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ABSTRACT

In this study, we investigated the variation in the 
microbial community present in bulk tank milk samples 
and the potential effect of different farm management 
factors. Bulk tank milk samples were collected repeat-
edly over one year from 42 farms located in northern 
Sweden. Total and thermoresistant bacteria counts 
and 16S rRNA gene-based amplicon sequencing were 
used to characterize microbial community composi-
tion. The microbial community was in general hetero-
geneous both within and between different farms and 
the community composition in the bulk tank milk was 
commonly dominated by Pseudomonas, Acinetobacter, 
Streptococcus, unclassified Peptostreptococcaceae, and 
Staphylococcus. Principal component analysis including 
farm factor variables and microbial taxa data revealed 
that the microbial community in milk was affected by 
type of milking system. Milk from farms using an au-
tomatic (robot) milking system (AMS) and loose hous-
ing showed different microbial community composition 
compared with milk from tiestall farms. A discriminant 
analysis model revealed that this difference was depen-
dent on several microbial taxa. Among farms using an 
automatic milking system, there were further differ-
ences in the microbial community composition depend-
ing on the brand of the milking robot used. On tiestall 
farms, routines for teat preparation and cleaning of the 
milking equipment affected the microbial community 
composition in milk. Total bacteria count (TBC) in 
milk differed between the farm types, and TBC were 
higher on AMS than tiestall farms (log 4.05 vs. log 3.79 

TBC/mL for AMS and tiestalls, respectively). Among 
tiestall farms, milk from farms using a chemical agent 
in connection to teat preparation and a more frequent 
use of acid to clean the milking equipment had lower 
TBC in milk, than milk from farms using water for 
teat preparation and a less frequent use of acid to clean 
the milking equipment (log 3.68 vs. 4.02 TBC/mL). 
There were no significant differences in the number 
of thermoresistant bacteria between farm types. The 
evaluated factors explained only a small proportion of 
total variation in the microbiota data, however, despite 
this, the study highlights the effect of routines associ-
ated with teat preparation and cleaning of the milking 
equipment on raw milk microbiota, irrespective of type 
of milking system used.
Key words: milking system, premilking routines, bulk 
tank milk microbiota, microbial community composition

INTRODUCTION

The microbial community in raw milk is very diverse, 
with thousands of different taxa present (Quigley et al., 
2013), but for obvious reasons pathogens and spoilage 
bacteria in milk have attracted most attention. Cold 
storage of milk, both on-farm and at the dairy plant be-
fore processing, permits growth of psychrotrophs such 
as Pseudomonas (De Jonghe et al., 2011). This increas-
es the risk of proteolytic or lipolytic spoilage of dairy 
products caused by heat-resistant enzymes (Andersson 
et al., 1981; Stoeckel et al., 2016). Most bacteria and 
all pathogens are killed during pasteurization of milk, 
but spore-formers and other heat-resistant bacteria 
may survive, causing spoilage in different dairy prod-
ucts during processing and storage. Lactic acid bacteria 
(LAB) in the raw milk do not multiply at refrigeration 
temperatures and are generally not considered to sur-
vive pasteurization in high numbers. However, follow-
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ing heat treatment, some nonstarter lactic acid bacteria 
(NSLAB; e.g., lactobacilli) have been shown to enter 
into a viable but nonculturable state in cheese curd 
(Quigley et al., 2013). The NSLAB are believed to find 
their way to the cheese from handling and processing of 
the milk in the dairy plant, but raw farm milk is also 
suggested to be an important source (Vacheyrou et al., 
2011).

A recent study on transfer of bacteria from the en-
vironment to raw milk found that most environmental 
bacteria detected in the milk were also present in the 
barn and milking parlor environment (Vacheyrou et 
al., 2011). However, technologically important bacteria 
such as lactobacilli were rarely found in the barn en-
vironment, but were identified in the milk and on the 
teat surface (Vacheyrou et al., 2011). Monsallier et al. 
(2012) identified teat skin as an important source of 
bacteria of technological importance in cheese produc-
tion, and found that higher counts of Lactobacillus and 
Enterococcus were associated with a silage-based diet, 
loose-house systems with straw bedding, and moderate 
milking hygiene. Hygiene measures in conjunction with 
milking and effective cleaning of the milking equipment 
were identified as important factors in determining the 
balance between bacterial populations in milk in studies 
by Verdier-Metz et al. (2009) and Michel et al. (2001).

The rapid intensification in dairy production during 
the past 20 years has resulted in fewer and larger farms 
with high levels of mechanization (e.g., in feeding) and 
automation (e.g., use of robotic milking systems; Clay 
et al., 2020), but also stricter hygienic criteria. The 
transition in technology and the shift from tiestalls to 
loose-house systems have undoubtedly had effects on 
the composition, microbiota, and technological proper-
ties of raw milk. A recent study by Priyashantha et al. 
(2021) reported a strong influence of dairy farm factors 
(e.g., type of housing and milking system, dominant 
breed in herd) on quality traits of the bulk tank milk. 
However, little knowledge is available on the influence 
of these farm factors on microbial community structure. 
Therefore, in this study we hypothesized that variation 
in bacteria counts and microbial community structure 
in bulk tank milk from commercial farms is related to 
farm factors, such as breed, technology, and housing 
system. The aim of the study was to characterize the 
variation in milk microbiota within and between farms 
and to identify major on-farm factors influencing the 
microbial community structure. Because our overall 
research focus is related to the link between farm fac-
tors and the quality and ripening time of a traditional 
Swedish long-ripening cheese produced in the region, 
the abundance of LAB in the raw milk was of special 
interest.

MATERIALS AND METHODS

Study Design and Milk Sampling

The study was conducted during the period from 
February 2016 to February 2017. All dairy farmers de-
livering milk to the participating cheese-making plant 
were asked about their willingness to participate in 
the study, and 42 farmers agreed to participate. Herd 
and individual animal data (i.e., breed and milk yield) 
were obtained from the Swedish cow-recording scheme. 
Information relating to management practices (e.g., 
systems used for feed production and feeding facilities, 
housing and milking systems, and routines for milking 
and cleaning of the equipment) was collected through 
a questionnaire and farm visits (Priyashantha et al., 
2021). Each farm was visited once during the indoor 
period (February or March) and once in the outdoor 
period (July).

