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Societal Impact Statement
The sustainable management of the southern African woodlands is closely linked to 
the livelihoods of over 150 M people. Findings from the Socio- Ecological Observatory 
for the Southern African Woodlands (SEOSAW) will underpin the sustainability of 
two of the largest industries on the continent: woodfuels and timber. SEOSAW will 
also improve our understanding of how human use shapes the biogeography and 
functioning of these ecosystems.
Summary
• Here we describe a new network of researchers and long- term, in situ, measure-

ments that will characterize the changing socio- ecology of the woodlands of 
southern Africa. These woodlands encompass the largest savanna in the world, 
but are chronically understudied, with few long- term measurements.

• A network of permanent sample plots (PSPs) is required to: (a) address manage-
ment issues, particularly related to sustainable harvesting for energy and timber; 
(b) understand how the woodlands are responding to a range of global and local 
drivers, such as climate change, CO2 fertilization, and harvesting; and (c) answer 
basic questions about biogeography, ecosystem function, and the role humans 
play in shaping the ecology of the region.

• We draw on other successful networks of PSPs and adapt their methods to the 
specific challenges of working in southern African woodlands. In particular we 
suggest divergences from established forest monitoring protocols that are needed 
to (a) adapt to a high level of ecosystem structural diversity (from open savanna to 
dry forest); (b) quantify the chronic disturbances by people, fire, and herbivores; 
(c) quantify the diversity and function of the understory of grasses, forbs, and 
shrubs; (d) understand the life histories of resprouting trees; and (e) conduct work 
in highly utilized, human- dominated landscapes.

• We conclude by discussing how the SEOSAW network will integrate with re-
mote sensing and modeling approaches. Throughout, we highlight the challenges 

[Correction added on 29 January 2021, after 
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been fully modified after 3.1.] 
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1  | INTRODUC TION

“As a scientific project, a… plot is akin to a space- 
station or a probe to Mars— it is a comprehensive sci-
entific tool used jointly by a large number of scientists 
from several disciplines. And, like other big science 
projects, it is costly.” (Condit, 1998).

Together, savannas, woodlands, thickets, and dry forests consti-
tute the largest land cover in the tropics (Olson et al., 2001; Pennington 
et al., 2018). These ecosystems, together termed the dry tropics 
(Pennington et al., 2018), are chronically understudied (Sunderland 
et al., 2015). Focusing on southern Africa, here we set out how long- 
term, repeated, in situ, measurements can be used to understand the 
changing socio- ecology of the vegetation of the dry tropics.

Long- term measurements tracking individual plants can guide 
land use management, for example sustainable harvesting (Alder 
& Synnott, 1992), and also address fundamental scientific ques-
tions. For ecologists, understanding both individual life histories 
and changes in community assembly is vital to tackling fundamen-
tal questions regarding tree allometry and growth, recruitment 
and mortality, ecosystem functioning, and responses to global 
change (Esquivel- Muelbert et al., 2019; Fadrique et al., 2018; Fauset 
et al., 2012; Rozendaal & Zuidema, 2011; Wolf et al., 2009). The 
SEOSAW network has been created to address the lack of such a 
network of measurements in the southern African dry tropics— the 
focus of this paper— and to improve our understanding of the func-
tioning of the region's vegetation and, in particular, responses to 
global change.

SEOSAW is in the early stages of implementation (https://
seosaw.github.io). We have integrated existing plot data into the 
network and are establishing new plots using a new, standard-
ized manual, the latest version of which can always be found at 
https://seosaw.github.io/manua ls.html. The manual, the main 
aspects of which are presented here, was created through dis-
cussion at a series of workshops, supported by analysis of the 
existing data. Thus, in this paper, we (a) provide an introduction to 
the socio- ecology of the vegetation in the region; (b) set out the 
rationale for SEOSAW and the key questions it will address; and 
(c) present the SEOSAW manual, discussing the methodological 
challenges inherent in making consistent long- term observations 
in the region and the way we have addressed them, before (d) 
summarizing our next steps.

2  | BACKGROUND TO THE SOCIO - 
ECOLOGY OF THE WOODL ANDS OF 
SOUTHERN AFRIC A

The woodland region of southern Africa defined by White (1983; 
Figure 1) is largely comprised of woody savannas, but is interspersed 
with more open savannas, and denser thickets and dry forests. The 
terminology describing the vegetation has long been contentious 
(Frost & Campbell, 1996; Ratnam et al., 2011; Richards et al., 1940) 
because in many areas the woodlands can form a closed canopy and 
thus might be described as a dry forest, while in other locations, the 
same floristic assemblage can have a markedly open canopy and 
support a continuous grass layer, meeting most definitions of a sa-
vanna (Ratnam et al., 2011). We therefore use the term woodland in 
the sense of White (1983) and note that the region includes much 
that is of interest to scholars of both dry forests and savannas.

First we describe the biogeography of the SEOSAW region of 
interest, drawing heavily on the mapping of White (1983). In White's 
map, woodlands cover 3.2 M km2 of southern Africa, with associated 
woodland transitions and mosaics covering a further 0.5 M km2, and 
forest transitions covering 1.8 M km2. Note that these areal esti-
mates do not account for human transformation of these landscapes. 
Human influence varies widely across the region: approximately a 
quarter of the land area is cropland (You et al., 2014), and shifting 
cultivation is common (Grogan et al., 2013). Tree harvesting is also 
widespread, particularly near cities (Ahrends et al., 2010; Ahrends 
et al., in press; MITADER, 2018; McNicol et al., 2018). Given vari-
ation in both natural and human determinants of ecosystem struc-
ture, there is a large degree of structural variation within the floristic 
vegetation types mapped by White (1983).

