p < 
0.001, Figure 6b).

4  | DISCUSSION

By examining the spatial patterns of γ- , α- , and β- diversity, we pro-
vide the first baseline for understanding processes that govern fish 
community assembly and species richness in the circumpolar Arctic. 
Because community richness and composition depend upon the dis-
persal abilities of the fishes, historic and contemporary barriers to 
colonisation, and environmental characteristics that influence oc-
cupancy (Griffiths, 2015; Oswood, Reynolds, Irons, & Milner, 2000; 
Tonn, Magnuson, Rask, & Toivonen, 1990), broad- scale patterns of 

TA B L E  1   Diversity values for all ecoregions where fish data were available

Ecoregion Gamma

Alpha Beta

n Mean (SD) n Mean (SD)

Arctic Coastal Tundra 26 19 2.83 (0.43) 15 0.66 (0.32)

Arctic Desert 1 3 1.00 (0) 2 0 (0)

Arctic Foothills Tundra 26 11 1.45 (0.11) 10 0.67 (0.33)

Beringia Lowland Tundra 25 1 1.50 (– ) 1 0.33 (– )

Beringia Upland Tundra 26 17 1.82 (0.24) 13 0.47 (0.30)

Brooks– British Range Tundra 19 9 1.65 (0.15) 7 0.78 (0.06)

Faroe Islands Boreal Grasslands 3 1 1.50 (– ) 1 0.33 (– )

High Arctic Tundra 2 8 1.00 (0) 3 0 (0)

Iceland Boreal Birch Forests and Alpine Tundra 8 29 1.94 (0.09) 25 0.45 (0.18)

Interior Alaska– Yukon Lowland Taiga 22 9 2.38 (0.31) 7 0.75 (0.15)

Interior Yukon– Alaska Alpine Tundra 17 2 1.75 (0.75) 2 0.10 (0.14)

Kalaallit Nunaat High Arctic Tundra 1 3 1.00 (0)   

Kalaallit Nunaat Low Arctic Tundra 5 18 1.03 (0.03) 10 0.03 (0.10)

Kola Peninsula Tundra 18 5 3.07 (1.24) 2 0.25 (0.35)

Low Arctic Tundra 17 1 3.50 (– ) 2 0.27 (0.18)

Middle Arctic Tundra 9 2 1.00 (0)   

Muskwa– Slave Lake Forests 27 2 2.75 (0.25) 1 0.20 (– )

Northern Canadian Shield Taiga 21 3 3.83 (0.44) 3 0.44 (0.18)

Northwest Russian– Novaya Zemlya tundra 45 14 3.96 (0.48) 9 0.56 (0.20)

Northwest Territories Taiga 33 12 2.32 (0.26) 6 0.48 (0.11)

Ogilvie– MacKenzie Alpine Tundra 14 5 1.65 (0.38) 1 0.54 (– )

Scandinavian and Russian Taiga 47 72 4.49 (0.26) 55 0.65 (0.27)

Scandinavian Montane Birch Forest and Grasslands 25 47 2.89 (0.28) 32 0.62 (0.26)

Ural Mountain Forest and Tundra 7 3 2.61 (0.39) 2 0.17 (0.04)

Yamal– Gydan Tundra 26 2 9.50 (0.50)   

Note: Gamma- diversity was based on literature (Mecklenburg et al., 2002; Muus & Dahlström, 1993; Ponomarev, 2017; Scott & Crossman, 1973) and 
expert knowledge. Alpha- diversity was determined as the average species richness of all sample stations within a hydrobasin, and β- diversity was 
determined from Sørensen dissimilarities of sample stations within a hydrobasin. The number, n, and mean (SD) are provided for each ecoregion.
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fish species α- , β- , and γ- diversity varied with latitude, isolation, and 
coarse ecoregion characteristics (e.g. elevation or area). Our evalu-
ation of these biodiversity patterns provides information on com-
munity regulation (i.e. factors that control richness, abundance, or 
composition) that can improve monitoring and assessments of bio-
diversity change or persistence in the future (Gotelli et al., 2017).

