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Abstract

Potato breeding relies heavily on visual phenotypic scoring for clonal selection. Obtaining robust phenotypic data can be labor intensive
and expensive, especially in the early cycles of a potato breeding program where the number of genotypes is very large. We have investi-
gated the power of genomic estimated breeding values (GEBVs) for selection from a limited population size in potato breeding. We col-
lected genotypic data from 669 tetraploid potato clones from all cycles of a potato breeding program, as well as phenotypic data for eight
important breeding traits. The genotypes were partitioned into a training and a test population distinguished by cycle of selection in the
breeding program. GEBVs for seven traits were predicted for individuals from the first stage of the breeding program (T1) which had not un-
dergone any selection, or individuals selected at least once in the field (T2). An additional approach in which GEBVs were predicted within
and across full-sib families from unselected material (T1) was tested for four breeding traits. GEBVs were obtained by using a Bayesian
Ridge Regression model estimating single marker effects and phenotypic data from individuals at later stages of selection of the breeding
program. Our results suggest that, for most traits included in this study, information from individuals from later stages of selection cannot
be utilized to make selections based on GEBVs in earlier clonal generations. Predictions of GEBVs across full-sib families yielded similarly
low prediction accuracies as across generations. The most promising approach for selection using GEBVs was found to be making predic-
tions within full-sib families.
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Introduction
Potato (Solanum tuberosum L.) has become one of the most popular
food crops worldwide since its introduction from South America
to Europe in the 16th century, and thereafter its broad spread to
other regions (Bradshaw and Ramsey 2009). Potato is a major
source of carbohydrates in human nutrition, and a main compo-
nent of several industrial applications. Efforts to enhance potato
tuber traits have been ongoing since cultivation first began, over
12,000 years ago between south-eastern Peru and western Bolivia
(Spooner et al. 2005).

Modern potato breeding was initiated in 19th century in
Europe (Knight 1807). Most modern potato cultivars are polyploid
with tetrasomic inheritance (2n ¼ 4x ¼ 48). Due to random chro-
matid segregation and double reduction (a phenomenon which
depends on the specific position of a gene on a chromosome), it
can be very hard to predict genetic segregation in the offspring
derived from a cross between two tetraploid parents (Spooner
et al. 2014). The potato genome consists of 12 chromosomes and
has a haploid size of approximately 840 Mb (Potato Genome
Sequencing Consortium 2011). Since the sequencing of the potato

genome, there has been an increase in genetic research on both
tetraploids and related diploids.

Gene mapping using linkage analysis or association genetics is
more successful for, and therefore often limited to, traits with
high heritability. Some traits have been successfully mapped us-
ing a genome wide association study approach or linkage analysis
in a derived bi-parental population, e.g., host plant resistance to
late blight (LB), nematodes and viruses, glycoalkaloid and starch
content, flesh color, and tuber traits including yield
(Ramakrishnan et al. 2015, and references therein). Reliable ge-
netic mapping of tuber yield traits is a challenging research task
due to low to medium narrow-sense heritability (0.142–0.291;
Ortiz and Golmirzaie 2002) and the large number of quantitative
trait loci (QTL) with very minor effects (Schönhals et al. 2017).

Early DNA marker research on potatoes was conducted using
restriction fragment length polymorphisms (RFLPs), amplified-
fragment length polymorphisms (AFLPs), and simple sequence
repeats (SSRs), and a small number of single nucleotide polymor-
phisms (SNPs). However, since the development of the first high-
density SNP array in 2011, which included 8303 SNPs (Hamilton
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et al. 2011), the accessibility of genomic information for potato
has increased. The latest such high-density SNP array, which was
developed by Vos et al. (2015), contains more than 22,000 SNPs.
As the number of genotyping methods increase and the technol-
ogy develops, the costs of genotyping large populations have
decreased, and this has increased the availability of high-
throughput genotypic data for small-to-medium size breeding
programs.

Genomic prediction is a technique that promises more precise
selection and short generation intervals for the improvement of
breeding efficiency. The technique has been successfully imple-
mented in dairy cattle, pig and poultry breeding, and more re-
cently in plant breeding, particularly for cereals, though it
remains in its infancy for many crops including potato (Ortiz
2015). Genetic gains in potato breeding remain small vis-à-vis
other main crops that feed the world (Gao 2021). For example,
Douches et al. (1996) did not find any progress trend for tuber
yield in North American cultivars released during the 20th cen-
tury, although they showed improvements in quality traits for
various end-users according to skin color type and the fresh and
processing markets. GEBV for selection in potato breeding may be
one approach to overcome this limitation (Slater et al. 2016), par-
ticularly when costs of high throughput genotyping with dense
DNA markers are falling and the number of such markers does
not need to be high either for genomic prediction or for associa-
tion genetics (Selga et al. 2021). The major advantage of genomic
selection compared to conventional, phenotype-based selection
is the possibility of selecting individuals before they are planted
in the field. This is done by recording phenotypic and genotypic
data for a set of individuals, referred to as a training population,
then using this information to fit statistical models that allow the
prediction of the performance of a new set of related individuals,
often referred to as a test population or breeding population, for
which only genotypic information is available (Desta and Ortiz
2014, and references therein). Genomic selection requires high
density markers across the whole genome and depends on the
assumption that at least one genetic marker will be in linkage
disequilibrium with a causative QTL for the trait of interest
(Meuwissen et al. 2001). The success of genomic prediction mod-
els depends not only on the heritability of the trait of interest, but
also on the relationships of the individuals included in the train-
ing and test populations (Habier et al. 2007). The performance of
genomic prediction models is determined by the predictive ability
of the model to determine the breeding values of the individuals
in the test population based on the information provided. Cross-
validations of genomic prediction models are often performed; in
these, a set fraction of a population with genotypic and pheno-
typic data is used to predict the behavior of a smaller fraction of
the population where the phenotypic information has been
masked, taking a new fraction of the population for each round
of prediction. The fraction of the population used as a test popu-
lation (where the phenotypic information has been masked) is of-
ten set at around 20% (José Crossa, CIMMYT, pers. comm.).
However, in real-life scenarios in breeding programs, the method
of repeatedly cross-validating the prediction models does not re-
flect the conditions of predictions made over separate genera-
tions of selection. The cross-validation approach may also
overestimate the accuracy of prediction as the relationship be-
tween the individuals becomes very strong when the set of indi-
viduals used in the training population changes with each run of
the prediction model (Windhausen et al. 2012). Plant breeders
would like to identify as potential parents those whose genomic
estimated breeding values (GEBVs) are separated from those of