In Sweden in general, tank milk is collected by the 
dairy processor every second day. Upon each milk 
collection, a representative tank milk sample is rou-
tinely collected by a device installed on the truck. 
This sample is transported refrigerated to the official 
milk testing laboratory (Eurofins Steins laboratory, 
Jönköping, Sweden), where analysis of milk quality pa-
rameters must be initiated within 24 h. One time each 
in March, May, July, August, October, and December 
2016, and in February 2017, an extra 250-mL bottle of 
tank milk was sampled manually by the truck driver 
when collecting milk on participating farms. Whereas 
the routinely collected milk samples were analyzed for 
total bacteria count (TBC) and thermoresistant bacte-
ria count (TRBC) at the milk testing laboratory, the 
identical, manually collected tank milk samples were 
transported at 4°C to the Department of Molecular Sci-
ences, Swedish University of Agricultural Sciences for 
analysis of milk microbiota. Upon arrival, the samples 
were aliquoted and stored as whole milk at −80°C until 
analysis. The time from sampling on the farm, to stor-
age at −80°C was maximum 30 h. For various practical 
reasons, a complete set of samples was not available for 
all farms for the 7 mo. Therefore, the numbers of farms 
and farm milk samples have been indicated for each 
analysis in the results section of this paper.

Participating Farms

The farms participating in the study were representa-
tive for dairy farming in the northern part of Sweden, 
regarding size, animal material, feeding routines and 
milking systems. Categorizing the 42 farms according 
to their milking system, 18 farms used an automatic 
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milking system (AMS), 19 used tiestall milking (TIE), 
and 5 had a milking parlor. All AMS and milking parlor 
farms had loose housing in which cows were allowed to 
move freely, with cubicles for resting, whereas all TIE 
farms with the exception of one (farm 24) had tiestall 
housing. Farm 24 had loose housing, but the cows were 
milked in a tiestall. The 18 AMS farms used 2 different 
brands, with 7 farms using an AMS of brand A and 11 
farms of brand B. There are several general differences 
between the 2 robot brands. Regarding cleaning of the 
teats, brand A robots have a system whereby the teats 
are cleaned in washing cups with lukewarm water and 
then dried by blowing air, whereas brand B robots use 
2 parallel rolling brushes to clean the teats. The milk-
ing devices and brushes are cleaned between each cow. 
After milking, 5 of 7 farmers with brand A robots used 
an iodine-based spray for the teats, as did also about 
half of those with brand B robots. The rest used either 
a spray based on lactic acid or no treatment at all.

The cows on the farms were fed grass/clover silage as 
main forage. Whole-crop silage was also fed on several 
farms (n = 10). Forage from different cuts (first, sec-
ond, or third cut) or of different types (grass or clover 
silage, hay, whole-crop silage) were often mixed and 
used at the same time. More than half of the farmers 
(n = 23) had solely round bales for all forage. The 
rest had either tower (n = 10) or bunker silos (n = 
9) as their main storage system, often in combination 
with round bales. Additives for preservation of forage 
was mainly used in the silos [chemical additives, mainly 
propionic and formic acid (n = 17 farms) or bacterial 
inoculants (n = 3 farms)]. According to farm visits, 
hay was used as the major forage on 3 farms at some 
occasion during the year (farm 9, 11, and 28). Forage 
comprised on average 60% of the diet DM. The rest of 
the diet consisted of a readymade mixed concentrate, 
or cereals (mostly barley) with a commercial protein 
concentrate mix. The quality of the water (analyzed 
for total number of culturable bacteria, Escherichia coli 
and coliform bacteria, pH, hardness of water, nitrate or 
nitrite concentration) used to wash the milking equip-
ment was controlled by the dairy cooperative at least 
once per year. The drinking water to the cows was from 
the same wells. The most common bedding material 
was sawdust, which was used on 39 of the 42 farms. 
Of the remaining 3 farms, one farm used straw, the 
second peat, and the third used recycled manure solids 
(farm 23, 13, and 12, respectively). Space per cow was 
according to the Swedish animal welfare regulations 
(Jordbruksverket, 2019). According to these regula-
tions, dairy cows in the northern part of the country 
must have access to pasture at least 60 d/yr, which 
mainly occurs during the period of June to August. 
This was the case on all the studied farms. However, 

access to pasture varied from mainly offering outdoor 
activity, to pasture comprising a large part of the daily 
forage intake. All farms had year-round calving without 
any obvious seasonal pattern.

Total Bacteria and Thermoresistant Bacteria Count 
in Milk Samples

Total bacteria count and TRBC were analyzed in 
bulk tank milk samples at Eurofins Steins Laboratory 
(Jönköping, Sweden). The TBC was determined using 
BactoScan FC (Foss) and TRBC was determined using 
a culturing method (Wehr et al., 2004).

DNA Extraction of Milk Samples

Extraction of microbial DNA was performed using a 
PowerFood DNA isolation kit (Qiagen AB) according 
to a customized protocol (Sun et al., 2019). In brief, 
milk samples (1.8 mL) were thawed at room tempera-
ture for 15 min, centrifuged at 13,000 × g for 15 min at 
4°C, and then incubated on ice for 5 min. The resulting 
cell pellets with carefully collected fat layer were resus-
pended in 450 μL of MBL buffer (provided with kit). 
The resuspended mixture was transferred to MicroBead 
tubes (provided with kit). Cell lysis was conducted by 
incubating the tubes at 65°C for 10 min, after which 
they were processed in a Fastprep 24 instrument (MP 
Biomedicals) at 5.0 speed for 60 s, repeated 2 times 
with a 5-min pause. The tubes were then centrifuged 
at 13,000 × g for 15 min at 4°C, followed by incubation 
on ice for 5 min. The supernatant excluding the fat 
layer was transferred to a new 2-mL collection tube and 
the remaining steps were carried out according to the 
manufacturer’s protocol. The resulting DNA was eluted 
with 50 μL of buffer EB and stored at −20°C until use. 
The risk of introducing contamination in the labora-
tory, resulting in misinterpretation of data for samples 
with low microbial biomass, is obvious, as reported by 
(Dahlberg et al., 2019). It is therefore important to have 
careful sample preparation procedures and to include 
relevant controls. In addition to milk samples, negative 
DNA extraction controls as well as PCR controls were 
included by using buffer EB instead of milk.

