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Abstract Native to the Ponto-Caspian region, the

benthic round goby (Neogobius melanostomus) has

invaded several European inland waterbodies as well

as the North American Great Lakes and the Baltic Sea.

The species is capable of reaching very high densities

in the invaded ecosystems, with not only evidence for

significant food-web effects on the native biota and

habitats, but also negative implications to coastal

fishers. Although generally considered a coastal

species, it has been shown that round goby migrate

to deeper areas of the Great Lakes and other inland

lakes during the cold season. Such seasonal move-

ments may create new spatio-temporal ecosystem

consequences in invaded systems. To seek evidence

for seasonal depth distribution in coastal marine

habitats, we compiled all available catch data for

round goby in the Baltic Sea since its invasion and

until 2017. We furthermore related the depths at

capture for each season with the ambient thermal

environment. The round goby spend autumn and

winter at significantly deeper and offshore areasSupplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s10530-021-02662-w.
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compared to spring and summer months; few fish were

captured at depths\ 25 m in these colder months.

Similarly, in spring and summer, round goby were not

captured at depths[ 25 m. The thermal conditions at

which round goby were caught varied significantly

between seasons, being on average 18.3 �C during

summer, and dropping to a low 3.8 �C during winter

months. Overall, the fish sought the depths within each

season with the highest possible temperatures. The

spatial distribution of the round goby substantially

overlaps with that of its main and preferred prey

(mussels) and with that of its competitor for food

(flatfish), but only moderately with the coastal preda-

tory fish (perch), indicating thereby very complex

trophic interactions associated with this invasion.

Further investigations should aim at quantifying the

food web consequences and coupling effects between

different habitats related to seasonal migrations of the

round goby, both in terms of the species as a

competitor, predator and prey.

Keywords Depth � Invasive species � Migration �
Predator � Prey � Temperature

Introduction

Migration is a common phenomenon within many taxa

of animals, terrestrial as well as aquatic. One way to

define migration is as a synchronized, large-distance

movement of a population between separate habitats,

which usually occurs with a regular periodicity

(Leggett 1977; Dingle and Drake 2007; Lucas and

Baras 2001). Such spatial displacement, often of

substantial biomasses may exert significant impact on

community structure and function, flux of energy and

nutrients between different areas and habitats, and on

species interactions (Deegan 1993; Varpe et al 2005;

Marczak et al 2007; Bauer and Hoye 2014; van Deurs

et al 2016). Not surprisingly, migration has received

substantial attention by scientist for decades. This

includes not only describing and characterizing the

observed patterns and their implications for trophic

interactions, but also relating the spatial displacement

to causal drivers, e.g. seasonal changes in habitat-

specific trade-offs between predation risk and growth

rate, spawning, or avoidance of unfavorable or seeking

of preferred environmental conditions (Brodersen et al

2008; Kanciruk and Hernkinn 1978; Quinn and

Dittman 1990, O‘Driscoll 2004, Sigler and Csepp

2007).

In some cases, actively migrating mobile non-

native taxa are of concern due to their ability to

colonize new areas and pose threat to native species.

Examples of these are the Chinese mitten crab

Eriocheir sinensis, the snow crab Chionoecetes opilio,

the lionfish Pterois spp. and the round goby Neogobius

melanostomus (Herborg et al 2003; Nichol & Somer-

ton 2015; Tamburello & Côté 2015; Kornis et al

2012). Round goby is invasive on both sides of the

Atlantic Ocean by occurring in high numbers in the

North American Great Lakes, the Baltic Sea and

several European inland waterbodies (Kornis et al.

2012). Because of large areas colonized and high

population sizes achieved, major effects on the native

species and communities have been documented in the

wake of its invasion (Crane and Einhouse 2015;

Karlson et al. 2007; Bergstrom and Mesinger 2009;

Poos et al. 2010; French and Jude 2001). Recent

investigations in the Great Lakes and other inland

lakes of North America show that in these environ-

ments, this species engages in annual nearshore/

offshore migrations, typically of the entire popula-

tions, and that this seasonal migration of the round

goby displaces a large biomass, with substantial

ecological impacts (Andres et al. 2020, Pennuto

et al. 2021). In general, the round goby has a generalist

feeding strategy and preys upon a wide range of

different pelagic and benthic invertebrates (Skabeikis

and Lesutiene 2015; Nurkse et al. 2016) and also fish

eggs and small fish (Schrandt et al. 2016; Wiegleb

et al. 2019). Through direct predation the round goby

has likely caused a major decline of dominant benthic

macroinvertebrates (and mussels in particular) in

shallow areas in the Baltic Sea (Skabeikis et al.