the original training population in both time and space. Hence,
using the same unique set of individuals consistently in training
and test populations respectively may yield more realistic predic-
tion accuracy than repeated cross-validation.

In recent years, a few research articles about estimating
GEBVs for important breeding traits in potato such as, among
other characteristics, tuber dry matter content (or specific gravity
[SG]), tuber yield, number of tubers per plant, potato chipping
quality and starch content in the tubers, have become available.
Some of them estimated prediction accuracy using several fold
cross-validation (Habyarimana et al. 2017; Enciso-Rodriguez et al.
2018; Stich and Van Inghelandt 2018), while others validated their
models using distinct training and test populations (Sverrisdóttir
et al. 2017, 2018; Endelman et al. 2018). Endelman et al. (2018) used
data from 11 public potato breeding programs in the USA and the
recorded clones and cultivars as a training population for geno-
mic prediction applied to unselected potato clones, often referred
to as T1s in a potato breeding program, for traits such as SG and
tuber yield.

The objective of this research was to assess the potential of ge-
nomic selection for eight breeding traits, including tuber yield and
quality, using varied genetic backgrounds of available germplasm
in a finite size potato breeding program in Sweden, which, as hap-
pens elsewhere when funding for public breeding is limited, may
be regarded as small or having below 10,000 T1 every year going to
the field for testing (Eriksson et al. 2016). Our proposed method sug-
gests that the more advanced breeding material, i.e., all individuals
that underwent at least one cycle of selection (often referred to as
T2, T3 up to Tn where n is the number of advanced generations),
should be used as a training population for the unselected material
in T1. We also test the approach of predicting phenotypic data
across full-sib families of unselected material in T1, to ascertain
whether it is possible to reduce the number of families that needs
to be scored in early clonal generations.

Materials and methods
Plant material
The experiments included 669 tetraploid potato clones, which
were selected from three distinct populations at different stages
of selection (hereafter denoted T1, T2, and T3–7) from the potato
breeding program managed by the Swedish University of
Agricultural Sciences (SLU) in Alnarp, Sweden. The breeding pop-
ulations were bi-parental offspring derived after crossing culti-
vars of tetraploid table potatoes, or elite breeding clones from
this breeding program (Table 1 and Supplementary Tables S1
and S2). Population T1 was limited to five bi-parental families
(denoted T1–A, T1–B, T1–C, T1–D, and T1–E) that had not under-
gone any previous selection. Four of the parents or grandparents
for these families were also included in our research—“Bionica,”
“Desiree,” “Sarpo Mira,” and “SW93-1015” (Table 2). The numbers
of individuals differed between populations and full-sib families
(Tables 1 and 2). The T1 population was larger than the other

Table 1 Size, number of crosses used to produce the individuals
and selection cycles for each of the three populations included in
this study, T1, T2, and T3–7

Population T1 T2 T3–7

Size (number of individuals) 465 138 62
Number of crosses 5 29 33
Cycles of selection* 0 1 2–8
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two, more advanced, breeding populations, but this mirrors the
real conditions in a commercial potato breeding program, where
each year the number of genotypes is reduced while the numbers
of observations per genotypes are increased (Bradshaw 2017).
The individuals in population T2 had been selected once in field
trials. Population T3–7 contains individuals that had been selected
during multiple consecutive years of field trials, ranging from 2
to 7 years.

Genotypic data
Leaf material, approximately 0.25 g, was collected on ice from
each of the 669 individuals and five cultivars as checks. The leaf
material was then sent to SGS—TraitGenetics GmbH for DNA ex-
traction, genotyping, and allele scoring. Genotyping was con-
ducted using the GGPv3.0 array (Vos et al. 2015) containing circa
22K SNPs. Quality control for the extracted DNA was conducted
by running samples on a gel to check for fractionation. All sam-
ples were found to be suitable for further analysis. Genotype call-
ing was done using the software “Illumina GenomeStudio”
(Illumina, San Diego, CA, USA), with four alleles scored per locus.
After removing SNP markers with more than 10% missing scores,
14884 markers remained. Missing values were imputed with
Population mode which deploys the most frequent allelic state
using the R package “GWASpoly” (Rosyara et al. 2016). To ensure a
genotype matrix with polymorphic markers, those SNP markers
with a minor allele frequency smaller than 0.05 were discarded.
The number of markers available for analysis following marker
filtration based on minor allele frequency differed depending on
the individuals included. When all individuals were included
(n¼ 669), the number of markers was 10,546. For the smaller sets,
including 647 and 200 individuals, the total numbers of markers
after filtration were 10,499 and 11,219, respectively. The allelic
states were translated from base pairs to numeric format to facil-
itate further processing of genomic data. The numeric data con-
sisted of five allelic states, ranging from 0 to 4, in which 0 and 4
represent the two homozygotes OOOO and AAAA, and 1, 2, and 3
represent the three possible heterozygotes AOOO, AAOO, and
AAAO, respectively.