The largest floristic units of the southern African woodland 
delineated by White (1983) and updated by Olson et al. (2001) 
are miombo (2.2 M km2; Campbell, 1996), mopane (0.5 M km2; 
Makhado et al., 2014), and Baikiaea woodlands (0.3 M km2; de 
Cauwer et al., 2016). These floristic units are all dominated by trees 
of the recently renamed Detarioideae (LPWG, 2017), a subfam-
ily of the Leguminosae. Miombo woodlands (dominated by trees 
of the genera Brachystegia and Julbernardia), are divided into four 
somewhat distinct geographic blocks (Olson et al., 2001) separated 
by large river valleys covered by mopane woodland (dominated by 
Colophospermum mopane) and/or flooded grasslands, or by moun-
tain ranges. The Baikiaea woodlands (largely dominated by Baikiaea 
plurijuga) occur across the central southern parts of the ecoregion 

inherent to integrating work by forest and savanna ecologists, and the wide range 
of skills needed to fully understand the socio- ecology of the southern African 
woodlands.
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and start the transition to more arid Kalahari vegetation. Mopane 
woodlands occur in large river valleys and, similar to Baikiaea wood-
lands, also across the southern part of the region in more arid zones. 
A transition to Congolian rainforest occurs to the north, and to more 
open savannas, shrublands, and bushland to the NE and SW (Linder 
et al., 2012; Olson et al., 2001; White, 1983). On the eastern sea-
board, the heavily transformed coastal forest mosaic (0.4 M km2) is 
sometimes included in definitions of the miombo ecoregion (Burgess 
& Clarke, 2000), although it is floristically distinct (Timberlake 
et al., 2013; White, 1983). Overall, however, this continental- scale 
perspective belies a more diverse reality. The vegetation types 
mapped by White (1983) and updated by Olson et al. (2001) are 
limited by the data available at the time they were compiled and 
include a large (0.6 M km2) “undifferentiated woodland” class, with 
very varied patterns of floristic dominance. At a finer scale there are 
complex structural and floristic patterns, including the widespread 

presence of non- Detarioid vegetation such as Mimosoid (ex- Acacia 
incl. Senegalia and Vachellia)-  and Combretaceae- dominated savan-
nas (Backeus et al., 2006; de Cauwer et al., 2016; Kalaba et al., 2013; 
McGregor, 1994; Osborne et al., 2018; Woollen et al., 2012), and 
rain- forest- affiliated coastal forest (Prins & Clarke, 2007; Timberlake 
et al., 2013).

The importance of southern African woodlands in rural and urban 
livelihoods has long been recognized, and increasingly, quantified 
(Cavendish, 2000; Chidumayo et al., 2010; Clarke et al., 1996; Dewees 
et al., 2010; Ryan et al., 2016). A recent synthesis suggests that in cash- 
equivalent terms, around a quarter of rural income in the region is de-
rived from woodlands, not including multiple indirect contributions to 
agriculture (Ryan et al., 2016). Woodlands also provide 80%– 90% of the 
energy consumed in some countries in the region (IEA, 2019), mainly 
comprising fuel wood in rural areas and charcoal in urban centers (Ryan 
et al., 2016). Woodland resources are particularly important during crises 

F I G U R E  1   The distribution of woodland and other vegetation types in southern Africa, following White (1983). White's (1983) “Major 
Vegetation Groups” are mapped with some aggregation of the non- woodland types to simplify the legend. The major groups consist of 
“Forest” with closed canopies, “Woodland” which includes a wide range of mostly open canopy formations, including many that might also 
be termed savanna, “Bushland,” and “Grassland” which has almost no tree cover, as well as the transitions between these groups. Several 
caveats to the mapping shown here are important. The first is that the data from White (1983) reflect the state of knowledge from the 
1960 to 1970s: more recent vegetation maps are available for some parts of the region, but there is no more recent regional- scale map that 
considers vegetation floristics. Second, the southern boundary of the woodlands is rather arbitrary given the gradual transitions present in 
the region. Permanent sample plots (PSPs, marked with white circles) are long- term plots where individual trees are repeatedly remeasured 
and which have been incorporated into the network or installed since the start of SEOSAW. Black dots show “one- off” plots in the SEOSAW 
database, not suitable for remeasurement, but useful for studies of, for example, species distribution  
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and household shocks, when wild food can exceed 30% of calories con-
sumed (Woittiez et al., 2013), and when income from selling timber and 
nontimber products is particularly important (Pritchard et al., 2020). 
The scale of the human enterprise in southern African woodlands 
means that humans are an important component of the ecology of the 
system: for example, harvesting about 1% of the standing stock of bio-
mass and clearing 2.1%– 3.3% of the wooded land for agriculture every 
year (McNicol, Ryan, & Mitchard, 2018; Ryan et al., 2016). Any attempt 
to understand changing ecosystem functions needs, therefore, to be 
informed by the shifting social context (Falcão et al., 2007; Laris, 2011).

3  | THE R ATIONALE FOR LONG - TERM 
OBSERVATIONS

Permanent sample plots (PSPs) have been widely used for re-
search and management in forest ecosystems, and to a lesser ex-
tent in savannas and woodlands. Our goal in this section is not to 
provide an exhaustive summary of such applications (see instead: 
Alder & Synnott, 1992; Anderson- Teixeira et al., 2015; Condit, 1998; 
Geldenhuys, 1997; Guerin et al., 2017; Lewis et al., 2009a; Lopez- 
Gonzalez et al., 2011; Malhi et al., 2002; Picard et al., 2008; 
Schepaschenko et al., 2019; White et al., 2012), but to summarize 
what we see as the main benefits of a network of PSPs in the south-
ern African region.

3.1 | PSPs can provide Information for 
better management

Repeated stem measurements on PSPs are essential for defin-
ing sustainable harvesting rates (Alder, 1999) as they provide data 
on tree demographics (mortality, growth, and recruitment; Lewis, 
Phillips, et al., 2004; Needham et al., 2018). Data on demographic 
rates are particularly important in a region where most energy con-
sumed is derived from trees, and where timber and traded wood-
fuels are major industries (Dewees et al., 2010; Ryan et al., 2016). 
Although aggregate demand is not thought to outstrip sustainable 
supply (Twine et al., 2016), there are areas around major cities where 
overharvesting is leading to a loss of woody vegetation (Ahrends 
et al., 2010; Mwampamba, 2007; Scholes & Biggs, 2004; Sedano 
et al., 2019), and where harvesting rates need to be carefully man-
aged. Currently those who regulate wood harvesting at a national 
scale set harvesting quotas based on almost no data from the region 
(Chishaleshale et al., 2019; Marzoli, 2007). Of course there are other 
barriers to sustainable harvesting, beyond a lack of information on 
tree demography, but long- term estimates of demographic rates are 
required and need to be assessed across the environmental diversity 
of the region (Dewees et al., 2010; Geldenhuys, 1997).

More recently, information on carbon source and sink dynamics 
in the region has been required for effective management. Carbon 
projects (Fisher, 2012; Grace et al., 2010; Khatun et al., 2015), 
national programs to reduce emissions from deforestation and 

degradation (Bond et al., 2010; Burgess et al., 2010), as well as other 
interventions that seek to reduce land use carbon emissions (Berry 
et al., 2013) all need information on changes in carbon stocks over 
time, both to predict carbon sequestration rates and to report emis-
sions. PSP data can provide such information, and particularly help 
to quantify processes such as degradation, which is hard to mea-
sure with remote sensing (Chidumayo, 2013), and the role of grasses 
and soil in carbon sequestration, which can exceed sequestration by 
woody plants (Wigley et al., 2020).