2019). The round goby has also become an important

competitor with native benthic feeding fish (e.g.

flounder Platichthys flesus) over macroinvertebrate

prey (Karlson et al. 2007; Lederer et al. 2008;

Skabeikis et al. 2019). To be able to evaluate the

impact a non-native invasive species has on the

invaded system, it is thus imperative to understand

the species ecology, including migration patterns, for

planning of any mitigation measures (Ojaveer et al.,

2015).

With a temperate climate, the Baltic Sea provides a

seasonally strongly variable habitat for the round
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goby, with water temperatures on average varying

between 17 and 18 �C in summer, dropping to around

zero in winter. The seasonal changes in temperature

are superimposed by the typically two-layer salinity

stratification. Cold water bodies, formed during win-

ter, persist long into the summer season below the

halocline, whereas a summer seasonal thermocline

develops above the halocline in the surface waters at

depths of about 15–20 m. Therefore, the range of the

surface temperature variation may be as large as

25 �C, while within the deeper water layers, e.g. of the

Gotland Deep, is on average only 5 �C (range 3–8 �C)

(BACC 2015).

In this study, we used catch data from 1994 to 2017

to investigate pan-Baltic seasonal depth distributions

of the round goby, and correlated this with the thermal

environment at the place of capture. We hypothesize

that (1) there is a seasonal pattern in depth distribution

of round goby, and (2) the seasonal pattern in depth

distributions of round goby relates to avoidance of

cold-water temperatures in shallow waters during the

cold period of the year. In addition, we compared how

round goby depth distribution overlaps with the

preferred major macrozoobenthic prey (the blue

mussel Mytilus edulis), a major competitor for food

(flounder Platichthys spp.) and an important piscivo-

rous predator in coastal areas (perch Perca fluviatilis).

Materials and methods

Data

Data represents a compilation of altogether 1084 pan-

Baltic catches of round goby from 1994 to 2017. All

available data were used, although data were not

available for all years in all areas (Table 1 and Fig. 1).

Individual catches of round goby were allocated to one

of four quarters (Q); Q1 (January-March), Q2 (April-

June); Q3 (July–September) or Q4 (October-Decem-

ber). Information on depth and gear type was available

for each catch, except for 12 catches (1.1%), where

information on bottom depth was extracted from the

ETOPO1 Global Relief Model that includes Baltic Sea

Bathymetry by using the function ‘‘getNOAA.bathy’’

at resolution of 1 min from the R package marmap

(Amante and Eakins 2003; R Core Team 2016; Pante

et al. 2017). Information about the bottom water

temperature at the catch locations (i.e. temperatures

experienced by the caught goby) was obtained for 801

of the 1084 catches (74%). To evaluate depth-specific

thermal experience of round goby at the remaining

locations, we extracted all available bottom water

temperature measurements from 1994 to 2017, for the

area between 53 and 60�N and 08–30�E, from the

ICES hydrographic database (ICES Dataset on Ocean

Hydrography, The International Council for the

Exploration of the Sea, Copenhagen 2017) and

calculated the average bottom temperature for each

quarter and 5 m depth intervals. These data were only

used for visual interpretation of the relationship

between bottom temperature and total number of fish

summed at 5 m depth interval. Comparison of the

bottom temperature profiles of the western and eastern

part, as well as the southern and northern part of the

region revealed a highly comparable pattern, thus a

single depth profile for the whole region was used. The

total number of round gobies from one catch divided

by mean of observations from each gear type is here

defined as standardized Catch Per Unit Effort (stand

CPUE).