Similarity between individuals was used as an additional qual-
ity control measure for the SNP array. Allele callings were com-
pared between individuals over all markers. Individuals
genotyped twice were compared to each other, with an expecta-
tion of very small differences between allele callings. Related and
unrelated individuals were compared to each other, with a higher
degree of difference expected. Similarity checks of genotypic data
were done using the R statistical package (R Core Team 2021).

To reveal whether there was any population structure among
the individuals, a Euclidian distance matrix was calculated based
on marker data. Using the R package “adegenet,” a principal

coordinate analysis (PCoA) was conducted with the Euclidean dis-

tance matrix (Jombart 2008; Jombart and Ahmed 2011). The PCoA

was visualized using the R package “ggfortify” (Tang et al. 2016;

Horikoshi and Tang 2018).

Phenotypic data
The tubers for the field experiments were brought up from plants

grown in a greenhouse for population T1, and from field grown

plants in northern Sweden (84�N, 20�260E) for T2 and T3–7, to limit

the number of virus-infected tubers. Data from the three popula-

tions were recorded at three sites in Sweden (Helgegården,

Mosslunda—both in Skane in south Sweden—and Umeå in the

north) in 2018. For population T1, data were taken at Mosslunda

(55�980N, 14�100E), with one repetition of, in total, four observa-

tions in 2018. Host plant resistance to foliar LB, caused by the

pathogen Phytophthora infestans, was scored during the cropping

season in 2016, from 21st July (first sighting of the disease in the

field) until 29th September. Data from T2 were recorded in the

same field as the T1 in 2018; i.e., from 10-plant plots. The data

from T3–7 were collected at the same field site as T1 and T2 and

for 38 of its breeding clones at two additional sites (Helgegården:

56�020N 14�070E and Umeå: 63�840N 20�260E) in 2018 using 20-

plant plots. The tubers of all Tis were sown between 14th and

15th May, and they were harvested on 11th and 12th October.

Five cultivars (“Bintje,” “Carolus,” “Connect,” “King Edward,” and

“Solist”) were planted at all three field sites. All phenotypic

records were adjusted by location using the means of the five cul-

tivars from each location, with the exception of LB which was

scored only on a per-plant basis.
Phenotypic data for eight important breeding traits were

recorded in the field during the cropping season and after har-

vest. For each plant, tuber weight (TW) was measured in kilo-

grams and tuber number (TN) was recorded at harvest. The

average tuber weight (ATW) measured in kilograms was calcu-

lated by dividing TW by TN. Likewise, at harvest, tuber unifor-

mity, Eye depth, Shape, and Size (from now on referred to as Eye,

Shape, and Size) were estimated using a discrete scale ranging

from 1 (nonuniform) to 9 (uniform). Finally, SG was recorded as

the weight of tubers in air divided by the weight of tubers in wa-

ter. TW, TN, and ATW were recorded for all three populations

(648–669 genotypes) across all sites (with one or two replicates

per site). Eye, shape, size, and SG were recorded for populations

T2 and T3–7 (200 genotypes) across all sites (with one or two repli-

cates per site). LB was scored only in the T1 population (465 geno-

types), and data were collected six times over the course of plant

growth. These scores were used to estimate the area under dis-

ease progress curve (AUDPC) according to known international

standards (Forbes et al. 2014). Analysis of variance (ANOVA) was

conducted for each trait in order to study differences in perfor-

mance among the populations. For the traits collected for T1,

Tukey’s range test of means (Tukey 1949) was conducted to de-

termine any differences among the five families.

Heritability estimates
Trait heritability was estimated using 38 clones present at all

three locations. Broad-sense heritability (H2) was estimated for

all traits by calculating the genetic variance components for ge-

notype using the following equation:

Table 2 Full-sib families of population T1 with information on the
number of individual genotypes for each parental cross, as well
as the parents of the five crosses

Family Size (number of individuals) Crossing parents

A 51 “Bionica” � “Sarpo Mira”
B 51 “C08II69”** � “Bionica”
C 149 “L17”* � “Sarpo Mira”
D 152 “L26”* � “Sarpo Mira”
E 62 “L4”* � “Sarpo Mira”

* “L4,” “L17,” and “L26” are full-sibs from a bi-parental cross between
breeding clone “SW93-1015” and cultivar “Desirée.” Data from these two
“grandparents” were also recorded alongside the data from T1.

** “C08II69” has “SW93-1015” as one of its parents.
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H2 ¼
r2

g

r2
g þ

r2
g�e

Hm1

� �
þ r2

E
Hm2

� � (1)

where r2
g is the variance of the genotype, r2

g�e the variance due to
genotype and environment interaction and r2

E the residual vari-
ance (Cullis et al. 2006). Hm1 is the harmonic mean of repetitions
of each genotype at each location, and Hm2 is the harmonic
mean of the number of repetitions of each genotype across all
locations. The variance components r2

g, r2
g�e, and r2

E were
obtained using the package ASReml-R version 3.0 (Butler et al.
2018), after fitting a linear mixed model that includes genotype,
environment, genotype by environment and replicate per loca-
tion as random terms. The R statistical package was used for the
statistical analysis (R Core Team 2021).