PSP data can also inform management in situations where having 
too many trees is a potential problem. The thicketization of open 
savanna (expansion of trees into open habitats, also known as bush 
encroachment or woody expansion) has important social conse-
quences (Luvuno et al., 2018). Ecosystem services such as grazing 
and the provision of medicinal plants often decline as tree cover 
increases (Hargreaves, 2017), and structural changes to vegeta-
tion may drive significant changes in mammal assemblages (Smit & 
Prins, 2015). In the more open savannas in the south of the SEOSAW 
region, woody expansion is considered a major economic threat im-
pacting both tourism (Gray & Bond, 2013) and livestock industries 
(Luvuno et al., 2018). It is unclear however, to what extent it is hap-
pening in the more wooded areas (Stevens et al., 2017), and what 
the management implications will be. A network of PSPs will pro-
vide vital information on the nature of this woody expansion, which 
will include the first region- wide evidence for whether tree growth 
and/or recruitment is increasing, or mortality declining, and whether 
species composition is changing. This understanding will help model 
and predict the biodiversity consequences of changes in the wood-
lands under various land use and climate change scenarios, and in-
form sustainable land use and biodiversity management (Scheiter & 
Savadogo, 2016; Scheiter et al., 2019).

3.2 | Research questions that PSP data can address

Long- term plots have provided a wealth of discoveries and challenges 
to ecological theory, such as the finding of increased tropical forest 
turnover since the 1960s (Phillips & Gentry, 1994), and the decline in 
the rainforest carbon sink (Brienen et al., 2015). A long- term obser-
vational plot network in the southern African woodlands will allow a 
wide range of long- standing research questions to be addressed, com-
plementing the rich tradition of long- term manipulation experiments 
in the region (Chidumayo, 1988, 2013; Furley et al., 2008; Higgins 
et al., 2007; Kennan, 1972; Trapnell, 1959). Here we highlight four of 
the main questions the SEOSAW network is designed to answer.

3.2.1 | Question 1: Are woodlands increasing in 
woody biomass and thus a globally important carbon 
sink?

There are several reasons to hypothesize that the southern African 
woodlands may be on a path to higher woody biomass. First, to the 
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north, in the central African forests, there is evidence of net bio-
mass accumulation (Hubau et al., 2020; Lewis et al., 2009a). To the 
south of the SEOSAW region, savanna thicketization is widely re-
ported (Buitenwerf et al., 2012; Skowno et al., 2017). The situation in 
most of the southern African woodlands has not been assessed with 
ground data, and remote sensing analyses disagree on the locations 
and magnitude of biomass change (McNicol, Ryan, & Mitchard, 2018; 
Mitchard & Flintrop, 2013). Elevated pCO2 has been widely cited as 
a likely cause of woody biomass increases (Bond & Midgley, 2012), 
but this is disputed, and a range of other drivers (e.g., climate change, 
overgrazing, altered fire regimes) have been suggested (Venter 
et al., 2018). A network of PSPs across the region is the only way to 
resolve discrepancies in remote sensing analyses, and the only way 
to understand whether woody biomass increases are driven by en-
hanced tree growth or by reduced mortality. The distinction is impor-
tant both for the future trajectory of the associated carbon sink and 
for fingerprinting the causes of change (Lewis et al., 2004).

3.2.2 | Question 2: Is global change altering the 
floristic composition and associated diversity of the 
woodlands?

From work in South African open savannas and parts of the Brazilian 
Cerrado comes evidence that global change is favoring savanna trees 
over grasses, which is leading to increased tree cover and a more 
shady understory (Abreu et al., 2017; Skowno et al., 2017; Veldman 
et al., 2015b). This can lead to a decline in understory (grass and forb) 
diversity and also to a reorganization of faunal communities (Parr 
et al., 2014; Peron & Altwegg, 2015). From these findings flow oppo-
sition to tree planting as a form of restoration (Veldman et al., 2015a) 
and also fears of damaging socio- ecological regime change (Luvuno 
et al., 2018). This hypothesis is sometimes extrapolated to southern 
African woodlands (Higgins & Scheiter, 2012), despite differences in 
functional ecology, land use history, and social context between the 
more open savannas and the woodlands. A network of PSPs quantify-
ing understory and canopy- level floristic composition and its change 
over time will be able to test several component parts of this hypoth-
esis, avoiding the need for space- time substitutions. This will help 
resolve global debates about heterogeneous responses of savan-
nas to global change. By quantifying change in floristic composition 
across space it should be possible to identify the drivers of change in 
a context- dependent fashion (Esquivel- Muelbert et al., 2019; Fauset 
et al., 2012), as we would expect different species to be winners and 
losers under different drivers (Osborne et al., 2018).

3.2.3 | Question 3: How functionally 
heterogeneous are woodlands in response to global 
change?

Recent work has highlighted the functional diversity of savannas glob-
ally (Lehmann et al., 2014; Moncrieff et al., 2014; Osborne et al., 2018). 

This is hypothesized to result at least in part from the different evolu-
tionary histories of the dry tropics (Dexter et al., 2015). For example, 
southern African woodlands contain vegetation types thought to be 
derived from both wetter, forested, environments as well as drier re-
gions within Africa (Maurin et al., 2014). Long- term plots spread across 
the region will provide an important opportunity to understand how 
these evolutionarily and functionally distinct vegetation types and 
plant lineages respond to global change (Osborne et al., 2018). Careful 
location of PSPs along gradients of abiotic conditions and with soil 
and vegetation type contrasts will be important to allow the strong-
est possible inference from PSP observations. The SEOSAW manual 
provides further details of how plots should be located.

3.2.4 | Question 4: What is the role of humans in 
shaping the structure and function of the woodlands?

Effective management starts with basic knowledge of the processes 
shaping present- day woodlands. Often the role of land use history 
and human use is poorly understood, reflecting practical difficulties 
in quantifying these processes in ways that fit with ecological re-
search, the tendency for research plots to be located in strictly pro-
tected areas, and continuing disagreements about the successional 
status and paleo history of the woodlands (Ekblom et al., 2014; Ivory 
& Russell, 2016). PSPs provide an important means of understanding 
the impacts of past and current management, and for evaluating the 
impact of large- scale management interventions. This is because ex-
perimental approaches to understanding the impact of management 
regimes are not sufficient, as management approaches often change 
when they move from small intensively managed experimental plots 
to the wider landscape (Chidumayo, 1988). Additionally, ecological 
responses in real, heterogeneous landscapes can be different from 
those under experimental conditions. PSPs are thus an important 
component in any landscape approach that seeks to undertake 
adaptive management.