Statistical analysis

We tested the following two hypotheses (1) there is a

seasonal pattern in depth distribution of round goby,

and (2) the seasonal pattern in depth distributions of

round goby relates to avoidance of cold-water tem-

peratures in shallow waters during the cold period of

the year. A post hoc analysis (Kruskal–Wallis and

Dunn’s Multiple Comparison test) was performed to

statistically test hypothesis 1 (i.e. to examine whether

depth of catches changed significantly between quar-

ters) (R Core Team 2016). A linear mixed intercept

model was used to statistically test the second

hypothesis. The linear mixed-effects model (LME)

from the NLME package in R was used for modelling

(Pinheiro et al. 2016; R Core Team 2016). For

reduction of the fixed structure, we used maximum

likelihood (ML) estimation procedure and a backward

selection routine based on manual calculations of Log

Lik values for each of the variables in the model. The

Akaike�s Information Criterion (AIC; Burnham and

Anderson 1998) was used in model comparison.

Restricted maximum likelihood (REML) estimation

procedure of the final model was used for better

estimation of the random variance comparing to ML

estimation (Zuur et al. 2009). Model validation was
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done by checking the assumptions of normality and

independence of residuals.

The linear mixed intercept model included a log

transformation of the response variable, stand CPUE.

Due to high variance in observations of round goby

between gear types (Fig. S1 A and B), we allowed the

within-gear type errors (residuals) to vary between

gear types by using varIdent variance structure in the

model. Because observations from 8 of the 21 gear

types had incomplete information on temperature, the

linear mixed model only contained 13 types of gear.

The full model for examination of whether water

temperature drives the depth distribution of round

goby included a fixed effect of the observed temper-

ature for each catch and a factor named quarter with 4

levels (i.e. Q1-Q4) to account for differences in

standardized CPUE over the year and gear type (13

levels) as random effect to capture systematic devia-

tions in the standardized CPUE for different gear

types:

(Temperature) model) Log standCPUEð Þi¼ lþ
a quarterið Þ þ b � temperaturei þ c geartypeið Þþ
eii ¼ 801

(Model assumptions) ei � i:i:d:N 0; r2
geartypei

� �
;

c geartypeið Þ� i:i:d: N 0; r2
c

� �

To test the robustness of the post hoc analysis as

stated above we performed the same test on a subset of

data (i.e. gear type = TV3-520, N catches = 236).

Only data from the same gear type and with data from

all four quarters were used in the analysis. Missing

information of temperature on all catches from gear

type TV3-520 made it impossible to test the second

hypothesis.

Calculation of spatial overlap between the round

goby and trophically associated species

Overlap of the distribution area of the round goby and

trophically-associated species was measured as a

percentage of the distribution area of blue mussel,

perch and flounder where the round goby was present.

The overlap was calculated for three quarters (Q2-Q4;

i.e. spring, summer and autumn), when trophic

interactions with involvement of fish generally occur

in the Baltic Sea. Map analysis was carried out with

ArcMap (ArcGIS 10.6) tool Raster Calculation, under

Spatial Analyst Tools—Map Algebra (https://desktop.

arcgis.com/en/arcmap/10.3/tools/spatial-analyst-

toolbox/raster-calculator.htm).

First, new raster layers were made for the round

goby and the three trophically associated species, blue

mussel, flounder and perch by applying conditional

tool ‘‘Con’’ with binominal values (0 and 1): 0—where

a given taxon was not present, 1—a given taxon was

present. Potential round goby habitats were divided

Fig. 1 Positions of catches containing round goby in the period

1994–2017 by quarter. Quarter 1 (dark blue) is January-March,

quarter 2 (pink) is April-June, quarter 3 (red) is July–September

and quarter 4 (light blue) is October-December. In total, 1084

catches contained round goby, comprising a total number of

43,745 individual round gobies
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into quarters (Q2–Q4), which all correspond to the

depth ranges describing the interquartile areas in

Fig. 2a.

Secondly, raster calculation subtraction between

rasters was used (e.g. raster ‘‘M. edulis’’ – raster

‘‘round goby Q2’’). New output rasters had two values

0 and 1, where 0 presented overlap between layers of a

trophically associated species and the round goby, and

1 presented the area, where a trophically associated

species was present but round goby was not. To

calculate the overlap percentage between a trophically

associated species and round goby, pixel values were

used.

Spatial overlap was calculated based on the

formula:

Overlap percentage ¼ P0 � 100%= P0 þ P1ð Þ;

where:

P0 = Pixel values for the overlap area,

P1 = Pixel values for the habitat area of trophically

associated species (Fig. 4E-G), where there was no

overlap with potential round goby habitat.