Genome-wide predictions of phenotypic traits
The R package “BGLR” (Pérez and de los Campos 2014) was used
to fit the prediction models and estimate breeding values (GEBVs)
for the phenotypic traits. To estimate GEBVs, the Bayesian Ridge
Regression model (equivalent to the commonly used GBLUP
model), was fitted. The model is:

y ¼ 1lþ Xbþ e; (2)

where y is the response vector, l is an intercept, X is the matrix of
markers, xij 2 f0; 1; 2; 3; 4g, which corresponds to the allelic dos-
age, b is a vector of marker effects and e is the vector of residuals
assumed to be distributed normally with mean 0 and variance
covariance matrix r2

e I, with r2
e a variance component associated

to the residuals. We assigned a multivariate normal distribution
with mean 0 and variance r2

bI to b, with r2
b a variance component

associated to the markers, so that all marker effects have the
same shrinkage (Gianola 2013).

Cross-population analysis
We partitioned the data into two sets, training and test, in order
to study the model’s predictive ability. The sets were assigned
based on generations: T1, T2, T3–7 and the combination of T2 and
T3–7 (hereafter referred to as T2–7). To increase the genetic overlap
between populations, the parents and grandparents of the full-
sib families in T1 were included in the population T2–7 for predic-
tion of the tuber yield traits. The set with individuals at later
stages of selection was assigned as the training set, which was
used to train the model to generate GEBVs for the test set made
up of individuals from earlier generations in the breeding pro-
gram. For each partition, we fitted model (2) and we computed
the Pearson’s correlation coefficient between observed and pre-
dicted values. The model was fitted using the Bayesian frame-
work with the BGLR package (Pérez and de los Campos 2014).
Inferences were based on 30,000 samples after discarding 15,000
samples that were used as burn-in.

Cross-family analysis
Cross-family analysis was conducted for two of the full-sib fami-
lies from the first clonal generation (T1-C and T1-D). The families
were assigned to the training or test set separated by family, and
the model’s predictive ability was assessed as described for cross-
population analysis in the section above.

Cross-validation analysis
The population was also randomly divided using fivefold
schemes for each of the seven traits. The individuals were

randomly assigned to five disjoint groups, where one acted as
test set and the other groups as training set, and the process was
repeated until all individuals had been given a predicted pheno-
typic value. For each partitioning we fitted model (2) following
the same procedures as described in the previous section. Each
fivefold validation was run 100 times, with new randomly
assigned groups. The mean prediction accuracy for the cross-
validation was calculated as the mean Pearson’s correlation coef-
ficient between observed and predicted values. Cross-validation
was also conducted within two full-sib families from the first
clonal generation (T1-C and T1-D). The partitioning and model fit-
ting followed the same approach as when all individuals were in-
cluded.

Results
Genotypes and population structure
Genotyping of 669 individuals from three breeding populations
from various stages of a potato breeding program (including the
parents and grandparents of some of these offspring) was done
using an SNP array. There were 10,546 polymorphic SNPs of high
quality for all the individuals of the breeding populations. The
SNP array was deemed robust, as less than a 0.5% difference in
genotype calling was found among samples collected from the
same individual, while on average randomly drawn individuals
from the data set had a difference of 50% between the genotype
callings.

A PCoA including the polymorphic markers of the 669 individ-
uals revealed clear population structure (Figure 1). The first prin-
cipal coordinate (PC1) explained 12.77% of the variation in the
genotypic data set while the second principal component (PC2)
accounted for 5.43% of this variation. There was distinct separa-
tion of the more elite breeding material (T2 and T3–7), which in-
cluded more bi-parental families than the T1 (consisting of only
five bi-parental families). No such strong population structure
due to genotypic data was found among the later stages of selec-
tion. The population structure was also studied for population T1

(Supplementary Figure S1), and T2 and T3–7 (Supplementary
Figure S2) by conducting separate PCoAs based on the Euclidean
distance matrix computed using the markers for the individuals
within each of the two populations. These plots revealed the
same results as the PCoA containing data from all individuals,
with populations T2 and T3–7 having less defined population
structure than the five families from population T1. The % vari-
ance explained by the two first PCs was slightly higher for the T1

population (PC1 accounted for 11.87% and PC2 accounted for
7.24%) than for the T2 and T3–7 populations (PC1 accounted for
9.45% and PC2 accounted for 5.98%). The structure among the
five T1 full-sib families was distinct, with a majority of the full-
sibs clustering together (Supplementary Figure S1). T1-C, T1-D,
and T1-E, which all share a male crossing parent and where the
female crossing parent are full-sibs, seem to be at a closer genetic
distance compared to the other two families. T1-A share one
crossing parent with T1-B and one with T1-C, T1-D, and T1-E. The
individuals included in T1-A were at an equal distance to T1-B
and the other three half-sib families.