4  | KE Y CHALLENGES TO LONG - 
TERM MONITORING AND THE SEOSAW 
APPROACH

To build a network capable of meeting the needs outlined above, 
SEOSAW collects data across the region in a decentralized but coor-
dinated fashion. The coordination is important to facilitate cross- site 
and regional comparisons, which are currently very rare (e.g., Godlee 
et al., 2020). The decentralization is also important to allow a diverse 
group of people to collaborate, given varying interests, expertise, 
and research funding systems.

A key part of the coordination is a manual that provides guidance 
on standardized approaches for effective long- term monitoring in the 
region (the latest version of the manual is available at: https://seo-
saw.github.io/). Here we highlight six key methodological challenges, 
and discuss the rationale behind the relevant guidance in the manual. 

https://seosaw.github.io/
https://seosaw.github.io/
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The manual is based on: the outcomes from two workshops; analy-
sis of the current version of the SEOSAW dataset; and a review of 
similar guidance developed for the dry tropics (DRYFLOR et al., 2016; 
Guerin et al., 2017; Moonlight et al., 2020; White et al., 2012) and 
wet tropics (Alder & Synnott, 1992; Condit, 1998; Lewis et al., 2009b; 
Malhi et al., 2002; Phillips et al., 2016; Picard et al., 2008; Poorter 
et al., 2016). The participants at the workshops, and in subsequent dis-
cussions, are listed at the end of the paper. The approaches suggested 
in the manual are designed for wide applicability and consistency with 
other vegetation inventory networks (e.g., RAINFOR, DRYFLOR), 
which should aid inclusion in pan- tropical or global analyses.

4.1 | Challenge 1: The wide diversity of vegetation 
structure requires methodological diversity

Southern African woodlands are transitional between the more 
open grass- , bush- , and shrublands of the Kalahari, Highveld and 
NE Africa, and the dense forests of the Congo basin (White, 1983). 
Methods that work efficiently at one end of this gradient are un-
likely to be effective at the other. This has led to a wide range of 
approaches, some grounded in the forest literature and widely used 
in the wetter parts of the region, and others inherited from savanna 
and grassland science. This methodological diversity has benefits, 
but also hinders regional synthesis. Key areas of methodological 
divergence are: plot size, tree diameter thresholds, height of tree 
diameter measurements, treatment of resprouting stems, and the 
inclusion of data on grasses and forbs.

4.1.1 | Plot size

The different approaches to the size of long- term plots across the 
globe reflect the diversity of reasons for establishing sample plots. 

A particular challenge in the SEOSAW region is that stem density (of 
trees ≥ 5 cm DBH) varies over three orders of magnitude (Figure 2). 
This has important implications for how efficiently metrics such as 
carbon stocks and tree species diversity can be estimated.

The SEOSAW guidance responds to this by recommending a flex-
ible approach to plot size for PSPs (different considerations apply 
with sampling designs where the plot is not the unit of analysis, for 
example, clustered plot sampling, which is not considered here). The 
most critical aspect of plot size (and the inclusion rules for tree stem 
measurement, see below) is that a sufficient number of individual 
stems must be included to allow accurate estimation of important 
quantities. Two key considerations are that:

• Enough stems are included such that mortality rates can be esti-
mated accurately. There are few data on mortality in the region, 
but annual mortality rates on PSPs in Tanzania and Mozambique 
are 4%– 5% for stems > 5 cm DBH (T. Brade, unpublished data) 
and 2%– 3% for stems > 40 cm DBH (E. Wood, unpublished data). 
If an accurate mortality rate is to be calculated over, for example, a 
5- year census interval, several hundred stems need to be included 
in the plot to avoid gross errors when even a single dead stem is 
missed. This is a particular problem for estimating the mortality of 
large trees, which are a crucial component of the carbon cycle.

• Enough large stems are included to capture some of the random 
variation in their biomass. The allometry of large stems is very 
variable: typically the variance of the biomass of stems increases 
exponentially with diameter, and most allometric equations are 
parameterized based on only a few large trees (Chave et al., 2014; 
Kachamba et al., 2016; Mugasha et al., 2013). Therefore, if esti-
mates of biomass are to be made with high certainty, there should 
be a reasonable sample of large trees on the plot, such that some 
of the random variation in allometry cancels out. We suggest that 
if trees > 40 cm DBH are present, plots should be large enough to 
include, on average, five or more trees of this size.

F I G U R E  2   Stem number density 
(stems per hectare) for plots > 0.2 ha 
in the SEOSAW dataset. Note the 
logarithmic scale on the X- axis 
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With the goal of accurately estimating demographic rates, 
and taking 200 stems as a target sample size, we can examine the 
SEOSAW dataset to understand the utility of different plot sizes. If 
the current SEOSAW plots can be considered a random sample, 1 ha 
plots in southern African woodlands will contain 200 stems > 5 cm 
DBH in 66% of cases. A 0.5 ha plot would contain 200 stems of this 
size 59% of the time. These probabilities are much higher (93% and 
91%) in the mopane areas, as mopane often has much higher stem 
density than other woodland species (but note that the SEOSAW 
dataset does not include many plots with large stature mopane). 
Looking only at plots where large (>40 cm DBH) trees occur, 90% 
of 1- ha plots will typically have ≥ 5 large trees while 86% of 0.5- ha 
plots will. These large stem probabilities are consistent across vege-
tation types. The SEOSAW manual thus suggests that 1 ha plots are 
a good starting point, with all stems > 5 cm DBH censused. However, 
this plot size can be altered, or the stem size threshold changed, to 
accommodate unusually sparse or dense systems. We also suggest 
random placement of plots within strata, whilst ensuring that the 
plot area itself is relatively homogeneous with respect to soil type 
and land use. Lastly, we note that plots < 0.5 ha are difficult to link 
to remote sensing (Réjou- Méchain et al., 2014b), particularly to radar 
sensors, which are important for biomass estimation (see section 4 
below).

Another consideration for plot design is the number of species 
likely to be included in a plot and the degree of floristic sample 
completeness. Generally, the many- small- plots paradigm is more 
effective at discovering the presence of tree species in a landscape 
compared to the few- large- plots approach that is required for phy-
todemographic studies (Baraloto et al., 2013; Phillips et al., 2003). 
However, 1 ha plots have been found to offer a good compromise 

in rainforests (Baraloto et al., 2013; Phillips et al., 2003). In the 
SEOSAW dataset, 1 ha or larger plots give good sampling com-
pleteness (observed number of species as a percentage of esti-
mated richness is always between 85% and 96%; Figure 3).