Results

Observations and post hoc analysis

The depth at which round goby were caught varied

significantly between quarters (p\ 0.001), except for

Q2 and Q3, where fish were caught in shallow water of

average depths of 9.4 and 8.2 m, respectively

(Fig. 2a). Catches during autumn- and wintertime

(Q4 and Q1) revealed that fish spend this period of the

year at much deeper waters, especially in Q1 (January

to March) where the fish on average were caught at

35.6 m (Fig. 2a). The maximum depth that a round

goby was caught at was 90 m in Q4, at the northwest

coast of the Estonian island Saaremaa.

The water temperature at which round goby were

caught varied significantly between quarters

(p\ 0.001) except for Q2 and Q4 (Fig. 2b). Fish

experienced the highest temperatures during summer

(Q3) with an average of 18.3 �C, which dropped to a

low 3.8 �C during January-March (Q1). In contrast,

the temperatures experienced by the fish in spring/

early summer (Q2) and autumn/early winter (Q4) was

highly comparable, 11.3 and 10.4 �C, respectively.

Thus, overall the fish experienced a span in average

temperature of 14.5 �C during the annual cycle. The

lowest temperature where round goby was fished was

Fig. 2 Seasonal depth (a) and thermal experience (b) in relation

to quarter for goby caught between 1994 and 2017. Quarter 1 is

January-March, quarter 2 is April–June, quarter 3 is July–

September and quarter 4 is October-December. Solid line is the

median, box is the interquartile area (bottom and top are 25th

and 75th percentiles, respectively). Whiskers show either the

max/min observation if within 1.5 of the interquartile range or

1.5 times the interquartile range. For details of used gear types

and number of catches see Table 1
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0.1 �C at 14 m depth in Q1, whereas the highest was

24.7 �C at 4 m depth in Q3 (Fig. 2b).

Comparison of total number of round goby caught

at each 5 m depth interval in each quarter (Fig. 3a) and

bottom water temperature profiles extracted from the

ICES database (Fig. 3b), revealed that in three out of

four quarters, the depth at which the highest catch was

obtained, was linked with the highest bottom water

temperature. The exception was Q1, where the fish

would have experienced a few degrees higher

temperatures had they migrated 35-40 m deeper (i.e.

to 85–90 m or deeper) (Fig. 3a and b).

Statistical modelling

The linear mixed intercept model confirmed our

second hypothesis that seasonal depth distribution of

the fish is linked to the thermal conditions: the round

goby avoids cold temperatures during winter at

shallow depths. The full model was not reduced as

both temperature and quarter turned out to be signif-

icant (Table 2) and model reduction only increased

AIC (i.e. insufficient model reduction). The effect of

temperature supported our observations that round

goby seem to seek areas (depths) with highest possible

temperatures as the overall temperature effect turned

out to be positive for stand CPUE of round goby

throughout a whole year (a = 0.049, p = 0.002)

(Table 2). The significance of the factor quarter

revealed that mean stand CPUE differed over the year

resulting in 4 different intercepts of the final model

(Table 2).

Test of robustness

Depth from catches using the TV3-520 gear differed

significantly in depth over the year (p\ 0.001). Fish

were caught in significantly deeper water in Q1

(27.7 m) and Q4 (23.4 m) compared to Q2 (16.0 m)

and Q3 (14.3 m). The water temperature at which

round goby were caught with TV3-520 varied signif-

icantly between quarters (p\ 0.001). The highest

temperature fish experienced was in summer (Q3) with

an average on 17.0 �C. In contrast, the coldest

temperature experienced by the fish was found in

winter (Q1) with an average of 2.5 �C. In Q2 and Q4,

fish experienced more comparable temperatures,

however still significant from each other (13.0 �C
and 10.5 �C, respectively, p = 0.001).

Spatial overlap with trophically associated species

The highest overlap between the distribution of the

round goby and the three investigated trophically

associated species (Fig. 4) was observed for flounder

(competitor) and blue mussel (preferred prey) in

autumn (70.0 and 50.1%, respectively), while the

lowest overlap was always observed for perch

(B 20%; Table 3), predator on round goby.