Phenotypes and heritability
As the data were taken from several field sites, the means ad-
justed by site were calculated to allow comparisons within and
amongst the populations. There were differences in performance
for the tuber yield traits (TW, TN, and ATW) among the three
populations T1, T2, and T3–7 (Figure 2, A–C), and these differences
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were found to be significant (Supplementary Table S3). T1 had on
average much lower scores for TW and TN than T2 and T3–7

(P< 0.001) (Figure 2, A and B). For ATW, the individuals in T2

were more similar to the individuals in T1, while individuals from
T3 had higher scores (Figure 2C). The parents or grandparents of
the five T1 families showed a poor performance for TW and TN,
but slightly higher than the mean of the T1 population (Figure 2,
A and B). However, for ATW, their performance was similar to
that of T3–7 individuals (Figure 2C). ANOVAs were conducted to
determine the difference between the two populations separated
by time (T2 and T3–7). There were significant differences in SG
and Size between the T2 and T3–7 populations (Figure 3, A and B;
Supplementary Table S3). The populations did not differ for
Shape and Eye (Figure 3, C and D, Supplementary Table S3). Data
for four phenotypic traits were available for the T1 population
(TW, TN, ATW, and LB). The phenotypic scores among the five
full-sib families in T1 were very similar, but some significant dif-
ferences were detected (Supplementary Figure S3, A–D, Table S4).
Families T1-C and T1-D were the two largest among the five fami-
lies, and were studied in more detail in subsequent analysis.
Between these two families, TW, TN, and ATW differed
(P< 0.001), while no difference was found for LB.

The H2 values for the three tuber yield traits—TW, TN, and
ATW—were moderately high at 0.64, 0.668, and, 0.692 respec-
tively (Table 3). Both Eye and SG had high H2 estimates, 0.622
and 0.702. On the other hand, Size and Shape had low heritabil-
ity: 0.094 and 0.016, respectively (Table 3). Trait heritability,

based on variance components, was estimated for the whole pop-
ulation, and for the same individuals as H2, separately (Table 3).
Phenotypic variation estimates will depend on the trait scoring
system used, and therefore comparisons between traits were not
pursued.

Evaluation of predictive power across populations
GEBVs were predicted for each of the seven phenotypic traits us-
ing the Ridge Regression to estimate individual marker effects. To
test the effectiveness of predicting traits across populations, the
phenotypic values of the population with individuals from the
two first stages of the breeding program (T1 or T2 depending on
trait data availability) were removed. By building a prediction
model utilizing the phenotypic data from individuals at later
cycles of selection in the breeding program as well as the genetic
relationship between individuals, the phenotypic values could be
estimated. A phenotypic trait was said to be predictable if the
prediction accuracy was above 0. The linear model was able to
predict all traits. The predictive ability varied greatly across phe-
notypic traits.

There was no general trend as to a trait’s heritability and the
predictive ability of GEBVs. The tuber yield traits—TW, TN, and
ATW—were predicted using two different assignments of training
and test sets, as these were the only traits that were collected for
population T1. The model’s predictive ability did not differ
depending on which populations were included, except for ATW
(Table 4). The prediction accuracy was increased from 0.04 to

Figure 1 Principal coordinate analysis (PCoA) based on the Euclidian genetic distance between genotyped individuals. Colored groupings are made based
on breeding populations across various selection cycles, T1–T3–7. The five full-sib families of population T1 are also separated by color. Four cultivars or
breeding clones from the bi-parental crosses that produced the T1 families are included as breeding parents. PC1 and PC2 are the % variance explained
by the two first principal components.
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0.18 when population T1 was excluded, allowing T3–7 to act as a
training set to predict phenotypic values for T2. Overall, the low-
est prediction accuracy was for TW, TN, and Shape (Table 4). SG
had the highest prediction accuracy, i.e., 0.43. Size and Eye also
showed moderately high predictive ability.

Evaluation of predictive power of cross-validation
To further assess the models’ performance, the data were also
partitioned randomly in a fivefold cross-validation approach. The
predictive ability of the cross-validations differed from when the
data training test sets were assigned by cycles of selection, for
four of the seven traits (Table 4). The fivefold cross-validation
allowed for a more ideal situation when computing prediction
modeling. Compared to our partitioning based on cycles of selec-
tion, a cross-validation approach increases the genetic overlap
between the training and test set, and limits the relative size of
the test set (Daetwyler et al. 2013). TW, TN, ATW, and SG were
traits that showed an increased predictive ability when using the
cross-validation approach, compared to our approach of parti-
tioning the training and testing sets. However, accuracy for

prediction of traits such as Size, Shape, and Eye was very similar
for both partitioning methods.

Evaluation of predictive power across and within
families
GEBVs were predicted using the two largest full-sib families from
the first clonal generation, T1. Four phenotypic traits were avail-
able for the two families, and were predicted using model (2). The
prediction model was built using the phenotypic data from one
family (T1-C or T1-D) with the genetic relationship between indi-
viduals, and the phenotypic values were estimated for the other
family (T1-C or T1-D). All traits except TN were predictable using
the linear model (Table 5). The predictive ability was similar re-
gardless of which of the two families were used as test set and
training set. The highest predictive ability was found for LB (0.29–
0.31), while TW and ATW had relatively low predictive ability. In
addition to the across family prediction, GEBVs were also pre-
dicted within the families separately using randomly assigned
fivefold cross-validation. The predictive ability was greater for
three out of four traits when using cross-validation, compared to

Total tuber weight per plant adjusted per location

T3-7

T2

T1

Breeding 
parent

Total tuber number per plant adjusted per location

T3-7

T2

T1

Breeding 
parent

Average weight per tuber adjusted per location

T3-7

T2

T1

Breeding 
parent

A B

C

Figure 2 Phenotypic scores for (A) TW per plant, (B) TN per plant, and (C) average TW, across breeding cycles in the potato breeding population and
clones and cultivars representing the breeding parents, y-axis. Phenotypes are adjusted per location by the means of five cultivars used as checks.
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when the data was partitioned into training and test sets accord-
ing to family grouping (Table 5). However, accuracy in prediction
of LB was lower when using the cross-validation approach. The
predictive ability for the four traits differed depending on which
of the two families was used in the model. The greatest difference

in predictive ability between the two families was for TN, where
predictive ability was 0.07 for cross-validation within T1-C and
0.26 for cross-validation within T1-D.