Illumina Amplicon Library Construction, Sequencing, 
and Bioinformatic Analysis

The DNA extracted from the milk samples was used 
to construct a 16S rRNA library with primers 515F 
and 805R (Hugerth et al., 2014). Negative PCR con-
trols and negative DNA extraction controls were both 
included in the sequencing library. Illumina adaptors 
and barcode were used for amplification, following a 
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2-step PCR approach described previously (Sun et al., 
2019). The 16S rRNA library was sequenced using the 
Illumina Miseq platform at SciLifeLab (Uppsala, Swe-
den) and Macrogen (Seoul, Korea). The raw sequencing 
data have been deposited to the Sequence Read Archive 
at the National Center for Biotechnology Information 
database (http: / / www .ncbi .nlm .nih .gov/ sra), under 
accession number PRJNA715838. Bioinformatic data 
processing was performed using Quantitative Insights 
into Microbial Ecology 2 (Core 2019.04; Bolyen et al., 
2019). The raw demultiplexed reads were trimmed 
using Cutadapt to remove primer sequences (Martin, 
2011). Any base from the 3′ end which had quality 
below 30 was trimmed. A read was discarded if it con-
tained N base or did not contain primer sequences. The 
trimmed reads were further processed using DADA2 to 
de-noise, de-replicate reads, merge pair end reads, and 
remove chimeras (Callahan et al., 2016), using a trun-
cation length of 210 and 160 bp for forward and reverse 
reads, respectively. A phylogenetic tree was built using 
FastTree and MAFFT alignment (Katoh et al., 2002; 
Price et al., 2010). The SILVA SSU Ref NR 99 132 
data set was first trimmed to the corresponding primer 
region and trained as classify-sklearn taxonomy classi-
fier (Pedregosa et al., 2011; Quast et al., 2013; Bokulich 
et al., 2018). Amplicon sequence variants (ASV) were 
assigned taxonomy using the resulting classifier. The 
ASV table was rarefied at 7,139 reads/sample and 
the core microbiota was computed using the QIIME2 
feature-table plugin (Weiss et al., 2017). The weighted 
UniFrac distance matrix and alpha rarefaction was 
generated using the QIIME2 diversity plugin (Bolyen 
et al., 2019).

Statistical Analysis

The rarefied ASV table and data related to farm 
management factors were analyzed using SIMCA (Ver-
sion 14.0.0.1359, Umetrics, Sartorius) and R (https: / 
/ r -project .org). Principal component analysis (PCA) 
was performed in SIMCA to analyze the variation in 
microbial community as influenced by farm factors (see 
Priyashantha et al., 2021, Supplemental File S1, for 
the final farm factors that were included in the screen-
ing), using standard settings. Orthogonal projections 
to latent structures discriminant analysis (OPLS-DA) 
models were cross-validated and the associated measure 
of predictive performance, Q2Y, was reported for each 
model. The cross-validation procedure employed an ex-
clusion strategy where all observations from the same 
farm were excluded and predicted in the same round. 
As an additional measure of statistical significance, the 
P-value of the CV-ANOVA diagnostic was determined. 

Cross-validation score plots were created for visual as-
sessment of separation between modeled classes. Num-
ber of observations (n) and number of variables (K) 
were reported for each PCA and OPLS-DA model. Am-
plicon sequence variants with a confidence interval >0 
and predictive variable importance for the projection 
(VIP-predictive) >1 were used for model interpretation 
(Galindo-Prieto, 2017). To evaluate differences in TBC 
and TRBC between type of dairy farming system, a 
mixed effects linear model was analyzed with the pack-
ages lme4, lmerTest, pbkrtest, and emmeans in R, using 
milking system, brand of AMS robot, acid wash, and 
teat preparation within TIE system as fixed effect and 
farm as random effect (Bates et al., 2014; Halekoh and 
Højsgaard, 2014; Kuznetsova et al., 2017; Lenth, 2021). 
Both TBC and TRBC data were log-transformed to 
better fit the normal distribution, resulting in the unit 
log bacteria count per milliliter. Differences with P < 
0.05 were considered significant.

RESULTS

Variation in TBC and Microbial Community Within 
and Between Farms

The TBC in bulk tank milk samples varied from log 
3.48 to 5.00 TBC/mL over the sampling period, and 
varied both between and within farms during the pe-
riod. This is illustrated in Figure 1, where results for 
farms with data for 5 or more of the 7 selected sampling 
months are presented. The smallest variation between 
sampling months was observed in tank milk from farm 
24, with total bacteria counts varying from log 3.85/
mL to log 3.95/mL. The largest variation was found in 
milk from farm 40, with bacteria counts varying from 
log 3.48 to log 4.76 TBC/mL.

The 16S rRNA gene sequencing yielded an average 
of 35,299 (median 26,866) sequences per sample. The 
sequences were distributed in 3,096 ASV, representing 
194 taxonomic families and 464 genera. One particular 
ASV (68f648), classified as Pseudomonas, was found 
in negative DNA extractions, negative PCR controls, 
and milk samples. Because Pseudomonas is commonly 
identified as part of the natural microbial community 
in raw milk, it is difficult to distinguish natural occur-
rence of this ASV from contamination. To limit the 
potential risk of this ASV heavily influencing the data 
analysis, milk samples with relative abundance (RA) 
> 10% of this ASV were removed from the analysis. In 
total, 15 bacterial genera were found to represent a core 
microbiota, present in at least 90% of the bulk tank 
milk samples (Table 1). The 5 most dominant bacteria 
overall in tank milk samples were Pseudomonas, Aci-
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netobacter, Streptococcus, unclassified Peptostreptococ-
caceae, and Staphylococcus.

Assessment of microbial community stability in milk 
over time, using weighted UniFrac matrix comparison, 
revealed variation within individual farms (Figure 2A). 
Most of the farms showed heterogeneous community 
composition in milk over the different sampling occa-
sions, whereas a few farms had quite stable community 
structure. As indicated by the homogeneity comparison 
(Figures 2A and 2B; Supplemental Figure S1, https: / 
/ doi .org/ 10 .7910/ DVN/ OL0ASF), the microbial com-
munity was sometimes similar and sometimes varied 
substantially within the same farm across different 
sampling occasions. The dominant genera also varied 
between farms. For instance, farms 1, 11, and 45 showed 
little variation across the different milk sampling oc-
casions (Figure 2A), but Acinetobacter dominated in 
milk on all sampling occasions for farm 45, whereas 
multiple genera instead of a single genus dominated on 
all sampling occasions for farms 1 and 11 (Figure 2B). 
In milk from farms showing greater variation between 
sampling occasions (e.g., farms 18 and 22; Figure 2A), 
the dominant genera varied to a larger extent (Figure 
2B). Although the effect of season was not within the 
scope of this study, it was evaluated during the initial 
screening of the data. Data showed that the seasonal 
effect was not interfering with the relationships studied 
in the 3 OPLS-DA models. Instead, the effect of season 
was clearly observed in other model components, such 

as the fifth principal component (PC) for the larger 
data set (n = 210) used for analysis of the influence of 
farm factors and also in some of the orthogonal compo-
nents of the OPLS-DA models.