Fig. 3 a The total number of round goby caught at each 5 m

depth interval for each quarter (dark blue: Q1; pink: Q2; red: Q3

and light blue: Q4). The four symbols indicate the peak of

number of fish for each quarter (star for Q1, triangle for Q2,

circle for Q3 and square for Q4). b Bottom temperatures (ICES

database) in relation to depth for Q1-4. The four different

symbols (see A) illustrate at what temperature number of caught

round goby at a given depth was highest
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Discussion

The present study has resolved one of the major gaps

in our knowledge related to the seasonal distribution

pattern of the round goby in one of its invasion

hotspots—the Baltic Sea. Using all available round

goby catch data in the Baltic Sea since its introduction

in the early 1990s, we were able to show that the round

goby stay in deeper water layers during the cold season

as compared to spring and summer. This ultimately

reveals a pronounced seasonal migration between

shallow coastal waters and offshore areas, which can

be related directly to different thermal conditions

between the seasons. This finding mirrors the annual

inshore/offshore seasonal migration of round goby

documented in some North American lakes (Andres

et al. 2020, Pennuto et al. 2021) and previously

suggested in Europe (Sapota and Skora 2005;

Christoffersen et al. 2019). These migration events

have been shown to translocate significant amounts of

energy, prey, and nutrients in a range of lake sizes

(Johnson et al. 2005, Andres et al. 2020, Pennuto et al.

2021). ECThe deepest location previously recorded

was 130 m in the North American Great Lakes (Walsh

et al. 2007) (although based on much less extensive

spatial data), as opposed to 90 m in the Baltic Sea in

this study.

Potential drivers of the described migration

Migration in fish can be triggered by various drivers,

like the nutritional state of the individual, food-web

interactions (incl. cannibalism, predator avoidance),

or environmental factors such as temperature, salinity

and oxygen conditions (Kanciruk and Hernkind 1978;

Brönmark et al. 2008; Bazazi et al. 2011). Many

species living at temperate latitudes retreat to avoid

cold exposure (Sunday et al. 2014), and maybe not

surprisingly, our results reveal the same for round

goby which avoids the shallow coastal waters during

the coldest period where water temperatures can

decrease below 0 �C. Notably, our data show that

round goby not only avoid the very cold shallow water

during winter, but that the fish actively seeks the

highest available temperature within the depth range

in the different seasons. In other words, round goby

selects depths that offer the highest possible temper-

atures for the season.

Mobile ectotherms possess the advantage of being

able to actively choose a thermal environment that

enables them to maintain a sufficient or even high

physiological performance (Reynolds and Casterlin

1979; Sunday et al. 2014), and the observed ‘ther-

mophilic behavior’ may be a relic from the species

place of origin, to which their physiology is adapted.

In this context, it is important to note that water

temperatures are higher in their native Ponto-Caspian

region (average summer temperatures of aprox.

22–28 �C) compared to the invaded Baltic Sea (Du-

mont 1998; Olenin 2002; Schiewer 2008). In a recent

laboratory study, Christensen et al. (2021) offered

Baltic round goby a thermal range from 5 to 25 �C,

and found that the fish preferred on average 21 �C.

Furthermore, most fish stayed within a thermal range

of 18 and 24 �C, and had the highest aerobic

performance between 15 and 28 �C. A dislike for

Table 2 Summary of fixed

and random effects and

their associated parameters

retained in the final

temperature model for

log(stand CPUE).

Parameter estimates by

REML, their standard errors

(SE), degrees of freedom

(DF) and significance

values (P) are shown

Parameter Estimate SE DF P

Fixed effects

Quarter: 784 \ 0.001

Quarter 1 - 1.897 0.355

Quarter 2 - 1.040 0.372

Quarter 3 - 1.453 0.412

Quarter 4 - 2.207 0.358

Temperature 0.049 0.016 784 0.002

Random effects (SD units)

Among-geartype (r2
c ) 0.947

Within-geartype (residuals) (r2
geartypei

) 1.219

N = 801
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cold waters may also explain why round goby, despite

a pan-Baltic distribution, have only been observed in

very few numbers in the northernmost (and coldest)

areas of the Baltic Sea, more specifically in Raahe in

the southern part of the Bothnian Bay, but not in any

adjacent or more northerly areas (Puntila et al. 2018).