4.1.2 | Tree size thresholds

In current practice, the size threshold above which tree stems 
are measured and counted as new recruits varies greatly. In 
some systems, trees rarely exceed 10 cm DBH (Nieto- Quintano 
et al., 2018), and so a smaller threshold is needed to gain infor-
mation on their dynamics. However, small size thresholds may 
not produce useful information on population dynamics when 
turnover rates (mortality and recruitment) are very high in small 
size classes, unless census intervals are short, for example, 
1– 2 years. For example because stems of 5 cm DBH have only a 
50% chance of surviving fire (Ryan & Williams, 2011) they typi-
cally have short lifetimes and rapid turnover, and a small stem 
may be recruited and then die before it is censused. Small size 
thresholds also markedly increase the required survey effort 
(Table 1). For example, moving from a 10 to 5 cm threshold can 
easily triple the number of trees that need to be recorded and 
tagged, especially in heavily disturbed woodlands. However, 
there is sometimes a large pool of woody species that never 
attain a large DBH, and these will be missed when large size 
thresholds are used (Table 1; Nieto- Quintano et al., 2018; 
Pritchard et al., 2019).

To achieve some standardization, the SEOSAW manual recom-
mends either a 3 cm or 5 cm diameter threshold for inclusion (Dt), 

F I G U R E  3   Species accumulation curves on the large (≥1 ha) plots in the SEOSAW dataset. Each plot is shown by a single line, colored 
according to the site. Cyan = DR Congo, protected wet miombo (Muledi et al., 2018, 2020); Pink = Tanzania dry miombo (McNicol 
et al., 2018); Black = Angolan dry miombo/Baikiaea (Godlee et al., 2020); Green = Mozambican dry miombo and mixed woodland (Ryan 
et al., 2011); Blue = South African Mimosoid savannas (Scholes et al., 2001); Red = Congolian Beteke savanna (Nieto- Quintano et al., 2018) . 
Note that for clarity the figure has been clipped to 1,000 stems and 40 species. Species accumulation curves were produced using the vegan 
package (Oksanen et al., 2020) in R (R Core Team, 2020) 
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with the diameter measurement being made at either 0.3 or 1.3 m 
height (a.k.a. the point of measurement or POM; NB the POM should 
always be moved if there is a deformity or swelling at the standard 
height). This provides the flexibility to include the small fire- trapped 
stems and species which never attain large stature, while the lower 
POM reduces effort in heavily coppiced vegetation. See Godlee 
et al. (2020) for a conversion factor between diameters measured 
at different heights.

Smaller stems with a diameter (D) less than Dt (variously called 
poles, saplings, etc.) can then be sampled on multiple subplots. Both 
the fully censused stems (D ≥ Dt) and the sampled poles (0 < D < Dt) 
should be marked or tagged to allow accurate remeasurement (see 
the SEOSAW manual for details). Stems that do not obtain the height 
of the POM (sometime called seedlings, resprouts, or regeneration) 
can be sampled in small plots and counted rather than marked and 
measured for diameter. With count data, these smaller individuals 
can be incorporated into stage- structured demographic models.

4.1.3 | Tree measurements

The common set of tree stem attributes that need to be recorded are 
diameter, height of the diameter measurement (POM), species iden-
tity, alive or dead, standing or fallen (i.e., nonself supporting), root-
stock ID (to identify multistemmedness), and ideally also wounding, 
height, and spatial location within the plot. Many other attributes 
can of course be measured, but there are subtleties to even this short 
list that can hinder cross- comparison among datasets. Throughout, 
it is important that stem- level (not tree- level) data are collected and 
that multiple stems that originate from the same base are recorded 
as such (see Challenge 4). Key points are:

• Marking the POM improves the signal to noise ratio of repeated 
diameter measurements. Paint does not last through many re-
peated fires, but a metal tag loosely nailed, for example, 20 cm 
above the POM can be an effective way to ensure accurate 
remeasurement.

• Wounded stems are more likely to die before the next census 
(Bowers, 2017; Nieto- Quintano, 2019). However, consistently and 
objectively recording wounds is difficult. The proportion of the 
stem where the bark is missing is a reasonably objective indicator 
of wounding, and the presence (or absence) of bracket fungus is a 
simple indicator of rottenness.

• Species determinations are one of the most time- consuming and 
expensive activities in setting up a long- term plot. One pragmatic 
approach that reduces the barriers to initial plot set up is to ini-
tially use local names or ecologists' determinations and then re-
visit the plot with a taxonomist, improving the identifications over 
time with each census. The determinations should be supported 
by the collection of voucher specimens, from at least one indi-
vidual per species per plot, ideally with fertile material, that are 
sent to local and international herbaria if at all possible. A criti-
cal step in the collaborative research loop is to ensure that any TA
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identifications determined outside the country are relayed back 
to the in- country scientists.

• Height measurements can improve the accuracy of woody bio-
mass estimation from allometric equations (Chave et al., 2014), 
but are time- consuming. One approach is to make such measure-
ment on a subset of ~100 trees to establish if there is a strong 
local relationship between height and diameter which can then be 
used in lieu of height measurements on all stems.

• Recording the spatial location of each stem provides important 
information about biotic interactions (e.g., competition and facil-
itation), aids cross site comparison (by allowing spatial subsam-
pling and the comparison of different sized plots), and can help 
reidentify stems if tags are lost.

4.2 | Challenge 2: Chronic disturbance from people, 
fire, and herbivory

Disturbance is an integral and characteristic feature of many of 
the ecosystems of the dry tropics (Pennington et al., 2018). From a 
long- term measurement perspective, chronic disturbance presents 
challenges, including the need to record the type, intensity and fre-
quency of disturbance, and logistical issues. The repeated impacts 
of fire and elephants, for example, limit equipment that can be left 
on plots. Human use is also a characteristic feature of these systems, 
which cannot be avoided if we are to gain a representative sample 
of the vegetation and its change. Biases may occur when human use 
of PSPs is different from use of the surrounding vegetation, either 
because they are left alone (perhaps from a fear of “messing up the 
science”) or because they are preferentially overutilized (perhaps 
from a fear of pending land expropriation). To avoid both of these 
scenarios, good communication with the de facto and de jure users of 
the land is essential, but this is often difficult where tenure is con-
tested and overlapping, and common uses are illegal or illicit. In some 
cases, “cryptic” plots may be required (with buried markers and tree 
tags), where there are no visible signs that the plot is being used for 
long- term measurements. The SEOSAW manual stresses the need 
for meaningful and ethical engagement with land users.