Gamma- diversity was lowest in the highest latitude ecore-
gions (i.e. Middle Arctic Tundra and High Arctic Tundra in Canada, 
Kalaallit Nunaat High Arctic Tundra in Greenland, and Arctic Desert 
in Svalbard), because limited connections to glacial refugia, time 
since glaciation events, harsh environmental conditions, and spe-
cies dispersal abilities limit species richness with increasing latitude 
(Griffiths, 2015; Schleuter et al., 2012). Recent warming of marine 
and freshwaters in the Arctic may facilitate the range expansion of 
species, which could lead to compositional change (Hayden et al., 
2017; Reist et al., 2006). In fact, climate change now facilitates the 
northward movement of many fishes previously restricted by low 
temperatures in high Arctic environments. Diadromous or euryhaline 

fish species, which are fairly common in northern areas, may ascend 
non- natal watercourses to colonise new freshwater localities in the 
high Arctic. For example, threespine stickleback Gasterosteus acu-
leatus recently appeared in surveys of freshwaters at Zackenberg, 
Greenland in Kalaallit Nunaat High Arctic Tundra (Nielsen, Hamerlik, 
& Christoffersen, 2012), and on Svalbard in the remote Arctic Desert 
(Svenning, Aas, & Borgstrøm, 2015).

Many of the fish species in high latitudes of Canada and Europe 
are found in both historically unglaciated and glaciated regions, sug-
gesting northward (in Europe, north and west) movement of fishes 
from a colonising source (i.e. refugia) after glacial retreat (Griffiths, 
2015; Koljonen et al., 1999). In contrast, the Beringia refugia pro-
vided protection for freshwater fishes during the most recent 
Pleistocene glaciation event (Christiansen et al., 2013; Oswood 
et al., 2000), which has resulted in increased species richness at high 
latitudes (about 70.3°N) of Alaska (Oswood et al., 2000), where γ- 
diversity was as high as 26 fish species. Eighty- one per cent of the 
fishes found in northern Alaska (i.e. Arctic Coastal Tundra and the 

F I G U R E  4   Dominant components of β- diversity in ecoregions (a) of the circumpolar Arctic characterised as nestedness, turnover, no 
diversity (none, β = 0), similar nestedness and turnover (nest ~ turn), or undetermined due to small sample size (Und). Box and whisker 
plots of turnover (βSIM) and nestedness (βNES) components of β- diversity for each latitudinal zone (b). Statistical differences in turnover and 
nestedness are indicated with an * above the zone. Boxes span the first to third quartile, the line within the box is the median, and points 
beyond the whiskers are outliers. Ecoregions are BU, Beringia Upland Tundra; BL, Beringia Lowland Tundra; IY, Interior Yukon– Alaska 
Alpine Tundra; IA, Interior Alaska– Yukon Lowland Tundra; AF, Arctic Foothills Tundra; AC, Arctic Coastal Tundra; BB, Brooks– British Range 
Tundra; NT, Northwest Territories Taiga; OM, Ogilvie– Mackenzie Alpine Tundra; LA, Low Arctic Tundra; MS, Muskwa– Slave Lake Forests; 
MA, Middle Arctic Tundra; HA, High Arctic Tundra; NC, Northern Canadian Shield Taiga; KH, Kalaallit Nunaat High Arctic Tundra; KL, 
Kalaallit Nunaat Low Arctic Tundra; I, Iceland Birch Forests and Alpine Tundra; FI, Faroe Islands Boreal Grasslands; AD, Arctic Desert; SM, 
Scandinavian Montane Birch Forest; SR, Scandinavian and Russian Taiga; KP, Kola Peninsula Tundra; RT, Northwest Russian– Novaya Zemlya 
Tundra; UM, Ural Montane Forests and Tundra; and YG, Yamal– Gydan Tundra. The black line indicates the Conservation of Arctic Flora and 
Fauna (CAFF) boundary of the Arctic
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Arctic Foothills Tundra) persisted in the Beringian refugia (Oswood 
et al., 2000). Northernmost Scandinavia, which was re- colonised 
from an eastern refuge, showed higher fish species diversity than 
Scandinavian Mountain Birch Forests regions (Hewitt, 2000; Nesbø, 
Fossheim, Vøllestad, & Jakobsen, 1999; Østbye, Bernatchez, Næsje, 
Himberg, & Hindar, 2005). These studies support our finding that the 
Scandinavian Montane Birch Forests and Grasslands ecoregion had 
reduced α- diversity compared to the adjacent low- elevation ecore-
gion, indicating the importance of barriers to colonisation at higher 
altitudes. It should also be noted that current ecoregion definitions 
are not always ideal for the study of fish diversity and distributions, 
which have been influenced by historical conditions including a com-
plex suite of glacial melting channels, ice- dammed lakes, terrestrial 
uplift or rebound, and watercourse alterations (e.g. Mangerud et al., 
2004). Constructing additional geographic regions, such as palaeo- 
drainage basins (see Dias et al., 2014), may benefit biodiversity anal-
yses of fish communities that have formed over thousands of years 
since deglaciation.