Differences in Microbial Community Between Farms 
as Influenced by Farm Management Factors

Differences in Microbial Community Associ-
ated with Milking System. The influence of different 
farm factors on the microbial community in bulk tank 
milk was initially screened using PCA, with number of 
observations, n = 210, and number of variables, K = 
228 (see Supplemental File S1 of Priyashantha et al., 
2021). The PCA identified milking system and type of 
housing as the 2 most influential factors. As mentioned, 
all AMS and milking parlor farms had loose housing, 
whereas all TIE farms except farm 24 had tiestall hous-
ing. Thus, dairy farms were categorized according to 
milking system, being aware that these categories also 
included the effects of confounded factors, of which the 
individual effects could not be distinguished within this 
study. Milk from farms using AMS and from farms a 
using tiestall milking system showed 2 clear clusters 
in the PCA, separated along PC 2, whereas milk from 
farms with milking parlors showed a wider distribution 
in the plot (Figure 3). In subsequent comparisons, we 
therefore decided to focus on differences between the 
2 dominant farm types, distinguished as farms using 
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Figure 1. Box plot showing the total number of bacteria (log cells/mL) in bulk tank milk samples from participating farms. Only the data 
for farms represented by at least 5 milk sampling occasions are shown. The horizontal bars through the boxes show the median (i.e., the 50th 
percentile) of the distance bacterial distribution. The lower and upper extents of the boxes indicate the 25th and 75th percentiles of the distri-
bution, respectively. The upper and lower whiskers indicate the maximum and minimum values, respectively. The detection limit is 1,000 cells/
mL. In the case of farm 11, the variation in total bacteria number was very low between the different samples, explaining the absence of a box. 
In this case, the lower bar shows the median, and the upper bar is the upper whisker.
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AMS and farms using tiestall milking. Mixed effects 
linear model analysis revealed that TBC was higher in 
milk from the AMS farms (log 4.05 TBC/mL) than in 
milk from the TIE farms (log 3.79 TBC/mL, P < 0.01; 
Table 2). There was no significant difference in TRBC 
between the AMS and TIE farms. Interestingly, the 
rarefaction curves of observed ASV revealed a higher 
number in milk from AMS farms than in milk from TIE 
farms (Figure 4A).

An OPLS-DA model (n = 185, K = 227, Q2Y = 
0.688, P < 0.001) was created for assessing the differ-
ence in ASV between milk from AMS and TIE farms 
(Supplemental Figure S2, https: / / doi .org/ 10 .7910/ 
DVN/ OL0ASF). Of the 41 ASV that were found to 
differ between the farm types, 15 showed higher RA in 
milk from TIE farms (Figure 5). The remaining 26 ASV 
were present in higher RA in milk from AMS farms. It 
is interesting to note that several ASV classified into 
the same genus or family showed different dominance 
in milk from either AMS or TIE farms. For instance, 
within the genus Corynebacterium, ASV cee9ed 
showed higher RA in milk from TIE farms, whereas 
ASV bad597 and 0c35e6 showed higher RA in milk 
from AMS farms. Similarly, Aerococcaceae_d347bc, 
Psychrobacter_83c81d, Corynebacteriaceae_700739, 
and Acinetobacter_b994ec were present in higher RA in 
milk from TIE farms, whereas Aerococcaceae_1bbfc6, 
Psychrobacter_24a457, Corynebacteriaceae_db47e9, 
Acinetobacter_189aec, and Acinetobacter_f2f4ab 
showed higher RA in milk from AMS farms. Among 
the 15 ASV with higher RA in milk from TIE than 
AMS farms, Pseudomonas_69d9bd was identified as 
the most dominant ASV. Lactobacillus_c9822d, which 
belongs to the NSLAB, showed higher RA in milk from 
TIE than in milk from AMS farms. The genus Kocuria 
and family Enterobacteriaceae were represented by 2 
ASV each (303143 and be6f97 for Kocuria; 26d8f0 and 
fc5860 for Enterobacteriaceae). Of the 26 ASV with 
higher RA in milk from AMS than in milk from TIE 
farms, 2 ASV (598071 and bd2ebc) were classified to 
the same genus (Streptococcus) and 3 ASV (3ca58b, 
464a52, and 69a95a) were classified to the same family 
(Peptostreptococcaceae). In addition, Bacilli_38162e, 
Lactobacillales_c34a7c, Atopostipes_89db65, 
Carnobacteriaceae_0b711b, Aerococcus_81618b, 
Facklamia_83534c, and Firmicutes_dacd87 showed 
higher RA in milk from AMS farms than in milk from 
TIE farms (Figure 5).

Differences in Microbial Community Between 
AMS Farms Using Different Brands of Robots. 
Among the AMS farms, the most influential factor for 
microbial community composition in tank milk was the 
brand of milking robot, with PCA (n = 95, K = 202) 
plots indicating clear clusters of milk samples repre-
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senting farms with brand A and B robots, respectively, 
along PC 2 (Figure 6). Analysis of TBC and TRBC 
levels revealed no significant differences between the 

2 brands of milking robots, but farms with a brand A 
robot had a higher number of observed ASV than farms 
with a brand B robot (Figure 4B).

Sun et al.: MILKING ROUTINES AFFECT MILK MICROBIOTA

Figure 2. (A) Boxplots showing the distribution of weighted UniFrac distance matrix data between bulk tank milk samples from individual 
farms for which results from at least 5 sampling occasions were available. The horizontal bars through the boxes show the median (i.e., the 50th 
percentile) of the distance matrix distribution. The lower and upper extents of the boxes are the 25th and 75th percentiles of the distribution, 
respectively. The lower and upper whiskers in the box plots are the minimum and maximum values of the distribution, respectively. (B) Relative 
abundance (RA, %) of dominant genera in bulk tank milk samples from some of the participating farms; farm ID followed by sampling month. 
Genera with maximum RA less than 10% were grouped together (minor group).