Marking long- term plots so that they can be remeasured accu-
rately over several decades is difficult, particularly if the plots are 
“cryptic.” One approach is to completely embed metal reinforcing 
bar in concrete blocks approx. 10 × 10 × 30 cm and to bury these in 
each corner with 3 cm of the block protruding above the ground. The 
metal bar allows the blocks to be relocated with a metal detector and 
the concrete improves protection against rust. Adding metal bars at 
10 m intervals around the boundary can help accurate relocation of 
borderline in/out stems, but such bars will need replacing at around 
decadal intervals. As yet, consumer affordable GPS technology is 
not sufficient to accurately relocate plots or stems.

Accurate measurement of stem recruitment and mortality is as 
important as accurate growth estimates (Alder & Synnott, 1992; 
Needham et al., 2018). However, in the dry season it can be difficult 
to ascertain whether a stem is alive or fully dead. For this reason, 

such measurements can profitably be continued for two censuses 
after the initial declaration of stem death (a.k.a. topkill). Similarly, a 
rootstock that has no live aboveground parts may resprout in sub-
sequent years. It is also helpful to tag or otherwise mark dead and 
fallen stems to make it easier to identify newly deceased and fallen 
stems in subsequent censuses. Recording if the base of the stem is 
still alive and if it has the potential to resprout can help subsequent 
censuses correctly identify resprouts versus new organisms; the 
SEOSAW manual describes a system for tracking both whole organ-
ism and stem mortality.

4.3 | Challenge 3: Looking beyond the trees

Savannas, including woodlands, are shaped by tree– grass inter-
actions (Higgins et al., 2000; Scholes & Archer, 1997; Weltzin & 
Coughenour, 1990), and forbs often play a very important role in 
the plant diversity of the system (Siebert & Dreber, 2019). However, 
it is surprisingly rare in the SEOSAW region that grass and forbs are 
measured at the same location as trees, particularly in a repeated 
manner over time. Understory nonwoody plants need to be included 
in long- term measurements, but there are practical challenges relat-
ing to the time of year when they are visible aboveground (which for 
some forbs can often be for only short time periods) and best iden-
tified (which normally differs from woody plants). Understanding 
woody and nonwoody parts of the ecosystem requires diverse skills 
and sampling approaches that are rarely present within a single re-
search group.

To account for the difficulty in capturing the diversity and dy-
namics of the ground layer, in the SEOSAW manual we detail a hi-
erarchy of ground layer measurements that would enable the user 
to capture aspects of ground layer diversity and structure. The gold 
standard is repeat surveys throughout a growing season to capture 
the full diversity of the ground layer, in terms of all grasses, forbs, 
and prostrate shrubs, subsequently matched with ground layer bio-
mass harvests at the end of the growing season. Ideally, repeat sur-
veys every 2 months from before the rainy season through to the 
end of the rainy season/first fires are required to understand the 
diversity of forbs.

Clearly, capturing ground layer diversity and productivity is a 
substantial undertaking, and different groups are likely to have dif-
ferent priorities for their PSPs: a key decision is whether the meth-
ods selected for ground layer survey are sustainable and repeatable. 
Even one- off surveys of the seasonal expression of diversity will 
provide useful information, given how systematically undersurveyed 
ground layer diversity is in the region. Ongoing repeat sampling may 
scale back from the “gold standard” above to present a more sus-
tainable sampling option and one that would still sample the same 
ground area, but with different levels of detail. Options could be to 
undertake: (a) a single survey at peak understory greenness record-
ing diversity and clipping for productivity. This single survey toward 
the end of the wet season would capture most grass species diver-
sity (but is unlikely to capture forbs) and would be a good reflection 
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of ground layer productivity (in a fire determined system only); (b) 
a rapid survey of dominant grass species in tandem with biomass 
clipping where only the top three dominant species are noted; or (c) 
clipping of ground layer biomass with no species information being 
compiled. The detail of these methods is provided in the manual, and 
users will have to decide which approach best suits their interests 
and resources.

4.4 | Challenge 4: The party is going underground

In a disturbance- prone environment, it pays to keep your head down 
and bounce back quickly (Luoga et al., 2004; Mograbi et al., 2015). As 
such, the ability to resprout is widespread among woodland trees, and 
multistemedness (i.e., polycormy) is common, particularly in the sub-
canopy. Long- term measurements need to quantify the life, growth, 
and death of both the whole organism and the individual stems, as 
these often differ greatly with the lifetime of the whole organisms 
being several orders of magnitude longer than that of any individual 
stem. An extreme example of this is the underground forests found 
across the Zambezian region, where most of the woody biomass is 
found below the soil surface (Gomes et al., 2019; Maurin et al., 2014).

Given the importance of resprouting after topkill, information 
on the relationship between the stem and the parent organism is 
important. However, detailed work shows that it is often impossi-
ble to establish such relationships without large- scale excavation 
(Holdo, 2005), which is impractical and destructive. A pragmatic 
compromise is suggested in the manual, whereby stems that are 
visibly connected to the same base are recoded as such, and the 
rootstock/base is given a unique identity. The relationship between 
newly recruited stems and existing organisms will then provide use-
ful information on regeneration dynamics. Storing and analyzing 
these data can present challenges to data processing systems as it 
requires the relationships between stems to be stored consistently, 
and the organisms and stems to be represented in separate data ta-
bles. The SEOSAW manual provides an approach to recording and 
storing such data.

4.5 | Challenge 5: Humanizing savanna ecology

African woodlands are, arguably, an anthropic biome, or at least one 
where social processes must be considered to understand ecosystem 
structure and function (Laris, 2011; Scheiter et al., 2019; Tredennick & 
Hanan, 2015; Twine et al., 2016). Humans have shaped the ecosystem 
through the use of fire (Bird & Cali, 1998), cultivation, hunting, honey 
collecting, and tree harvesting (Campbell, 1996; Chidumayo, 1997; 
Chidumayo et al., 2010). We continue our influence in both obvious 
and subtle ways, including modifying all aspects of the fire regime for 
at least 100,000 yrs (Archibald et al., 2011); reorganizing herbivory 
on a continental scale (Hempson et al., 2015); through deforestation 
and tree harvesting (McNicol, Ryan, & Mitchard, 2018) and global 
changes to climate and atmospheric chemistry (Ryan et al., 2016). 