Fig. 4 Potential overlap of round goby with three Baltic key

species that interact with round goby as either prey (Blue

mussel), competitor for food (Baltic flounder), or predator

(European perch). a–d Potential habitat of round goby in Q1,

Q2, Q3 and Q4, respectively, based on the catch data in the

present study. Red areas correspond to the depth ranges

describing the interquartile areas in Fig. 2. e Occurrence of

Blue mussel (Mytilus edulis) (red areas; data from HELCOM

Map & Data Service https://helcom.fi/baltic-sea-trends/data-

maps/), f Spawning areas of Baltic flounder (Platichthys
solemdali) (red areas; data obtained from HELCOM Map &

Data Service https://helcom.fi/baltic-sea-trends/data-maps/),

g Recruitment areas of European perch (Perca fluviatilis) (red

areas; data from HELCOM Map and Data Service https://

helcom.fi/baltic-sea-trends/data-maps/)
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In addition, being in shallow (warmer) waters during

spring and summer offers good living conditions

related to the high availability of preferred prey (e.g.

bivalves and arthropods), spawning opportunities, and

favoured hard-bottom substrates (Sapota, 2004).

The ecological implications of biomass

movement: round goby as a predator

Our depth distribution maps show that annually, blue

mussels and round goby co-occur in over 70% of the of

the habit available to both species (Fig. 4), and further

calculations (based on the presence of the round goby

in the distribution area of blue mussels) suggest the

highest impact risk of round goby in autumn (Q4).

Irrespectively of their size, round goby prefers the

smaller blue mussels (Schwartzbach et al. 2019), and

there is evidence that they feed efficiently on newly

settled mollusks, causing a severe constraint for blue

mussel recovery (Skabeikis et al. 2018). Mussels are

important ecosystem engineers, that provide habitat

for a diverse fauna and flora, and they furthermore

mitigate eutrophication effects thorough filtration

(Donadi et al. 2015; Chowdhury et al. 2016; Petersen

et al. 2016). A substantial removal of mussels will

likely affect the whole ecosystem functioning in the

affected (mostly near-coastal shallow) areas.

Round goby caught in winter in the NE Baltic Sea

with stomachs containing the soft-shelled clam Lime-

cola balthica (Linnaeus, 1758) (K. Nõomaa, unpubl.

data), suggest that they also feed during the winter.

Considering that the fish does spend an extended

period in deeper waters, some impact may be

expected, and the nature of the impact and its’

magnitude should be further investigated.

The ecological implications of biomass

movement: round goby as a competitor

Resource competition (such as for prey, habitat and

space) is an important factor for shaping biotic

communities in aquatic ecosystems. There are several

examples of competitive superiority of the round goby

leading to outcompeting of native fish in invaded

freshwater habitats (e.g. Balshine et al. 2005;

Bergstrom and Mensinger 2009). Food competition

with native fishes also occurs in the Baltic Sea: after

the round goby invasion, flounder and turbot (Psetta

maxima) juveniles were found to shift diets, resulting

in an increased diet overlap with other species, and a

lower feeding success, which together may have

affected recruitment success of the fish (Ustups et al.

2015). Our analysis revealed potentially major overlap

(up to 70%) between the major competitor for food,

the flounder, and the round goby distribution, which

supports the above. Also, depth distribution of the

round goby overlaps with small native gobies Po-

matoschistus spp., which predominantly inhabit shal-

low coastal areas, and the available evidence suggests

that these small native gobies are negatively affected

by round goby (Hempel et al. 2016). This effect may

further cascade in the foodweb and affect recruitment

abundance of a very valuable coastal commercial

species—pikeperch (Zander lucioperca), for which

larvae and early juveniles of Pomatoschistus spp.

serve as the primary prey for early juveniles (Müller-

Karulis et al. 2013). Although there is evidence that

Table 3 Overlap of the distribution area of the round goby and

trophically-associated species in the Baltic Sea, measured as a

percentage of the distribution area of blue mussel (Mytilus
edulis), perch (Perca fluviatilis) and flounder (Platichthys fle-
sus) where the round goby was present

Species Quarter of the year % overlap

Blue mussel 2 22.4

Blue mussel 3 31.8

Blue mussel 4 50.1

Perch 2 16.8

Perch 3 20.0

Perch 4 16.2

Flounder 2 21.4

Flounder 3 33.1

Flounder 4 70.0
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juvenile pikeperch can prey on the round goby

(Hempel et al. 2016), the net effect of the round goby

on the early juvenile stages of pikeperch is likely

reduction of its primary food resource.