Tuber specific gravity adjusted by location

T3-7

T2

A

Uniformity of tuber size adjusted by location

T3-7

T2

B

Uniformity of tuber shape adjusted by location

T3-7

T2

C

Depth of tuber eyes adjusted by location

T3-7

T2

D

Figure 3 Phenotypic scores for (A) SG, (B) uniformity of tuber size, (C) uniformity of tuber shape, and (D) tuber eye depth, across breeding cycles in the
potato breeding population, y-axis. Phenotypes are adjusted per location by the means of five cultivars used as checks.

Table 3 Broad-sense heritability and variation for the seven
phenotypic traits: tuber weight per plant (TW), tuber number per
plant (TN), average weight per tuber (ATW), SG and uniformity of
tuber size and shape and tuber eye depth

TW TN ATW SG Size Shape Eye

Heritability 0.64 0.668 0.692 0.702 0.094 0.016 0.622
Variation 0.125 9.308 0.002 2.9� 10�4 2.285 4.902 1.469
Total variation 0.815 16.11 0.002 6.8� 10�5 1.067 1.414 1.488

Heritability and variation were calculated for the 38 individuals present at all
three locations. The total variation represents the phenotypic variation among
all individuals scored (n¼ 200–669).

Table 4 Prediction accuracy (correlation between observed and
predicted phenotypes) for seven breeding traits: tuber weight per
plant (TW), tuber number per plant (TN), average weight per
tuber (ATW), SG and uniformity of tuber size and shape and
tuber eye depth

Training
population

Test
population

Breeding trait

TW TN ATW SG Size Shape Eye

T2�7 T1 0.05 0.05 0.04
T3�7 T2 0.07 0.04 0.18 0.43 0.16 0.03 0.15
80%* 20%* 0.75 0.72 0.39 0.62 0.17 0.045 0.15

Model validation was conducted either on the populations divided by cycle of
selection, or by randomly partitioned fivefold cross validations.

* For the cross validation the total population was divided at random,
mean prediction accuracies over 100 model runs.
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Discussion
As proposed by Bradshaw (2017), introducing genomic selection
for the first year of clonal selection would have a large impact on
the efficiency of a potato breeding program. At this stage in the
potato breeding cycle, the number of replications is the limiting
factor for accurate phenotyping. Many key breeding traits, such
as tuber yield, shape and size, cannot be accurately assessed un-
til later vegetative generations, where more tubers from the same
clone are available for planting in the field. In this study, we
attempted to implement the proposition described above by
implementing genomic selection in a potato crossbreeding pro-
gram that includes several different generations of clonal selec-
tion.

The degree of population structure differed greatly among the
different populations (Figure 1). It was clear that the individuals
in the T1 generation had very limited genetic overlap with the
populations made up of later clonal generations. This was likely
because the population T1 included a very small number of
parents in the pedigrees, while T2 and T3 had a broader parent-
age, thus making the effective population size of T1 much smaller
than those of the later clonal generations. We theorized that the
limited genetic overlap and difference in effective population size
between T1 and the other populations could influence the predic-
tive ability when using T2 and T3–7 as training sets for predicting
GEBVs with genomic prediction models. The overall low accuracy
of prediction for tuber yield traits, compared to the prediction ac-
curacy estimated in previous research, is most likely due to the
relatively large populations used to validate the GEBVs in our
experiments (Desta and Ortiz 2014). The genetic overlap among
the five full-sib families from T1 was remarkably limited, consid-
ering that every family shares one crossing parent with at least
one other family (Table 2, Figure 1, Supplementary Figure S1).
We infer that this clear population structure among the five fam-
ilies may occur due to the nature of tetrasomic inheritance.

Comparing our results to results from previous research on
the use of GEBVs for selection in potato breeding is difficult, as
methods to estimate trait predictive ability, population structure
of the investigated population, and methods of partitioning test
and training sets vary greatly. Previous research indicated that
tuber yield had a prediction accuracy of above 0.5 (Stich and Van
Inghelandt 2018) using cross-validations. However, when distinct
sets of training and test populations were used (Habyarimana
et al. 2017; Endelman et al. 2018), the accuracy for tuber yield was
estimated as not exceeding 0.3. Previous studies that used

division of training-test sets had a maximum of 30% of the total
number of individuals as a test set, while in our study, some divi-
sions were of the same proportions, and some were divisions
where the test set makes up more than 50% of the total number
of individuals. Since the number of individuals is far greater in
the early stages of clonal selection compared to the advanced
stages in a crossbreeding program, using a training population of
a smaller size than the targeted test population could be difficult,
but this is a challenge to circumvent. Our prediction accuracies,
using the fivefold cross-validation approach, are consistent with
those of cross-validation models available in the literature
(Habyarimana et al. 2017; Stich and Van Inghelandt 2018;
Sverrisdóttir et al. 2018; Caruana et al. 2019); i.e., the estimates for
tuber yield are within the 0.3–0.54 range, for dry matter or starch
content or SG within the range 0.3–0.8, and for eye depth 0.54.