Due to the refuge provided during the last glacial advance, fish 
species richness does not decline northward in hydrobasins of the 
Arctic Coastal Tundra. Instead, species richness increases slightly 
from the south to north, which corresponds with the additional pres-
ence of anadromous fishes at the Beaufort Sea coast (Craig, 1984; 
Laske et al., 2016). Among all stations, α- diversity was relatively con-
sistent from 60° to 70°N, a pattern that may result from the over-
whelming proportion of sites in Alaska's high Arctic and the region's 
biogeography and glacial history. Because of the sampling imbalance 
across countries and a lack of stations in vast areas of the subarc-
tic (e.g. Canada and Russia), we cannot clearly determine whether 
the pattern of increasing α- diversity with latitude occurs uniformly 
across the circumpolar Arctic.

In Arctic Canada, freshwaters extend to roughly 83°N and spe-
cies richness declines with latitude are evident, but declines are 
also strongly associated with lack of connectivity among freshwater 
habitats in the Canadian Archipelago (Christiansen et al., 2013). The 
abrupt loss in α- diversity at latitudes above 71°N probably relates 
directly to the lack of contiguous landmass, which includes only 
parts of Siberia, Greenland, the Canadian Archipelago, and northern 
Arctic islands (e.g. Svalbard). The lack of freshwater connectivity to 
Greenland, the Canadian Archipelago, and northern Arctic islands 
limits colonisation to only anadromous species (Christiansen et al., 
2013). However, limited data, particularly on continental Eurasia, 
may be preventing a clear interpretation of our results. At least 
seven to 10 species of freshwater/anadromous fish occur in the high 
Arctic from the Ural Mountains east to the Indigirka River in Siberia 
(Novikov et al., 2000; Romanov, Zuykova, & Bochkarev, 2016), but 
their latitudinal distribution patterns are unclear.

Location and isolation affected both γ-  and α- diversity; in high 
Arctic ecoregions and on islands, α- diversity was constrained by 
the available species pool. The size of the regional species pool (γ- 
diversity) is tightly coupled to lower scale processes, including the 
dispersal and persistence of species within a region (Hillebrand et al., 
2018; Rolls et al., 2018). At larger scales, historic and contemporary 

conditions limit species access to ecoregions. The Scandinavian 
Montane Birch Forest and Grasslands is at higher elevation and de-
glaciated later than Scandinavian and Russian Taiga (e.g. Mangerud 
et al., 2004), corresponding with lower γ-  and α- diversity today. 
Similarly, the Brooks– British Range Tundra was glaciated during 
the last Pleistocene event, and combined with current elevation 
effects (e.g. stream gradients) the fish fauna of this ecoregion is 
dissimilar compared with the other ecoregions in Alaska (Hershey 
et al., 2006; Oswood et al., 2000). We found, by comparing rarefac-
tion curves, that the Brooks– British Range Tundra differed either 
in species richness or composition from the Arctic Coastal Tundra. 
By examining the identities of fish found in these two ecoregions, 
differences arose from loss of species across ecoregion boundaries 
(Mecklenburg et al., 2002). In Iceland, an isolated region with low 
α-  and γ- diversity, freshwater fish dispersal to the island is limited by 
great distance (>1,000 km) to mainland freshwaters. As a result, only 
diadromous or euryhaline species have colonised (Christiansen et al., 
2013), limiting species diversity.