In addition to fish, round goby competes for the

same prey with fish-eating birds. Dramatic decline in

blue mussel availability and a changed size structure at

depths\ 20 m, associated with round goby distribu-

tion during the warm season (present study) and

directly caused by round goby predation, induced a

dietary shift in wintering long-tailed duck (Clangula

hyemalis) towards fish prey in a coastal rocky habitat

in the southern Baltic Sea. Such a shift has led to a

reduction in carrying capacity of the bird in the study

area, and shows that coastal habitats with low blue

mussel biomass become less attractive wintering sites

for seabirds (Skabeikis et al. 2019).

The ecological implications of biomass

movement: round goby as prey

Introduction of non-native species can also be bene-

ficial for some species in the invaded ecosystems.

Although the individual/population level beneficial

effects of the introduction of round goby on predatory

fish still needs to be resolved within the Baltic Sea,

round goby now serve as an important prey for both

piscivorous fish and fish-eating birds (Stapanian et al.

2011; Crane et al. 2015; Hempel et al. 2016). Some

fish-eating birds can switch to the round goby (Bzoma

and Meissner, 2005), displaying increased consump-

tion rates (Johnson et al. 2005) and indirect evidence

of increases in population size; e.g. that grey heron

(Ardea cinerea) population has increased in the

southern Baltic Sea because of the rapid expansion

of the round goby (Jakubas 2004). Our study evi-

denced that the distribution area of the round goby

only moderately overlaps with that of one of the most

abundant coastal predatory fishes perch), but this

overlap undoubtedly offers a new (potentially) nutri-

tionally profitable prey resource for the coastal

piscivorous species (Brauer et al. 2020). This also

adds to Liversage et al. (2017), who found that round

goby densities do not significantly affect perch

feeding, which is most likely affected by other

environmental factors. The predominantly shallow-

water occurrence of round goby, as evidenced in our

study, may result in predation release of juveniles of

commercial fish species from fish-eating birds

(Johnson et al. 2005). The main top predatory fish in

the Baltic, cod (Gadus morhua) traditionally preys

mainly on clupeids, but may shift to include substan-

tial shares of round goby where these are abundant in

coastal areas (Almqvist et al. 2010; Funk et al. 2020).

In addition, from 2007 onwards, round goby has

occurred in cod stomachs (Huwer et al. 2014),

suggesting that they act as prey also for cod foraging

on deeper waters.

Grey seal (Halichoerus grypus), and also to some

extent harbour seal (Phoca vitulina), likewise con-

sume round goby in the southern and southwestern

Baltic Sea. While the share of round goby in harbour

seal diet in 2001–2005 and 2013 was negligible (1%),

round goby constituted 17% of the grey seal diet in

2012–2013 (Scharff-Olsen et al. 2019). More recently

(2017), round goby was the fish species with the

highest occurrence in scats from a haul-out site by

Rødsand (where round goby were first observed in

2011; Azour et al. 2015), occurring in 45 to 62% of the

scats sampled in spring, summer and autumn in 2017

(no samplings in winter) (Kroner unpubl. data). Thus,

locally, round goby can be an essential component of

grey seal diets. As seals require food during the whole

year, the seal—round goby interaction likely takes

place both in shallower coastal areas as well as

offshore and our round goby seasonal occurrence data

is of high value for seal ecologists to interpret seal

feeding ecology.

Limitations of the research

All available data on the round goby catches were

compiled to provide a pan-Baltic perspective. There-

fore, sampling techniques and applied fishing gears

differ between seasons, years, and areas. It should be

acknowledged that data obtained from some gear

types may not be fully representative of the round

goby distribution. For example, shallow-water and

hard-bottom habitats can be underrepresented in the

data from active gears, e.g. bottom trawls (Smoliński

and Radtke 2017). On the contrary, some of the

passive gears (e.g. gillnets) are not used in the deeper

areas. However, applied standardization of Catch Per

Unit Effort and mixed-effects modeling allowed for

the partial control of these confounding effects of

varying sampling techniques in the estimation of depth

distribution and thermal preference of round goby.
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Lack of balance in the spatial and temporal

coverage of the data should be considered when

interpreting the results. We utilized only data from

scientific surveys, but possible integration of the data

from the commercial and recreational catches could be

helpful to potentially improve the spatial and temporal

resolution of future analyses (Støttrup et al. 2018).