In other biomes, long- term plot measurements have often been fo-
cused on relatively undisturbed locations with minimal direct human 
impacts (e.g., in remote or protected areas; although see 2ndFOR net-
work (Poorter et al., 2016)). This approach is not suitable in the south-
ern African woodland region as such a network would provide little 
information about many of the key processes and changes under-
way. However, working in human landscapes brings new challenges 
including logistical issues, the need to collect information on social 
processes, the need to adapt methods and, most fundamentally, the 
need to engage with those who live and work in the areas where such 
measurements are undertaken. Fortunately there is a rich tradition of 
socio- ecology in the region on which we can draw to address these 
challenges (Campbell, 1996).

The SEOSAW manual includes a structured list of simple ques-
tions that are aimed at consistently capturing information about how 
the plot is, and has been, used by people. This covers the harvesting 
of woody and nonwoody wild products, grazing, and a wide variety 
of management activities. It is our intention to expand this guidance 
further, as more socio- ecologists engage with SEOSAW.

4.6 | Challenge 6: Data management and 
quality control

The collection of long- term PSP data generates large datasets that 
are time- consuming and expensive to manage and curate. While 
such datasets may not yet be at the scale of “big data,” they are 
often at the limit of what can be simply managed and quality as-
sured by hand. Several approaches have been developed to support 
data management of long- term plot data, including www.openf oris.
org, Fores tPlots.net (Lopez- Gonzalez et al., 2011), sPlot (Bruelheide 
et al., 2019), and many others. Some of these platforms include a rig-
orous set of data quality checks and enforce a restricted vocabulary 
and floristic nomenclature. In the case of SEOSAW, we are using the 
African Plant Database (https://www.ville - ge.ch/musin fo/bd/cjb/
afric a/reche rche.php) as our “taxonomic backbone.” The data from 
the PSPs in the SEOSAW network are currently being curated at 
www.fores tplots.net, which has been extended to work with inven-
tory data from savannas and woodlands.

We have developed a set of manuals, data sheets, and digital 
data capture forms using the Open Data Kit to allow SEOSAW data 
to be directly entered on an Android mobile phone or tablet. This 
is aimed at offering straight- to- digital data capture methods which 
have the potential to reduce errors, allow in situ checking of unusual 
values (e.g., the classic 5.0 vs. 50 cm stem), and speeds data capture 
and input. However, there are still technological challenges to using 
these systems including battery life, robustness, and reliability. One 
simple approach we highlight as crucial to improving data quality is 
to have the field data and notes from the previous census available 
during recensus. This allows errors in past censuses to be flagged, 
but should not be used to correct observations in real time as this is 
likely to introduce biases (Kloeppel et al., 2007), for example, where 
stems that have shrunk are “corrected” to show positive growth.

http://www.openforis.org
http://www.openforis.org
http://www.forestplots.net/
https://www.ville-ge.ch/musinfo/bd/cjb/africa/recherche.php
https://www.ville-ge.ch/musinfo/bd/cjb/africa/recherche.php
http://www.forestplots.net
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5  | NOT BY PLOTS ALONE

The discussion above, and the detail provided in the SEOSAW man-
ual, will hopefully go some way toward supporting the development 
of a regional network of consistent observations, without providing 
undue limitations on methodological creativity. Such a network al-
lows us to understand the variability in the phyto- demography of 
the region, and because the methods are comparable to other re-
gional networks (see Moonlight et al., 2020, this issue), compare the 
SEOSAW region to other parts of the dry and wet tropics. There are, 
however, limitations to what can be achieved with long- term plots, 
and also new opportunities to synergize with emerging approaches.

5.1 | Remote sensing

There are two- way linkages between plot measurements and sat-
ellite remote sensing (Earth Observation, EO) data. Most straight-
forwardly, plot data can be used to calibrate and validate remotely 
sensed estimates of stand- level tree cover, height metrics, biomass, 
and stem density. Plot data are essential to the creation and valida-
tion of maps of these attributes across space and time.

Often of more interest to the global scientific community are 
maps of change in these factors, rather than static one- time maps. 
Here, long- term plots are potentially very useful, as they can be 
uniquely used to assess the accuracy of remotely sensed estimates of 
changes in these attributes. Currently, this appears to be a missed op-
portunity, as major products on ecosystem structural change do not 
seem to use available field plots for validation (Baccini et al., 2017; 
Brandt et al., 2018; McNicol, Ryan, & Mitchard, 2018), often due to 
the difficulty of accessing analyzed plot data, or mismatches of spatial 
scale or time frame. This is unfortunate, because such comparisons 
would greatly add confidence to maps and increase their utility.

Beyond simple calibration and validation, detailed plot data can 
be used to help us understand the processes governing the interac-
tions between electromagnetic radiation and the land surface. This 
will improve the generation of ecological data products and their 
accuracy outside the location and range of values of the field plots, 
and is particularly needed for radar data, where the mechanisms by 
which trees influence the signal at different wavelengths and in dif-
ferent vegetation structures is less well understood than for LiDAR 
and optical data (Quegan et al., 2019).

The challenges in linking plot data with EO data have been well 
discussed (Réjou- Méchain et al., 2014a; Schepaschenko et al., 2019), 
and relate to geolocation accuracy of both the plot and EO obser-
vations, scale mismatches between the EO data pixel size and plot, 
and sensor point spread functions (i.e., the tendency for some por-
tion of the recorded signal of each pixel to originate outside the area 
represented by that pixel). These issues all lead toward a need for 
larger plots, or intermediate scale information from, for example, 
UAVs (Mlambo et al., 2017) or high spatial resolution remote sensing 
(optical or LiDAR data) to enable plot- level information to be scaled 
up to a resolution comparable to the satellite dataset.

5.2 | Modeling

Models of tree and grass processes are core tools for developing 
and testing understanding of ecosystem dynamics, for underpinning 
decision support tools for woodland management, and for predict-
ing the effects of global change. As with remote sensing, there is 
a complementary relationship between the field data collection in 
SEOSAW and related modeling efforts.

First, nearly all types of models need to be calibrated and validated 
using field data. For instance, PSP data can be used to set the initial 
conditions for models (e.g., the size of the woody carbon pool, or the 
age structure of the woodland), and to constrain model parameters 
(such as mortality rates or carbon residence times). The exact model– 
data interaction depends on the model structure and state variables. 
Individual- based models (IBMs; Desanker, 1996; Friend et al., 1993; 
Holdo, 2007; Ryan & Williams, 2011), cohort/demographic models 
(Higgins et al., 2000; Scheiter & Higgins, 2009; Sitch et al., 2003), 
and biogeochemical (BGC) models (e.g., Clark et al., 2011) represent 
savannas in different ways, and thus contain different state variables 
for initialization and parameters representing different processes. An 
IBM simulates tree demographics, including processes of germina-
tion, growth, and mortality at stem level, with competition among 
stems for resources. A BGC model represents a forest as a collection 
of carbon pools, and includes bulk processes of carbon allocation 
from photosynthesis, and carbon residence times, with no simulation 
of competition. Cohort models aim to combine both pool dynamics 
and forest demography in a simplified manner.