While Salmonidae (48– 52 species) is a diverse, cold- water 
adapted, and wide- ranging family of fishes (Erkinaro et al., 2019; 
Siwertsson et al., 2010; Woods et al., 2012), other taxonomic groups 
(e.g. Anguillidae, Cobitidae, and Umbridae) have more limited diver-
sity and geographic distributions in the Arctic (Christiansen et al., 
2013). Across the study area, 14% of fishes (excluding introduced 
species) spanned both Nearctic and Palearctic continents (including 
Arctic charr, burbot Lota lota, pike Esox lucius, threespine stickleback, 
ninespine stickleback Pungitius pungitius, and Arctic cisco Coregonus 
autumnalis). The remaining species turned over or were replaced. 
The assessment of β- diversity compared diversity at two different 
scales (the ecoregion— γ- diversity; and the hydrobasin— α- diversity), 
with dissimilarities arising from species replacement (i.e. turnover) 
or loss (i.e. nestedness; Anderson et al., 2011; Baselga, 2010). We 
found that in a majority of ecoregions, both replacement and loss 
of species from hydrobasin to hydrobasin contributed to β- diversity. 
In ecoregions with robust sampling, however, turnover was the 
dominant process, suggesting that a change in species composition 
between basins was more prevalent than losses of species from a 
primary, species rich location. Turnover may result from directional 
change in species composition that occur along a predefined spatial 
or environmental gradient (e.g. temperature; elevation), or from a 
non- directional change that occurs among sites within a given area 
(e.g. lake depth; Anderson et al., 2011; Legendre, Borcard, & Peres- 
Neto, 2005).

The virtual lack of β- diversity in northern ecoregions (i.e. Arctic 
Desert, High Arctic Tundra, Kalaallit Nunaat Low Arctic Tundra) 
was not surprising given the low richness of regional species 
pools (Mecklenburg et al., 2002; Muus & Dahlström, 1993; Scott 
& Crossman, 1973). The high Arctic zone did not display a strong 
pattern of species turnover or nestedness, probably because patchy 
data obscured true β- diversity patterns. Most species in the high 
Arctic were found in one ecoregion (Arctic Coastal Tundra, 21 
spp.), and only one shared species (Arctic charr) was represented 
in the remaining four ecoregions (High Arctic Tundra, Middle Arctic 
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Tundra, Kalaallit Nunaat High Arctic Tundra, and the Arctic Desert). 
However, low γ- diversity and consistent fish assemblages, often in-
cluding Holarctic species (e.g. Arctic charr or threespine stickleback), 
would limit the amount of possible variation in communities of the 
high Arctic. Potentially, with increased spatial sampling, patterns 
of β- diversity in the high Arctic may become apparent. Those sites 
that are particularly harsh (i.e. isolated, and at high latitudes) may 

be occupied only by a subset of the richest assemblage, including 
only species that are either physiologically tolerant or migratory 
(Griffiths, 2010; Henriques- Silva, Lindo, & Peres- Neto, 2013).

We anticipated that the dissimilarity between hydrobasin as-
semblages would increase with geographic distance (Beisner et al., 
2006; Soininen et al., 2007). In other words, distant assemblages 
would share fewer species than proximate assemblages— either as 

TA B L E  3   Gamma- diversity (Srare), α- diversity (αrare), multiple- site β- diversity (βSOR), and its components turnover (βSIM) and nestedness 
(βNES) for a subset of five ecoregions with robust fish species presence– absence data

Ecoregion n Srare

αrare βSOR βSIM βNES

Mean SD Mean SD Mean SD Mean SD

Arctic Coastal Tundra 8 19.7 7.74 1.09 0.77 0.06 0.54 0.14 0.23 0.11

Brooks– British Range Tundra 4 9.0 5.49 1.38 0.75 0.09 0.53 0.21 0.22 0.13

Iceland Boreal Birch Forests 
and Alpine Tundra

5 3.0 3.00 0.01 0.57 0.08 0.16 0.17 0.42 0.12

Scandinavian and Russian 
Taiga

28 19.8 8.64 2.69 0.73 0.07 0.47 0.26 0.26 0.13

Scandinavian Montane Birch 
Forest and Grasslands

15 16.3 6.60 3.21 0.65 0.22 0.45 0.17 0.21 0.16

Note: The number of basins (n) used to determine the mean and standard deviation of αrare and β- diversity estimates based on resampling. Sample size 
for β- diversity resampling is 100n.