Implications on future research, monitoring

and assessment

As round goby occurrence and abundance data will

continue to originate from various sources (there is no

commonly agreed round goby monitoring protocols in

the Baltic Sea), results of the current study provide the

general background for interpretation of the locally

collected seasonal data (e.g. those following the

HELCOM coastal fish sampling guidelines). One of

the immediate tasks should be estimation of the round

goby abundance and density in different areas of the

Baltic Sea by depth strata, to be further used not only

for impact assessment and reporting purposes for the

Descriptor 2 (non-indigenous species) of the European

Union’s Marine Strategy Framework Directive, but

also future predictions, and to support developing

mitigation measures.

Our results show pronounced seasonal migration of

the round goby from the very shallow coastal areas to

the deep offshore regions and vice versa, similar to

findings in North American freshwater environments

(Andres et al. 2020, Pennuto et al. 2021). Both the

spatial distribution (Kotta et al. 2016) as well as

biomass of the round goby has increased over time in

the Baltic Sea (up to 350 individuals/100m2; Sapota

and Skora 2004; Puntila et al. 2018), which has

resulted in increased translocation of organic matter

and energy to deeper offshore regions over time.

Further investigations should be aimed at quantifying

the food web consequences and coupling effects

between different habitats associated with seasonal

migrations of the round goby, both in terms of the

species as a competitor, predator and prey.

Acknowledgements This work was supported by the J.P.A.

Espersen and Mrs Dagny Espersen Foundation (Grant number

16/12677) and the Joint Baltic Sea Research and Development

Programme (BONUS) project ‘Taking stock of Baltic Sea food

webs: synthesis for sustainable use of ecosystem goods and

services’, XWEBS, which were supported by BONUS (Art

185), funded jointly by the European Union, the Estonian

Research Council, the Innovation Fund Denmark, the
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Gdańsk (Poland), with special emphasis on the increase in

the number of cormorants (Phalacrocorax carbo). Acta

Zool Litu 15:105–108. https://doi.org/10.1080/13921657.

2005.10512383

Chowdhury GW, Zieritz A, Aldridge DC (2016) Ecosystem

engineering by mussels supports biodiversity and water

clarity in a heavily polluted lake in Dhaka, Bangladesh.

Fresh Sci 35:188–199. https://doi.org/10.1086/684169

Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW

(2021) Effects of temperature on physiological perfor-

mance and behavioral thermoregulation in an invasive fish,

the round goby. J Exp Biol. https://doi.org/10.1242/jeb.

237669

Christoffersen M, Svendsen JC, Behrens JW, Jepsen N, van

Deurs M (2019) Using acoustic telemetry and snorkel

surveys to study diel activity and seasonal migration of

round goby (Neogobius melanostomus) in an estuary of the

Western Baltic Sea. Fish Manag Ecol 26:172–182. https://

doi.org/10.1111/fme.12336

Crane DP, Einhouse DW (2015) Changes in growth and diet of

smallmouth bass following invasion of Lake Erie by the

round goby. J Great Lakes Res 42:405–412. https://doi.org/

10.1016/j.jglr.2015.12.005

Deegan LA (1993) Nutrient and energy transport between

estuaries and coastal marine ecosystems by fish migration.

Can J Fish Aquat Sci 50:74–79. https://doi.org/10.1139/

f93-009

Dingle H, Drake AV (2007) What is migration? Bioscience

57:113–121. https://doi.org/10.1641/B570206

Donadi S, Van der Heide T, Piersma T, Van der Zee EM,

Weerman EJ, Van de Koppel J et al (2015) Multi-scale

habitat modification by coexisting ecosystem engineers

drives spatial separation of macrobenthic functional

groups. Oikos 124:1502–1510. https://doi.org/10.1111/oik.

02100

Dumont HJ (1998) The Caspian lake: history, biota, structure,

and function. Limnol Oceanogr 43:44–52

French JRP, Jude DJ (2001) Diets and diet overlap of non-

indigenous gobies and small benthic native fishes co-in-

habiting the St. Clair River. Michigan J Great Lakes Res

27:300–311
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