Second, modeling outputs can guide field data collection. At a 
global scale, the fact that dynamic global vegetation models predict 
a large and rapidly growing carbon sink in the woodlands (Higgins & 
Scheiter, 2012; Sitch et al., 2015) provides a clear hypothesis for the 
whole SEOSAW network to test. At finer scales, models can highlight 
which aspects of ecosystem function are critical to responses to global 
change, guiding data collection. An example is the discovery from 
modeling that carbon residence times (which are closely related to 
mortality rates) are critical to correctly modeling the changing carbon 
stocks of the Amazon (Johnson et al., 2016). This finding has spurred 
the development of more detailed representation of stem mortality 
in some global models (Galbraith et al., 2013) and helps justify the 
collection of long- term PSP data on mortality rates.

A new development is to use the data from PSPs and other 
sources in Bayesian model– data fusion analyses of the ecosystem 
carbon cycle. PSP data are used either to define priors or as a con-
straint on model parameters (Exbrayat et al., 2018). This approach 
allows the full information content of the PSP data to be utilized, 
including not just mean values of key attributes, but the associated 
variances and cross- correlation between attributes such as phenol-
ogy, leaf traits, stem growth, and mortality. The advantage here is 
that strongly constraining some parts of the model with data helps 
to constrain other, harder to measure parameters and fluxes (Bloom 
et al., 2016). So, for example, data from PSPs can be used to pro-
vide robust constraints on woody biomass pools and their changes. 
The model can then propagate this information into probabilistic 
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estimates of ecosystem carbon sequestration, helping to address 
Question 1 above. Linking biomass stock changes to ecosystem 
flux estimates is important because flux data are very sparse in the 
SEOSAW region (Merbold et al., 2008), and little is known about the 
residence time of carbon in the major pools.

5.3 | Links to herbarium collections

PSPs with tagged trees can help in the effort to complete the spe-
cies inventory of tropical biomes. PSPs provide an opportunity for 
taxonomists to identify new species and document the reproduc-
tive characteristics and ecology of poorly known species, as tagged 
trees can be revisited across seasons and years (Baker et al., 2017). 
For example, vouchers from tagged trees in PSPs in Jenaro Herrera, 
Peru that were archived in national and international herbaria have 
led to the subsequent discovery of 26 tree species new to science 
(Honorio, 2006, unpubl. MSc thesis; Baker et al., 2017). The im-
pressive efforts behind RAINBIO has resulted in a mega- database 
of taxonomically standardized, harmonized, and georeferenced re-
cords for 25,356 vascular plants in continental tropical Africa (Gilles 
et al., 2016). However, there are still gaps in the database in southern 
Africa and outside of tropical forest ecosystems: PSP data, backed 
up by vouchers, can fill these gaps.

Beyond this, vegetation inventory plots, which quantify abun-
dance of taxa and provide measures of sample effort, provide an 
advantageous means of determining species environmental prefer-
ences, distributions and limits, compared to more commonly used, 
presence- only data from herbaria collections (Gomes et al., 2018). 
Lastly, PSP data can identify threatened species much sooner than 
presence/absence data in herbaria, as species decline in abundance 
before they go extinct (Jew et al., 2016). Thus, inventory plot data 
that record abundances are well- poised to document meaningful 
changes in biodiversity, as demonstrated by studies showing shifts 
in the elevational distribution of tree species in the Andes (Fadrique 
et al., 2018) and compositional shifts in Amazonian tree communities 
(Esquivel- Muelbert et al., 2019).

6  | THE WAY FORWARD

Currently the SEOSAW partnership is focused on four main activi-
ties, and we welcome new collaborations to advances these, and 
other aspects of our work.

1. Building consensus around core methods which will enable 
cross- site comparison within the region and between SEOSAW 
and other plot networks. This paper and the associated field 
manuals on https://seosaw.github.io mark the first step in this 
direction, and the manuals will be regularly updated.

2. Collating existing data from permanent and one- off plots and 
making the data available for cross- site analysis. The current ver-
sion of the SEOSAW database holds data on > 8,000 one- off plots 

F I G U R E  4   (a) The location of the SEOSAW plots in the climate 
space of the region (geographically defined as the area in dark green 
in Figure 1: woodlands, woodland transitions, bushlands and thicket, 
and forest transitions). White circles = PSPs, suitable for repeat 
measurement of individual stems, black dots = one- off plots (where 
trees are not tagged or otherwise easily remeasured). Purple to 
yellow contours show the density of pixels in the SEOSAW region. 
(b) as (a) but for disturbance space, considering current herbivory 
(Hempson et al., 2017) and burned area (Giglio et al., 2018). (c) Plot 
locations in terms of human population density (WorldPop, 2018) 
and travel time to cities (Weiss et al., 2018). Online versions of these 
plots, along with a detailed description of the current SEOSAW 
dataset can be found at https://seosaw.github.io/descr iption
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and > 200 PSPs. We are currently working to integrate other ex-
isting datasets into the SEOSAW framework and analyze regional 
patterns of diversity and function.

3. Expanding the network into new areas. Major geographical 
gaps remain to be filled, particularly in the mopane and Baikiaea 
woodlands, and in the west and central parts of the region. 
Additionally, the PSP network does not yet cover the extremes 
of climate space (Figure 4a), and given projections of rising 
temperatures, increased rainfall seasonality and declining frost 
(Ryan et al., 2016), locating plots at these current climatic lim-
its is a priority for understanding responses to climate change. 
The current network covers “disturbance space” reasonably well 
(Figure 4b), but there are gaps in low herbivory- low fire systems. 
Many of the existing PSPs are located in remote and sparsely 
populated areas (Figure 4c), so the network will need to expand 
into more human- dominated landscapes nearer to cities to in-
crease its representativeness.

4. Remeasuring PSPs and expanding the information to cover 
soils and grasses. We have started a programme of remeas-
uring the PSPs, generating a new regional dataset describing 
tree demography. An even greater challenge in terms of re-
sources and expertise is to generate new data on the under-
story and soils of the PSPs, which will require a higher degree 
of funding and collaboration to achieve consistent datasets 
across the region.

In the next phase of SEOSAW, we will also continue our capac-
ity building efforts, together with the Miombo Network. We have 
also started a program of work to better understand the social con-
text of the PSPs, as this is currently rather limited. The next stage of 
SEOSAW involves further outreach and we welcome new partner-
ships with interested researchers and practitioners.
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