130

Journal of Dairy Science Vol. 105 No. 1, 2022

An OPLS-DA model (n = 95; K = 204; Q2Y = 0.607, 
P < 0.001) was created to assess the difference between 
AMS with different brands of milking robots and to 
identify ASV contributing to the difference (Supple-
mental Figure S3, https: / / doi .org/ 10 .7910/ DVN/ 

OL0ASF). Among the 18 ASV identified, 17 showed 
higher RA in milk from farms with a brand A milking 
robot and only one ASV, Ralstonia_c021db, showed 
higher RA in milk from farms with a brand B milking 
robot (Figure 7). Among the ASV present in higher RA 

Sun et al.: MILKING ROUTINES AFFECT MILK MICROBIOTA

Figure 3. Principal component analysis of microbial taxa in bulk tank milk samples collected on farms using automatic milking (AMS), 
milking parlor, or tiestall milking (TIE) systems. Each dot represents a unique milk sample from an individual farm, colors indicating type of 
farm as represented by milking system. The milk samples originated from 18, 5, and 19 farms with AMS, milking parlor, or TIE milking systems, 
respectively.

Table 2. Mean values of log-transformed total and thermoresistant bacteria counts in bulk tank milk from farms characterized according to 
their milking systems [i.e., automatic milking system (AMS) and tiestall milking systems (TIE)]1

Item Total bacteria count 
(log) P

Thermoresistant bacteria 
count (log) P

Comparison between milking systems
 AMS 4.05±0.31 (n = 88, N = 18) 0.005 2.93±0.65 (n = 58, N = 18) 0.231
 TIE 3.79±0.33 (n = 84, N = 19) 2.65±0.73 (n = 50, N = 18)
Comparison within AMS farms2  
 Brand A 4.18±0.29 (n = 30, N = 7) 0.102 2.95±0.81 (n = 19, N = 7) 0.821
 Brand B 3.98±0.30 (n = 58, N = 11) 2.92±0.57 (n = 39, N = 11)
Comparison within TIE farms3  
 CHEM-OFT 3.68±0.22 (n = 33, N = 8) 0.024 2.65±0.80 (n = 16, N = 7) 0.131
 WATER-FEW 4.02±0.41 (n = 18, N = 3) 3.09±0.68 (n = 12, N = 3)  
1Within the group of AMS farms, values were compared between farms with different brand of milking system. Within the group of TIE farms, 
values were compared between farms with different routines related to preparation of teats before milking and cleaning of the milking equipment. 
n = number of bulk tank milk samples; N = number of farms.
2Within AMS farms, 2 different brands of robots were used (i.e., brand A and brand B).
3Within TIE farms, different routines related to preparation of teats before milking and cleaning of the milking equipment could be distin-
guished: CHEM-OFT = farms using a chemical (CHEM) agent for teat preparation before milking as well as a more frequent use (OFT) of acid 
wash to clean the milking system (confounded factors); WATER-FEW = farms using only water for teat preparation before milking and a less 
frequent (FEW) use of acid to clean the milking system (confounded factors). 
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in milk from farms with a brand A robot, Lactococcus 
and Acinetobacter were the 2 most frequently identified 
genera, with 2 (cc1f55 and d90ee6) and 5 ASV (189aec, 
90c1ff, a35537, 9defed, and 000d0f), respectively. In ad-
dition, Streptococcus_5cac9e, Lactobacillales_3ebdbc, 
Atopostipes_568dfd, and Carnobacteriaceae_0b711b 
were observed at higher RA in milk from AMS farms 
using a brand A milking robot, although these LAB 
only constituted minor populations.

Differences in Microbial Community Between 
Tiestall Farms Using Different Routines for 
Teat Preparation and Cleaning of the Milking 
Equipment. Within the TIE farms, the variation 
in management factors was larger than for the AMS 
farms. For example, some TIE farms reported using 
a cloth to clean teats before milking, whereas other 
farms used paper towels. Likewise, some TIE farms 
reported premilking directly onto the floor, whereas 
others premilked into a dedicated cup. Some TIE 
farms did not have automatic removal of the milking 
clusters as an option in their milking system, whereas 
others had. Among the management factors evaluated 
(Priyashantha et al., 2021), the frequency of applying 
acid or alkaline wash to descale and clean the milking 
equipment, and the procedure used for teat preparation 
before milking gave the largest separation of samples in 

terms of microbial community structure in tank milk 
samples in the PCA plot (n = 90, K = 222). However, 
these 2 factors were clearly confounded, because TIE 
farms using acid wash less frequently also more com-
monly used only water, or used a dry cloth or paper 
towel, when preparing the teats before milking. In 
contrast, TIE farms that applied acid wash more fre-
quently (every second wash) more commonly reported 
use of chemical agents for teat preparation. TIE farms 
with no or less frequent acid washing of their milking 
equipment (varying from once every second day to once 
per week or more seldom) and nonchemical-based teat 
preparation were more associated with the left side of 
the PCA plot (Figure 8).

In subsequent comparisons of farms with tiestall 
milking, we therefore decided to focus on the differ-
ences between the farms that used chemicals during 
teat preparation and more frequently used acid wash 
to clean the milking equipment (CHEM-OFT), and 
the farms that employed water and less frequent acid 
washing of the milking equipment (WATER-FEW). 
The average TBC in tank milk from WATER-FEW 
farms was log 4.02 TBC/mL, compared with log 3.68 
TBC/mL in milk from the CHEM-OFT group (Table 
2, P < 0.05). Contrary to expectations, there was no 
significant difference between the 2 groups in numbers 

Sun et al.: MILKING ROUTINES AFFECT MILK MICROBIOTA

Figure 4. (A) The rarefaction curves of observed amplicon sequence variants (ASV) in milk, comparing bulk tank milk samples from herds 
with different milking systems [represented by 95 and 90 bulk tank milk samples originating from 18 farms using automated milking systems 
(AMS) and 19 farms using tiestall milking (TIE), respectively]; (B) the rarefaction curves of observed ASV in milk, comparing bulk tank milk 
samples from AMS farms using different brands of AMS (represented by 32 and 63 bulk tank milk samples originating from 7 farms using brand 
A and 11 farms using brand B, respectively); (C) the rarefaction curves of observed ASV in milk comparing bulk tank milk samples from TIE 
farms with different routines related to cleaning of the milking equipment (frequency of acid to alkaline wash) and method for teat cleaning 
(represented by 34 milk samples originating from 8 farms using a chemical agent in connection to teat cleaning and frequent use of acid to clean 
the milking equipment (CHEM-OFT), and 19 milk samples originating from 3 farms using water only to clean teats before milking and less 
frequent use of acid to clean the milking equipment (WATER-FEW).
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of thermoresistant bacteria in the milk. The number 
of observed ASV was higher in milk from the CHEM-
OFT group than in milk from the WATER-FEW group 
(Figure 4C).