F I G U R E  5   Gamma- diversity (a), α- diversity (b), and the primary β- diversity (c) components for the Alaska Coastal Tundra and Brooks– 
British Range Tundra in Alaska, the Iceland Boreal Birch Forests and Alpine Tundra, and the Scandinavian Montane Birch Forest and 
Grasslands and Scandinavian and Russian Taiga in Fennoscandia
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a result of species replacement (i.e. turnover) or loss (i.e. nested-
ness). Species turnover was correlated with geographic distance at 
lower latitudes, in the boreal and subarctic zones, so dissimilarity 
between distant hydrobasin assemblages arose from replacement of 
fish species rather than from changes in fish species richness. On a 
circumpolar scale, patchy distributions of species with more south-
erly distributions may contribute to turnover, since some families 
or species are restricted to either the Nearctic (e.g. Catostomidae 
and Hiodontidae) or the Palearctic (e.g. Balitoridae and Cobitidae; 
Christiansen et al., 2013). The Cyprinidae family occurs in both 
the Nearctic and Palearctic, making up 38% of the species in the 
Nearctic and 62% of the species in the Palearctic (Christiansen et al., 
2013; Muus & Dahlström, 1993; Scott & Crossman, 1973), yet none 
of the Cyprinidae species occur on both continents.

In the Scandinavian and Russian Taiga, there was little differ-
ence in mean α- diversity across the sampled hydrobasins, but dis-
tant sites were dissimilar due to species replacement; hydrobasin 
assemblages in Sweden and southern Finland differed from those 
in western Russia. Rapid changes in the identities of species along a 
spatial gradient may identify ecotones, or the transitional boundary 
between two biological assemblages (Guerin, Biffin, & Lowe, 2013; 
Leprieur et al., 2011). This particular terrestrial ecoregion covered a 
large spatial extent that overlapped two major drainages (Northern 
Baltic Sea and the Barents Sea), considered as two flow- based 
Freshwater Ecoregions (Abell et al., 2008). The spatial breadth of the 
ecoregion had a major impact on our assessment of γ- diversity from 

literature and from data collected for this study, by adding species 
either along a longitudinal gradient or with increasing area. Gamma- 
diversity, based on rarefaction curves, in the Arctic Coastal Tundra 
and Fennoscandian portion of the Scandinavian and Russian Taiga 
were similar. Those estimates included 77% (20 of 26 species) of 
the known species in the Arctic Coastal Tundra and only 43% (20 
of 47 species) of the known species in the Scandinavian and Russian 
Taiga, which may indicate that the freshwaters to the east (in Russia) 
contain additional species. Each of the other terrestrial ecoregions 
(Olson et al., 2001) subdivided the Freshwater Ecoregions (Abell 
et al., 2008), and accounted for additional landscape features such 
as isolation (e.g. Svalbard) or mountain ranges (e.g. the Brooks Range 
in Alaska). Community variation was often not associated with geo-
graphic distance (83% of ecoregions), however, so other factors such 
as historical conditions during deglaciation, species co- occurrence, 
non- spatial gradients, or environmental heterogeneity may under-
lie the processes of turnover or nestedness (Anderson et al., 2011; 
Baselga, 2013).

At regional scales, environmental heterogeneity across hyd-
robasins can affect factors that control fish species richness, com-
position, and community assembly (Gotelli et al., 2017; Magnuson 
et al., 1998). In our study, patterns of diversity did not always differ 
in distant ecoregions (e.g. Arctic Coastal Tundra and Scandinavian 
and Russian Taiga), suggesting that mechanisms of community reg-
ulation may operate similarly on dissimilar regional species pools 
(Kraft et al., 2011; Tonn et al., 1990). In the Arctic Coastal Tundra 

F I G U R E  6   Box and whisker plots 
of ecoregion α- diversity (a) and fish 
assemblage dissimilarity due to the 
turnover (βSIM) and nestedness (βNES) 
components of β- diversity (b). Differences 
in α- diversity are indicated by the letters 
above each box, shared letters indicate no 
statistical difference of means. Statistical 
differences in mean turnover and 
nestedness are indicated with an * above 
the ecoregion. Boxes span the first to 
third quartile, the line within the box is the 
median, and points beyond the whiskers 
are outliers
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of Alaska, coastal hydrobasins with large river deltas contained a far 
greater diversity of species (Christiansen et al., 2013; Craig, 1984; 
Wrona et al., 2006), including regionally rare species (e.g. sockeye 
salmon Oncorhynchus nerka), anadromous species (e.g. Dolly Varden 
Salvelinus malma), and freshwater species (e.g. longnose sucker 
Catostomus catostomus). Because turnover was the predominant pro-
cess in the Arctic Coastal Tundra ecoregion, other hydrobasins did 
not represent disaggregated subsets of the richest location. Instead, 
species replaced one another along environmental gradients (e.g. 
distance from major river, isolation) given their individual dispersal 
abilities (Craig, 1984; Laske et al., 2016; Oswood et al., 2000).

