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Carbon supply–consumption
balance in plant roots: effects of
carbon use efficiency and root
anatomical plasticity

Introduction

The growth and maintenance of the plant root system may
consume > 50% of all photosynthates, making the root system a
major carbon sink (Lambers et al., 2002). Carbon is supplied to
roots via sieve tubes that are located in the phloem of the root stele,
and is consumed for anabolic and catabolic processes. In a recent
paper, Kong et al. (2021) proposed a framework to assess the
carbon supply–consumption balance in plant roots that bridges
root anatomical structures and root functioning using ‘structural
allometric relationships’. Their framework highlights the pivotal
role of root radius and associated anatomical properties such as sieve
tube radius and the size and number of root cells for the carbon
supply–consumption balance. Following the Hagen–Poiseuille
law, they expressed root carbon supply rate (S) as:

S ¼ k sr
4
s ¼ k s kr rð Þ4 Eqn 1

where ks denotes the coefficient of carbon flux rate, rr denotes the
root radius, and k denotes the scaling coefficient between the sieve
tube radius (rs) and rr. Across plant species, the rate of root carbon
consumption is strongly related to root radius, root cell number,
and root cell size (Guo et al., 2008; Lynch, 2015; Kong et al.,
2019). Kong et al. (2021) expressed total root carbon consumption
rate (Ctot) as a function of root radius (rr):

C tot ¼ kcπr
2
r Eqn 2

where kc denotes the carbon consumption rate per unit of root
cross-sectional area.

Although not explicitly mentioned, the concept of carbon
supply–consumption balance in roots presented by Kong et al.
(2021) assumes that root metabolic processes are fully aerobic. Yet,
soil oxygen concentration fluctuates strongly over time (Cannell
et al., 1984; Weisskopf et al., 2010), and small-scale hetero-
geneities in soil porosity and water saturation and hotspots of soil
biological activity can lead to localised differences in soil oxygen
concentration (Ebrahimi & Or, 2018; Wang et al., 2020).
Therefore, a single root system and even a single root regularly
encounter hypoxic and anoxic conditions, which may disrupt the
carbon supply–consumption balance and the underlying structural

allometric relationships. Especially for annual plants such as arable
crops, the spatial variability of soil properties, including soil oxygen
concentration, may have decisive effects on whole plant growth
(Wang et al., 2020). In the present paper, we extend the framework
of Kong et al. (2021) by including variations in oxygen concen-
tration in the soil–root system and relating this to root anatomical
plasticity. We then discuss how the presented approach may
improve our understanding of the effects of spatial variability in
oxygen concentration and other soil properties such as water and
nutrient availability and soil penetration resistance on plant growth
and crop yield formation.

Assessing the effects of soil oxygen on anabolic and
catabolic carbon partitioning

Total carbon consumption in roots is the sum of anabolic
processes, that is biosynthesis, and catabolic processes including
respiration and fermentation (Bailey-Serres et al., 2012; Lynch,
2015). With decreasing soil oxygen concentration, root
metabolism gradually shifts from aerobic respiration towards
anaerobic fermentation, and catabolic processes must increase to
meet ATP demands of anabolic processes (Kennedy et al., 1992;
Bailey-Serres et al., 2012). A few hours or days of hypoxia or
anoxia, or a slight decrease in soil oxygen concentration can
significantly affect root metabolism (Eavis, 1972; Leshuk &
Saltveit, 1991; Garnczarska & Bednarski, 2004). Therefore, soil
oxygen concentration affects carbon partitioning patterns
between anabolic and catabolic processes in roots. The parti-
tioning between anabolic and catabolic processes is often
expressed as carbon use efficiency (Manzoni et al., 2012), that
is the ratio between anabolic and total carbon consumption rate
(del Giorgio & Cole, 1998). Carbon use efficiency (e) of a root
is therefore given by:

e ¼ C ana

C anaþC cat
¼C ana

C tot
Eqn 3

where Cana denotes the carbon consumption rate of anabolic
processes, and Ccat denotes the carbon consumption rate of
catabolic processes including respiration and fermentation. In
response to low soil oxygen concentration and the resulting
decrease in cellular oxygen concentration, root catabolism gradu-
ally shifts from aerobic respiration to anaerobic fermentation
(Fig. 1a). This metabolic shift can be described by the degree of
anaerobicity (α). Fully aerobic metabolism is indicated by α = 0,
while α = 1 indicates completely anaerobic metabolism. Follow-
ing Chakrawal et al. (2020), carbon use efficiency can be related to
the degree of anaerobicity by:

e ¼ð1�αÞY rþαY f Eqn 4
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where Yr represents carbon use efficiency of aerobic respiration and
Yf represents carbon use efficiency of anaerobic fermentation,
which we set to 0.6 and 0.2, respectively (Manzoni et al., 2012;
Smeaton & Van Cappellen, 2018). Eqn 4 shows that carbon use
efficiency decreases with decreasing soil oxygen concentration and
the associated shift from aerobic respiration towards anaerobic
fermentation. The proportion of catabolic and anabolic rates to
total rate of root carbon consumption change then as follows:

C cat ¼ð1� eÞC tot Eqn 5

C ana ¼ eC tot Eqn 6

Upon a decrease in carbon use efficiency caused by a higher
degree of anaerobicity, proportionally more carbon is allocated
towards catabolic processes (Eqn 5; Fig. 1b) and less carbon is
available for anabolic processes (Eqn 6). These effects of soil oxygen
concentration on carbon use efficiency have immediate conse-
quences for the carbon supply–consumption balance. If carbon

supply rate, and therefore total carbon consumption rate, of roots
remain constant upon decreasing soil oxygen concentration,
anabolic carbon consumption rate decreases. As a result, root
biosynthesis decreases, which limits soil exploration, whole plant
growth and crop productivity. Under decreased soil oxygen
concentration, total carbon consumption rate and carbon supply
rate must therefore increase to maintain anabolic carbon con-
sumption rate of roots (Fig. 1c). However, increasing carbon
supply rate reduces the amount of carbon available for aboveground
plant growth and yield formation.

Integrating root anatomical plasticity into structural
allometric relationships

As emphasised by Kong et al. (2021), total carbon consumption
rate of roots does not only depend on root radius but it is also
strongly influenced by root anatomical traits. Both, the enlarge-
ment of root cortical cells (Chimungu et al., 2014; Colombi et al.,
2019) and cortical cell death (Saengwilai et al., 2014; Schneider

(a) (b)

(c)

Fig. 1 Linksbetweensoil oxygenconcentrationand the rateof carbonsupply (S) andconsumption inplant roots. (a) Total root carbonconsumption rate (Ctot) is
the sumof anabolic carbon consumption rate (Cana) and catabolic carbon consumption rate (Ccat) including aerobic respiration (Cr) and anaerobic fermentation
(Cf). With decreasing soil oxygen concentration, the degree of anaerobicity (α) increases and root metabolism gradually shifts from respiration towards
fermentation, which decreases carbon use efficiency (e) of roots (Eqns 3, 4). (b) Ccat as a function of Ctot, depicting the effects of decreasing soil oxygen
concentration on the ratio between Ccat and Ctot (Eqn 5). (c) Ctot and S as a function of α and e, illustrating effects of decreasing soil oxygen concentration on
relationships betweenS,Ctot, andCana (Eqn6). Yellow-to-red colour scale denotes gradual change in carbonuse efficiency fromfully aerobic respiration (α = 0,
e = 0.6) towards fully anaerobic fermentation (α = 1, e = 0.2).
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et al., 2017) reduce the total carbon consumption rate of plant
roots. Furthermore, low soil oxygen concentrations have been
shown to increase root cortical cell size (Burgess et al., 1999; Folzer
et al., 2006) and often induce cortical cell death (Kawase &
Whitmoyer, 1980; Geisler-Lee et al., 2010; Yamauchi et al.,
2014). Similar to changes in root metabolism (Eavis, 1972; Leshuk
& Saltveit, 1991; Garnczarska & Bednarski, 2004), these root
anatomical responses occur within hours to a few days of reduced
soil oxygen concentration. Therefore, an approach that integrates
these effects of root anatomical plasticity on carbon consumption
rate of roots has to be adopted.