An OPLS-DA model (n = 53, K = 220, Q2Y = 0.784, 
P < 0.001) was created for assessing differences in 
ASV between milk from the 2 groups of tiestall farms 
(Supplemental Figure S4, https: / / doi .org/ 10 .7910/ 

DVN/ OL0ASF). Of the 22 ASV identified as the most 
important taxa in the model, 11 ASV showed higher 
RA in milk from the CHEM-OFT group, whereas 
the remaining 11 showed higher RA in milk from the 
WATER-FEW group (Figure 9). Two ASV, cc1f55 
and d90ee6, that had higher RA in WATER-FEW 
milk were classified into the same genus (Lactococ-
cus). Similarly, 2 ASV, 44e039 and fc5860, classified 

Sun et al.: MILKING ROUTINES AFFECT MILK MICROBIOTA

Figure 5. The relative abundance (RA, %) of amplicon sequence variants (ASV) in bulk tank milk samples from farms using automated 
milking systems (AMS) and tiestall milking systems (TIE), respectively. The vertical bar through the box is the median (i.e., the 50th percentile) 
value. The left and right extents of the box are the 25th and 75th percentiles (q3) of the values, respectively, and the left and right whiskers of 
the box plot represent the minimum and maximum values of the distribution. There are 95 and 90 milk samples originated from the 18 and 19 
farms that using AMS and TIE respectively. For ASV outside the axis limit: *1: TIE whisker 3.4%; *2 TIE q3 12%, TIE whisker 30%; *3: AMS 
q3 4.2%, AMS whisker 8.6%, TIE q3 3.0%, TIE whisker 7.2%; *4: AMS whisker 3.5%, TIE whisker3.3%; *5: AMS whisker 5.1%; *6: AMS q3 
3.3%, AMS whisker 7.0%, TIE whisker 4.4%; *7: AMS q3 4.5%, AMS whisker 11%.
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as Enterobacteriaceae showed higher RA in milk from 
the WATER-FEW group. The genera Acinetobacter 
and Corynebacterium were identified in milk from both 
groups, with higher RA of Acinetobacter_66a959 and 
Corynebacterium_1_c2eea2 in milk from the WATER-
FEW group and higher RA of Acinetobacter_90c1ff 
and Corynebacterium_bad597 in milk from the CHEM-
OFT group. It is worth noting that one individual 
farm, farm 42, was responsible for the observed dif-
ferences in ASV between farm groups, including the 
previously mentioned 4 ASV from Lactococcus and 
Enterobacteriaceae and one additional ASV, Bacilla-
ceae_bed463. Lactobacillales_9cbacb, with higher RA 
in milk from the WATER-FEW group, was also mainly 
represented by one farm (farm 15). Within the samples 
from the CHEM-OFT group, Leuconostoc_0c7492 and 
Weissella_e9f4ea showed higher RA than in milk from 
WATER-FEW farms, although these 2 LAB were pres-
ent at low RA (<1%).

DISCUSSION

In this study we explored the microbial community in 
tank milk from 42 Swedish dairy farms, using samples 

collected over the course of one year. The aim was to 
learn more about the composition and temporal dy-
namics of the microbial community and to identify 
the most important farm factors in shaping microbial 
community composition in tank milk. The study was 
conducted in a region of Sweden where the milk is used 
for production of long-ripening cheese, so we were par-
ticularly interested in the abundance of technologically 
important NSLAB in the raw milk.

The core microbiota in the tank milk consisted of 
15 genera, of which the 5 most abundant were Pseu-
domonas, Acinetobacter, Streptococcus, unclassified 
Peptostreptococcaceae, and Staphylococcus (Table 1). A 
recent Norwegian study also identified Pseudomonas, 
Streptococcus, Acinetobacter, and Staphylococcus as be-
ing among the most abundant bacterial genera in tank 
milk from 45 farms (Skeie et al., 2019). In the Norwe-
gian study, tank milk was stored refrigerated for 3 d on 
participating farms, in our study for 2 d, before milk 
was collected by the milk truck. Because cold storage of 
raw milk is known to permit growth of Gram-negative 
psychrotrophic bacteria, such as Pseudomonas and Aci-
netobacter, it was not surprising to find these genera 
among the most abundant in our study and also in the 

Sun et al.: MILKING ROUTINES AFFECT MILK MICROBIOTA

Figure 6. Principal component analysis plot of microbial data for bulk tank milk samples collected on farms with automatic milking systems 
(AMS). Each dot represents a milk sample from an individual farm, colors indicating brand of AMS. Numbers of farms using brand A and B 
were 7 and 11, respectively, and the number of bulk tank milk samples associated with the 2 brands of robots were 32 and 63, respectively.
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study by Skeie et al. (2019). However, this is not always 
the case, because Breitenwieser et al. (2020) found that 
Staphylococcus, Corynebacterium, Caryophanon, and 
Streptococcus were the dominant genera in farm milk 
samples that had been stored at refrigerated tempera-
ture for 2 and 3 consecutive days before sampling. Al-
though Pseudomonas and Acinetobacter were dominant 
genera in tank milk in our study, genera other than 
psychrotrophs were more abundant in milk from some 
farms (see examples in Figure 2B).