Studies on the power of GEBVs estimated within and across
full-sib families have proven these methods successful for breed-
ing other crops such as, for example, wheat, maize, and sugar
beet (Zhao et al. 2015). To our knowledge, this study is the first to
predict GEBVs across and within full-sib families of potato
(Table 5). The prediction accuracies obtained for TW and ATW
across the two T1 families (T1-C and T1-D) were similar to the pre-
diction accuracies obtained across different generations of selec-
tion (Table 4). LB yielded the highest accuracy out of the traits
scored for T1, and unfortunately, this trait was not scored for the
advanced Ti generations. LB has been included in other previous
genomic selection studies on potato. The prediction accuracy for
LB we obtained in the across family predictions are similar to
what Enciso-Rodriguez et al. (2018) found using randomly parti-
tioned cross-validations. According to our results, predicting LB
across full-sib families gave higher accuracy than within the
same family. This is not in line with previous research on geno-
mic selection for biparental families, where full-sibs yield higher
prediction accuracies than half-sibs (Brauner et al. 2020). TW, TN,
and ATW all had higher prediction accuracies for the within fam-
ily predictions, but the accuracies varied depending on which of
the two families the prediction was for. One family did not con-
sistently have higher prediction accuracies than the other, but
the results depended on which trait was being predicted. The dif-
ference in prediction accuracies between the families might be
due to the genetic background of the individuals, or the different
spread of phenotypic ranges between T1-C and T1-D, or the vari-
ance among cross-validations (Supplementary Figure S1 and
Table S5).

The predictions for TW and TN are low regardless of whether
the training-test sets were set up between different generations
of selection (Table 4). The exception for this trend was noted for
predictions of ATW, where a slightly higher prediction accuracy
was observed after partitioning the split between training and
test sets. The predictions for ATW were less accurate when using
the T2 and T3–7 populations as a training set for GEBVs of the T1

population. One reason that ATW shows a higher predictive abil-
ity compared to TN and TW could be the distribution of the phe-
notypic data for these traits (Figure 2, A–C). On average, the
adjusted means per location for TW and TN differed greatly; i.e.,
values were lower for population T1 compared to populations T2

and T3. The values for ATW were much more homogenous over
the three populations. Hence, the lower prediction accuracy for
TW and TN could be due to the range of phenotypic variation
found in each of the two clonal selection generations (unselected
T1, compared to T2 and T3 which have undergone at least one cy-
cle of selection) not being represented in the generation used for
training the prediction model.

Table 5 Prediction accuracy (correlation between observed and
predicted phenotypes) for four breeding traits: tuber weight per
plant (TW), tuber number per plant (TN), average weight per
tuber (ATW) and host plant resistance to late blight (LB)

Training population Test population Breeding trait

TW TN ATW LB

T1-C T1-D 0.088 – 0.101 0.29
T1-D T1-C 0.069 – 0.080 0.31
T1-C* 0.130 0.070 0.337 0.25
T1-D* 0.300 0.260 0.182 0.16

Model validation was conducted on individuals divided by full-sib family or by
randomly partitioned fivefold cross validation within each full-sib family. The
symbol “-” indicates that the prediction accuracy for the trait was negative, i.e.,
prediction was not possible.

* For the cross validation within the full-sib family, individuals were
divided at random, mean prediction accuracies were estimated over 100 model
runs.
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The predictive ability of GEBVs for SG has been estimated in
previous research on the potential of genomic selection for potato
breeding, either by estimating it as tuber starch content
(Sverrisdóttir et al. 2017; Stich and Van Inghelandt 2018) or, as
here, as the direct measure of the SG or the dry matter content in
the tubers (Habyarimana et al. 2017; Endelman et al. 2018;
Sverrisdóttir et al. 2018). The prediction accuracy for SG in our re-
search using generation-based partitioning is lower than the pre-
diction accuracy estimated in the previous cited research, but
still within their range of estimations depending on the method
and partitioning of training and test sets used for the prediction
models.

The heritability estimates for our population are, to a very lim-
ited degree, reflected in the prediction accuracy of the phenotypic
traits. The highest H2 was found for SG, which also displayed the
highest predictive ability (Table 3). However, high heritability
was also found for the tuber yield traits, which displayed very
low predictive ability when using our partitioning of training and
test sets based on cycle of selection. The predictive ability of the
fivefold cross-validation approach (Table 4) gives a better reflec-
tion of the high H2 estimates found in the tuber yield traits. There
is a correlation between highly heritable traits and high predic-
tion accuracy of GEBVs (Zhang et al. 2017). However, there is not a
one to one correlation between trait heritability and cross-
validation predictive ability. When looking at the results for all
traits collectively, a general trend is apparent. Some of the high-
est H2 and prediction accuracy were for TW, TN, and ATW, while
Size, Shape, and Eye had the lowest for both. The total numbers
of individuals used to produce the cross-validation prediction ac-
curacy were much smaller for SG, Size, Shape, and Eye, which
might have affected the model’s predictive ability, since a smaller
sample size will result in higher standard errors (Altman and
Bland 2005). Trait heritability, on the other hand, was not af-
fected by population size because the same individuals were
used for this estimate for the seven traits. LB was not included in
the heritability estimates as this trait was not measured in the
T3–7 clones used to calculate H2. LB has previously been reported
to have moderate to moderate-high narrow-sense heritability
(ranging between 0.31–0.69, Pajerowska-Mukhtar et al. 2009;
Solano et al. 2014; Enciso-Rodriguez et al. 2018).

As previously mentioned, yield traits in potato have low to me-
dium narrow-sense heritability (Ortiz and Golmirzaie 2002;
Schönhals et al. 2017), which includes additive and digenic varia-
tion, while the broad sense heritability (H2) for these traits in our
research may be overestimated by including therein the other
nonadditive genetic variation (tri- and quadri-genic intra locus
and inter-locus interactions or epistasis). One explanation for
this can be found when looking at the standard error of the vari-
ance due to genotypic effect, which is very high, for TN per plant
(Table 3). Among the other known research on genomic selection
in potato, only Stich and Van Inghelandt (2018) included an esti-
mation of heritability for tuber yield (0.77), and even if their pre-
diction accuracy for this trait was higher than ours, taking into
account previous results it is still reasonable to think that this
high heritability value was overestimated.