Adding a factor (fCS) to Eqn 2, depicting the relative change of
the average cross-sectional area of cortical cells (ΔCA), enables to
account for the effects of increasing cortical cell size on total root
carbon consumption rate. Total carbon consumption rate of roots
(C 0

tot) is then given by:

C 0
tot ¼C tot f CS ¼

C ana

e
f CS Eqn 7

f CS ¼
1

1þΔCA
Eqn 8

When carbon is supplied at a constant rate, carbon supply–
consumption balance can be reached at a carbon use efficiency of
0.45 and 0.3 by increasing cortical cell area by 33% (fCS = 0.75)
and 100% (fCS = 0.5), respectively (Fig. 2a). The effect of cortical
cell death on carbon consumption rate of roots can be accounted for
by a factor (fCD), describing the proportion between living cortical
area (Aliv) and total cortical area (Atot). Total carbon consumption
rate of roots (C 0

tot) can be related to cortical cell death as follows:

C 0
tot ¼C tot f CD ¼C ana

e
f CD Eqn 9

f CD ¼ Aliv

Atot
Eqn 10

Without increasing carbon supply rate, root carbon supply and
consumption can be balanced at a carbon use efficiency of 0.45 and
0.3 by reducing the living cortical area by 25% (fCD = 0.75) and
50% (fCD = 0.50), respectively (Fig. 2b).

Several studies have shown that an increase in root cortical cell
size or a reduction of living cortical area do not limit soil
exploration, resource acquisition and whole plant growth
(Chimungu et al., 2014; Saengwilai et al., 2014; Broughton et al.,
2015; Colombi et al., 2019; Vanhees et al., 2020). This indicates
the importance of root anatomical plasticity in balancing root
carbon supply and consumption rate without jeopardising above-
ground growth. The enlargement of root cortical cells can coincide
with a shift in cell shape towards cuboid-shaped cells (Folzer et al.,
2006), which increases intercellular gas space (Justin&Armstrong,
1987). Furthermore, cortical cell death may lead to the formation
of root cortical aerenchyma (Pedersen et al., 2021). Intercellular
gas space and aerenchyma foster gas diffusion through roots (Justin
& Armstrong, 1987; Pedersen et al., 2021), which decreases the
degree of anaerobicity. As a result, carbon use efficiency of roots

increases (Eqn 4) and a higher proportion of carbon can be
allocated to anabolic processes (Eqn 6; Fig. 1). These feedbacks
between root anatomy and physiology, and their effects on whole
plant growth, highlight the need to integrate root anatomical
plasticity into structural allometric relationships underlying the
carbon supply–consumption balance in roots.

Outlook – linking root anatomical plasticity to soil
heterogeneity

Soil oxygen concentration significantly controls the carbon use
efficiency of roots (Fig. 1), which interferes with the balance
between carbon supply and consumption rate in roots. Here we
show that root anatomical plasticity may play a key role in the
carbon supply–consumption balance of roots under hypoxic and
anoxic conditions (Fig. 2). Other studies have indicated that this
interplay between edaphic conditions, carbon use efficiency and
root anatomical plasticity is not limited to soil oxygen concentra-
tion. Carbon use efficiency of heterotrophic soil microbes decreases
under low nutrient availability (Manzoni et al., 2017) and low soil
moisture (Domeignoz-Horta et al., 2020), and adecrease in carbon
use efficiency of plant roots has been reported upon greater soil
penetration resistance (Atwell, 1990; Colombi et al., 2019). It is
therefore likely that these edaphic stresses have similar effects on the
root carbon supply–consumption balance as low soil oxygen
concentration. Low nutrient and water availability, as well as high
soil penetration resistance, can result in an increase in cortical cell
size and a reduction of living cortical area, thereby decreasing root
carbon consumption (Saengwilai et al., 2014; Chimungu et al.,
2015;Colombi et al., 2019;Vanhees et al., 2020).Moreover, these
anatomical adjustments can enhance nutrient and water acquisi-
tion (Lynch, 2019), which potentially increases the carbon use
efficiency of roots. Therefore, root anatomical plasticity may play a
crucial role in the carbon supply–consumption balance of plant
roots under a variety of edaphic stresses.