Variation in Tank Milk Microbiota Within  
and Between Farms

The TBC in tank milk was generally low, ranging 
from log 3.48 to 5.00 TBC/mL, indicating high hygiene 
quality and farms respecting the European limits for 
TBC in raw milk (i.e., log 5.00 bacteria/mL milk; Eu-
ropean Commission, 2004). The TBC were in line with 
the log 3.6 to 5.28 TBC/mL reported in the Norwegian 
study cited above (Skeie et al., 2019). However, the 
TBC profile in milk from the individual farms varied 
(Figure 1). Some farms showed low counts on all sam-

pling occasions, whereas numbers in milk from other 
farms fluctuated over the sampling period and on some 
farms bacteria counts in milk remained at relatively 
high levels. In contrast to O’Connell et al. (2015), who 
reported a seasonal trend in monthly average TBC, 
with TBC being greatest at the beginning and end of 
the year, we did not observe any general trend in TBC 
related to milk sampling month or season.

The results also revealed that the temporal dynam-
ics of bulk tank milk microbiota (i.e., the variation in 
microbial community structure) varied between the 
participating farms (Figure 2A). Some farms showed 
relatively large variation in microbial community struc-
ture despite low TBC (e.g., farms 18 and 22). Farms 1 
and 45, on the other hand, both showed high homoge-
neity of the milk microbiota, although farm 1 delivered 
milk with low TBC and farm 45 delivered milk with 
relatively high TBC on all occasions. Other farms, such 
as farms 1 and 11, were characterized by low TBC and 
low variation in microbial community structure over 
time but showed relatively high alpha diversity (i.e., 
with no single dominant bacterial genus). Among the 
farms that showed large variation in community struc-

Sun et al.: MILKING ROUTINES AFFECT MILK MICROBIOTA

Figure 7. The relative abundance (RA, %) of amplicon sequence variants (ASV, bacterial taxa followed by ASV numbers) in bulk tank milk 
samples from farms using automatic milking systems (AMS) of brand A and B, respectively. The vertical bars through the boxes are the median 
(i.e., the 50th percentile) values. The left and right extents of the boxes are the 25th and 75th percentiles of the values, respectively. The left and 
right whiskers of the boxes are the minimum and maximum values of the distribution, respectively. There are 32 and 63 milk samples originating 
from 7 and 11 farms using AMS brands A and B, respectively.
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ture between the different sampling occasions, there 
was no systematic pattern in the variation (e.g., no sea-
sonal trend). To our knowledge, the temporal variation 
in microbial community structure in bulk tank milk 
over longer periods has not been widely investigated. 
Although the season effect was not in the scope of this 
paper, it was investigated during the initial, general 
analysis of the data. We found that the seasonal effect 
was not interfering with the relationships studied in 
the 3 OPLS-DA models. Instead, the effect of season 
was clearly observed in other model components, such 
as the fifth PC for the larger data set. Also Skeie et 
al. (2019) reported that microbial composition in tank 
milk from the same farm varied significantly between 
sampling occasions. In their study, milk samples from 
individual farms were collected on 3 occasions, with 
2 to 3 wk between each sampling occasion. Overall, 
the TBC was similar between the 3 samplings from 
each individual farm, but the milk microbiota varied 
between the collection days. Several factors, such as 
changes in feed quality, farm environment, weather 
conditions, and animal health, might have contributed 
to these changes (Skeie et al., 2019).

Influence of Different Farm Factors  
on Farm Milk Microbiota

The OPLS-DA models presented in this study had 
Q2Y values ranging from 0.607 to 0.784, indicating 
strong model performance. This was also seen in the 
cross-validated score plots where the different farm 
types were found to be nearly nonoverlapping. The 
strong model performance could partly be attributed to 
a sufficiently large sample size, enabling reliable load-
ing interpretations from significant models. Although 
several samples originated from each farm, causing a 
possible redundancy in the data, the cross-validation 
procedure effectively mitigated this, as all observations 
from the same farm were excluded and predicted in the 
same cross-validation round.

The PCA identified type of dairy farm, categorized 
according to milking system, as the most influential 
factor for the milk microbiota. A clear difference in 
milk microbiota between AMS and tiestall farms was 
observed, whereas the milk microbiota from farms with 
a milking parlor could not be separated from the other 
2 systems. However, this clustering was linked to PC 2, 

Sun et al.: MILKING ROUTINES AFFECT MILK MICROBIOTA

Figure 8. Principal component analysis plot of microbial data in bulk tank milk samples from tiestall farms only. Each point represents a 
bulk tank milk sample from an individual farm. Routines used to prepare teats before milking were as follows: CHEM = use of chemical agent in 
teat preparation, DRY = no liquid-based method for teat preparation, WATER = use of water only to prepare teats before milking. Frequency 
of acid wash to clean the milking equipment was as follows: FEW = less frequent use of acid wash (from once every second day to once per week 
or less frequently); NO = never use acid wash, only use alkaline wash; OFT = frequent use of acid wash (every second wash).
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which explained only 5% of the variation in the data. 
Several confounding factors, such as housing and milk-
ing system, breed, and number of cows, contributed to 
the characterization of the 2 major farm types in our 
study (i.e., AMS and tiestall farms, respectively). The 
influence from the confounded farm factors could not 
be distinguished and should not be overlooked. More-
over, effects of some individual factors might have been 
hidden or masked, due to low frequency among the 
farms. To study the influence of individual factors, a 
case-study or a controlled trial might give better results 

than screening of factors, which this study was aiming 
for. Milk from tiestall farms showed higher RA, espe-
cially of Pseudomonas_69d9bd, whereas bacteria from 
Peptostreptococcaceae and Ruminococcaceae, commonly 
found in dairy cow feces samples, were more abundant 
in milk from AMS farms.