To the best of our knowledge, this study is the first to include
estimations of GEBVs for tuber uniformity traits, which, accord-
ing to our results, seem to be partially predictable using GEBVs,
but with a low accuracy ranging between 0.08 and 0.2, and
depending on the sizes and genetic relationships of the test and
training sets. Across generational predictions were also success-
ful for these traits and could probably be improved with a larger
population size, e.g., by including data from the T1 population.

In conclusion, based on our results and the results of previous
research as cited above, we remain cautious about proposing geno-
mic selection as a standard breeding method for improving potato
following the approach of across selection cycle predictions. The
main problems, if this method is to be introduced as a genomics-
based selection approach in a small potato breeding enterprise
with a finite population size, are likely to be the large number of
individuals included in the test set relative to the training set, and
the limited genetic overlap between generations based on marker
and pedigree research. The limited pedigree-based relationship be-
tween clonal generations seen in this study would, however, not
reflect the relationships over generations found in other potato
breeding programs. Our T1 population is not a typical first clonal
generation because of the small number of parents involved.
Often, a breeding program would use the same parents for several
years in the crossing blocks, and this may lead to more genetic
overlap between the clonal generations than in those used in our
study. However, such an approach may lead to inbreeding, which
is undesirable in potato breeding. On the matter of the limited size
of the training population relative to the test population, the inclu-
sion of historical data to train the model will be an option once ge-
nomic selection has been introduced as a method in the breeding
program for a few years. This would increase the genetic diversity
and population size of the training set used to train the model to
develop GEBVs, and hence increase the predictive ability of the ge-
nomic selection model (Isidro et al. 2015; Cericola et al. 2017;
Sverrisdóttir et al. 2018). With the data available from this finite
size breeding program, we have demonstrated that genomic pre-
diction for selection based on GEBVs would be hard to implement
for various target potato breeding traits using cross population pre-
dictions. Though the implementation of genomic selection in early
clonal generations would limit the number of clonal generations
needing to be evaluated using costly and labor-intensive field trails
every year, the predictive ability using later cycles of selection to
predict the performance of this material is not adequate following
this approach. The predictive ability values across full-sib families
are also very low for tuber yield traits, though relatively high for
LB. The best prediction accuracies were obtained using within fam-
ily predictions, and following this approach could make potato
breeding more efficient as one could phenotype only a portion of
the offspring produced in bi-parental crosses. However, the accu-
racy will vary depending on the genetic background of the trait of
interest and the number of full-sibs in the family.
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Pérez P, de los Campos G. 2014. Genome-wide regression and predic-

tion with the BGLR statistical package. Genetics. 198:483–495.

doi: 10.1534/genetics.114.164442

Potato Genome Sequencing Consortium 2011. Genome sequence

and analysis of the tuber crop potato. Nature. 475:189–195. doi:

10.1038/nature10158.

Ramakrishnan AP, Ritland CE, Blas Sevillano RH, Riseman A. 2015.

Review of potato molecular markers to enhance trait selection.

Am J Potato Res. 92:455–472. doi:10.1007/s12230-015–9455-7.

R Core Team 2021. R: A Language and Environment for Statistical

Computing. Vienna: Austria: R Foundation for Statistical

Computing. https://www.R-project.org/.

Rosyara UR, De Jong WS, Douches DS, Endelman JB. 2016. Software

for genome-wide association studies in autopolyploids and its

application to potato. Plant Genome. 9:1–10. doi:10.3835/plantge-

nome2015.08.0073.

Schönhals EM, Ding J, Ritter E, Paulo MJ, Cara N, et al. 2017. Physical

mapping of QTL for tuber yield, starch content and starch yield in

tetraploid potato (Solanum tuberosum L.) by means of genome

wide genotyping by sequencing and the 8.3 K SolCAP SNP array.

BMC Genomics. 18:642.doi:10.1186/s12864-017–3979-9.

Selga C, Koc A, Chawade A, Ortiz R. 2021. A bioinformatics pipeline

to identify a subset of SNPs for genomics-assisted potato breed-

ing. Plants (Basel). 10:30.doi:10.3390/plants10010030.

Slater AT, Cogan NOI, Forster JW, Hayes BJ, Daetwyler HD. 2016.

Improving genetic gain with genomic selection in autotetraploid

potato. Plant Genome. 9:1–15. doi:10.3835/plantge-

nome2016.02.0021.

Solano J, Acu~na I, Esnault F, Brabant P. 2014. Resistance to

Phytophthora infestans in Solanum tuberosum landraces in

Southern Chile. Tropical Plant Pathol. 39:307–315. doi:

10.1590/S1982-56762014000400005.

Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T. 2014.

Systematics, diversity, genetics and evolution of wild and

cultivated potatoes. Bot Rev. 80:283–383. doi:10.1007/

s12229-014–9146-y.

Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ. 2005. A single

domestication for potato based on multilocus amplified fragment

length polymorphism genotyping. Proc Natl Acad Sci USA. 102:

14694–14699. doi:10.1073/pnas.0507400102.

Stich B, Van Inghelandt D. 2018. Prospects and potential uses of ge-

nomic prediction of key performance traits in tetraploid potato.

Front Plant Sci. 9:159.doi:10.3389/fspl.2018.00159.
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