Interactions between plants and heterotrophic soil organisms
may further influence the carbon supply–consumption balance
in roots. Mycorrhizas significantly contribute to root carbon
consumption (Koide & Elliott, 1989; Kong et al., 2021) and
fungal colonisation can trigger root anatomical responses (Berta
et al., 1995; Deshmukh et al., 2006; Lehr et al., 2008).
Similarly, changes in edaphic conditions and associated root
anatomical responses can influence the colonisation of roots by
mycorrhiza and pathogenic fungi (Vallino et al., 2014; Galindo-
Castañeda et al., 2019). Furthermore, plants may alter carbon
exudation, both in quantity and chemical composition, into the
rhizosphere upon changing edaphic conditions (Rittenhouse &
Hale, 1971; Boeuf-Tremblay et al., 1995; Henry et al., 2007;
Williams & de Vries, 2020), which directly affects root carbon
consumption. In addition to these direct effects, root exudation
influences soil microbial communities and related biogeochem-
ical processes (Hartmann et al., 2009; York et al., 2016; Yu
et al., 2021). Therefore, interactions between heterotrophic soil
organisms colonising the root and the rhizosphere, root anatomy
and root physiology are likely to alter the carbon supply–
consumption balance in roots. Following the conceptual
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approach outlined here, investigations into how these below-
ground interactions affect carbon use efficiency of roots may
improve our understanding of processes that underpin plant
growth.

The heterogeneity of soil structure results in a large spatial
variability of soil oxygen concentration, water and nutrient
availability, soil penetration resistance and soil biological activity.
It has been proposed that understanding plant responses to the
spatial variability in soil propertieswill be key in the development of
strategies to improve the sustainability of crop production (Wang
et al., 2020). Our conceptual approach shows how changes in soil
properties may affect carbon use efficiency and ultimately the
carbon supply–consumption balance in plant roots. Through root
anatomical plasticity, plants may balance root carbon supply and
consumption rate under changing edaphic conditions while
maintaining soil exploration and aboveground plant growth. We
therefore propose that the simultaneous assessment of root carbon
use efficiency and root anatomical plasticity will provide new

insights into the effects of soil structural heterogeneity on plant
growth. Performing such studies with different species and varieties
has the potential to identify plant traits and belowground
interactions that can be harnessed to enhance crop productivity.
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(a)
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Fig. 2 Effects of root anatomical plasticity on the balance between carbon supply (S) and consumption (C0
tot) rate in plant roots under decreasing carbon use

efficiency (e). (a) An increase of cortical cell area reducesC0
tot. An increase of the cortical cell area by 33%(fCS = 0.75) and100%(fCS = 0.5) allows balancing S

andC0
tot at e = 0.45 and e = 0.3, respectively, without a concomitant increase of S (Eqns 7, 8). (b) A reduction of living cortical area through cortical cell death

reduces C0
tot. A reduction of living cortical area by 25% (fCD = 0.75) and 50% (fCD = 0.5) allows balancing S and C0

tot at e = 0.45 and e = 0.3, respectively,
without a concomitant increase of S (Eqns 9, 10). Yellow-to-red colour scale denotes gradual change in carbon use efficiency from fully aerobic respiration
(α = 0, e = 0.6) towards fully anaerobic fermentation (α = 1, e = 0.2).
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