In agreement with expectations and with findings in 
a previous review by Hogenboom et al. (2019), we found 
that levels of TBC were higher in tank milk from AMS 
farms than in milk from farms with a tiestall milking 
system (P < 0.01). An increase in TBC is in most cases 
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Figure 9. Relative abundance (RA, %) of amplicon sequence variants (ASV, bacterial taxa followed by ASV number) in bulk tank milk 
samples from tiestall farms grouped according to method for preparation of teats before milking and frequency of acid wash to clean the milk-
ing equipment. CHEM-OFT consisted of farms that used chemicals in connection to teat preparation and more frequently (every second wash) 
applied acid solution to clean the milking equipment (34 milk samples originated from 8 farms); WATER-FEW consisted of farms that used 
water for teat cleaning and less frequently (from once every second day to once per week) applied acid solution to clean the milking equipment 
(19 milk samples originated from 3 farms). The vertical bars through the boxes are the 50th percentile values. The left and right extents of the 
boxes are the 25th and 75th percentiles (q3) of the values, respectively. The left and right whiskers of the boxes are the minimum and maximum 
values of the distribution, respectively. *1: WATER-FEW q3 28%, WATER-FEW whiskers 57%; *2: WATER-FEW q3 5.4%, WATER-FEW 
whiskers 13%; *3: WATER-FEW q3 14%, WATER-FEW whiskers 17%.
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associated with shortcomings in the teat preparation 
process. Teat skin is reported to be the major source 
of bacteria for milk microbiota, even more important 
than environmental sources, such as feces, bedding 
material, and milking equipment (Vacheyrou et al., 
2011). In a study examining the microbial communities 
in raw cow milk and potential transfer from the barn 
environment to the milk, Vacheyrou et al. (2011) found 
that coryneforms were commonly associated with teat 
skin, whereas some cocci, such as Staphylococcus, were 
very common in the environment, and others, such as 
Lactococcus and Enterococcus, were found only in the 
milk. Differences in microbial community composition 
between teat skin and milk samples, with higher pro-
portions of Corynebacterium on teat skin than in milk, 
were also found in a study by Dahlberg et al. (2020). 
Skeie et al. (2019) concluded that milking system and 
on-farm management practices have a great effect on 
the bacterial composition of milk, with milk from AMS 
farms showing higher TBC than milk from farms us-
ing a milking parlor. They attributed those differences 
to inferior washing of the teat, lack of a drying step 
before milking, and challenges with equipment clean-
ing in AMS. A study by Christiansson et al. (1999) on 
factors affecting the number of Bacillus cereus spores 
in raw milk during the grazing period found that the 
spore content of milk was strongly associated with de-
gree of soil contamination on the teats, but that the 
number of spores could be reduced by teat cleansing. 
The influence of teat preparation on microbial com-
munity composition in milk was also investigated by 
Doyle et al. (2016), who concluded that the teat sur-
face was the most significant source of contamination 
of the milk. In agreement with previous studies, within 
each of the 2 farm types of our study (i.e., AMS and 
tiestall milking), differences in milk microbiota were 
seen between farms using different cleaning procedures 
before milking. Tank milk from the 2 brands of milk-
ing robots represented (A, B) showed clear clustering, 
although only a small proportion of the variation in the 
data was explained by the model. Five ASV belong-
ing to the genus Acinetobacter, but also some LAB, 
Lactococcus, and Streptococcus, were more abundant 
in milk from brand A robots. This difference in milk 
microbiota was most likely attributable to differences 
in the procedure used for teat preparation before milk-
ing. Brand A robots have a system whereby teats are 
cleaned in washing cups with lukewarm water and 
then dried by blowing air, whereas brand B robots use 
2 parallel rolling brushes to clean the teats. For the 
farms with tiestall milking, routines for teat prepara-
tion were largely confounded by the frequency of use of 
acid wash to clean the equipment. Nevertheless, these 
factors influenced the microbial community in tank 

milk, with some bacteria, such as Enterobacteriaceae, 
Lactococcus, and Bacillaceae, being more abundant in 
milk from tiestall farms that only used water for teat 
preparation and less frequently used acid wash to clean 
their milking equipment.

Interestingly, milk from AMS farms was associated 
with higher species richness than milk from tiestall 
farms. Skeie et al. (2019) suggested that differences in 
herd size could have contributed to observed differences 
in microbial diversity between milk samples collected 
from the farms in their study. Considering that the first 
source of bacterial contamination in milk is the indi-
vidual cow, farms with more cows could show greater 
microbial diversity in the tank milk. There was a clear 
difference in average herd size between AMS (85 cows) 
and TIE (30 cows) farms in our study (data not shown; 
for details see Priyashantha et al., 2021), which could 
have contributed to the differences in microbial diver-
sity between the herd types. Comparing the microbial 
diversity in milk from AMS farms using different brands 
of milking robots, milk from farms using brand A ro-
bots (teats prepared in washing cups with lukewarm 
water, dried by blowing air) showed higher species 
richness than milk from farms using brand B robots 
(Figure 4B). In comparison with milk from AMS farms, 
milk from tiestall farms was associated with lower TBC 
and higher RA of Pseudomonas, where the latter could 
be an additional explanation for lower species richness. 
Unlike on AMS farms, on tiestall farms higher species 
richness was associated with lower TBC (P < 0.05), 
represented by milk from farms using chemical agents 
in teat preparation in combination with more frequent 
use of acid wash. One explanation could be that the 
higher TBC in milk from farms with less frequent use 
of acid wash, and no chemical agents in teat prepa-
ration, was associated with a few dominant bacterial 
taxa, including Bacillaceae, Enterobacteriaceae, and 
Acinetobacter, contributing to lower species richness. 
However, it is important to note that the differences 
between tiestall farms using different routines for clean-
ing equipment and teat preparation were observed in 
PC3 and PC5. Moreover, because fewer milk samples 
were available for comparison within tiestall farms, the 
findings should be treated with caution and require 
further validation.

Pseudomonas is commonly found in milk, and it was 
therefore difficult to determine whether the particular 
ASV Pseudomonas 68f648 observed in this study origi-
nated from the milk or was introduced during labora-
tory analysis of the milk samples. As a precautionary 
strategy, we removed samples with high abundance 
of this ASV (>10% RA), which eliminated its poten-
tial contaminating effect on the data set. Moreover, 
in discriminant analysis this particular ASV did not 
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contribute to the outcomes of this study, including the 
observed differences linked to farm type, milking equip-
ment, and teat cleaning method.

CONCLUSIONS

Differences in teat preparation before milking most 
likely contributed to the differences in tank milk micro-
biota observed between types of farms (AMS vs. tiestall 
farms) and within farm types. However, the variation 
in microbiota data explained by milking system, robot 
brand, and routines used for teat preparation and clean-
ing the milking equipment was limited, and most could 
not be explained by the models. The routines used on 
tiestall farms, (i.e., CHEM-OFT and WATER-FEW) 
displayed a weaker association to the microbial data 
than milking system (AMS or TIE) or robot brand (A 
or B). The microbial community in tank milk reflects 
events taking place in the herd and routines associated 
with milking and handling of the milk. It is challeng-
ing to predict or control this microbial community, but 
modifying the routines associated with teat preparation 
and cleaning of the milking equipment, irrespective of 
type of milking system used, could provide some degree 
of control.
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