Isolation may have profound effects on the distribution of fishes 
across landscapes, and on our understanding of environmental 
gradients that effect biodiversity (Brittain et al., 2009; Magnuson 
et al., 1998; Schleuter et al., 2012). Freshwater habitats on islands 
(e.g. the Canadian Archipelago, Svalbard, Iceland) are considerably 
more isolated than freshwater habitats on contiguous land masses 
(e.g. Eurasian Arctic), and had only a subset of species found else-
where. In mountainous regions, physical barriers limit species access 
from adjacent lower elevation ecoregions and promote the creation 
of discrete fish communities (Degerman & Sers, 1992; Hershey et al., 
1999). Lakes of the Brooks– British Range Tundra are occupied by 
specific communities that turnover along specific geomorphic con-
straints (Hershey et al., 1999), including channel gradients, altitude, 
and lake area or depth (Degerman & Sers, 1992; Hershey et al., 2006; 
Holmgren & Appelberg, 2000). In addition, in many species- poor re-
gions, historical conditions during deglaciation and ecological oppor-
tunity have facilitated fish divergence via resource polymorphism 
and ecological speciation events (Hershey et al., 2006; Siwertsson 
et al., 2010; Woods et al., 2012) that can have very important trophic 
consequences within communities (Lucek, Kristjánsson, Skúlason, & 
Seehausen, 2016; Thomas et al., 2017; Woods et al., 2012).

Across the circumpolar Arctic, fish biodiversity depended upon 
the historic and modern characteristics of the ecoregion or latitudi-
nal zone where they occurred. However, some of the variability we 
found among hydrobasins was probably due to differences in sam-
ple availability rather than the environment, given that streams and 
lakes were not sampled in relation to their abundance or with con-
sistency across ecoregions. Additionally, in hydrobasins with fewer 
sampled stations, we probably missed a greater number of species 
because of non- detection. Potentially, reduced α- diversity in hyd-
robasins with fewer sample stations may be overly influential in our 
circumpolar analyses where all hydrobasins were considered, reduc-
ing average α- diversity and increasing the contribution of nested-
ness to β- diversity patterns. The effect of area on species diversity 
at larger spatial scales (i.e. that of the ecoregion) was also difficult 
to ascertain because of disparities in the distribution and number of 
hydrobasins with station data.

This study takes the first steps in determining large- scale pat-
terns of freshwater fish biodiversity throughout the circumpolar 
Arctic using a unique data compilation. It is important to evaluate 
the current biodiversity patterns and to provide a baseline to im-
prove our ability to detect temporal species turnover and spatial 

dissimilarity (Hillebrand et al., 2018; Socolar et al., 2016). Changes 
in climate, land use, and biotic exchange will have profound effects 
on Arctic fish biodiversity and the structure and function of commu-
nities and food webs in the future (Hayden et al., 2017; Sala et al., 
2000; Wrona et al., 2006). In this respect, freshwaters in the subarc-
tic zone should be monitored intensively, because these waterbodies 
are most likely to experience encroachment and expansion of warm- 
water adapted species from the boreal region (Rolls et al., 2018). In 
future fish diversity assessments, research should look beyond the 
species level towards intraspecific diversity, which is known to re-
peatedly occur in many of the studied circumpolar areas (Skúlason 
et al., 2019; Taylor, 1999), and is an important contributor to fresh-
water food web structure and ecosystem function (Power, Reist, & 
Dempson, 2008; Thomas et al., 2017; Woods et al., 2012). An un-
derlying question is whether to monitor the richest assemblages or 
focus on ecosystem gradients or factors that promote and main-
tain fish diversity. Future studies examining patterns and drivers of 
Arctic biodiversity should strive to combine extensive old and new 
data from the circumpolar regions to test for changes in observed 
patterns and the consequences of both among-  and within- species 
variation on design and implementation of monitoring frameworks 
used to preserve freshwater biodiversity.
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